第02讲 函数的有关概念
函数的概念和概念
函数的概念和概念函数是数学中的基本概念之一,也是计算机科学中非常重要的概念之一。
简单来说,函数是一种将一个或多个输入映射到一个输出的规则或过程。
在数学中,函数是一个机械的映射关系,可以将一个数或一组数映射到另一个数或一组数。
具体地说,函数是一种有序对的集合,包括输入和对应的输出。
函数的输入称为自变量,输出称为因变量。
函数通常用自变量x和因变量y表示,一般写成y = f(x)的形式。
这里的f表示函数关系,表示自变量x和因变量y之间的映射关系。
函数关系可以用各种形式的方程式、图表或图像来表示。
函数在数学中有很多种不同的类型,例如,线性函数、二次函数、指数函数、对数函数等等。
每种函数都有其特定的特征和性质。
函数的定义域为自变量可能取值的集合,值域为函数可能取值的集合。
定义域和值域的不同可以决定函数的性质和特征。
例如,线性函数的图像是一条直线,定义域和值域都是实数集;二次函数的图像是一个抛物线,定义域为实数集,值域取决于二次项的系数等等。
在计算机科学中,函数是一种封装了某个特定功能的可重用代码块。
有了函数,我们可以将复杂的问题分解成更小的问题,每个问题由一个函数来解决。
这种分解使程序变得更加模块化和易于理解。
函数接受输入参数,经过一系列代码运算,产生一个输出结果。
函数可以返回一个值,也可以没有返回值。
函数在程序设计中有很多种不同的形式,例如,内置函数、自定义函数、递归函数等等。
内置函数是语言本身提供的函数,例如,数学计算函数、字符串处理函数、文件操作函数等等。
自定义函数是由程序员根据需要自行编写的函数。
递归函数是指函数可以调用自己的一种特殊函数。
函数在计算机科学中的重要性不言而喻。
函数可以大大简化程序的编写,提高代码的可读性和可维护性。
通过将一个复杂问题分解成多个函数,可以使程序更加模块化,易于理解和调试。
函数可以被多次调用,从而提高代码的重用性。
通过递归函数,可以处理一些复杂和需要重复调用的问题,例如,处理树形结构、图形遍历等。
高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
函数的概念与基本性质
函数的概念与基本性质函数是数学中的一个重要概念,它在数学和其他领域中都有广泛的应用。
本文将介绍函数的概念以及其基本性质,包括定义域、值域、对应关系、单调性等。
一、函数的概念函数是两个集合之间的一种特殊关系,一般表示为 f(x),其中 x 是自变量,f(x) 是因变量。
函数的定义域是指所有可能的自变量的集合,而值域则是函数在定义域内可以取得的所有因变量的值的集合。
函数在定义域内的每个自变量都对应一个唯一的因变量。
二、函数的基本性质1. 定义域和值域:函数的定义域和值域是函数的两个基本性质。
定义域决定了函数的有效输入范围,而值域则表示函数可能的输出范围。
在函数中,定义域和值域可以是有限的集合,也可以是无限的区间。
2. 对应关系:函数的一个重要性质是具有确定的对应关系。
即在定义域内的每个自变量都对应唯一的因变量。
这种一一对应的关系使得函数具有明确的输入和输出。
3. 单调性:函数的单调性描述了函数随自变量变化时的趋势。
如果函数在定义域内的任意两个自变量 x1 和 x2 满足 x1 < x2,则有 f(x1) <f(x2),则称该函数是单调递增的。
反之,如果 f(x1) > f(x2),则称该函数是单调递减的。
4. 奇偶性:函数的奇偶性是指函数关于原点对称的性质。
如果对于定义域内的任意自变量 x,有 f(-x) = -f(x),则称函数是奇函数。
而如果有 f(-x) = f(x),则称函数是偶函数。
5. 周期性:函数的周期性表示在一定范围内,函数的图像会随着自变量的周期性变化而重复出现。
如果存在一个正数 T,使得对于定义域内的任意自变量 x,有 f(x+T) = f(x),则称函数具有周期 T。
三、函数的应用函数的概念和性质在数学和其他领域中都有广泛的应用。
在数学中,函数被用于解决各种数学问题,包括方程求解、函数图像绘制和曲线分析等。
在物理、经济学和工程学等应用领域,函数被用于建立模型和描述现象,帮助我们理解和解释自然界中的规律。
函数的定义及有关概念
函数的定义及有关概念
函数是数学中常见的概念,它是一个将一个或多个输入值映射到唯一一个输出值的规则或过程。
函数通常表示为f(x)或y = f(x),其中x是输入值,f是函数,y 是输出值。
函数的定义包括几个重要的要素:
1. 定义域:函数的定义域是指所有可能输入值的集合。
它限定了函数能够接受的输入范围。
2. 值域:函数的值域是指所有可能输出值的集合。
它限定了函数能够产生的输出范围。
3. 图像:函数的图像是指函数在坐标系中的表示形式。
它由所有输入值与其对应的输出值组成的点的集合构成。
4. 关系:函数定义了输入和输出之间的关系。
对于每个输入值,函数只能有一个输出值。
5. 映射:函数将每个输入值映射到唯一一个输出值。
这个映射过程可以通过一个算法、公式或规则来表示。
6. 变量:函数中的变量是指输入值和输出值可变的量。
在函数定义中,通常用字母x表示输入变量,用字母y表示输出变量。
函数可以有不同的类型和形式,比如线性函数、二次函数、指数函数、对数函数等。
函数的性质和特点也可以通过函数的图像、导数、积分等来描述和分析。
函数在数学和科学中有着广泛的应用,它是建立数学模型、解决问题的重要工具。
函数的概念与性质
函数的概念与性质函数是数学中关键的概念之一,广泛应用于各个学科领域。
本文将就函数的基本概念、性质以及应用进行论述,重点探讨函数在数学和实际问题中的重要性。
一、函数的基本概念函数是两个数集之间的一种对应关系。
通俗地说,函数可以理解为一种规则,使得对于集合A中的任意一个元素,都有一个唯一的元素与之对应在集合B中。
如果把集合A中的元素称为自变量,集合B中的元素称为因变量,那么函数就是自变量与因变量之间的确定关系。
