离散数学第七章图

合集下载

《离散数学》第七章 图的基本概念 讲稿

《离散数学》第七章 图的基本概念 讲稿

7.1 无向图及有向图一、本节主要内容无向图与有向图顶点的度数握手定理简单图完全图子图补图二、教学内容无序对: 两个元素组成的二元组(没有顺序),即无论a,b是否相同,(a,b )=(b, a )无序积: A与B 为两个集合,A&B={(x,y) |x∈A∧y∈B}例A={a1, a2}, B={b1, b2}A&B={(a1 , b1 ), (a1 , b2 ) ,(a2 , b1 ) ,(a2 , b2 )}A&A={(a1 , a1 ), (a1 , a2 ) ,(a2 , a2 )}多重集合: 元素可以重复出现的集合无向图与有向图定义无向图G=<V,E>, 其中(1) V∅≠为顶点集,元素称为顶点(2) E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}定义无向图G=<V,E>, 其中(1) V≠∅为顶点集,元素称为顶点(2) E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} 无向图与有向图(续)定义有向图D=<V,E>, 其中(1) V同无向图的顶点集, 元素也称为顶点(2) E为V⨯V的多重子集,其元素称为有向边,简称边.用无向边代替D的所有有向边所得到的无向图称作D的基图右图是有向图,试写出它的V和E无向图与有向图(续)通常用G表示无向图, D表示有向图,也常用G泛指无向图和有向图,用ek表示无向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=∅平凡图: 1 阶零图顶点和边的关联与相邻定义设ek=(vi, vj)是无向图G=<V,E>的一条边, 称vi, vj为ek的端点, ek与vi ( vj)关联.若vi ≠ vj, 则称ek与vi ( vj)的关联次数为1;若vi = vj, 则称ek为环, 此时称ek与vi 的关联次数为2;若vi不是ek端点, 则称ek与vi 的关联次数为0.无边关联的顶点称作孤立点.定义设无向图G=<V,E>, vi,vj∈V,ek,el∈E,若(vi,vj) ∈E, 则称vi,vj相邻;若ek,el至少有一个公共端点, 则称ek,el相邻.对有向图有类似定义. 设ek=〈vi,vj〉是有向图的一条边, vi,vj是ek端点,又称vi是ek的始点, vj是ek的终点,vi邻接到vj, vj邻接于vi.邻域和关联集设无向图G , v ∈V(G)v 的邻域 N(v)={u|u ∈V(G)∧(u,v)∈E(G)∧u ≠v} v 的闭邻域 = N(v)∪{v} v 的关联集 I(v)={e|e ∈E(G)∧e 与v 关联} 设有向图D, v ∈V(D)v 的后继元集 ={u|u ∈V(D)∧<v,u>∈E(G)∧u ≠v}v 的先驱元集 ={u|u ∈V(D)∧<u,v>∈E(G)∧u ≠v}v 的邻域v 的闭邻域顶点的度数设G=<V ,E>为无向图, v ∈V,v 的度数(度) d(v): v 作为边的端点的次数之和 悬挂顶点: 度数为1的顶点 悬挂边: 与悬挂顶点关联的边 G 的最大度∆(G)=max{d(v)| v ∈V} G 的最小度δ(G)=min{d(v)| v ∈V} 例如 d(v5)=3, d(v2)=4, d(v1)=4, ∆(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环顶点的度数(续)设D=<V ,E>为有向图, v ∈V,v 的出度d+(v): v 作为边的始点的次数之和 v 的入度d -(v): v 作为边的终点的次数之和 v 的度数(度) d(v): v 作为边的端点次数之和 d(v)= d+(v)+ d-(v)D 的最大出度∆+(D), 最小出度δ+(D) 最大入度∆-(D), 最小入度δ-(D) 最大度∆(D), 最小度δ(D) 例如 d+(a)=4, d-(a)=1, d(a)=5, d+(b)=0, d-(b)=3, d(b)=3,∆+(D)=4, δ+(D)=0, ∆-(D)=3, δ-(D)=1, ∆(D)=5, δ(D)=3. 图论基本定理——握手定理定理 任意无向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点入度之和等于出度之和等于边数.)(v N )(v D +Γ)(v D -Γ)()()(v v v N D D D -+ΓΓ= }{)()(v v N v N D D =证 G 中每条边(包括环)均有两个端点,所以在计算G 中各顶点度数之和时,每条边均提供2度,m 条边共提供2m 度.有向图的每条边提供一个入度和一个出度, 故所有顶点入度之和等于出度之和等于边数. 握手定理(续)推论 在任何无向图和有向图中,度为奇数的顶点个数必为偶数. 证 设G=<V,E>为任意图,令 V1={v | v ∈V ∧d(v)为奇数} V2={v | v ∈V ∧d(v)为偶数}则V1∪V2=V, V1∩V2=∅,由握手定理可知∑∑∑∈∈∈+==21)()()(2V v V v Vv v d v d v d m由于2m,∑∈2)(V v v d 均为偶数,所以 ∑∈1)(V v v d 也为偶数, 但因为V1中顶点度数都为奇数,所以|V1|必为偶数.图的度数列设无向图G 的顶点集V={v1, v2, …, vn} G 的度数序列: d(v1), d(v2), …, d(vn) 如右图度数序列:4,4,2,1,3设有向图D 的顶点集V={v1, v2, …, vn} D 的度数序列: d(v1), d(v2), …, d(vn) D 的出度序列: d+(v1), d+(v2), …, d+(vn) D 的入度序列: d -(v1), d -(v2), …, d -(vn) 如右图度数序列:5,3,3,3出度序列:4,0,2,1 入度序列:1,3,1,2 握手定理的应用例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数序列吗? 解 不可能. 它们都有奇数个奇数.例2 已知图G 有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G 至少有多少个顶点? 解 设G 有n 个顶点. 由握手定理, 4⨯3+2⨯(n-4)≥2⨯10 解得 n ≥8握手定理的应用(续)例3 给定下列各序列,哪组可以构成无向图的度数序列 (2,2,2,2,2) (1,1,2,2,3) (1,1,2,2,2) (1,3,4,4,5)多重图与简单图定义(1) 在无向图中,如果有2条或2条以上的边关联同一对顶点, 则称这些边为平行边, 平行边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平行边, 简称平行边, 平行边的条数称为重数.(3) 含平行边的图称为多重图.(4) 既无平行边也无环的图称为简单图.注意:简单图是极其重要的概念多重图与简单图(续)例如e5和e6 是平行边重数为2不是简单图e2和e3 是平行边,重数为2 e6和e7不是平行边不是简单图图的同构定义设G1=<V1,E1>, G2=<V2,E2>为两个无向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的vi,vj∈V1,(vi,vj)∈E1(<vi,vj>∈E1)当且仅当(f(vi),f(vj))∈E2(<f(vi),f(vj)>∈E2),并且,(vi,vj)(<vi,vj>)与(f(vi),f(vj))(<f(vi),f(vj)>)的重数相同,则称G1与G2是同构的,记作G1≅G2.图的同构(续)几点说明:图之间的同构关系具有自反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:①边数相同,顶点数相同②度数列相同(不计度数的顺序)③对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构图的同构(续)例1 试画出4阶3条边的所有非同构的无向简单图例2 判断下述每一对图是否同构:(1)度数列不同不同构例2 (续)(2)不同构入(出)度列不同度数列相同但不同构为什么?完全图与正则图n阶无向完全图Kn: 每个顶点都与其余顶点相邻的n阶无向简单图.简单性质: 边数m=n(n-1)/2, ∆=δ=n-1n阶有向完全图: 每对顶点之间均有两条方向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ∆=δ=2(n-1),∆+=δ+=∆-=δ-=n-1n阶k正则图: ∆=δ=k 的n阶无向简单图简单性质: 边数m=nk/2完全图与正则图(续)(1) 为5阶无向完全图K5(2) 为3阶有向完全图(3) 为彼得森图, 它是3 正则图子图定义设G=<V,E>, G '=<V ',E '>是2个图(1) 若V '⊆V且E '⊆E, 则称G '为G的子图, G为G '的母图, 记作G '⊆G(2)若G '⊆G且G '≠ G(即V '⊂V 或E '⊂E),称G '为G的真子图(3) 若G '⊆G 且V '=V,则称G '为G的生成子图(4) 设V '⊆V 且V '≠∅, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的子图称作V '的导出子图,记作G[V '](5) 设E '⊆E且E '≠∅, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的子图称作E '的导出子图, 记作G[E ']子图(续)例画出K4的所有非同构的生成子图补图定义设G=<V,E>为n阶无向简单图,以V为顶点集,所有使G成为完全图Kn的添加边组成的集合为边集的图,称为G的补图,记作G≅G.若G ≅ G , 则称G 是自补图.例 画出5阶7条边的所有非同构的无向简单图首先,画出5阶3条边的所有非同构的无向简单图 然后,画出各自的补图7.2 通路、回路与图的连通性一、本节主要内容简单通(回)路, 初级通(回)路, 复杂通(回)路 无向连通图, 连通分支弱连通图, 单向连通图, 强连通图 点割集与割点边割集与割边(桥) 二、教学内容 通路与回路定义 给定图G=<V ,E>(无向或有向的),设G 中顶点与边的交替序列Γ=v0e1v1e2…elvl ,(1) 若∀i(1≤i ≤l), vi -1 和 vi 是ei 的端点(对于有向图, 要求vi -1是始点, vi 是终点), 则称Γ为通路, v0是通路的起点, vl 是通路的终点, l 为通路的长度. 又若v0=vl ,则称Γ为回路. (2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为初级通路(初级回路).初级通路又称作路径, 初级回路又称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路). 通路与回路(续) 说明:在无向图中,环是长度为1的圈, 两条平行边构成长度为2的圈. 在有向图中,环是长度为1的圈, 两条方向相反边构成长度为2的圈. 在无向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2. 