练习2_一次函数的图象和性质-优质公开课-冀教8下精品

合集下载

冀教版初二数学下学期课后作业题:一次函数的图像和性质

冀教版初二数学下学期课后作业题:一次函数的图像和性质

书山有路勤为径;学海无涯苦作舟
冀教版初二数学下学期课后作业题:一次函数的图像
和性质
数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点
都会影响最后的结果。

下文就为大家送上了初二数学下学期课后作业题,希
望大家认真对待。

第1 题. 对于任何实数x,点M(x,x-3)一定不在第几象限?
答案:点M(x,x-3)在直线y=x-3 上,而直线y=x-3 不过第二象限,所以,对于任何实数x,点M(x,x-3)一定不在第二象限.
第2 题. 一次函数,如果,则x 的取值范围是()
A. B. C. D.
答案:B.
第3 题. 已知直线y=kx+b(k≠0)与x 轴的交点在x 轴的正半轴,下列结论:①k 大于0,b 大于0;②k 大于0,b 小于0;③k 小于0,b 大于0;④k 小于0,b 小于0.其中正确的结论的个数是()
A.1
B.2
C.3
D.4
答案:B
第4 题. 如图所示,函数y=mx+m 的图像中可能是()
答案:D
第5 题. 当自变量x 增大时,下列函数值反而减小的是()
A.y=
B.y=2x
C.y=
D.y=-2+5x
答案:C
第6 题. 正比例函数的图像如图,则这个函数的解析式为( )
今天的努力是为了明天的幸福。

新冀教版初中数学八年级下册21.2一次函数的图像和性质公开课优质课教学设计

新冀教版初中数学八年级下册21.2一次函数的图像和性质公开课优质课教学设计

1212 一次函数的图像和性质1.会用两点法画出正比例函数和一次函数的图象,并能结合图象说出正比例函数和一次函数的性质;(重点)2.能运用性质、图象及数形结合思想解决相关函数问题.(难点)一、情境导入做一做:在同一个平面直角坐标系中画出下列函数的图象.(1)y=错误!;(2)y=错误!+2;(3)y=3; (4)y=3+2观察函数图象有什么形式?二、合作探究探究点一:一次函数的图象【类型一】一次函数图象的画法在同一平面直角坐标中,作出下列函数的图象.(1)y=2-1; (2)y=+3;(3)y=-2; (4)y=5解析:分别求出满足各直线的两个特殊点的坐标,经过这两点作直线即可.(1)一次函数y=2-1图象过(1,1),(0,-1);(2)一次函数y=+3的图象过(0,3),(-3,0);(3)正比例函数y=-2的图象过(1,-2),(0,0);(4)正比例函数y=5的图象过(0,0),(1,5).解:如图所示.方法总结:此题考查了一次函数的作图,解题关键是找出两个满足条件的点,连线即可.【类型二】判定一次函数图象的位置已知正比例函数y=(≠0)的函数值y随的增大而减小,则一次函数y=+的图象大致是()2解析:∵正比例函数y =(≠0)的函数值y 随的增大而减小,∴<0∵一次函数y =+的一次项系数大于0,常数项小于0,∴一次函数y =+的图象经过第一、三、四象限,且与y 轴的负半轴相交.故选B方法总结:一次函数y =+b (、b 为常数,≠0)是一条直线.当>0,图象经过第一、三象限,y 随的增大而增大;当<0,图象经过第二、四象限,y 随的增大而减小.图象与y 轴的交点坐标为(0,b ).探究点二:一次函数的性质 【类型一】 判断增减性和图象经过的象限等对于函数y =-5+1,下列结论:①它的图象必经过点(-1,5);②它的图象经过第一、二、三象限;③当>1时,y <0;④y 的值随值的增大而增大.其中正确的个数是( )A .0个B .1个 .2个 D .3个解析:∵当=-1时,y =-5×(-1)+1=6≠5,∴点(1,-5)不在一次函数的图象上,故①错误;∵=-5<0,b =1>0,∴此函数的图象经过第一、二、四象限,故②错误;∵=1时,y =-5×1+1=-4又∵=-5<0,∴y 随的增大而减小,∴当>1时,y <-4,则y <0,故③正确,④错误.综上所述,正确的只有③故选B方法总结:一次函数的性质:>0,y 随的增大而增大,函数从左到右上升;<0,y 随的增大而减小,函数从左到右下降.【类型二】 一次函数的图象与系数的关系已知函数y =(2-2)++1, (1)当为何值时,图象过原点? (2)已知y 随增大而增大,求的取值范围;(3)函数图象与y 轴交点在轴上方,求的取值范围;(4)图象过第一、二、四象限,求的取值范围.解析:(1)根据函数图象过原点可知,+1=0,求出的值即可;(2)根据y 随增大而增大可知2-2>0,求出的取值范围即可;(3)由于函数图象与y 轴交点在轴上方,故+1>0,进而可得出的取值范围;(4)根据图象过第一、二、四象限列出关于的不等式组,求出的取值范围.解:(1)∵函数图象过原点,∴+1=0,即=-1;(2)∵y 随增大而增大,∴2-2>0,解得>1;(3)∵函数图象与y轴交点在轴上方,∴+1>0,解得>-1;(4)∵图象过第一、二、四象限,∴错误!解得-1<<1方法总结:一次函数y=+b(≠0)中,当<0,b>0时,函数图象过第一、二、四象限.探究点三:一次函数图象的平移在平面直角坐标系中,将直线l1:y=-2-2平移后,得到直线l2:y=-2+4,则下列平移作法正确的是( )A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度.将l1向上平移2个单位长度D.将l1向上平移4个单位长度解析:∵将直线l1:y=-2-2平移后,得到直线l2:y=-2+4,∴-2(+a)-2=-2+4,解得a=-3,故将l1向右平移3个单位长度.故选A方法总结:求直线平移后的解析式时要注意平移时的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.探究点四:一次函数的图象与性质的综合运用一次函数y=-2+4的图象如图,图象与轴交于点A,与y轴交于点B(1)求A、B两点坐标;(2)求图象与坐标轴所围成的三角形的面积.解析:(1)轴上所有的点的纵坐标均为0,y轴上所有的点的横坐标均为0;(2)利用(1)中所求的点A、B的坐标可以求得OA、OB的长度.然后根据三角形的面积公式可以求得△OAB的面积.解:(1)对于y=-2+4,令y=0,得-2+4=0,∴=2∴一次函数y=-2+4的图象与轴的交点A的坐标为(2,0);令=0,得y=4∴一次函数y=-2+4的图象与y轴的交点B的坐标为(0,4);(2)由(1)中知OA=2,OB=4∴S△AOB=错误!·OA·OB=错误!×2×4=4∴图象与坐标轴所围成的三角形的面积是4方法总结:求一次函数与坐标轴围成的三角形的面积,一般地应先求出一次函数图象与轴、y轴的交点坐标,进而求出三角形的底和高,即可求面积.3三、板书设计1.一次函数的图象2.一次函数的性质3.一次函数图象的平移规律本节课,学生活动设计了三个方面:一是通过画函数图象理解一次函数图象的形状.二是两点法画一次函数的图象.三是探究一次函数的图象与、b符号的关系.在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性值得深入探讨.为了达到上述目的,应结合每个活动,给学生明确的目的和要求,而且提供操作性很强的程序和题目.学生目标明确,操作性强,受到了较好的效果.4。

4.3.2 一次函数的图象和性质 湘教版数学八年级下册同步练习(含答案)

4.3.2  一次函数的图象和性质 湘教版数学八年级下册同步练习(含答案)