函数一般用f(x)或者y来表示,其中x为自变量,f(x)或y为因变量。
例如,f(x) = x^2表示一个函数,它的自变量x的平方为因变量。
二、函数的性质1. 定义域与值域:函数的定义域是指能使函数有意义的自变量的取值范围,而值域是函数对应的因变量的所有可能取值。
函数的定义域和值域是函数的重要性质,也是确定函数性质的基础。
2. 单调性:函数的单调性是指函数在定义域内的取值变化的趋势。
函数可以分为递增和递减两种单调性,当函数对于任意的x1和x2,当x1小于x2时,如果f(x1)小于f(x2),则函数为递增函数;反之,如果f(x1)大于f(x2),则函数为递减函数。
3. 奇偶性:奇函数是指当自变量为正负相等的两个数时,函数值互为相反数;偶函数是指当自变量为相反数时,函数值相等。
例如,奇函数f(x) = x^3满足f(-x) = -f(x),偶函数f(x) = x^2满足f(-x) = f(x)。
4. 对称轴:对称轴是指函数图像与某条直线的位置关系。
对于奇函数来说,对称轴为原点;而对于偶函数来说,对称轴为y轴。
这种对称性质有助于简化函数的研究和图像的绘制。
三、函数的应用函数的概念和性质在数学和实际问题中都有广泛的应用。
1. 数学中的应用:函数被广泛应用于代数、解析几何、微积分等数学学科中。
在代数中,函数是多项式、指数函数、对数函数和三角函数的重要组成部分,通过函数的运算与组合,可以推导出很多重要的数学结论。
函数的概念及其表示-高考复习课件
(3)若函数 f(x)满足 f(x)-2f1x=x+2,则 f(2)= -3 .
解析:由 f(x)-2f1x=x+2,可得 f1x-2f(x)=1x+2,联立两式可得 f(x)=-13x+2x- 2,代入 x=2 可得 f(2)=-3.
规律总结
求函数解析式的常用方法 (1)待定系数法:若已知函数的类型,可用待定系数法; (2)换元法:已知复合函数 f(g(x))的解析式,可用换元法,此时要注意新元的取值范 围; (3)配凑法:由已知条件 f(g(x))=F(x),可将 F(x)改写成关于 g(x)的解析式,然后以 x 替代 g(x),便得 f(x)的解析式; (4)构造法:已知关于 f(x)与 f1x或 f(-x)的解析式,可根据已知条件再构造出另外一 个等式,通过解方程组求出 f(x).
3.(教材改编题)已知函数 f(x)=2x+x-11,,xx≤>00,, 则 f(f(0))的值为 1 ;方程 f(-x)=1 的解是 0 或-1 .
解析:∵f(0)=1,∴f(f(0))=f(1)=1;当-x≤0 时,f(-x)=-x+1=1,解得 x=0; 当-x>0 时,f(-x)=2-x-1=1,解得 x=-1.
高中数学函数概念
高中数学函数概念在高中数学课程中,函数是一个非常重要的概念。
函数是数学中的基础概念之一,也是更高级数学知识的基础。
通过学习函数的相关知识,不仅可以增进对数学的理解,还可以培养逻辑思维和解决问题的能力。
接下来我们就来详细了解高中数学函数的相关概念。
1. 函数的定义在数学中,函数是一种将一个集合中的元素映射到另一个集合的规则。
一个函数通常表示为 f(x),其中 x 是自变量,f(x) 是因变量。
函数f 定义域内的每个元素 x 都对应唯一的函数值 f(x),即不同的自变量对应不同的因变量。
2. 函数的图像函数可以通过绘制图像来描述。
函数的图像通常采用直角坐标系来表示,自变量 x 沿 x 轴,因变量 f(x) 沿 y 轴。
通过观察函数的图像,可以直观地了解函数的性质,如增减性、奇偶性、周期性等。
3. 基本函数在高中数学中,常见的基本函数包括线性函数、二次函数、指数函数、对数函数和三角函数等。
这些函数在数学中有着重要的地位,也是其他函数的基础。
- 线性函数:线性函数的图像是一条直线,通常表示为 y = kx + b,其中 k 和 b 分别为斜率和截距。
- 二次函数:二次函数的图像是抛物线,通常表示为 y = ax^2 + bx + c,其中 a、b、c 是常数。
- 指数函数:指数函数的表示形式为 y = a^x,其中 a 为底数,x 为指数。
- 对数函数:对数函数的表示形式为 y = loga(x),其中 a 为底数,x 为真数。
- 三角函数:三角函数包括正弦函数、余弦函数、正切函数等,是研究三角学中常见的函数。
4. 函数的性质函数具有多种性质,如奇偶性、周期性、单调性等。
了解函数的性质可以帮助我们更好地理解函数的变化规律,进而解决相关问题。
- 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) 与 f(x) 的关系。
如果 f(-x) = f(x),则函数是偶函数;如果 f(-x) = -f(x),则函数是奇函数。
函数的概念及性质
函数的概念及性质函数是数学中的重要概念之一,它在数学领域和其他学科中都有着广泛的应用。
函数的概念是描述一个变量与另一个变量之间关系的数学工具。
本文将对函数的概念及其基本性质进行探讨,从而帮助读者更好地理解和应用函数。
一、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
通常用f(x)来表示函数,其中x是函数的自变量,f(x)是函数的因变量。
例如,我们可以定义一个函数f(x)=2x,其中x是实数集合中的任意一个数,f(x)表示x的两倍。
这个函数可以描述一个数与它的两倍之间的关系。
二、函数的性质1. 定义域和值域:函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。
函数的定义域和值域取决于函数的性质和条件。
例如,对于函数f(x)=2x,定义域是实数集合,值域也是实数集合。
2. 单调性:函数的单调性是指函数在定义域内的变化趋势。
函数可以是递增的(单调递增)或递减的(单调递减)。
例如,函数f(x)=2x 是递增函数,而函数g(x)=2-x是递减函数。