通路与回路(续)定理 在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通 路,则从vi 到vj 存在长度小于等于n -1的通路.推论 在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通121212G G G G G G ≅≅例设与均为无向简单图,当且仅当路,则从vi到vj存在长度小于等于n-1的初级通路.定理在一个n阶图G中,若存在vi到自身的回路,则一定存在vi到自身长度小于等于n的回路.推论在一个n阶图G中,若存在vi到自身的简单回路,则一定存在长度小于等于n的初级回路.无向图的连通性设无向图G=<V,E>,u与v连通: 若u与v之间有通路. 规定u与自身总连通.连通关系R={<u,v>| u,v ∈V且u~v}是V上的等价关系连通图: 平凡图, 或者任意两点都连通的图连通分支: V关于R的等价类的导出子图设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk]是G的连通分支, 其个数记作p(G)=k.G是连通图⇔ p(G)=1短程线与距离u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ⇔ u=vd(u,v)=d(v,u)(对称性)d(u,v)+d(v,w)≥d(u,w) (三角不等式)点割集记G-v: 从G中删除v及关联的边G-V': 从G中删除V'中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设无向图G=<V,E>, 如果存在顶点子集V'⊂V, 使p(G-V')>p(G),而且删除V'的任何真子集V''后(∀ V''⊂V'),p(G-V'')=p(G), 则称V'为G的点割集. 若{v}为点割集, 则称v为割点.点割集(续)例{v1,v4}, {v6}是点割集, v6是割点.{v2,v5}是点割集吗?边割集定义设无向图G=<V,E>, E'⊆E, 若p(G-E')>p(G)且∀E''⊂E',p(G-E'')=p(G), 则称E'为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上一页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?几点说明:Kn无点割集n阶零图既无点割集,也无边割集.若G连通,E'为边割集,则p(G-E')=2若G连通,V'为点割集,则p(G-V')≥2有向图的连通性设有向图D=<V,E>u可达v: u到v有通路. 规定u到自身总是可达的.可达具有自反性和传递性D弱连通(连通): 基图为无向连通图D单向连通: ∀u,v∈V,u可达v 或v可达uD强连通: ∀u,v∈V,u与v相互可达强连通⇒单向连通⇒弱连通有向图的连通性(续)例下图(1)强连通, (2)单连通, (3) 弱连通有向图的短程线与距离u到v的短程线: u到v长度最短的通路(u可达v)u与v之间的距离d<u,v>: u到v的短程线的长度若u不可达v, 规定d<u,v>=∞.性质:d<u,v>≥0, 且d<u,v>=0 ⇔ u=vd<u,v>+d<v,w> ≥d<u,w>注意: 没有对称性7.3 图的矩阵表示一、本节主要内容无向图的关联矩阵有向图的关联矩阵有向图的邻接矩阵有向图的可达矩阵二、教学内容无向图的关联矩阵定义设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n⨯m为G的关联矩阵,记为M(G).定义设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n⨯m为G的关联矩阵,记为M(G).性质关联次数为可能取值为0,1,2有向图的关联矩阵定义 设无环有向图D=<V ,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令则称(mij)n ⨯m 为D 的关联矩阵,记为M(D). 性质:有向图的邻接矩阵定义 设有向图D=<V ,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令 )1(ij a 为顶点vi 邻接到顶点vj 边的条数,称()1(ij a )n ⨯n 为D 的邻接矩阵, 记作A(D), 简记为A. 1110001110()1001200000M G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1100010111()0000101110M D -⎡⎤⎢⎥--⎢⎥=⎢⎥-⎢⎥-⎣⎦平行边的列相同)4(2)3(),...,2,1()()2(),...,2,1(2)1(,11mm n i v d m m j m ji ijimj ijni ij =====∑∑∑==(1)1(1)1(1)(),1,2,...,(2)(),1,2,...,nij i j n ij ji a d vi n a d v j n+=-=====∑∑性质D 中的通路及回路数定理 设A 为n 阶有向图D 的邻接矩阵, 则Al(l ≥1)中 元素)(l ij a 为D 中vi 到vj 长度为 l 的通路数, )(l ii a 为vi 到自身长度为 l 的回路数,∑∑==n i nj l ija11)( 为D 中长度为 l 的通路总数,∑=ni l iia1)( 为D 中长度为 l 的回路总数.D 中的通路及回路数(续)推论 设Bl=A+A2+…+Al(l ≥1), 则Bl 中元素为D 中长度小于或等于l 的通路数, 为D 中长度小于或等于l 的回路数. 例 有向图D 如图所示, 求A, A2, A3, A4, 并回答问题:(1) D 中长度为1, 2, 3, 4的通路各有多 少条?其中回路分别为多少条? (2) D 中长度小于或等于4的通路为多 少条?其中有多少条回路?12100010()00010010A D ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦有向图的可达矩阵定义 设D=<V ,E>为有向图, V={v1, v2, …, vn}, 令称(pij)n ⨯n 为D 的可达矩阵, 记作P(D), 简记为P. 性质:P(D)主对角线上的元素全为1.D 强连通当且仅当P(D)的元素全为1. 有向图的可达矩阵(续)例 右图所示的有向图D 的可达矩阵为7.4 最短路径及关键路径一、本节主要内容 最短路 关键路线二、教学内容对于有向图或无向图G 的每条边,附加一个实数w(e),则称w(e)为边e 上的权. G 连同附加在各边上的实数,称为带权图.设带权图G=<V,E,W>,G 中每条边的权都大于等于0.u,v 为G 中任意两个顶点,从u 到v 的所有通⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1101110111110001P路中带权最小的通路称为u 到v 的最短路径.求给定两个顶点之间的最短路径,称为最短路径问题. 算法:Dijkstra(标号法){}()*()*1()*()()1()*1.2./5.i r r i i i i ir i r r j j j j j r i r v l v v v l v r p l l v v v l v r l v v p r T V r ∞==-j ij r r 如果顶点与v 不相邻,则w =为顶点到顶点最短路径的权,如果顶点获得了标号,则称顶点在第步获得了标号(永久性标号)3.为顶点到顶点最短路径的权的上界,如果顶点获得了标号,则称顶点在第步获得了t 标号(临时性标号)4.P 已经获得标号为第步通过集P 为第步未通过集例:求图中v0与v5的最短路径(0)*000(0)0(1)*(0)(1)*1010100,{},T {},1,2,3,4,5{},min {},T T {}(2)T j jj i j i v T l P l w j l l l P P t ∈=======⋃=-0012345j i i i i 第步(r=0):v 获得p 标号v v ,v ,v ,v ,v ,v 获得t 标号第1步(r=1):(1)求下一个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标1(1)(0)(1)*(2)*(1)(2)*2121(2)(1)(2)*2min{,}{},min {},T T {}(2)T min{,}j jj iij i j iv T j j iij ll lw l l l P P t l l l w ∈=+==⋃=-=+i i i i 号:第2步(r=2):(1)求下一个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标号:2.关键路径问题,(){/,}(){/,}D D D V E v V v x x V v x E v v x x V x v E v +=<>∈Γ=∈∧<>∈Γ=∈∧<>∈-设为一个有向图,,则为的后继元集为的先继元集定义:PERT 图设D=<V ,E,W>是n 阶有向带权图1. D 是简单图2. D 中无环路3. 有一个顶点出度为0,称为发点;有一个顶点入度为0,称为收点4. 记边<vi, vj>的权为wij,它常常表示时间1. 最早完成时间:自发点v1开始,沿最长路径(权)到达vi 所需时间,称为vi 的最早完成时间,记为TE (vi ) ,i=1,2,…,nj 1i i j ij v ()234567TE(v )=0,v (1)TE(v )={(v )+w },1,2,,max TE(v )=max{0+1}=1;TE(v )=max{0+2,1+0}=2;TE(v )=max{0+3,2+2}=4;TE(v )=max{1+3,4+4}=8;TE(v )=max{2+4,8+1}=9;TE(v )=max{1+4,2+D i v i TE i n-∈Γ≠=显然的最早完成时间按如下公式计算:813784}=6;TE(v )=max{6+6,9+1}=12;v v v v 关键路径:从发点到收点的一条最长路径,2. 最晚完成时间:在保证收点vn 的最早完成时间不增加的条件下,自发点v1最迟到达vi 所需时间,称为vi 的最晚完成时间,记为TL (vi ).j n n i i j ij v ()876543TL(v )=TL(v ),v ()TL(v )={(v )-w },1,2,,min TL(v )=12;TL(v )=min{12-6}=6;TL(v )=min{12-1}=11;TL(v )=min{11-1}=10;TL(v )=min{10-4}=6;TL(v )=min{6-2,11-4,6-4}=2;TL(D i v i n TL i n∈Γ≠=+显然的最晚完成时间按如下公式计算:21v )=min{2-0,10-3,6-4}=2;TL(v )=min{2-1,2-2,6-3}=0;3. 缓冲时间:TS(vi)=TL(vi)- TE(vi) TS(v1)= TS(v3)= TS(v7)= TS(v8)=0 TS(v2)=2-1=1; TS(v4)=6-4=2; TS(v5)=10-8=2; TS(v6)=11-9=2。