4.3 一次函数的图象2 一次函数的图象和性质要点感知1作一次函数y=kx+b(k,b为常数,k≠0)的图象的方法有:(1)采用列表法作图;(2)利用一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线的性质,运用两点作图法,找出函数上的__________,(最好取(0,__________)和(1,__________)两点)连接成一条直线即可;(3)通过对直线y=kx平移__________个单位得到(b>0,__________平移;b<0,__________平移).预习练习1-1采用两点法作一次函数y=2x-4的图象时,我们取点A(0,__________)和B(1,__________)两点,然后过这两点作直线,即可得到y=2x-4的图象.1-2作一次函数y=2x-4的图象时,我们还可以采用__________法作图,即先作出直线y=2x的图象,然后将直线y=2x__________平移__________个单位得到y=2x-4的图象.要点感知2 一次函数y=kx+b(k,b为常数,k≠0)图形的性质:(1)当k>0时,y随x的增大而__________;当k<0时,y随x的增大而__________;(2)当k>0,b>0时,图象过__________象限;当k>0,b<0时,图象过__________象限;当k<0,b<0时,图象过__________象限;当k<0,b>0时,图象过__________象限;(3)y=kx+b(k,b为常数,k≠0)的图象与y=kx(k为常数,k≠0)的图象__________.预习练习2-1如果一次函数y=kx+2经过点(1,1),那么这个一次函数( )A.y随x的增大而增大B.y随x的增大而减小C.图象经过原点D.图象不经过第二象限知识点1 一次函数的图象与性质1.一次函数y=kx-k(k<0)的大致图象是( )2.一次函数y=-2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限3.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是( )A.a>bB.a=bC.a<bD.以上都不对知识点2 一次函数图象的平移4.将函数y=-3x的图像沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为( )A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)5.将函数y=x的图象经过怎样的平移可以得到y=x-的图象( )A.向上平移3个单位B.向下平移3个单位C.向上平移个单位D.向下平移个单位6.将一次函数y=3x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为____________.知识点3 一次函数图象的实际应用7.如图描述了小明昨天放学回家的行程情况,请根据图象回答:(1)小明在途中逗留了__________分钟;(2)小明回家的平均速度是__________米/分钟;(3)如果他按照刚出学校时的速度一直走到家,__________分钟就可以到家;(4)今天小明放学后是径直回家的,从学校走到家一共用了15分钟,请你在图中画出小明回家的路程与时间关系示意图.8.当kb<0时,一次函数y=kx+b的图象一定经过( )A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限9.如图,正比例函数图象经过点A,将此函数图象向上平移3个单位,下列结论正确的是( )A.平移后的函数y随x的增大而减少B.平移后的函数图象必过点(3,0)C.平移后的函数表达式是y=3x+1D.平移后的函数图象与x轴交点坐标是(-1,0)10.在平面直角坐标系中,已知一次函数y=2x+1的图像经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1__________y2(填“>”“<”或“=”).11.如图,图象描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的变量关系,根据图中提供的信息,填空:①汽车离出发地最远是__________千米;②汽车在行驶途中停留了__________小时;③汽车从出发地到回到原地共用了__________小时.12.已知函数y=(1-m)x+m-2,当m取何值时,函数的图象经过二、三、四象限?13.已知函数y=-2x+6与函数y=3x-4.在同一平面直角坐标系内,画出这两个函数的图象.14.已知点A(6,0)及在第一象限的动点P(x,y),且2x+y=8,设△OAP的面积为S.(1)试用x表示y,并写出x的取值范围;(2)求S关于x的函数表达式,画出函数S的图象;(3)当点P的横坐标为3时,△OAP的面积为多少?(4)△OAP的面积是否能够达到30?为什么?参考答案要点感知1(2)任意两点 b k+b(3)|b| 向上向下预习练习1-1-4 -21-2 平移向下4要点感知2 (1)增大减小(2)一、二、三一、三、四二、三、四一、二、四(3)平行预习练习2-1 B1.A2.C3.A4.A5.D6.y=3x+27.(1)10(2)15(3)7.5(4)图略.8.B 9.D 10.<11.①100 ②0.5 ③4.512.由题意,得解得所以1<m<2.13.函数y=-2x+6与坐标轴的交点为(0,6),(3,0);函数y=3x-4与坐标轴的交点为(0,-4),(,0),作图图略.14.(1)∵2x+y=8,∴y=8-2x.∵点P(x,y)在第一象限内,∴x>0,y=8-2x>0.解得0<x<4;(2)△OAP的面积S=6×y÷2=6×(8-2x)÷2=-6x+24(0<x<4),图象如图所示;(3)当x=3,△OAP的面积S=6;(4)∵S=-6x+24,∴当S=30,-6x+24=30.解得x=-1.∵0<x<4,∴x=-1不合题意.故△OAP的面积不能够达到30.。

一次函数的图象和性质专题练习题

一次函数的图象和性质专题练习题

专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。

最新冀教版八年级数学下册21.2一次函数的图像和性质公开课优质教案(4)

最新冀教版八年级数学下册21.2一次函数的图像和性质公开课优质教案(4)

25.4一次函数与方程、不等式地关系教学设计思想本节在知识上注重一次函数与方程、不等式地横向联系,以便学生学会把一次函数纳入相应地知识网络,使学生通过动手操作,从形与数两个角度体会一次函数与方程、不等式地内在联系。

在思维方法上注重数形结合,双向思维。

最后通过练习巩固这部分知识。

教学目标知识与技能通过数形结合领悟一次函数与一元一次方程及一元一次不等式之间地联系;能根据一次函数地图像求二元一次方程组地近似解;提高分析问题解决问题地能力。

过程与方法通过动手操作、小组讨论从形与数两个角度体会一次函数与方程、不等式地内在联系。

情感态度价值观通过本节课地学习,加强新知识地联系,体会数形结合地思想。

教学重难点重点:一次函数与方程、不等式地横向联系。

难点:一次函数与方程、不等式地横向联系。

解决办法:通过动手操作,从形与数两个角度体会一次函数与方程、不等式地内在联系。

教学方法启发式教学,学生探索为主教学用具多媒体课时安排- 2 -1课时教学过程设计(一)引入我们曾经学习过一元一次方程、一元一次不等式以及二元一次方程组,现在又学习了一次函数。

你是否想过,它们既然都是“一次”地,其中会不会有什么内在地联系呢?(二)试着做做已知一次函数y=2x-1。

(1)在图25—8地直角坐标系中,画出它地图像。

(2)对这个一次函数,x取何值时,它所对应地y地值等于5?x取哪些值时,它们所对应地y地值都大于5?x取哪些值时,它们所对应地y地值都小于5?(3)由图像上点地坐标,对(2)中各问题地结论作出解释。

注:目地在于使学生通过动手操作,从形与数两个角度体会一次函数与方程、不等式地内在联系。

容易看到,对一次函数y=2x-1,求“x取何值时,它所对应地y地值等于5”,就是求一元一次方程2x-1=5地解;求“x取哪些值时,它们所对应地y地值都大于(或小于)5”,就是求一元一次不等式2x-1>5(或2x-1<5)地解集由此看到,一次函数与一元一次方程、一元一次不等式有着密切地联系。