3. 奇偶性:函数的奇偶性是指函数关于y轴(x=0)的对称性。
如果对于定义域内的任意x,有f(-x)=f(x),则函数是偶函数;如果对于定义域内的任意x,有f(-x)=-f(x),则函数是奇函数。
例如,函数f(x)=x^2是偶函数,函数g(x)=x^3是奇函数。
4. 周期性:函数的周期性是指函数在定义域内以一定的间隔重复的特性。
如果存在一个正数T,使得对于定义域内的任意x,有f(x+T)=f(x),则函数具有周期性。
例如,正弦函数sin(x)和余弦函数cos(x)都是周期为2π的函数。
5. 反函数:如果存在一个函数g,使得对于定义域内的任意x,有g(f(x))=x,且f(g(x))=x,则g称为f的反函数。
反函数可以将函数的输入与输出进行互换。
例如,函数f(x)=2x的反函数为g(x)=x/2。
三、函数的应用函数在数学、物理、经济学等学科中都有着重要的应用。
函数概念ppt课件
复合函数的性质
复合函数具有一些重要的性质,如单 调性、奇偶性等,这些性质可以通过 对组成复合函数的各个函数的性质进 行分析得出。
复合函数的运算规则是先计算内层函 数,再计算外层函数,依次类推,直 到所有的函数都计算完毕。
反函数的概念与运算
01
02
03
反函数的概念
反函数是指将一个函数的 输入和输出互换,得到一 个新的函数。
一次函数
形如f(x)=kx+b的函数, 其中k和b为常数且k≠0。
分式函数
形如f(x)=k/x的函数,其 中k为常数且k≠0。
对数函数
形如f(x)=log_a x的函数, 其中a为常数且a>0且a≠1
。
02 函数的性质
有界性
总结词
函数的值域在一定范围内变动,不会 无限增大或减小。
详细描述
函数的输出结果总是在一定的范围内 ,不会超出这个范围。例如,正弦函 数和余弦函数的值域都在-1到1之间。
函数的定义域和值域是函数的重要属性,它们决定了函数的作用范围和 结果范围。
函数的表示方法
解析法
用数学表达式来表示函数,是最 常用的一种表示方法。例如, f(x)=x^2表示一个函数,当x取 任意实数时,都有唯一的y值与 之对应。
表格法
通过表格的形式来表示函数,对 于一些离散的函数可以用此方法 。例如,一个离散函数的值可以
函数概念ppt课件
• 函数的基本概念 • 函数的性质 • 函数的运算 • 函数的应用 • 函数的图像
01 函数的基本概念
函数的定义
函数是数学上的一个概念,它是一种特殊的对应关系,这种对应关系使 得对于数集A中的每一个元素,通过某种法则,都可以唯一地对应到数集 B中的一个元素。
函数的概念及其表示法
时,有x=f^(-1)(y),则称x=f^(-1)(y)为y=f(x)的反函数。
性质
02
原函数和反函数在相应的区间上单调性相同。
求导法则
03
原函数的导数等于反函数的导数的倒数。
05 函数的实际应用
一次函数的应用
01
02
03
线性回归分析
一次函数是线性回归分析 的基础,通过拟合数据点, 可以预测因变量的变化趋 势。
函数的概念及其表示法
目录
• 函数的基本概念 • 函数的表示法 • 函数的定义域和值域 • 函数的运算 • 函数的实际应用
01 函数的基本概念
函数的定义
01
函数是一种特殊的对应关系,它 使得集合A中的每一个元素都能通 过某种法则对应到集合B中的唯一 一个元素。
02
函数通常用大写字母表示,如f(x), g(x)等,其中x是自变量,f(x)是因 变量。
初等函数
由代数函数和三角函数经过有限次四则运算 得到的函数。
三角函数
与三角学相关的函数,如正弦函数、余弦函 数等。
超越函数
不能表示为有限次四则运算的初等函数的函 数,如自然对数函数、正切函数等。
02 函数的表示法
解析法
解析法
使用数学表达式来表示函数,如 $f(x) = x^2 + 2x + 1$。解析法 精确地描述了函数与自变量之间的数学关系,适用于需要精确计算 的情况。
表格法
01 02
表格法
列出自变量和因变量的若干组对应数值,以表格的形式表示函数。适用 于已知部分函数值的情况,可以通过插值或拟合的方法确定其他点的函 数值。
优点
简单、直观,能够提供一定程度的近似值。
函数的概念ppt课件
函数的特性
确定性
对于给定的输入值,函数总是产生一个唯一的 输出值。
可计算性
函数可以在有限的步骤内计算出输出值。
可重复性
对于相同的输入值,函数总是产生相同的输出值。
函数的类别
多项式函数
由多项式组成的函数,如二次 函数、三次函数等。
指数函数
输出值与输入值的指数相关的 函数。
线性函数
输出值与输入值成正比关系的 函数。
极限的分类
根据函数趋于某点的不同方 式,极限分为左极限和右极 限。
极限的性质
极限具有唯一性、有界性、 局部保号性等性质。
极限的运算性质
极限的加减乘除法则
极限的加减乘除运算法则可以用来计算极限。
极限的复合运算
复合运算是指将多个基本运算组合在一起进行计算。
重要极限及其推论
重要极限是极限计算中常用的几个基本极限,它们具 有形式简单、应用广泛的特点。
优化组织管理
在组织管理中,函数可以用来优化流程和资源配置,提高组织效率和 绩效。
1.谢谢聆 听
对应关系
自变量与因变量之 间的对应关系。
变量
函数中的自变量和 因变量。
定义域
函数中自变量的取 值范围。
解析式
用数学表达式来表 示函数关系。
值域
函数中因变量的取 值范围。
图表法表示函数
坐标系
建立直角坐标系,以横轴表示自变量,纵轴 表示因变量。
连线
描点
根据函数的对应关系,在坐标系上描出相应 的点。
用平滑的曲线将这些点连接起来,形成函数 图像。
函数的连续性
连续性的定义
如果函数在某一点处的极限等于该点的函数 值,则函数在该点连续。
3.1.1函数的概念(第二课时)
例题巩固
题型二 求函数的值域 【例2】 求下列函数的值域:
(1)y= x-1; (2)y=x2-2x+3,x∈{-2,-1,0,1,2,3}; (3)y=2xx-+31; (4)y=2x- x-1.