第七章 2汉密尔顿图

第七章 2汉密尔顿图
只能邻接路上的结点为止。若 p=n,则汉密尔顿路找到了,否则 p<n,转 STEP 2。
L: v1
vp
2021/2/16
7-2 汉密尔顿图 2021/2/16
7-2 汉密尔顿图
如果 v p 不邻接于 vl1, vm1,..., v j1,..., vt1 中的任意一个结点,则 deg(vp ) p 1 k ,
deg(u)+deg(v)≥ n, 则G是汉密尔顿图。
2021/2/16
11
7-2 汉密尔顿图
设G=〈V ,E〉是有n个结点的简单图, (1) 如果任两结点u,v∈V, 均有
deg(u)+deg(v)≥ n-1, 则在G中存在一条汉密尔顿路;
(1)证明:首先证明图 G 连通。用反证法进行证明。假设图 G 不连通,则图 G 至少
deg(v1) k , deg(vp ) deg(v1) p 1 k k p 1 n 1 , 这 与 前 提 条 件
deg u +deg v n-1矛盾。因此 v p 必然邻接于 vl1, vm1,..., v j1,..., vt1 中的任意一个结
点。回路 L1 一定存在。 STEP 3:打开回路,得到基本路径 L2。
有两个连通分支 G1 和 G2 。G1=<V1, E1> ,G2=<V2 , E2> 。| V1 | n1 ,| V2 | n2 。在G1 中取 一 个 结 点 v1 , deg(v1) n1 1 , 在 G2 中 取 一 个 结 点 v2 , deg(v2 ) n2 1 。
deg(v1) deg(v2 ) n1 1 (n2 1) n1 n2 2 n 2 ,与 deg u+deg v n-1 矛
因此该定理不能证明彼得森图是非 汉密尔顿图。但彼得森图是非汉密尔 顿图。