冀教版数学八年级下册21.2《一次函数的图象和性质》教学设计2

冀教版数学八年级下册21.2《一次函数的图象和性质》教学设计2

冀教版数学八年级下册21.2《一次函数的图象和性质》教学设计2一. 教材分析冀教版数学八年级下册21.2《一次函数的图象和性质》是本节课的教学内容。

一次函数是数学中的基础概念,对于学生来说,掌握一次函数的图象和性质对于进一步学习数学和其他学科具有重要意义。

本节课的内容包括一次函数的图象特点、斜率和截距的概念、以及一次函数的性质。

通过本节课的学习,学生将能够理解一次函数的图象和性质,并能够运用一次函数解决实际问题。

二. 学情分析学生在八年级上册已经学习了函数的基础知识,对于函数的概念和图像有一定的了解。

但是,对于一次函数的图象和性质的理解还需要进一步的加强。

学生对于图像的观察和分析能力有待提高,对于斜率和截距的概念也需要进一步的解释和理解。

此外,学生对于将数学知识应用于实际问题解决的能力也需要加强。

三. 教学目标1.了解一次函数的图象特点,能够描述一次函数的图象。

2.理解斜率和截距的概念,能够计算斜率和截距。

3.掌握一次函数的性质,能够运用一次函数解决实际问题。

4.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.一次函数的图象特点和性质的理解。

2.斜率和截距的计算和应用。

3.将一次函数应用于实际问题的解决。

五. 教学方法1.讲授法:通过讲解一次函数的图象和性质,斜率和截距的概念,以及一次函数的性质,使学生掌握相关知识。

2.案例分析法:通过分析实际问题,引导学生运用一次函数解决实际问题。

3.小组讨论法:通过小组讨论,培养学生的合作能力和解决问题的能力。

六. 教学准备1.PPT课件:制作一次函数的图象和性质的相关PPT课件,以便进行讲解和展示。

2.实际问题案例:准备一些实际问题,以便引导学生运用一次函数解决实际问题。

3.练习题:准备一些练习题,以便进行课堂练习和巩固知识。

七. 教学过程1.导入(5分钟)通过复习上节课的内容,引导学生回顾函数图像的特点,为新课的学习做好铺垫。

2.呈现(15分钟)讲解一次函数的图象特点,包括直线、斜率和截距的概念。

一次函数的图像和性质练习题

一次函数的图像和性质练习题

一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。

与坐标轴围成的三角形的面积是。

3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。

7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。

冀教版数学八年级下册21.2《一次函数的图象和性质》教学设计1

冀教版数学八年级下册21.2《一次函数的图象和性质》教学设计1

冀教版数学八年级下册21.2《一次函数的图象和性质》教学设计1一. 教材分析冀教版数学八年级下册21.2《一次函数的图象和性质》是本节课的主要内容。

一次函数是初等函数中的基础,对于学生来说,理解一次函数的图象和性质对于进一步学习其他函数具有重要的意义。

本节课的内容包括一次函数的图象、斜率、截距等概念,以及一次函数的单调性、截距式等性质。

这些内容不仅有助于学生掌握一次函数的基本知识,还可以培养学生的逻辑思维能力和图形直观能力。

二. 学情分析学生在八年级上学期已经学习了函数的基本概念和一次函数的定义,对于本节课的内容有一定的了解。

但是,学生对于一次函数的图象和性质的理解还不够深入,需要通过本节课的学习进一步掌握。

此外,学生在之前的学习中已经接触过一些图形的绘制和分析,但是对于一次函数图象的特点和性质还需要进一步巩固。

三. 教学目标1.理解一次函数的图象和性质,能够绘制一次函数的图象。

2.掌握一次函数的斜率和截距的概念,能够运用斜率和截距式分析一次函数的图象。

3.培养学生的图形直观能力和逻辑思维能力。

四. 教学重难点1.一次函数的图象和性质的理解。

2.斜率和截距的概念及其应用。

3.一次函数图象的特点和性质的运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和探索来理解一次函数的图象和性质。

2.利用图形展示和分析,帮助学生直观地理解一次函数的图象特点。

3.通过实例分析和练习,巩固学生对于一次函数性质的掌握。

六. 教学准备1.教学PPT,包括一次函数的图象和性质的相关知识点。

2.练习题,包括一次函数的图象和性质的应用题。

3.图形展示工具,如白板、彩笔等。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾一次函数的定义和图象,为新课的学习做好铺垫。

2.呈现(10分钟)利用PPT展示一次函数的图象和性质,包括斜率、截距等概念,以及一次函数的单调性、截距式等性质。

通过图形展示和讲解,让学生直观地理解一次函数的图象特点。

19.2.4一次函数的图象和性质-八年级人教版数学下册习题课件

19.2.4一次函数的图象和性质-八年级人教版数学下册习题课件

=2k+3,k=0,不符合k<0的条件,此选项错误;选项D中,
将点(3,4)的坐标代入y=kx+3得4=3k+3,k=
1 3
,不符
合k<0的条件,此选项错误. 【答案】B
10.直线 y=-12x+2 是由直线 y=-12x 向上平移____2____个单
位长度或向右平移____4____个单位长度得到的. 【点拨】画出函数 y=-12x 和 y=-12x+2 的图象,注意到直线 y =-12x+2 与 x 轴交于点(4,0),与 y 轴交于点(0,2).所以直线 y=-12x 向上平移 2 个单位长度或者向右平移 4 个单位长度得到 直线 y=-12x+2.
11.已知一次函数y=(2m+4)x+m-3,求:
13 见习题 第4课时 一次函数的图象和性质
【2020·安徽】已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是( ②若区域W内没有整点,直接写出k的取值范围.
)
1.【2020·嘉兴】一次函数y=2x-1的图象大致是( B )
RJ版八年级下
第十九章 一次函数
19.2 一次函数 第4课时 一次函数的图象和性质
提示:点击 进入习题
1B 2C 3B 4C
5D 6A 7 m<n 8D
答案显示
(3)当m为何值时,函数图象经过原点; 【2020·安徽提】示已:点知击一次函进入数习y=题kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是( ) ④当a<0,b>0时,y1的图象经过第一、二、四象限,y2的图象经过第一、三、四象限,满足题意的只有A.
C.(2,3) D.(3,4)
A.k<0 2.【2020·泰州】点P(a,b)在函数y=3x+2的图象上,则代数式6a-2b+1的值等于( )

第19章+一次函数复习(第2课时+一次函数图象及性质)-2022-2023学年八年级数学下册同步精品

第19章+一次函数复习(第2课时+一次函数图象及性质)-2022-2023学年八年级数学下册同步精品

3.已知一次函数 y=(m+3)x+2n 经过点(0,4)和点(-1,0),求这个 函数解析式. 解:因为一次函数 y=(m+3)x+2n 经过点(0,4)和点(-1,0)
2n=4 所以
-(m+3)+2n=0
n=2 解得
m=1
所以一次函数解析式为 y=4x+4.
4.已知一次函数 y=kx+b 经过点(2,4)和点(0,-1),求这个函数解 析式.
解得
x≤33, x≥31,
∴31≤x≤33.
∵x 是整数,x 可取 31,32,33,
∴可设计三种搭配方案:
①A 种园艺造型 31 个,B 种园艺造型 19 个;
②A 种园艺造型 32 个,B 种园艺造型 18 个;
③A 种园艺造型 33 个,B 种园艺造型 17 个.
(2)方法一: 方案①需成本:31×800+19×960=43040(元); 方案②需成本:32×800+18×960=42880(元); 方案③需成本:33×800+17×960=42720(元).
解:(1) ∵函数是正比例函数, ∴m﹣3 = 0,且 2m + 1≠ 0,解得 m = 3.
(2) ∵ 函数的图象平行于直线 y = 3x﹣3, ∴ 2m + 1 = 3,解得 m = 1.
(3) ∵ y 随着 x 的增大而减小, ∴ 2m + 1<0,解得 m< 1 .
2
(4)∵ 该函数图象过点 (1,4),代入得 2m + 1 + m - 3 = 4, 解得 m = 2,∴该函数的解析式为 y = 5x - 1.
O
A
O
B
Байду номын сангаас