例题巩固
解 (1)(直接法)∵ x≥0,∴ x-1≥-1,∴y= x-1 的值域为[-1,+∞). (2)(观察法)∵x∈{-2,-1,0,1,2,3},把x代入y=x2-2x+3得y=11,6,3, 2,∴y=x2-2x+3的值域为{2,3,6,11}. (3)(分离常数法)y=2xx-+31=2(x-x-3) 3 +7=2+x-7 3,显然x-7 3≠0,所以 y≠2,故函数 的值域为(-∞,2)∪(2,+∞).
结பைடு நூலகம்图象可得函数的值域为(-∞,4].
课堂小结
1.构成函数的三要素: 定义域,对应关系和值域. 如果两个函数的定义域相同,并且对应关系完全一致,那么这两个函
数是同一个函数.
2.求函数定义域的依据 1)分式中分母不为零; 2)偶次根式内的式子不小于零; 3)0的0次方无意义; 若某函数是由多个函数通过加、减、乘运算构成的新函数,则该函数
例题巩固
题型一 同一函数的判断
【例1】 (1)下列各组函数:
①f(x)=x2-x x,g(x)=x-1;②f(x)=
xx,g(x)=
x; x
③f(x)= (x+3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x0;
⑤汽车匀速运动时,路程与时间的函数关系 f(t)=80t(0≤t≤5)与一次函数 g(x)=
与初中的函数概念相比,要特别注意定义域必须符合题目要求.
定义辨析
一个函数的构成要素为:定义域、对应关系和值域. 因为值域是由定义域和对应关系决定的,所以,如果两个函数的定义域相同,并且对 应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数. 两个函数如果仅有对应关系相同,但定义域不相同,那么它们不是同一个函数。 例如,前面的问题1和问题2中,尽管两个函数的对应关系都是y=350x,但它们的定义 城不相同,因此它们不是同一个函数;同时,它们的定义域都不是R,而是R的真子集,因此 它们与正比例函数y=350x(x∈R)也不是同一个函数. 函数u=t2,t∈(-∞,+∞),x=y2,y∈(-∞,+∞)与y=x2,y∈(-∞,+∞),虽然表示它 们的字母不同,但因为它们的对应关系和定义域相同,所以它们是同一个函数.
函数的概念与性质课件
函数的概念与性质课件一、函数的基本概念函数是数学中的重要概念,广泛应用于各个领域。
简而言之,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
换句话说,函数可以看作是一种规则,它将输入映射为输出。
二、函数的表示方法1. 函数的符号表示:一般使用小写字母来表示函数,如f(x),其中f表示函数,x表示自变量。
2. 函数的图像表示:我们可以通过绘制函数的图像来表示函数。
横轴代表自变量,纵轴代表函数值。
函数图像可以直观地展示函数的性质和特点。
三、函数的性质1. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指函数的所有可能输出值的集合。
在函数的定义中,要确保对于定义域中的每个自变量值,都能得到一个唯一的函数值。
2. 单调性:函数的单调性描述了函数在定义域内的变化趋势。
若对于任意的x1和x2(x1 < x2),都有f(x1) ≤ f(x2),则函数为递增函数;若对于任意的x1和x2(x1 < x2),都有f(x1) ≥ f(x2),则函数为递减函数。
3. 奇偶性:若对于任意的x,有f(-x) = -f(x),则函数为奇函数;若对于任意的x,有f(-x) = f(x),则函数为偶函数。
4. 周期性:若存在常数T>0,对于任意的x,有f(x+T) = f(x),则函数为周期函数。
5. 极值点:函数在定义域内某一点上的函数值是最大值或最小值,称为该点上的极值点。
极值点分为最大值点和最小值点,也可以分别称为极大值点和极小值点。
6. 零点:函数在定义域内满足f(x) = 0的点,称为函数的零点或根。
四、函数的应用函数作为数学的基础概念,在各个领域都有着广泛的应用。
1. 自然科学中,函数用于描述物理量之间的关系,如速度和时间的关系、温度和时间的关系等。
2. 经济学中,函数用于描述供需关系、价格变化等经济现象。
3. 金融学中,函数用于描述收益与风险之间的关系,如投资组合的效用函数。
函数的有关概念
一、 函数的有关概念1、函数的定义设A 、B 是 ,如果按照某个对应关系f ,对于集合A 中的 数x ,在集合B 中都存在 确定的数 和它对应,那么就把对应关系f 叫做定义在集合A 上的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x 的取值范围A 叫做 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做 ,(){}f x | x A B ∈⊆2.函数的三要素:定义域、对应关系和值域(1)定义域:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:1)分式的分母不等于零; 2)偶次方根的被开方数不小于零; 3)对数式的真数必须大于零;4)对数式的底数必须大于零且不等于1. 5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.6)指数为零时底数不可以等于零 7)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
函数的定义域、值域要写成集合的形式)例1、求下列函数的定义域(1)y =; (2)03log (25)(3)y x x =-+-(2)值域:函数值的集合{f(x)| x∈A }叫做函数的值域。
值域是由定义域和对应关系决定的。
不论采取什么方法求函数的值域都应先考虑其定义域.应熟练掌握一次函数、二次函数、指数、对数函数的值域,它是求解复杂函数值域的基础。
(3)两函数相同:①由于构成函数三个要素是定义域、对应关系和值域.而值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)②两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:ⅰ对应关系相同;ⅱ定义域一致 (两点必须同时具备)()202224(1)()2,() 2()(1),()12(3)()()(4)()1,()1x f x x g x f x x g x x f x g x f x x x g t t t -=+==-=-===-+=-+例、判断下列各组的两个函数是否相同:同步练习题1、下列各组函数表示相同函数的是 ( )2229.3.113.212121x A y y x B y y x x C y x x y t t -==+==--=++-=+-与与与y=2x-1D. y=x 与2、下列式子中不能表示函数y=f(x)的是( )22A.21.21..1y x B x y C x D x y =+-===-{}{}3 3A.:0,.:023.:0 D.:0,2y x x x B x x C x x x x x =⎧⎫<≠-<⎨⎬⎩⎭⎧⎫>≠≠-⎨⎬⎩⎭、函数()且且24f(x)=ax 0),(...22f f B C D ≠=-、已知且a 的值是()A.215,()2,1g x x x=++、已知f(x)=求f(2),g(2),f(g(2)),g(f(2))的值6、求下列函数的定义域(1)1(1).