第7章 图论 [离散数学离散数学(第四版)清华出版社]

第7章 图论 [离散数学离散数学(第四版)清华出版社]

6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e

2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)

离散数学第七章图的基本概念

离散数学第七章图的基本概念

三.图的同构
设G1=<V1,E1>,G2=<V2,E2>为两个无向图,若存在双射函数
f:V1->V2,使得对于任意的e=(v1,v2)∈E1当且仅当 e’=(f(v1),f(v2))∈E2,且e与e’的重数相同,则称G1与G2同构.
记作G1≌G2.
a e
b c
(1)
d (2)
V4 V1
V5
V3 V2
i1 j1
i1
i1 j1
i1
3.有向图的邻接矩阵
设有向图D=<V,E>,V={v1,v2,…,vn},|E|=m 令a(1)ij为vi邻接到vj的边的条数,
(a ) 则称 (1) 为D的邻接矩阵,记为A(D). ij nn
若Γ 满足:vi-1,vi为ei的端点(若G为有向图,vi-1是ei的始 点,vi是ei的终点)i=1,2,…,k,则称Γ 为G中通路,v0,vk分 别称为通路的始点和终点,Γ 中边的数目k称为通路长度.
若v0=vk,则通路称为回路.
若Γ 中各边互不相同,则称Γ 为简单通路,若v0=vk,则称Γ 为简单回路.
G
1
1
1
5
5
2
5
2
2
3
4
3
4
(1)
(1)与(2)互为补图
(2)
3
4
5 阶完全图
1
1
1
2
3
2
3
(1)
(1)与(2)互为补图
(2)
2
3
3 阶有向完全图
二.握手定理(图论基本定理)
任何图G中各顶点的度数之和等于边数的2倍.
若G为有向图,则各顶点的入度之和等于各顶点的出度之和. 都等于边数.

《离散数学》课件-第七章 图的基本概念

《离散数学》课件-第七章 图的基本概念
• 〔u,v〕∈E1〔f(u),f(v)〕∈E2 • (或<u,v>∈E1 <f(u),f(v)>∈E2) • 且重数相同,则称G1同构于G2,记为
• G1 G2。
• 显然,两图的同构是相互的,即G1同构 于G2,G2同构于G1。
• 由同构的定义可知,不仅结点之间要具 有一一对应关系,而且要求这种对应关 系保持结点间的邻接关系。对于有向图 的同构还要求保持边的方向。
V={a,b,c,d},E={e1,e2,e3,e4,e5,e6}
e1=(a,b), e2=(a,c), e3=(b,d), e4=(b,c), e5=(d,c), e6=(a,d).
它的图形如下图(a)或(b)所示:
a
a
b
d
b
d
c
c
(a)
(b)
如果有些边是有向边,另一些边是无向边, 图G称为混合图。
第七章 图的基本概念
– 7.1 无向图及有向图 – 7.2 通路、回路、图的连通性 – 7.3 图的矩阵表示 – 7.4 最短路径及关健路径
7.1 无向图和有向图
• 什么是图?可用一句话概括,即:图是用 点和线来刻划离散事物集合中的每对事 物间以某种方式相联系的数学模型。
Konigsberg(哥尼斯堡)七桥问题
为偶数.
定理7.2 在任何有向图中,所有结点的入度之 和必等于它们的出度之和.
证明:因为有向图中的每一条有向边都恰好对应 一个出度和一个入度.故所有结点的出度之 和恰好等于有向边的总数.同样地, 所有结 点的入度之和恰好也等于有向边的总数.因 此它们相等.
设V={v1,…,vn}为G的顶点集,则称{d(v1),…d(vn)} 为G的度数序列。
• 如果G2无孤立结点,且由E2所唯一确定,即 以E2为边集,以E2中边关联的结点全体为顶 点集,则称G2是边集E2的导出子图。

离散数学 第七章的课件

离散数学 第七章的课件
第七章 二元关系
主要内容 有序对与笛卡儿积 二元关系的定义与表示法 关系的运算 关系的性质 关系的闭包 等价关系与划分 偏序关系
1
7.1 有序对与笛卡儿积
定义7.1 由两个元素 x 和 y(允许x = y),按照一定的顺序组成的 二元组称为有序对或序偶,记作<x,y>. 其中,x是它的第一个元素,y是它的第二个元素。
0 1 0 0
0 1 0 0
13
题目 A={a, b, c, d}, R={<a, a>,<a, b>,<a, c>,<b, a>,<d, b>}, R的关系矩阵 MR 和关系图 GR 如下:
1 1 MR 0 0
1 0 0 1
1 0 0 0
0 0 0 0
9
实例
例如, A={1, 2}, 则 EA = {<1,1>,<1,2>,<2,1>,<2,2>} IA = {<1,1>,<2,2>}
例如 A = {1, 2, 3}, B={a, b}, 则 LA = {<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>} DA = {<1,1>,<1,2>,<1,3>,<2,2>,<3,3>}
c
d
14
7.3 关系的运算
关系的基本运算(7种) 定义7.6 设R是二元关系。 (1)R中所有的有序对的第一元素构成的集合称为R的定义域,记作 domR,形式化表示为 domR = { x | y (<x,y>R) } (2)R中所有的有序对的第二元素构成的集合称为 R的值域,记作ranR, 形式化表示为 ranR = { y | x (<x,y>R) } (3)R的定义域和值域的并集称为R的域,记作fldR,形式化表示为 fldR = domR ranR

离散数学第7章群、环和域

离散数学第7章群、环和域
所以,(x∗y)∗z=x∗(y∗z),故<R,*>是一个半群。 7.1.2 独异点 定义7.1.3 设G,*是半群,如果运算*的单位元eG,
则称半群G,*为含幺半群或独异点。
第7章 群、环和域
若G,*为独异点,且*是可交换的,则称G,*为可换 的独异点。
例如,设A是任一集合,P (A)是A的幂集合。集合并运算 ∪在P (A)上是封闭的,并运算∪的单位元P (A),所以半 群<P (A),∪>是独异点;交运算∩在P (A)上也是封闭的,交运 算∩的单位元AP (A),所以半群<P (A),∩>也是独异点。显
第7章 群、环和域
⑴ (a–1)–1=a ⑵ a*b有逆元,且(a*b)–1=b–1*a–1 证明:⑴ 因a*a–1=a–1*a =e,故(a–1)–1=a ⑵ 因(a*b)*(b–1* a–1)=(a*(b*b–1)*a–1
=a*e*a–1=a*a–1=e 又
(b–1* a–1)*(a*b)=(b–1*a–1)*(a*b) =b–1*(a–1*a)*b=b–1*e*b=b–1*b=e
第7章 群、环和域
返回总目录
第7章 群、环和域
第7章 群、环和域
7.1半群和独异点
7.1.1广群和半群 代数系统<S,*>又称为广群。 定义7.1.1 设<S,*>是代数系统,*是S上的二元运算,如 果*满足结合律,则称代数系统<S,*>为半群。
例如,代数系统<I,+>、R,·、<P(a),∪>、<P(a),∩>、
则称该群为阿贝尔(Abel)群,或称可交换群。 整数加法群I,+中的加法运算是可交换的,所以,整
数加法群是阿贝尔群,群R-0,·中的乘法运算也是可交 换的,所以,R-0,·也是阿贝尔群。