(部编本人教版)最新八年级数学下册 第十九章19.2.2 一次函数 第2课时 一次函数的图象与性质练习【经典练

(部编本人教版)最新八年级数学下册 第十九章19.2.2 一次函数 第2课时 一次函数的图象与性质练习【经典练

第2课时 一次函数的图象与性质知识点 1 一次函数的图象1.[2018·抚顺]一次函数y =-x -2的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限2.[2018·湘西州]一次函数y =x +2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)3.若点(3,1)在一次函数y =kx -2的图象上,则k 的值是( )A .5B .4C .3D .14.分别在同一平面直角坐标系中画出下列各函数的图象,并指出各函数图象的共同之处.(1)y =12x +2;(2)y =-x +2;(3)y =2x +2.知识点 2 一次函数图象的平移5.[2018·南充]直线y =2x 向下平移2个单位长度得到的直线的解析式是( )A .y =2(x +2)B .y =2(x -2)C .y =2x -2D .y =2x +26.[2018·娄底]将直线y =2x -3向右平移2个单位长度,再向上平移3个单位长度后,所得的直线的解析式为( )A .y =2x -4B .y =2x +4C .y =2x +2D .y =2x -27.若直线y =kx +2是由直线y =-2x -1平移得到的,则k =________,即直线y =-2x -1沿y 轴向________平移了________个单位长度.知识点 3 一次函数的性质8.对于函数y =2x -1,下列说法正确的是( )A .它的图象过点(1,0)B .y 随x 的增大而减小C .它的图象经过第二象限D .当x >1时,y >09.已知一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是________.10.[2018·济宁]在平面直角坐标系中,已知一次函数y =-2x +1的图象经过P 1(x 1,y1),P2(x2,y2)两点,若x1<x2,则y1________y2(填“>”“<”或“=”).11.[2018·眉山]已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且该直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________(用“>”连接).12.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第________象限.13.[2018·上海]如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x值的增大而________(填“增大”或“减小”).14.已知关于x的函数y=(m-1)x+1-3m为一次函数,试根据下列各条件确定m的值或取值范围.(1)该函数图象经过原点;(2)该函数图象与y轴相交于点(0,2);(3)y随x的增大而减小.15.[2018·湘潭]若b>0,则一次函数y=-x+b的图象大致是( )图19-2-816.[2018·贵阳]一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可能为( )A.(-5,3) B.(1,-3)C.(2,2) D.(5,-1)17.两条直线y=ax+b与y=bx+a在同一平面直角坐标系中的位置可能是( )图19-2-918.写出一个图象过点(0,3),且函数值y随自变量x的增大而减小的一次函数解析式:________(填一个答案即可).19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y 随x的增大而减小,则k所有可能取得的整数值为________.20.若函数y=2x+3与y=4x-b的图象交x轴于同一点,则b的值为________.21.如图19-2-10,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A (1,-2),则k =________,b =________.图19-2-1022.已知直线y =-12x -6与x 轴交于点A ,与y 轴交于点B ,求这条直线与坐标轴围成的三角形的面积.23.已知直线y =(1-3k )x +2k -1.(1)当k 为何值时,该直线经过第二、三、四象限?(2)当k 为何值时,该直线与直线y =-3x -5平行?拓广探究创新练 冲刺满分24.如图19-2-11,已知直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,点P 在坐标轴上,且PO =2AO .求△ABP 的面积.图19-2-11教师详解详析1.D [解析] 由一次函数图象的特点可知,当k >0时,图象必过第一、三象限;当k <0时,图象必过第二、四象限;当b >0时,图象必过第一、二象限;当b <0时,图象必过第三、四象限.∵-1<0,-2<0,∴一次函数y =-x -2的图象经过第二、三、四象限.故选D.2.A 3.D4.解:图象略.共同点:函数图象都是一条直线,且均与y 轴交于点(0,2).5.C [解析] 直线y =2x 向下平移2个单位长度得到直线的解析式是y =2x -2,故选C.6.A [解析] 根据图象平移时“左加右减,上加下减”的规律,向右平移2个单位长度后为y =2(x -2)-3=2x -7,再向上平移3个单位长度后为y =2x -7+3=2x -4.故选A.7.-2 上 38.D [解析] A .把x =1代入解析式得到y =1,即函数图象经过点(1,1),不经过点(1,0),故本选项错误;B.函数y =2x -1中,k =2>0,则y 随x 的增大而增大,故本选项错误;C.函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故本选项错误;D.当x >1时,2x -1>1,则y >1,故y >0正确,故本选项正确.故选D.9.m >-210.> [解析] 因为y =-2x +1中的k =-2<0,所以y 随x 的增大而减小,所以当x 1<x 2时,y 1>y 2.11.y 1>y 2 [解析] 由于一次函数的图象经过第一、二、四象限,∴k <0,∴y 随x 的增大而减小,∴当x 1<x 2时,y 1>y 2.12.四 [解析] ∵在一次函数y =kx +2中,y 随x 的增大而增大,∴k >0.∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.13.减小 [解析] 因为一次函数图象经过点(1,0),故将其代入y =kx +3,得0=k +3,解得k =-3<0,所以y 的值随x 值的增大而减小.14.解:(1)由1-3m =0且m -1≠0,得m =13. (2)把点(0,2)代入,得1-3m =2,解得m =-13. (3)由m -1<0,得m <1.15.C [解析] ∵k =-1<0,∴图象从左到右是下降的.∵b >0,∴图象与y 轴的正半轴相交.故选C.16.C [解析] ∵一次函数y =kx -1中,y 的值随x 值的增大而增大,∴k >0.A .把(-5,3)代入y =kx -1,得k =-45<0,不符合题意; B .把(1,-3)代入y =kx -1,得k =-2<0,不符合题意;C .把(2,2)代入y =kx -1,得k =32>0,符合题意; D .把(5,-1)代入y =kx -1,得k =0,不符合题意.故选C.17.A [解析] 分四种情况:①当a >0,b >0时,直线y =ax +b 和y =bx +a 均经过第一、二、三象限,选项中不存在此情况;②当a >0,b <0时,直线y =ax +b 经过第一、三、四象限,直线y =bx +a 经过第一、二、四象限,选项A 符合此条件;③当a <0,b >0时,直线y =ax +b 经过第一、二、四象限,直线y =bx +a 经过第一、三、四象限,选项A 符合此条件;④当a <0,b <0时,直线y =ax +b 经过第二、三、四象限,直线y =bx +a 经过第二、三、四象限,选项中不存在此情况.故选A.18.答案不唯一,如y =-x +319.-1 [解析] 由题意得⎩⎪⎨⎪⎧2k +3>0,k <0,解得-32<k <0.∵k 为整数,∴k =-1. 20.-6 [解析] 函数y =2x +3的图象与x 轴的交点坐标是(-32,0),函数y =4x -b 的图象与x 轴的交点坐标是(b 4,0),所以-32=b 4,解得b =-6. 21.2 -4 [解析] ∵一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行, ∴k =2,∴y =2x +b ,把A (1,-2)代入y =2x +b ,得2+b =-2,解得b =-4.22.解:当x =0时,y =-6.当y =0时,即-12x -6=0,解得x =-12, 所以点A ,B 的坐标分别为(-12,0),(0,-6),所以OA =||-12=12,OB =||-6=6,所以这条直线与坐标轴围成的三角形的面积为12OA ·OB =12×12×6=36. 23.解:(1)当⎩⎪⎨⎪⎧1-3k <0,2k -1<0,即13<k <12时,该直线经过第二、三、四象限. (2)当⎩⎪⎨⎪⎧1-3k =-3,2k -1≠-5,即k =43时,该直线与直线y =-3x -5平行. 24.解:令y =0,则由0=2x +4得x =-2,∴A (-2,0),∴AO =2.令x =0,则y =2×0+4=4,∴B (0,4),∴BO =4.∵PO =2AO =4,点P 在坐标轴上,∴点P 有以下四种情况:(1)当点P 在x 轴的负半轴上时,AP =2,∴S △ABP =12AP ·BO =12×2×4=4; (2)当点P 在x 轴的正半轴上时,AP =6,∴S △ABP =12AP ·BO =12×6×4=12; (3)当点P 在y 轴的负半轴上时,PB =PO +BO =4+4=8,∴S △ABP =12PB ·AO =12×8×2=8; (4)当点P 在y 轴的正半轴上时,PO =4,点P ,B 重合,△ABP 不存在.。