()(2).()11(3).()x f x f x x x x f x x+==--=二、函数的表示方法1、列表法:用表格的形式表示两个变量之间函数关系的方法.2、图像法:用图像表示两个变量之间函数关系的方法在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x 为横坐标,相应的函数值y 为纵坐标的点P(x ,y)的集合,叫做函数 y=f(x),(x ∈A)的图象.图像上每一点的坐标(x ,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x ,y),均在函数的图像上 . 3、解析法:用数学表达式表示两个变量之间函数关系的方法.例1设}20|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )(A )0个 (B )1个 (C )2个 (D )3个结论:例2、某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则图中四个图形中较符合该学生走法的是( )例3.3(10)()(),(8)((5))(10x x f x x N f f f x x -≥⎧=∈⎨+<⎩求)例4、做出下列函数的图像(5)2222(0)()22(0x x x f x x x x ⎧-+≥=⎨++<⎩)12(1)()1()(2)()1(02)(02(3)()2(03)(4)(){21(2xf x x R f x x x f x x x x f x x x =∈=<≤<<=-<≤=-≥))(6)国内投寄信函,假设每封信不超过20克付邮资80分,超过20克而不超过40克付邮资160分,以此类推,若质量为)800(≤<x x 克的信函与应付邮资y 元之间的函数解析式,并画出函数的图象。
第二章 函数的概念与基本初等函数1-3节有答案
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ①得f (x )+2f (-x )=2-x ,②①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a -7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52(3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,。
函数的基本概念
函数的基本概念在数学中,函数是一种重要的概念,广泛应用于各个领域。
函数描述了一个变量与另一个变量之间的关系,是数学建模和问题求解的基础。
本文将介绍函数的基本概念以及与之相关的重要概念和性质。
一、函数的定义函数是一种映射关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
常用的记法是“f:X→Y”,表示函数f将集合X的元素映射到集合Y的元素上。
二、函数的符号表示函数可以用各种符号来表示,其中最常见的是用公式表示。
例如,f(x)=x^2表示一个函数f,它将输入x映射为x的平方。
此外,还有图表、图像、表格等方式来表示函数。
三、函数的定义域和值域函数的定义域是所有输入变量的取值范围,也就是函数能接受的输入集合。
而函数的值域是所有可能的输出变量的取值范围,也就是函数能够得到的输出集合。
四、函数的性质1. 一对一性:如果函数的每个元素都有唯一的映射元素,那么这个函数是一对一的。
2. 多对一性:如果函数的不同元素有相同的映射元素,那么这个函数是多对一的。
3. 空间性:如果函数的每个元素都有映射元素,那么这个函数是空间的。
4. 单调性:函数在其定义域上是递增或递减的。
5. 周期性:函数具有某个周期性质。
五、函数的常见类型1. 线性函数:f(x)=ax+b,是一条直线的图像,其中a是斜率,b是截距。
2. 幂函数:f(x)=x^a,其中a是实数。
3. 指数函数:f(x)=a^x,其中a是正实数且不等于1。
4. 对数函数:f(x)=loga(x),其中a是正实数且不等于1。
5. 三角函数:包括正弦函数、余弦函数、正切函数等。
六、函数的运算函数之间可以进行四则运算和复合运算。
四则运算即加减乘除,复合运算即将一个函数的输出作为另一个函数的输入。
1. 加法:(f+g)(x)=f(x)+g(x)2. 减法:(f-g)(x)=f(x)-g(x)3. 乘法:(f*g)(x)=f(x)*g(x)4. 除法:(f/g)(x)=f(x)/g(x)5. 复合:(f◦g)(x)=f(g(x))七、函数的应用函数在各个领域中具有广泛的应用,例如:1. 数学分析:函数在微积分中扮演重要角色,用于描述曲线的性质和变化率。
函数的概念知识点
函数的概念知识点函数是数学中一个重要的概念,存在于各个数学分支以及其他学科中。
在数学中,函数可以描述两个变量之间的关系,而在计算机科学中,函数则是一段特定的代码块,用于完成特定的任务。
本篇文章将介绍函数的概念、数学函数和计算机函数的特点以及它们在不同领域中的应用。
一、函数的概念函数是一种映射关系,将一个集合中的每个元素都对应到另一个集合中的唯一元素。
数学函数通常表示为f(x),其中x是自变量,f(x)是因变量。
数学函数可以用各种方式表示,如方程、图表、图像等。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
函数的性质包括一一映射、多对一映射、奇偶性等。
二、数学函数的特点1. 一对一映射:在数学函数中,每个自变量对应唯一的因变量,且不同的自变量对应不同的因变量。
这种特性保证了函数的唯一性和可逆性。
2. 奇偶性:函数可以分为奇函数和偶函数。
奇函数满足f(x)=-f(-x),在坐标系中以原点对称;偶函数满足f(x)=f(-x),在坐标系中以y轴对称。
3. 单调性:函数可以是递增的、递减的或者保持不变的。
递增函数表示随着自变量增加,因变量也增加;递减函数表示随着自变量增加,因变量减少。
4. 极限:函数的极限可以描述函数在某一点处的趋势。
左极限和右极限分别表示自变量趋近于某一点时因变量的趋势。
5. 函数的图像:函数的图像可以通过绘制自变量和因变量的坐标点来表示。
图像可以反映函数的增减趋势、交点等特征。
三、计算机函数的特点在计算机科学中,函数是一段特定的代码,用于完成特定的任务。
计算机函数通常具有以下特点:1. 输入与输出:计算机函数接收输入数据,经过特定的处理后,输出结果。
输入可以是零个、一个或多个参数;输出可以是一个返回值或者执行特定的操作。
2. 模块化:函数可以作为程序中的独立模块,完成特定的功能。
这样可以提高代码的可维护性和可重用性。
3. 参数传递:函数可以接收参数,通过参数传递数据或配置信息。
第二讲 函数的概念及其表示