离散数学第7章PPT课件

离散数学第7章PPT课件
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
第38页/共94页
例1、(2)
图(2)中过v2的回路 (从 v2 到 v2 )有:
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
第34页/共94页
一、通路,回路。 2、简单通路,简单回路。 简单通路 (迹) 简单回路 (闭迹) 复杂通路 (回路)
第35页/共94页
一、通路,回路。 3、初级通路,初级回路。 初级通路 (路径) 初级回路 (圈)
初级通路 (回路) 简单通路 (回路),
但反之不真。
4、通路,回路的长度—— 中边的数目。
补图的概念, 5、图的同构的定义。
第4页/共94页
一、图的概念。 1、定义。
无序积 A & B (a,b) a A b B
无向图 G V , E
E V &V , E 中元素为无向边,简称边。
有向图 D V, E
E V V , E 中元素为有向边,简称边。
第5页/共94页
一、图的概念。 1、定义。
2、握手定理。
定理1: 设图 G V , E 为无向图或有向图,
V v1,v1,

,vn,E m ( m为边数),
n
d (vi ) 2m
i 1
第20页/共94页
n
2、握手定理 d (vi ) 2m i 1
推论:任何图中,度为奇数的顶点个数为偶数。
定理2: 设D V, E 为有向图,
第36页/共94页