精品试题冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

精品试题冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

八年级数学下册第二十一章一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,甲乙两人沿同一直线同时出发去往B 地,甲到达B 地后立即以原速沿原路返回,乙到达B 地后停止运动,已知运动过程中两人到B 地的距离y (km )与出发时间t (h )的关系如图所示,下列说法错误的是( )A .甲的速度是16km/hB .出发时乙在甲前方20kmC .甲乙两人在出发后2小时第一次相遇D .甲到达B 地时两人相距50km2、当2m >时,直线2y x m =+与直线4y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限3、平面直角坐标系xOy 中,点P 的坐标为()3,44m m -+,一次函数4123y x =+的图像与x 轴、y 轴分别相交于点A 、B ,若点P 在AOB 的内部,则m 的取值范围为( )A .1m >-或0m <B .31m -<<C .10m -<<D .11m -≤≤4、一次函数21y x =-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较6、已知正比例函数y =3x 的图象上有两点M (x 1,y 1)、N (x 2,y 2),如果x 1>x 2,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定7、如图,李爷爷要围一个长方形菜园ABCD ,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m ,设边BC 的长为xm ,边AB 的长为ym (x >y ).则y 与x 之间的函数表达式为( )A .y =﹣2x +24(0<x <12)B .y =﹣12x +12(8<x <24)C .y =2x ﹣24(0<x <12)D .y =12x ﹣12(8<x <24) 8、如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x =9、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min 后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min 的时间修好了自行车,并立刻以原速到位于家正西方500m 的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y (m )与小豪的出发时间x (min )之向的函数图象,请根据图象判断下列哪一个选项是正确的( )A .小豪爸爸出发后12min 追上小豪B .小李爸爸的速度为300m /minC .小豪骑自行车的速度为250m /minD .爸爸到达公司时,小豪距离书店500m10、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,下列说法中错误的是( )A .两人出发1小时后相遇B .王明跑步的速度为8km/hC .陈启浩到达目的地时两人相距10kmD .陈启浩比王明提前1.5h 到目的地第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、直线y 1=-x +m 和y 2=2x +n 的交点如图,则不等式-x +m <2x +n 的解集是_____.2、正比例函数(1)y k x =+图像经过点(1,-1),那么k =__________.3、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.4、正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过______的直线,我们称它为直线y =kx .5、已知函数()325m y m x -=-+是关于x 的一次函数,则m =______.三、解答题(5小题,每小题10分,共计50分)1、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.(1)求钢笔和笔记本的单价;(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w 元,其中钢笔的支数为a .①当6a >时,求w 与a 之间的函数关系式;②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?2、已知 A 、B 两地相距 3km ,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km )与他行驶所用的时间 x (min )之间的关系.根据图像解答下列问题:(1)甲骑车的速度是 km/min ;(2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y 乙(km )与所用时间 x (min )的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.3、如图,直线l 1的函数解析式为y =﹣x +1,且l 1与x 轴交于点A ,直线l 2经过点B ,D ,直线l 1,l 2交于点C .(1)求直线l 2的函数解析式;(2)求△ABC 的面积.4、如图,长方形AOBC 在直角坐标系中,点A 在y 轴上,点B 在x 轴上,已知点C 的坐标是(8,4).(1)求对角线AB 所在直线的函数关系式;(2)对角线AB 的垂直平分线MN 交x 轴于点M ,连接AM ,求线段AM 的长;(3)若点P 是直线AB 上的一个动点,当△PAM 的面积与长方形OACB 的面积相等时,求点P 的坐标.5、已知一次函数y kx b =+的图象经过点()1,1A --和()1,3B .(1)求此一次函数的表达式;(2)点()3,5C --是否在直线AB 上,请说明理由.-参考答案-一、单选题1、D【解析】【分析】由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.【详解】解:由图可知:甲10小时所走路程是80×2=160(km),∴甲的速度是16km/h,故A正确,不符合题意;∵出发时甲距B地80千米,乙距B地60千米,∴发时乙在甲前方20km,故B正确,不符合题意;由图可得乙的速度是60÷10=6(km/h),∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),即甲2小时比乙多走20km,∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;∵甲5小时达到B地,此时乙所走路程为5×6=30(km),∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;故选:D.【点睛】本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.2、B【解析】【分析】根据一次函数解析式中k b 、的值,判断函数的图象所在象限,即可得出结论.【详解】 解:一次函数4y x =-+中,10k =-<,40b =>∴函数图象经过一二四象限∵在一次函数2y x m =+中,10k =>,24b m =>∴直线2y x m =+经过一二三象限函数图象如图∴直线2y x m =-+与4y x =-+的交点在第二象限故选:B .【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.3、C【解析】【分析】 由4123y x =+求出A ,B 的坐标,根据点P 的坐标得到点P 在直线443y x =-+上,求出直线与y 轴交点C 的坐标,解方程组求出交点E 的坐标,即可得到关于m 的不等式组,解之求出答案.【详解】 解:当4123y x =+中y =0时,得x =-9;x =0时,得y =12, ∴A (-9,0),B (0,12),∵点P 的坐标为()3,44m m -+,当m =1时,P (3,0);当m =2时,P (6,-4),设点P 所在的直线解析式为y=kx+b ,将(3,0),(6,-4)代入, ∴4,43k b =-=,∴点P 在直线443y x =-+上, 当x =0时,y =4,∴C (0,4),4123443y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得38x y =-⎧⎨=⎩,∴E (-3,8), ∵点P 在AOB 的内部,∴3304448m m -<<⎧⎨<-+<⎩, ∴-1<m <0,故选:C ..【点睛】此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点P 在直线443y x =-+上是解题的关键. 4、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.【详解】解:∵k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,∴一次函数y =-2x +1的图象不经过第三象限.故选:C .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b >0⇔y=kx+b 的图象在一、二、四象限”是解题的关键.5、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.6、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1>x 2即可得出结论.【详解】∵正比例函数y =3x 中,k =3>0,∴y 随x 的增大而增大,∵x 1>x 2,∴y 1>y 2.故选:A .【点睛】本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x 的系数的关系是解题的关键.7、B【解析】【分析】根据菜园的三边的和为24m ,进而得出一个x 与y 的关系式,然后根据题意可得关于x 的不等式,求解即可确定x 的取值范围.