第二讲 函数的概念及其表示一、知识讲解考点1函数的概念:设集合A 是一个非空的数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作 )(x f y =,A x ∈.注意:)(x f y =是函数的简写,并不表示“y =f 与x 的乘积”; 考点2函数的定义域与值域:函数的定义中,自变量x 取值的范围叫做这个函数的定义域;所有函数值构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.确定一个函数的两个要素:定义域,对应法则.求函数的解析式的一般方法:配凑法、换元法、待定系数法求函数的定义域的一般原则:分母不为零;偶次根下不为负;零的零次幂没意义等等 求函数的值域的常见方法:直接法、配方法、换元法、判别式法、数形结合法. 注意:①构成函数的三要素:定义域、值域和对应法则;②判断两个函数是否相对,只需看函数的三要素是否相同.考点3映射的概念:设A ,B 是两个非空的集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射.这时,称y 是x 在映射f 作用下的象,记作)(x f ,于是y =)(x f ,x 称作 y 的原象. 映射f 也可记为 B A f →: )(x f x →其中A 叫做映射f 的定义域,由所有象)(x f 构成的集合叫做映射f 的值域.①判断某“对应法则”是否为A→B 的映射,主要看是否为“一对一”及“多对一”的两种特殊对应;应特别注意;② A 中任一元素在B 中应有象,且象唯一;② B 中可以有空闲元素,即B 中可以有元素没有原象. 考点4函数的表示法: 列表法;图象法.如果F是函数)(x f y =的图象,则图象上任一点的坐标),(y x 都满足函数关系)(x f y =;反之,满足函数关系)(x f y =的点),(y x 都在图象F上;解析法.如果在函数)(x f y =)∈(A x 中,)(x f 是用代数式(或解析式)来表示的,则这种表示函数的方法叫做解析法.(也称为公式法).二、例题精析【例题1】判断下列各组中的函数是否为同一函数,并说明理由.(1)表示炮弹飞行高度h 与时间t 关系的函数2__5130=t t h 和函数2__5130=x x y )0≥(x ;(2)1=)(x f 和0=)(x x g .【又例】下列函数中那个与函数x y =相等?⑴ y =(x )2;⑵y =33x ;⑶y =2x ;⑷y =23x x .【例题2】已知函数)(x f =3+x +21+x . (1) 求函数)(x f 的定义域;(2) 求)3(__f 和)32(f 的值;(3) 当0>a 时,求)(a f ,)1(__a f 的值; (4) 求)-12x (f 及其定义域.【又例】设函数f x ()的定义域为[]01,,(1)求函数f x ()2的定义域;(2)求函数f x ()-2的定义域.【例题3】(1)已知x x x f 2)1(+=+,求)(x f ;(2)已知函数()f x 满足43)()(2+=-+x x f x f ,求)(x f 的解析式.【例题4】求下列函数的定义域:(1)14)(2--=x x f , (2) =)(x f x11111++,(3)xx x x f -+=0)1()(, (4)373132+++-=x x y .【例题5】求下列函数的值域. (1)216x y -=; (2)[]3,1x ;]2,2[,2∈-∈+-=x x x y ;(3)x x y 41332-+-=(4)66522-++-=x x x x y (5)11-++=x x y【例题6】以下给出的对应是不是从集合A 到B 的映射?⑴集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的的实数对应;⑵集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;⑶集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;⑷集合A ={x |x 是实验中学的班级},集合B ={x |x 是实验中学的学生},对应关系f :每一个班级都对应班里的学生.【又例】已知(x ,y )的映射f 作用下的象是(x +y ,xy ).(1)求(-2,3)在f 作用下的象;(2)若在f 作用下的象是(2,-3),求它的原象.【例题7】某种笔记本的单价是5元,买x (x ∈{1,2,3,4,5})个笔记本需要y 元.试用函数的三种方法表示函数y =)(x f .三、课堂运用【基础】 1. 函数1x y x+=的定义域为__________. 2.设)(x f =2211xx -+,则)21(f +)31(f +)2(-f +)3(-f = ( ) A.3512 B .-3512C .1D .03.已知函数)(x f =2211x x -+,求证:)1(x f +)(x f =0.【巩固】1.函数f x ()的定义域是 )1,1[-,则函数)1()1()(2x f x f x F -+-=的定义域是 .2. 已知函数()f x 的定义域为(1,0)-,则函数(21)f x +的定义域( ) A .(1,1)- B .1(1,)2-- C .(1,0)- D .1(,1)2【拔高】 1. 求函数x x y 27-=, ⎥⎦⎤⎢⎣⎡∈2,31x 的值域 . 2.设集合A 和B 都是自然数集合N ,映射f :A →B ,把集合A 中的元素n 映射到集合B 中元素n 3+n ,则在映射f 下象68的原象是 ( )A .2B .3C .4D .5课后作业【基础】1.下列函数中,定义域不是R 的是( ) A .y =kx +b B .y =1+x k C .y =x 2+bx -c D .y =112++x x 2.下列各组函数中,表示同一函数的是( ) A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D .2)(|,|x y x y ==3.已知函数①1y x =-;②21y x =-;③21y x =-;④xy 5=,其中定义域和值域相同的函数有( )A .①④B .③④C .①②D . ②③4.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( )A . 1+πB . 0C .π D . 1-6. 函数y =|x -1|,x ∈[-1,2]的值域是( ).A.[-1,1]B.[0,1]C.[0,2]D.[1,2]7.对于集合A ={a ,b ,c }和集合B =R ,以下对应关系中,一定是集合A 到集合B 的映射的是( )A.对集合A 中的数开平方B. 对集合A 中的数取倒数 C .对集合A 中的数取算术平方根 D.对集合A 中的数取立方8.设集合A 和B 都是自然数集合N ,映射f :A→B ,把集合A 中的元素n 映射到集合B 中元素n 3+n ,则在映射f 下象68的原象是 ( )A .2B .3C .4D .5【巩固】1.已知f 满足)(ab f =)(a f +)(b f ,且)2(f =p ,q f =)3(那么)72(f 等于( )A .q p +B .q p 23+C .q p 32+D .23q p +2.