离散数学第七章图的基本概念知识点总结

离散数学第七章图的基本概念知识点总结

图论部分第七章、图的基本概念7.1 无向图及有向图无向图与有向图多重集合: 元素可以重复出现的集合无序积: A&B={(x,y) | x∈A∧y∈B}定义无向图G=<V,E>, 其中(1) 顶点集V≠∅,元素称为顶点(2) 边集E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2),(v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} ,定义有向图D=<V,E>, 其中(1) V同无向图的顶点集, 元素也称为顶点(2) 边集E为V⨯V的多重子集,其元素称为有向边,简称边.用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的通常用G表示无向图, D表示有向图, 也常用G泛指无向图和有向图, 用e k表示无向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=∅平凡图: 1 阶零图空图: V=∅顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=<V,E>的一条边, 称v i ,vj为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点,则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点.定义设无向图G=<V,E>, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l至少有一个公共端点, 则称e k,e l相邻.对有向图有类似定义. 设e k=〈v i,v j〉是有向图的一条边,又称v i是e k的始点, v j 是e k的终点, v i邻接到v j, v j邻接于v i.邻域和关联集顶点的度数设G=<V,E>为无向图, v∈V,v的度数(度) d(v): v作为边的端点次数之和悬挂顶点: 度数为1的顶点悬挂边: 与悬挂顶点关联的边G的最大度∆(G)=max{d(v)| v∈V}G的最小度δ(G)=min{d(v)| v∈V}例如d(v5)=3, d(v2)=4, d(v1)=4,∆(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e是环1设D=<V,E>为有向图, v∈V,v的出度d+(v): v作为边的始点次数之和v的入度d-(v): v作为边的终点次数之和v的度数(度) d(v): v作为边的端点次数之和d(v)= d+(v)+ d-(v)D的最大出度∆+(D), 最小出度δ+(D)最大入度∆-(D), 最小入度δ-(D)最大度∆(D), 最小度δ(D)例如d+(a)=4, d-(a)=1, d(a)=5,d+(b)=0, d-(b)=3, d(b)=3,∆+(D)=4, δ+(D)=0, ∆-(D)=3,δ-(D)=1,∆(D)=5, δ(D)=3.握手定理定理任意无向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点入度之和等于出度之和等于边数.证G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,m条边共提供2m度. 有向图的每条边提供一个入度和一个出度, 故所有顶点入度之和等于出度之和等于边数.图的度数列设无向图G的顶点集V={v1, v2, …, v n}G的度数列: d(v), d(v2), …, d(v n)1如右图度数列:4,4,2,1,3设有向图D的顶点集V={v1, v2, …, v n}D的度数列: d(v), d(v2), …, d(v n)1D的出度列: d+(v), d+(v2), …, d+(v n)1D的入度列: d-(v), d-(v2), …, d-(v n)1如右图度数列:5,3,3,3出度列:4,0,2,1入度列:1,3,1,2例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数列吗?解不可能. 它们都有奇数个奇数.例2 已知图G有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G 至少有多少个顶点?解设G有n个顶点. 由握手定理,4⨯3+2⨯(n-4)≥2⨯10解得n≥8例3 证明不存在具有奇数个面且每个面都具有奇数条棱的多面体.证用反证法. 假设存在这样的多面体,作无向图G=<V,E>, 其中V={v | v为多面体的面},E={(u,v) | u,v∈V∧u与v有公共的棱∧u≠v}.根据假设, |V|为奇数且∀v∈V, d(v)为奇数. 这与握手定理的推论矛盾. 多重图与简单图定义 (1) 在无向图中,如果有2条或2条以上的边关联同一对顶点, 则称这些边为平行边, 平行边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平行边, 简称平行边, 平行边的条数称为重数.(3) 含平行边的图称为多重图.(4) 既无平行边也无环的图称为简单图.注意:简单图是极其重要的概念图的同构定义设G1=<V1,E1>, G2=<V2,E2>为两个无向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的v,v j∈V1,i(v i,v j)∈E1(<v i,v j>∈E1)当且仅当(f(v i),f(v j))∈E2(<f(v i),f(v j)>∈E2),并且, (v i,v j)(<v i,v j>)与 (f(v i),f(v j))(<f(v i),f(v j)>)的重数相同,则称G1与G2是同构的,记作G1≅G2.几点说明:图之间的同构关系具有自反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:① 边数相同,顶点数相同② 度数列相同(不计度数的顺序)③ 对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构至今没有找到判断两个图同构的多项式时间算法完全图:n阶无向完全图K n: 每个顶点都与其余顶点相邻的n阶无向简单图.简单性质: 边数m=n(n-1)/2, ∆=δ=n-1n阶有向完全图: 每对顶点之间均有两条方向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ∆=δ=2(n-1),∆+=δ+=∆-=δ-=n-1子图:定义设G=<V,E>, G '=<V ',E '>是两个图(1) 若V '⊆V且E '⊆E,则称G '为G的子图, G为G '的母图, 记作G '⊆G(2) 若G '⊆G 且V '=V,则称G '为G的生成子图(3) 若V '⊂V 或E '⊂E,称G '为G的真子图(4) 设V '⊆V 且V '≠∅, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的子图称作V '的导出子图,记作G[V '](5) 设E '⊆E且E '≠∅, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的子图称作E '的导出子图, 记作G[E ']补图:定义设G=<V,E>为n阶无向简单图,以V为顶点集,所有使G成为完全图K n的添加边组成的集合为边集的图,称为G的补图,记作 .若G≅ , 则称G是自补图.例对上一页K4的所有非同构子图, 指出互为补图的每一对子图, 并指出哪些是自补图.7.2 通路、回路、图的连通性简单通(回)路, 初级通(回)路, 复杂通(回)路定义给定图G=<V,E>(无向或有向的),G中顶点与边的交替序列Γ=v0e1v1e2…e l v l,(1) 若∀i(1≤i≤l), v i-1, v i是e i的端点(对于有向图, 要求v i-1是始点, v i是终点), 则称Γ为通路, v0是通路的起点, v l是通路的终点, l为通路的长度. 又若v=v l,则称Γ为回路.(2) 若通路(回路)中所有顶点(对于回路, 除v0=v l)各异,则称为初级通路(初级回路).初级通路又称作路径, 初级回路又称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路).说明:表示方法① 用顶点和边的交替序列(定义), 如Γ=v0e1v1e2…e l v l② 用边的序列, 如Γ=e1e2…e l③ 简单图中, 用顶点的序列, 如Γ=v0v1…v l④ 非简单图中,可用混合表示法,如Γ=v0v1e2v2e5v3v4v5环是长度为1的圈, 两条平行边构成长度为2的圈.在无向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2.在两种意义下计算的圈个数① 定义意义下在无向图中, 一个长度为l(l≥3)的圈看作2l个不同的圈. 如v0v1v2v0 ,v 1v2vv1, v2v0v1v2, v0v2v1v0 , v1v0v2v1 , v2v1v0v2看作6个不同的圈. 在有向图中, 一个长度为l(l≥3)的圈看作l个不同的圈.② 同构意义下所有长度相同的圈都是同构的, 因而是1个圈.定理在n阶图G中,若从顶点v i到v j(v i≠v j)存在通路,则从v i到v j存在长度小于等于n-1的通路.推论在n阶图G中,若从顶点v i到v j(v i≠v j)存在通路,则从v i到v j存在长度小于等于n-1的初级通路.定理在一个n阶图G中,若存在v i到自身的回路,则一定存在v i到自身长度小于等于n的回路.推论在一个n阶图G中,若存在v i到自身的简单回路,则一定存在长度小于等于n的初级回路.无向图的连通性设无向图G=<V,E>,u与v连通: 若u与v之间有通路. 规定u与自身总连通.连通关系R={<u,v>| u,v∈V且u~v}是V上的等价关系连通图:任意两点都连通的图. 平凡图是连通图.连通分支: V关于连通关系R的等价类的导出子图设V/R={V1,V2,…,V k}, G[V1], G[V2], …,G[V k]是G的连通分支, 其个数记作p(G)=k.G是连通图⇔p(G)=1短程线与距离u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ⇔u=vd(u,v)=d(v,u)d(u,v)+d(v,w)≥d(u,w)点割集与割点记G-v: 从G中删除v及关联的边G-V ': 从G中删除V '中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设无向图G=<V,E>, V '⊂V, 若p(G-V ')>p(G)且∀V ''⊂V ', p(G-V '')=p(G), 则称V '为G的点割集. 若{v}为点割集, 则称v为割点.边割集与割边(桥)定义设无向图G=<V,E>, E '⊆E, 若p(G-E ')>p(G)且∀E ''⊂E ',p(G-E '')=p(G), 则称E '为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上一页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e是桥,{e7,e9,e5,e6}是边割集吗?8几点说明:K无点割集nn阶零图既无点割集,也无边割集.若G连通,E '为边割集,则p(G-E ')=2若G连通,V '为点割集,则p(G-V ')≥2有向图的连通性设有向图D=<V,E>u可达v: u到v有通路. 规定u到自身总是可达的.可达具有自反性和传递性D弱连通(连通): 基图为无向连通图D单向连通: ∀u,v∈V,u可达v或v可达uD强连通: ∀u,v∈V,u与v相互可达强连通⇒单向连通⇒弱连通定理(强连通判别法) D强连通当且仅当D中存在经过每个顶点至少一次的回路定理(单向连通判别法) D单向连通当且仅当D中存在经过每个顶点至少一次的通路有向图的短程线与距离u到v的短程线: u到v长度最短的通路 (u可达v)u与v之间的距离d<u,v>: u到v的短程线的长度若u不可达v, 规定d<u,v>=∞.性质:d<u,v>≥0, 且d<u,v>=0 ⇔u=vd<u,v>+d<v,w> ≥d<u,w>注意: 没有对称性7.3 图的矩阵表示无向图的关联矩阵定义设无向图G=<V,E>, V={v1, v2, …, v n}, E={e1, e2, …, e m},令m ij为v i 与e j的关联次数,称(m ij)n⨯m为G的关联矩阵,记为M(G).性质(1) 每一列恰好有两个1或一个2有向图的关联矩阵定义设无环有向图D=<V,E>, V={v1, v2, …, v n},E={e, e2, …, e m}, 令1性质(1) 每一列恰好有一个1和一个-1(2) 第i行1 的个数等于d+(v i), -1 的个数等于d-(v i)(3) 1的总个数等于-1的总个数, 且都等于m(4) 平行边对应的列相同有向图的邻接矩阵有向图的可达矩阵7.4 最短路径及关键路径带权图G=<V,E,w>, 其中w:E→R.∀e∈E, w(e)称作e的权. e=(v i,v j), 记w(e)=w ij . 若v i,v j不相邻, 记w ij =∞.设L是G中的一条路径, L的所有边的权之和称作L的权, 记作w(L).u和v之间的最短路径: u和v之间权最小的通路.标号法(E.W.Dijkstra, 1959)PERT图与关键路径PERT图(计划评审技术图)设有向图G=<V,E>, v∈Vv的后继元集Γ+(v)={x|x∈V∧<v,x>∈E}v的先驱元集Γ-(v)={x|x∈V∧<x,v>∈E}PERT图:满足下述条件的n阶有向带权图D=<V,E,w>,(1) D是简单图,(2) D中无回路,(3) 有一个入度为0的顶点, 称作始点; 有一个出度为0的顶点, 称作终点.通常边的权表示时间, 始点记作v1, 终点记作v n关键路径关键路径: PETR图中从始点到终点的最长路径v的最早完成时间TE(v i): 从始点v1沿最长路径到v ii所需的时间TE(v)=01TE(v)=max{TE(v j)+w ji|v j∈Γ-(v i)}, i=2,3,⋯,niv的最晚完成时间TL(v i): 在保证终点v n的最早完成i时间不增加的条件下, 从始点v1最迟到达v i的时间TL(v)=TE(v n)nTL(v)=min{TL(v j)-w ij|v j∈Γ+(v i)}, i=n-1,n-2,⋯,1iv的缓冲时间TS(v i)=TL(v i)-TE(v i), i=1,2,⋯,niv在关键路径上⇔TS(v i)=0i最晚完成时间TL(v)=128TL(v)=min{12-6}=67TL(v)=min{12-1}=116TL(v)=min{11-1}=105TL(v)=min{10-4}=64TL(v)=min{6-2,11-4,6-4}=23TL(v)=min{2-0,10-3,6-4}=22TL(v)=min{2-1,2-2,6-3}=01缓冲时间TS(v)=0-0=01TS(v)=2-1=12TS(v)=2-2=03TS(v)=6-4=24TS(v=10-8=25TS(v)=11-9=26TS(v)=6-6=07TS(v)=12-12=08关键路径: v1v3v7v8。