【详解】解:根据题意得,菜园三边长度的和为24m ,即224y x +=, 所以1122y x -+=,由y >0得,11202x -+>,解得24x <,当x y >时,即1122x x >-+,解得8x >,∴824x <<,故选:B .【点睛】题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.8、D【解析】【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.9、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(563,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×12x)÷5=32x(m/min),∵公司位于家正西方500米,∴(563−10−2)×32x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×32=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(563−12)×(300+200)=5003m.综上,正确的选项为B.故选:B.【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.10、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A 正确;王明跑步的速度为24÷3=8(km/h ),故选项B 正确;陈启浩的速度为:24÷1-8=16(km/h ),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h ),故陈启浩到达目的地时两人相距8×1.5=12(km ),故选项C 错误;陈启浩比王提前3-1.5=1.5h 到目的地,故选项D 正确;故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题1、x <1【解析】略2、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k +1,即可得出k 值.【详解】解:∵正比例函数(1)y k x =+的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.3、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.4、原点【解析】略5、4【解析】【分析】由一次函数的定义可知x 的次数为1,即|3−m |=1,x 的系数不为0,即()20m -≠,然后对()3120m m -=-≠,计算求解即可.【详解】 解:由题意知()3120m m -=-≠,解得2m =(舍去),4m =故答案为:4.【点睛】本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.三、解答题1、 (1)钢笔的单价为20元,笔记本的单价为15元.(2)①3180612w a a ;②6支或10支【解析】【分析】(1)设钢笔的单价为x 元,笔记本的单价为y 元,再根据买10支钢笔和2本笔记本,需230元;买8支钢笔和4本笔记本,需220元,列方程组,再解方程组即可;(2)①当6a >时,由总费用等于购买钢笔与笔记本的费用之和可列函数关系式,②分两种情况列方程,当6a ≤或6,a 再解方程可得答案.(1)解:设钢笔的单价为x 元,笔记本的单价为y 元,则102230,84220x y x y解得:20,15x y答:钢笔的单价为20元,笔记本的单价为15元.(2)解:①当6a >时,w 与a 之间的函数关系式为:0.9201512w a a3180,a所以w 与a 之间的函数关系式为3180612.w a a②当6a ≤时,则201512210,a a解得:6,a =当6a >时,3180210,a解得:10,a =所以李老师购买纪念品一共花了210元钱,他可能购买了6支或10支钢笔.【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,掌握“确定相等关系列二元一次方程组与一次函数的关系式”是解本题的关键.2、 (1)0.5(2)见解析(3)(187,97),它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km 【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(187,97),它的意义是当出发18 7min后,乙离B的距离和甲离A地的距离都是97km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为x km/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y 甲=0.5x ,y 乙=1.8-0.2x ,由0.5x =1.8-0.2x 得x =187, 当x =187时,y 甲=y 乙=97, ∴两个函数图象的交点坐标为(187,97), 它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km . 【点睛】 本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.3、 (1)y =12x ﹣3 (2)256 【解析】【分析】(1)设直线l 2的解析式为()0y kx b k =+≠,将点B 、点D 两个点代入求解即可确定函数解析式;(2)当y =0时,代入直线1l 解析式确定点A 的坐标,即可得出ABC 的底边长,然后联立两个函数解析式得出交点坐标,点C 的纵坐标即为三角形的高,利用三角形面积公式求解即可得.(1)解:设直线l 2的解析式为()0y kx b k =+≠,由直线l 2经过点()6,0B ,()4,1D -可得:6041k b k b +=⎧⎨+=-⎩, 解得:123k b ⎧=⎪⎨⎪=-⎩, ∴直线l 2的解析式为132y x =-; (2) 当y =0时,代入直线1l 解析式可得:10x -+=,解得1x =,∴()1,0A ,∴615AB =-=, 联立1321y x y x ⎧=-⎪⎨⎪=-+⎩, 解得:8353x y ⎧=⎪⎪⎨⎪=-⎪⎩,∴85,33C⎛⎫-⎪⎝⎭,∴15255236 ABCS=⨯⨯=.【点睛】题目主要考查利用待定系数法确定一次函数解析式,一次函数交点问题,理解题意,熟练掌握运用一次函数的性质是解题关键.4、(1)142y x=-+;(2)5;(3)点P的坐标为(1285,-445)或(-1285,845)【解析】【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−12x +4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.【详解】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有408bk b=⎧⎨=+⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴对角线AB所在直线的函数关系式为y=-12x+4.(2)∵∠AOB=90°,∴勾股定理得:AB=∵MN垂直平分AB,∴BN=AN=12AB=∵MN为线段AB的垂直平分线,∴AM=BM设AM=a,则BM=a,OM=8-a,由勾股定理得,a2=42+(8-a)2,解得a=5,即AM=5.(3)(方法一)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=-43x+4.∵点P在直线AB:y=-12x+4上,∴设P点坐标为(m,-12m+4),点P到直线AM:43x+y-4=0的距离h2m.△PAM的面积S△PAM=12AM•h=54|m|=SOABC=AO•OB=32,解得m=±1285,故点P的坐标为(1285,-445)或(-1285,845).(方法二)∵S长方形OACB=8×4=32,∴S△PAM=32.设点P的坐标为(x,-12x+4).当点P在AM右侧时,S△PAM=12MB•(yA-yP)=12×5×(4+12x-4)=32,解得:x=1285,∴点P的坐标为(1285,-445);当点P在AM左侧时,S△PAM=S△PMB-S△ABM=12MB•yP-10=12×5(-12x+4)-10=32,解得:x =-1285, ∴点P 的坐标为(-1285,845). 综上所述,点P 的坐标为(1285,-445)或(-1285,845). 【点睛】 本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A 、B 点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM 的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m 的一元一次方程;(方法二)利用分割图形求面积法找出关于x 的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P 有两个.5、 (1)一次函数的表达式为21y x =+;(2)点()3,5C --在直线AB 上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程求出k 与b 的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将()1,1A --和()1,3B 代入y kx b =+,得31k b k b +=⎧⎨-+=-⎩, 解得2k =,1b =,∴一次函数的表达式为21y x =+(2)解:点C 在直线AB 上,理由:当3x =-时,()212315y x =+=⨯-+=-,∴点()3,5C --在直线AB 上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ,将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.。