设函数x x xf =+-)11(,则)(x f 的表达式为( ) A .x x -+11 B . 11-+x x C .x x +-11 D .12+x x3.设)(x f 的定义域是[-3,2],求函数)2(-x f 的定义域.4. 求函数x x y 27-=, ⎥⎦⎤⎢⎣⎡∈2,31x 的值域.5.已知31=)1+1(__2xx f ,求函数()1-x f 的解析式.6.如图,把截面半径为25cm 的圆形木头锯成长方形木料,如果截面矩形的一边长为x ,面积为y ,把y 表示为x 的函数.【拔高】1.已知函数()21,01,0x x f x x ⎧+≥=⎨<⎩,则满足不等式()()22f x f x ->的x 的取值范围是 .2.函数()|2011||2012||2013|()f x x x x x R =-+-+-∈的最小值为 .3.已知函数)(x f ,)(x g 分别由下表给出则[(1)]f g 的值为 ;满足[()][()]f g x g f x >的x 的值是 .4. 已知)(x f +2)1(xf =3x ,求)(x f 的解析式为 . 5.已知函数3+=)1+2(x x f ,求)1+2(x f 和)(x f 的定义域.6. 已知函数)(x f =()()⎩⎨⎧><-≤≤103101x x x x 或,则使等式)]([x f f =1成立的x 值的范围是 .x1 2 3x1 2 3 ()f x131()g x321x 25cm。
函数知识点归纳
函数知识点归纳函数是数学中的一个重要概念,它在计算机科学、统计学和物理学等领域也有广泛的应用。
本文将对函数的基本概念、性质和常见的函数类型做一个全面的归纳总结,以帮助读者更好地理解和运用函数知识。
一、函数的基本概念函数是一种映射关系,将一个或多个自变量映射到一个因变量上。
函数通常表示为f(x)或y=f(x),其中x是自变量,f(x)或y是因变量。
函数的定义域是自变量可能取值的集合,值域是因变量的集合。
函数可以用不同的方式表示,如数学表达式、图形、表格或文字描述。
函数的图形通常用坐标系上的点表示,自变量在横轴上,因变量在纵轴上。
二、函数的性质1. 定义域和值域:函数的定义域确定了自变量可能取值的范围,值域确定了因变量的取值范围。
2. 单调性:函数的单调性描述了函数在定义域上的增减趋势,可以是递增、递减或不变。
3. 奇偶性:函数的奇偶性描述了函数图像的对称性质,奇函数关于原点对称,偶函数关于纵轴对称。
4. 周期性:周期函数具有一定的重复性,函数的图像在一定的区间内重复出现。
5. 极值点:函数的极值点是函数图像上的局部极大值或极小值点,可以通过导数求解。
三、常见的函数类型1. 多项式函数:多项式函数是由常数、变量和指数幂运算组成的函数,可表示为f(x) = anxn + an-1xn-1 + ... + a1x + a0,其中an为系数,n为次数。
2. 指数函数:指数函数的函数表达式为f(x) = ax,其中a为常数,x为自变量。
3. 对数函数:对数函数是指以某个正数为底的幂运算的逆运算,常见的对数函数有自然对数函数ln(x)和以10为底的常用对数函数log(x)。
4. 三角函数:三角函数是以单位圆上的点坐标表示的函数,常见的三角函数有正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。
5. 反三角函数:反三角函数是三角函数的逆运算,常见的反三角函数有反正弦函数arcsin(x)、反余弦函数arccos(x)和反正切函数arctan(x)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第02讲 函数的有关概念 【考纲解读】2. 函数概念与基本初等函数I (指数函数、对数函数、幂函数) (1)函数① 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. ② 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. ③ 了解简单的分段函数,并能简单应用. ⑤ 会运用函数图象理解和研究函数的性质. 【知识梳理】1.函数:设A,B 是两个非空数集,若对于A 内的任意实数x ,在对应法则f 之下,在B 内都有唯一的实数y 与它对应,则f 叫做定义在A 上的一个函数,记作()A x x f y ∈=,2.映射:设A,B 是两个非空集合,若对于A 内的任意元素x ,在对应法则f 之下,在B 内都有唯一的元素y 与它对应,则f 叫做A 到B 的一个映射,记作y x f →:,y 叫做x 在f 之下的象,x 叫做y 在f 之下的原象.3.函数的定义域(1)函数的自变量的取值集合A 叫做定义域. (2)定义域的四个问题:①已知函数的解析式,求函数的定义域:使得函数表达式在实数范围内有意义的自变量的取值范围,一般要解不等式(组),常见的类型: 分式的分母不为零;偶次根式的被开方数不小于零;对数式子的真数大于零,底数大于零且不等于1; 零次幂的底数不能等于零;指数函数的底数大于零且不等于1; 正切函数的定义域为⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ ②实际问题中的定义域:要考虑实际问题的背景,恰当的限制自变量的取值范围.③复合函数或抽象函数的定义域问题: 已知函数()x f 的定义域为A ,求复合函数()()x g f 的的定义域,可以由解不等式()A x g ∈解决;④ 已知表达式中含有参数的函数的定义域,求参数范围: 常转化为不等式的恒成立问题.4.函数的值域:函数值的集合(){}A x x f y y ∈=, 求值域常用(1)观察法:从已知函数的定义域出发,利用不等式的性质,推出函数表达式的取值范围就是值域.(2)反表示法:由函数表达式()A x x f y ∈=,解出由y 表示x 的表达式,再根据已知定义域求解y 的不等式,就可以得到函数的值域.(3)单调性法:根据函数的单调性,确定函数的最值,或值域.5.函数的表示方法: (1)解析法: (2)图象法: (3)列表法6.分段函数:在一个函数由几个不同的式子构成.【典例精讲】考点一 函数与映射例1(2013·福建)设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( ) A.*,A N B N ==B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或C.{|01},A x x B R =<<=D.,A Z B Q ==练习1.(2012安徽理)下列函数中,不满足...(2)2()f x f x =的是A .()f x x =B .()f x x x =-C .()f x x =+1D .