离散数学--第7章 图论-2(路与连通)

离散数学--第7章 图论-2(路与连通)
u1 v4 v1 v4 v3 u4 v2 u4 u3 G2 v3 u u13 v1 u2 v2 u2
15
连通图可以看成是只有一个连通分支的图,即 w(G ) 1 。
返回 结束
7.2.2 图的连通性
4、有向图的连通
强连通—— G 中任一对顶点都互相可达 (双向) 连通 单向连通—— G 中任一对顶点至少一 向可达

10
(vi v j ) ,则从 vi 到 v j 存在长度小于等于
n 1的路。
证明思路:多于n-1条边的路中必有重复出现的结点,反 复删去夹在两个重复结点之间的边之后,剩余的边数不会 超过n-1条边。
v n 在一个 阶图中,若从顶点 i 到 v j 存在 推论:
通路(vi v j ) ,则从 vi 到 v j 存在长度小于等于
返回 结束
7.2.2 图的连通性
7.2.2 图的j 存在路,称 有向图中,从 vi 到 v j 存在路,称 (注意方向) 2、短程线,距离。 短程线——连通或可达的两点间长度最短的 路。 距离——短程线的长度,
12
vi 到 v j 是 连通的(双向)。 vi 可达 v j 。
1 v1e1v2e5v5e7v6 2 v1e1v2e2v3e3v4e4v2e5v5e7v6
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路
简单通路
复杂通路
返回 结束
7.2.1 路
例1、(2)
7
图(2)中过 v 2 的回路 (从 v 2 到 v 2 )有:
1 v2e4v4e3v3e2v2 2 v2e5v5e6v4e3v3e2v2
7.2 路与连通
内容:图的通路,回路,连通性。 重点:

《离散数学》课件-第七章 图(A)

《离散数学》课件-第七章 图(A)

d
e6e3
b
e7
e5
c
14
握手定理
• 定理7.1.1 设图G=(V, E)为无向图或有向图,G有n个结点 v1,v2,…,vn,e条边(无向或有向), 则图G中所有结点的度数 之和为边数的两倍,即
n
d (vi ) 2e
i 1
• 证 图中每条边(包括环)均有两个端点, 所以在计算各顶点 • 度数之和时, 每条边均提供2度, m条边共提供2m度.
(1)(5,5,4,4,2,1)
(2)(5,4,3,2,2)
(3)(3,3,2,2,1,1) (4)(d1, d2 , , dn ), d1 d2
n
dn 1且 di为偶数 i 1
解 (1)根据握手定理的推论可知,不是图的结点度数序列,因为有 3个奇数。 (2)中有5个数,最大数是5,根据定理7.1.3,它不是简单图的结 点序列。
K5
正则图
• 根据握手定理,n阶k-正则图的边数 m nk。
2
• 当k为奇数时,n为偶数。 • 当k=0时,0-正则图就是n阶零图。 • n阶无向完全图是(n-1)-正则图。
环图和轮图
定义7.1.12 如果图G =(V,E)的结点集V={v1,v2,vn} (n3),边集E={(v1,v2),(v2,v3),( vn-1,vn), (vn,v1)},则称G为环图,记为Cn。下图是C3,C4 ,C5 ,C6。
19
实例
• 例4 证明不存在具有奇数个面且每个面都具有奇数条棱的 • 多面体.
证 用反证法. 假设存在这样的多面体, 作无向图G=<V,E>, 其中 V={v | v为多面体的面},
E={(u,v) | u,vV u与v有公共的棱 uv}. 根据假设, |V|为奇数且vV, d(v)为奇数. 这与握手定理的 推论矛盾.

清华版离散数学ppt课件第七章图的基本概念_2

清华版离散数学ppt课件第七章图的基本概念_2
第四部分 图论
图论起源于 1736 年欧拉(Euler,1707-1783,写下 886 篇论文和书 籍)发表的解决“哥尼斯堡七桥问题”的第一篇图论论文,但在其后的 100 年,图论未得到发展。直到 1852 年格斯里(Gathrie)提出的“四色 问题”和 1859 年哈密尔顿(Hamilton)提出的“哈密尔顿回路问题” , 成为图论中两个最重要的问题,1936 年,科尼格(Konig)出版了第一本 图论书籍。图论应用非常广泛,特别是厄多斯(1913-1996,数学奇人, 一生发表 1475 篇高水平论文)首先研究的随机图在复杂网络上的应用。 图论的内容非常丰富,我们只介绍基本的理论和概念。
第一节 无向图及有向图
一、无向图与有向图的定义 1. 无向图的定义 定义 1 无向图 G = <V,E>, 其中 (1)V 为顶点集,元素称为顶点 (2)E 为 VV 的多重子集,其元素称为无向边,简称 边 例:设 V = {v2, v2, …,v5 }, E = {(v1,v1), (v1 ,v2), (v2,v3), (v2 ,v3), (v2,v5), (v1,v5), (v4,v5)} 则 G = <V,E>为一无向图,用图 1 表示 G
3.关于无向图和有向图诸多定义或表示 (1)图 ① 可用 G 泛指图(无向的或有向的) ② V(G), E(G), V(D), E(D) ③ n 阶图-------- |V|=n (2)有限图:V,E 都是有限集合 (3)n 阶零图:E=;平凡图:E=,|V|=1; (4)空图—— (5)用 ek 表示无向边或有向边,连接边的两个顶点称为端点
2. 图论基本定理——握手定理 定理 1 设 G=<V,E>为任意无向图,V={v1,v2,…,vn}, |E|=m, 则

离散数学-第七章-图论

离散数学-第七章-图论

5
离 例1、G1=<V,E>
散 数
V={v0, v1, v2,v3}
学 E={(v0,v2),(v0,v3),(v1,v2),(v1,v3),(v2,v3)}
v0
v3
v1



v2


4/24/2020 2:55 PM
G1
6
离 例2、
散 数 学
G2=<V,E> V={v0, v1, v2,v3}
中的所有边,称为删除E´ 。
(2)设vV,用G-v表示从G中去掉v及所关联的 一切边,称为删除结点v;又设V´ V,用G-V´ 表示从G中删除V´中所有结点,称为删除V´ 。
学 u,v之间存在路,则称u,v是连通的,记作uv 。
定义2.3 设无向图G是平凡图或G中任何两个结 点都是连通的,则称G为连通图,否则称G为非连 通图或分离图。