湘教版2019八年级数学下册第4章4.3一次函数的图象第2课时一次函数的图象和性质练习含答案

湘教版2019八年级数学下册第4章4.3一次函数的图象第2课时一次函数的图象和性质练习含答案

课时作业(三十一)[4.3 第2课时一次函数的图象和性质]一、选择题1.2017·广安当k<0时,一次函数y=kx-k的图象不经过( )A.第一象限 B.第二象限C.第三象限 D.第四象限2.在一次函数y=2019ax-a中,y随x的增大而减小,则其图象可能是( )图K-31-13.直线y=2x-4与y轴的交点坐标是( )A.(4,0) B.(0,4)C.(-4,0) D.(0,-4)4.2017·白银在平面直角坐标系中,一次函数y=kx+b的图象如图K-31-2所示,观察图象可得( )图K-31-2A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<05.2017·温州已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是( ) 链接听课例3归纳总结A.0<y1<y2 B.y1<0<y2C.y1<y2<0 D.y2<0<y16.2018·南充直线y=2x向下平移2个单位得到的直线是链接听课例2归纳总结( )A.y=2(x+2) B.y=2(x-2)C.y=2x-2 D.y=2x+27.一次函数y=mx+n与y=mnx(mn≠0)在同一平面直角坐标系中的图象可能是( )图K-31-3二、填空题8.写出一个图象经过点(0,3),且函数值y随自变量x的增大而减小的一次函数表达式:__________(填上一个答案即可).9.2018·宜宾已知A 是直线y =x +1上一点,其横坐标为-12,若点B 与点A 关于y 轴对称,则点B 的坐标为________.10.2018·衡阳如图K -31-4,在平面直角坐标系中,函数y =x 和y =-12x 的图象分别为直线l 1,l 2,过点A 1(1,-12)作x 轴的垂线交l 1于点A 2,过点A 2作y 轴的垂线交l 2于点A 3,过点A 3作x 轴的垂线交l 1于点A 4,过点A 4作y 轴的垂线交l 2于点A 5,…依次进行下去,则点A 2018的横坐标为________.图K -31-4三、解答题11.在同一平面直角坐标系中,分别作函数y =2x +3和y =2x 的图象,并指出它们的位置关系.链接听课例1归纳总结12.已知一次函数y =kx +5的图象经过点(2,1). (1)求这个函数的表达式;(2)在平面直角坐标系中画出这个函数的图象.13.在如图K -31-5所示的平面直角坐标系中画出函数y =-12x +3的图象.(1)在图象上标出横坐标为-4的点A ,并写出它的坐标;(2)将此函数图象向上平移3个单位,得到的图象的函数表达式是________.图K -31-514.2018·重庆A卷如图K-31-6,在平面直角坐标系中,直线y=-x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的表达式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点横坐标的取值范围.链接听课例4归纳总结图K-31-615.如图K-31-7,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过点B作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.图K-31-7阅读理解与一题多变问题:探究一次函数y=kx+k+2(k是不为0的常数)图象的共性特点.探究过程:小明尝试把x=-1代入时,发现可以消去k,竟然求出了y=2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k+2的图象一定经过定点(-1,2).老师:如果一次函数的图象是经过某一个定点的直线,那么我们把像这样的一次函数的图象定义为“点旋转直线”.已知一次函数y=(k+3)x+(k-1)的图象是“点旋转直线”.(1)一次函数y=(k+3)x+(k-1)的图象经过的定点P的坐标是________.(2)已知一次函数y=(k+3)x+(k-1)的图象与x轴、y轴分别相交于点A,B.若△OBP的面积为3,求k 的值.详解详析课堂达标 1.[解析] C ∵k <0,∴-k >0,∴一次函数y =kx -k 的图象经过第一、二、四象限,即不经过第三象限.2.[解析] B 由y =2019ax -a 中,y 随x 的增大而减小,得2019a <0,∴-a >0,只有B 选项符合.故选B.3.[解析] D 与y 轴的交点必在y 轴上,而y 轴上点的坐标特点是x =0,所以将x =0代入函数表达式中,得y =-4,所以直线与y 轴的交点坐标为(0,-4).4.[解析] A ∵一次函数y =kx +b 的图象经过第一、三象限,∴k >0.又该直线与y 轴交于正半轴,∴b >0.综上所述,k >0,b >0.故选A.5.[解析] B ∵点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,∴y 1=-5,y 2=10. ∵-5<0<10,∴y 1<0<y 2.故选B.6.C7.[解析] C (1)当m >0,n >0时,mn >0,一次函数y =mx +n 的图象经过第一、二、三象限,正比例函数y =mnx 的图象经过第一、三象限,无符合选项;(2)当m >0,n <0时,mn <0,一次函数y =mx +n 的图象经过第一、三、四象限,正比例函数y =mnx 的图象经过第二、四象限,C 选项符合;(3)当m <0,n <0时,mn >0,一次函数y =mx +n 的图象经过第二、三、四象限,正比例函数y =mnx 的图象经过第一、三象限,无符合选项;(4)当m <0,n >0时,mn <0,一次函数y =mx +n 的图象经过第一、二、四象限,正比例函数y =mnx 的图象经过第二、四象限,无符合选项.故选C.8.答案不唯一,如y =-x +39.[答案] (12,12)[解析] 把x =-12代入y =x +1,得y =12,∴点A 的坐标为(-12,12).∵点B 和点A 关于y 轴对称,∴B (12,12). 10.[答案] 21008[解析] 观察,发现规律:A 1(1,-12),A 2(1,1),A 3(-2,1),A 4(-2,-2),A 5(4,-2),A 6(4,4),A 7(-8,4),A 8(-8,-8),…,∴A 2n 的横坐标为(-2)n -1(n 为正整数).∵2018=2×1009,∴A 2018的横坐标为(-2)1009-1=21008.11.作图略.它们的位置关系是互相平行. 12.解:(1)根据题意,得1=2k +5,解得k =-2, ∴所求函数的表达式是y =-2x +5.(2)由(1)求得一次函数的表达式为y =-2x +5,令x =0,得y =-2×0+5=5,过点(2,1),(0,5)作直线,如图所示.13.解:函数y =-12x +3的图象与坐标轴的交点坐标为(6,0),(0,3),经过点(6,0),(0,3)画直线,得到函数y =-12x +3的图象,图略.(1)在图上标出点A 略,点A 的坐标是(-4,5).(2)将直线y =-12x +3向上平移3个单位后即可得到直线y =-12x +6.14.解:(1)在y =-x +3中,当x =5时,y =-2,故A (5,-2).∵把点A 向左平移2个单位,再向上平移4个单位,得到点C , ∴C (3,2).∵直线CD 平行直线y =2x ,∴令直线CD 的表达式为y =2x +b (b ≠0),则2×3+b =2,解得b =-4. ∴直线CD 的表达式为y =2x -4. (2)易知点B (0,3).在y =2x -4中,令y =0,得2x -4=0,解得x =2. ∵过点B 且平行于直线CD 的表达式为y =2x +3, ∴令y =2x +3中的y =0,得2x +3=0,解得x =-32.∴直线CD 在平移过程中与x 轴交点横坐标的取值范围是-32≤x ≤2.15.解:(1)令y =0,得x =-32,∴点A 的坐标为⎝ ⎛⎭⎪⎫-32,0. 令x =0,得y =3,∴点B 的坐标为(0,3).(2)由(1)可知OA =32.设点P 的坐标为(x ,0),依题意,得x =±3,∴P 1(3,0)或P 2(-3,0),∴S △ABP 1=12×⎝ ⎛⎭⎪⎫32+3×3=274,S △ABP 2=12×⎝ ⎛⎭⎪⎫3-32×3=94,∴△ABP 的面积为274或94.素养提升 解:(1)把一次函数y =(k +3)x +(k -1)整理为y =k (x +1)+3x -1的形式, ∴x +1=0,得x =-1, 当x =-1时,y =-4,∴P (-1,-4).故答案为(-1,-4).(2)∵一次函数y =(k +3)x +(k -1)的图象与x 轴、y 轴分别相交于点A ,B , ∴A (1-k k +3,0),B (0,k -1).∵△OBP 的面积为3,∴12|k -1|=3,解得k =7或k =-5.。

(完整版)一次函数的图像和性质练习题

(完整版)一次函数的图像和性质练习题

一次函数的图像和性质练习题一、填空题1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0),点,(0) ,点. 2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。

与坐标轴围成的三角形的面积是 。

3.若一次函数(44)y mx m =--的图象过原点,则m 的值为 .4.如果函数y x b =-的图象经过点(01)P ,,则它经过x 轴上的点的坐标为 . 5.一次函数3+-=x y 的图象经过点( ,5)和(2, )6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数 7.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 . 8. 若直线y=2x+6与直线y=mx+5平行,则m=____________.9.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 . 10.将直线y= -2x 向上平移3个单位得到的直线解析式是 ,将直线y= -2x 向下移3个单得到的直线解析式是 .将直线y= -2x+3向下移2个单得到的直线解析式是 .11.直线y kx b =+经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.12.一次函数(2)4y k x k =-+-的图象经过一、三、四象限,则k 的取值范围是 . 13.如果直线3y x b =+与y 轴交点的纵坐标为2-,那么这条直线一定不经过第 象限. 14. 已知点A(-4, a),B(-2,b)都在一次函数y=21x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”) 15.一次函数y=kx+b 的图象如图所示,看图填空:(1)当x=0时,y=____________;当x=____________时,y=0. (2)k=__________,b=____________.(3)当x=5时,y=__________;当y=30时,x=___________. 二、选择题1.已知函数(3)2y m x =+-,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是( )A.3m -≥B.3m >-C.3m -≤D.3m <-2.已知直线y kx b =+,经过点11()A x y ,和点22()B x y ,,若0k <,且12x x <,则1y 与2y 的大小关系是( ) A.12y y >B.12y y <C.12y y =D.不能确定3.若直线23y mx m =--经过第二、三、四象限,则m 的取值范围是( )A.32m <B.302m -<<C.32m >D.0m >4.一次函数31y x =-的图象不经过( )A.第一象限B.第二象限 C.第三象限D.第四象限5. 如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 6. 若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.下列图象中不可能是一次函数(3)y mx m =--的图象的是( )8.两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )三、解答题1.已知一次函数y=(3-k)x-2k+18, (1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方; (4) k 为何值时,它的图像平行于直线y=-x; (5) k 为何值时,y 随x 的增大而减小.2. 设一次函数)0(≠+=k b kx y ,当2=x 时,3-=y ,当1-=x 时,4=y 。