()f x x =-考点二函数的定义域例2.1(2013·山东文5)函数()f x =的定义域为(A)(-3,0] (B) (-3,1](C) (,3)(3,0]-∞-- (D) (,3)(3,1]-∞--练习2.1(2013·安徽文11) 函数2111ln x x y -+⎪⎭⎫⎝⎛+=的定义域为_____________例2.2(2013·大纲理4)已知函数)(x f 的定义域为)0,1(-,则函数)12(+x f 的定义域为A.)1,1(-B.)21,1(-- C.)0,1(- D .)1,21(练习2.2(2008·江西3)若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是B A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1)例2.3(2013陕西理)在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分),则其边长x (单位m )的取值范围是(A)[15,20] (B)[12,25] (C)[10,30] (D)[20,30] 【答案】C练习2.3(2009· 山东理19·12分)两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A 和城B 的总影响度为城A 与城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A 和城B 的总影响度为0.065. (1)将y 表示成x 的函数并给出定义域;(2)将垃圾处理厂建在何处时,对两个城市的总影响度最小?考点三 函数的值域例3(2009江西理)设函数()0)f x a =<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为( ) A .2- B .4- C .8- D .不能确定答案 B解析 12max ||()x x f x -==||a =4a =-,选B 练习3.1(2015·山东理14) 已知函数()xf x a b =+(0,1)a a >≠的定义域和值域都是[1,0]-,则a b += .解析:当1a >时11a b a b -⎧+=-⎨+=⎩,无解; 当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得12,2b a =-=,则13222a b +=-=-.3.2(2013·北京文13)函数f (x )=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________.考点四 分段函数例4(2015·福建理)若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a > 且1a ≠ )的值域是[)4,+∞ ,则实数a 的取值范围是 . 【答案】(1,2]考点:分段函数求值域.练习4.1(2015·新课标2理)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,则2(2)(log 12)f f -+=( ) (A )3 (B )6 (C )9 (D )12 【答案】C 【解析】由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=练习4.2(2013·陕西文10)设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 (A)[][]x x -=- (B) []x x =⎥⎦⎤⎢⎣⎡+21(C)[][]x x 22= (D) 1[][][2]2x x x ++=【基础夯实】 1.[14·浙江] 已知函数f (x )=x 3+ax 2+bx +c ,且 0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9C 2.[2014·山东理] 函数()()1log 122-=x x f 的定义域为( )A.⎪⎭⎫ ⎝⎛210,B.()∞+,2C.()∞+⎪⎭⎫ ⎝⎛,,2210D.[)∞+⎥⎦⎤ ⎝⎛,,2210 3.(2015·陕西文)设10()2,0xx f x x ⎧-≥⎪=⎨<⎪⎩,则((2))f f -=A .1-B .14C .12 D.32【答案】C考点:1.分段函数;2.函数求值. 4.[2014·安徽6]设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则=⎪⎭⎫⎝⎛623πf ( )A.12B.32 C .0 D .-12 A5.[2014·江西] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( ) A .1 B .2 C .3 D .-1 A6.(2012·江西理)下列函数中,与函数同的函数为 ( ) A.y=1sin x B .y=1nx xC.y=xe xD.y=sin x x7.(2015北京理)如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C 【解析】考点:1.函数图象;2.解不等式. 8.(2011·福建文8)已知函数()⎩⎨⎧≤+>=0,10,2x x x x x f ,若()()01=+f a f ,则实数a 的值等于 A .-3 B .-1 C .1 D .3 【答案】A9.(2011· 辽宁理11)函数()x f 的定义域为R,()21=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .()1,1-B .()+∞-,1C .()1,-∞-D .()+∞∞-, 【答案】B10.(2009·山东文)定义在R 上的函数f(x )满足f(x)=⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则f (3)的值为( ) A.-1 B. -2 C.1 D. 2 【解析】:由已知得2(1)log 5f -=,2(0)log 42f ==,2(1)(0)(1)2log 5f f f =--=-, 2(2)(1)(0)log 5f f f =-=-,22(3)(2)(1)log 5(2log 5)2f f f =-=---=-,故选B.答案:B.【命题立意】:本题考查对数函数的运算以及推理过程. 11.(2013·浙江文11)已知函数f(x)=x-1.若f(a)=3,13.(2015·新课标2文)已知函数()32f x ax x =-的图像过点(-1,4),则=a . 【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14.(2011·辽宁理9)设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则不等式2)(≤x f 的解集为A .1[-,2] B .[0,2] C .[1,+∞] D .[0,+∞] 【答案】D15.(2012·上海理改编)已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的图像与函数()x h 关于直线x y =对称,求()x h 的解析式,并写出()x h 的定义域、值域.错误!未找到引用源。