(完整版)一次函数图像与性质练习题

(完整版)一次函数图像与性质练习题

一 .讲课目的与考点剖析:函数一、一次函数图像与系数的关系1.函数 y kx b ( k 、 b 为常数,且 k ≠0)的图象是一条直线:当 b >0时,直线 y kx b 是由直线 y kx 向上平移 b 个单位长度获得的;当 b <0时,直线 y kx b 是由直线 y kx 向下平移| b |个单位长度获得的.2.一次函数 y kx b ( k 、 b 为常数,且 k ≠0)的图象与性质:正比率函数的图象是经过原点( 0,0)和点( 1,k)的一条直线;一次函数 y kx b(k0)图象和性质以下:3.k 、 b 对一次函数 y kx b 的图象和性质的影响:k 决定直线y kx b 从左向右的趋向,b决定它与y轴交点的地点,k、b一同决定直线y kx b 经过的象限.4. 两条直线l 11 1 和 l2 2 2的地点关系可由其系数确立:: y k xb : y k xb ( 1) k 1 k 2l 与 l 订交; ( 2) k 1 k 2 ,且 b 1 b 2l 与 l 平行;1212一次函数 y 2x 3 的图象不经过象限。

【 K 、B 与图像的关系】【例 1】 1.若 bk <0,则直线 y=kx+b 必定经过( )A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限【变式 1】.假如一次函数 y=kx +b 的图象经过一、二、三象限,那么 k 、 b 应知足的条件是( )A .k >0,且 b >0B .k < 0,且 b <0C .k >0,且 b <0D .k < 0,且 b >02、若直线 ykx b ( k ≠0)不经过第一象限,则 k 、 b 的取值范围是( )A.k >0, b <0B. k >0, b ≤0C. k < 0, b <0D. k <0, b ≤ 03. (梅州)已知直线y=kx+b ,若 k+b=- ,kb= ,那么该直线不经过 第象限。

一次函数的图像和性质-省公开课获奖课件市赛课比赛一等奖课件

一次函数的图像和性质-省公开课获奖课件市赛课比赛一等奖课件
(2)直线y=3x-2可由直线y=3x向
移 2 单位得到。
(3)直线y=x+2可由直线y=x-1向
移 3 单位得到。
下平 上平
2、正百分比函数旳一般形式为y=:kx,(k≠0)
当x=0时,y= 0 当x=1时,y= k 所以,它旳图象必经过点(0,0)(1,k )
3、一次函数旳一般形式为:y=kx+b(k≠0)
_(_43__,_0_)__,
与y轴旳交点坐标是___(_0_,_4_)_.
3、下列各点,不在一次函数Y=2X+1图象上旳

( D)
A(1,3)B(-1,-1)C(0.5,2)D(0,2)
随堂练习
1.若正百分比函数y=kx(k≠0)经过点(-1,2), 则该正百分比函数旳解析式为y=_y_=_-2_x_______.
中,正确旳有_1___个
y
2.如图,已知一次函数y=kx+b旳 o 图像,当x<1时,y旳取值范围是 _y_<_-2_
-4
y 2=x+a
x 3 y 1=kx+b
x 2
3.一种函数图像过点(-1,2),且y随x增大而降低, 则这个函数旳解析式是___ y=-x+1
1、直线y=2x+1与y=3x-1旳交点P旳坐标为(_2_,_5_),点P到x轴旳距 离为____5___,点P到y轴旳距离为___2___。
列表:
y=2x+ ... -3 -1 1 3 5 …
1
y
描点:(-2,-3)(-1,-1)
7 6
(0, 1) (1,3) 5
4
(2,5)
3
2
连线:
1
-3 -2 -1 0 1 -1

八年级数学下册 21.2《一次函数的图像和性质》课件2 (新版)冀教版

八年级数学下册 21.2《一次函数的图像和性质》课件2 (新版)冀教版
即 给一架正在飞行的运输飞机进行空中加油,在加
油过程中,设运输机的油箱余油量为Q1吨,加油飞 机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、 Q2与t之间的函数图像(tú xiànɡ)如图所示,结合图 像(1)(加tú油x(ijàiānɡyó)u回)飞答机下的加列油问(j题iā :yóu)油
箱中装载了多少吨油?将这些油全部加给运 输飞机需多少分钟?
5 4
(2,5)
3
2
1
连线(lián xiàn):
-3 -2 -1 0 1 -1
2
3
45
6
x
-2
-3
第二页,共27页。
作一次函数y = --2x+5的图象(tú
xiànɡ)
y
(-1,7) 7
6 5 (0,5)
4
3
(1,3)
2
1
(2,1)
-3 -2 -1 0 1 2 3 4 5 6 x
-1
(3,-1)
9 ),
代入得
b 40 10k b 69
所以(suǒyǐ) Q1=2.9t+4(0≤t ≤10)
第二十五页,共27页。
我探究我创新
(3)运输飞机加完油后,以原速继续飞行, 需10小时到达目的地,油料(yóu liào)是 否够用?说明理由.
解:(3)
根据图像(tú xiànɡ)可知 运输飞机的耗油量为每分钟0.1吨.
-2
-3
-4 第七页,共27页。
分析
从上图中,我们(wǒ men)可以看出,对于一次函数 y=2x+1 ,当自变量 x 取的值由小变大时,对应的函数值 y 也由小变大
第八页,共27页。
练习

八年级数学下册一次函数的图像和性质21.2.2一次函数的性质课件新版冀教版

八年级数学下册一次函数的图像和性质21.2.2一次函数的性质课件新版冀教版

B.1
4 C.3
5 D.3
解析:当 2x-1≥-x+3 时,x≥43, ∴当 x≥43时,y=min{2x-1,-x+3}=-x+3,
当 2x-1<-x+3 时,x<43, ∴当 x<43时,y=min{2x-1,-x+3}=2x-1, 综上所述,y=min{2x-1,-x+3}的最大值是当 x=43所对应 的 y 的值,如图所示,当 x=43时,y=-43+3=53,故选 D.
6.下列函数中,y 随 x 的增大而减小的是( B )
A.y=13x C.y=x32
B.y=-13x D.y=-3x
解析:由增减性可知,在 y=kx 中,k<0,B 符合.故选 B.
7.已知正比例函数 y=(m-2)x|m-2|,且它的图像过二、四象 限,则 m=1,_函数表达式为 y=-x.
解析:因为正比例函数的图像过二、四象限,则 m|m--22<|=01,, 解得 m=1.将 m=1 代入 y=(m-2)x|m-2|,进而得出函数表达式为 y =-x.
第二十一章 一次函数
21.2 一次函数的图像和性质 第2课时 一次函数的性质












课前基热础身训(练5分钟)
1.对于一次函数 y=kx+b(k,b 为常数,且 k≠0),当 k>0 时, y 的值随 x 的值的增大而 增大 ,随 x 的值的减小而 减小 ;当 k<0 时,y 的值随 x 的值的增大而 减小 ,随 x 的值的减小而 增大 .
8.一次函数 y=(m+2)x+3-m,若 y 随 x 的增大而增大,函 数图像与 y 轴的交点在 x 轴的上方,则 m 的取值范围是-2<m<3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档