任意一个连通无向图的任两个不同结
七 点都存在一条通路。



4/24/2020 2:55 PM
38

非连通图G可分为几个不相连通的子图,
七 章
边,构成一个无向重图,问题化为图论中简单道路
的问题。


4/24/2020 2:55 PM
3
离 一、图的基本概念
散 数 学
旧金山
丹佛
洛杉矶
第 七 章


4/24/2020 2:55 PM
底特律
芝加哥
纽约 华盛顿
4

散 设A、B是两个集合,称


A&B={{a,b}|aA, bB}

离散数学_第7章 图论 -1-2图的基本概念、路和回路

离散数学_第7章 图论 -1-2图的基本概念、路和回路

第9章 图论
返回总目录
第9章 图论
第7章 图论
图论是一个重要的数学分支。数学家欧拉1736年发 表了关于图论的第一篇论文,解决了著名的哥尼斯堡七 桥问题。克希霍夫对电路网络的研究、凯来在有机化学 的计算中都应用了树和生成树的概念。随着科学技术的 发展,图论在运筹学、网络理论、信息论、控制论和计 算机科学等领域都得到广泛的应用。本章首先给出图、 简单图、完全图、子图、路和图的同构等概念,接着研 究了连通图性质和规律,给出了邻接矩阵、可达性矩阵、 连通矩阵和完全关联矩阵的定义。最后将介绍欧拉图与 哈密尔顿图、二部图、平面图和图的着色、树和根树。
v3
e7
a e6e3
e2
b e5
(本课程仅讨论无向图和有向图)
v4
c
9章 图论
【例7.1.1】无向图G=V(G),E(G),G
其中:V(G)=a,b,c,d
E(G)=e1,e2,e3,e4
G:G(e1)=(a,b) G(e2)=(b,c) G(e3)=(a,c) G(e4)=(a,a)
试画出G的图形。
即,deg(v)=deg-(v)+deg+(v),或简记为d(v)=d-(v)+d+(v)
4)最大出度:+(G) =max deg+(v) | vV
5)最小出度:+(G) = min deg+(v) | vV
6)最大入度: (G) =max deg-(v) | vV
7)最小入度: (G) = min deg-(v) | vV
解:G的图形如图7.1.2所示。
图 7.1.2
由于在不引起混乱的情况下,图的边可以用有序对或无序 对直接表示。因此,图可以简单的表示为:

《离散数学》word版

《离散数学》word版

第七章图在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。

例如用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。

图论起源于18世纪,它是研究由线连成的点集的理论。

一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。

事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。

由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。

由此经数学抽象产生了图的概念。

研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。

7.1 图的基本概念7.1.1图的定义7.1.1.1无向图定义7.1.1 设A,B是任意集合。

集合{(a,b)|aA且bB}称为A和B的无序积,记为A&B。

在无序积中,两个元素间的顺序是无关紧要的,即(a,b)=(b,a)。

定义7.1.2 无向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为结点(顶点)。

E是一个V&V的多重子集,其元素称为边(无向边)。

我们可用平面上的点来表示顶点,两点间的连线表示边,从而将任一个无向图用图形表示出来。

[例7.1.1]无向图G=<V,E>,其中V={a,b,c,d,e,f},E={(a,b),(a,c),(a,d),(b,b),(b,c),(b,c),(b,d),(c,d)}。

7.1.1.2有向图定义7.1.3 有向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为顶点,E是一个V V的多重子集,其元素称为有向边或弧,简称为边。

注:1)在有向图G=<V,E>中,若e=〈u,v〉,则称u和v为e的起点和终点;2)自回路既可看成是有向边又可看成是无向边;3)去掉有向图中边的方向得到的图称为该有向图的基图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1 图的基本概念
7.1.1 图的定义 7.1.1.1 无向图
定义 7.1.1 设 A,B 是任意集合。集合{(a,b)|aA 且 bB}称为 A 和 B 的无序积,记为
A&B。 在无序积中,两个元素间的顺序是无关紧要的,即(a,b)=(b,a)。 定义 7.1.2 无向图 G 是一个二元组<V,E>,记作 G=<V,E>,其中 V 是一个非空有限集合, 其元素称为结点(顶点)。E 是一个 V&V 的多重子集,其元素称为边(无向边)。 我们可用平面上的点来表示顶点,两点间的连线表示边,从而将任一个无向图用图形 表示出来。 [例 7.1.1] 无向图 G=<V,E>,其中 V={a,b,c,d,e,f},E={(a,b),(a,c),(a,d), (b,b),(b,c),(b,c),(b,d),(c,d)}。 7.1.1.2 有向图 定义 7.1.3 有向图 G 是一个二元组<V,E>,记作 G=<V,E>,其中 V 是一个非空有,E>中,若 e=〈u,v〉,则称 u 和 v 为 e 的起点和终点; 2)自回路既可看成是有向边又可看成是无向边; 3)去掉有向图中边的方向得到的图称为该有向图的基图。 [例 7.1.2] 有向图 G=<V,E>,其中 V={a,b,c}, E={<a,a>,<a,a>,<a,b>,<b,c>,<b,c>,<c,b>}。 7.1.1.3 相关概念 在无向图或有向图中, 1)有限图与无限图; 2)n 阶图;|V|=n; 3) 零图 E=Φ; 4)平凡图(|V|=n ,E=Φ); 5)对于无向图, 若边 e=(u,v),则称 u 和 v 是边 e 的端点,称边 e 关联于 u 和 v,若 u=v,则称此为环,边与顶点的关联次数是 0,1,2;至少有一条边相连的两个顶点相邻; 至少一个公共顶点的两条边相邻 6)对于有向图, 若边 e=<u,v>,则称 u 和 v 是边 e 的端点,称 u 是边 e 的始点,v 是 边 e 的终点,称 u 邻接到 v。 7)关联于同一个顶点的边称为环(自回路);若关联于同一对顶点的边多于一条时,称 这些边为平行边,平行边的条数称为边的重数; 8)不与任何顶点邻接的顶点称为孤立点;含有平行边的图称为多重图,不含有平行边, 也不含环的图称为简单图;
第七章 图
在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便 又直观。例如用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某 通讯系统中各通讯站之间信息传递关系,用开关电路图来描述 IC 中各元件电路导线连接关 系等等。图论起源于 18 世纪,它是研究由线连成的点集的理论。一个图中的结点表示对象, 两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接 关系等)。事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。由于我们感 兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接 线的曲直长短则无关紧要。由此经数学抽象产生了图的概念。研究图的基本概念和性质、 图的理论及其应用构成了图论的主要内容。
其元素称为顶点,E 是一个 V V 的多重子集,其元素称为有向边或弧,简称为边。
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
7.1.2 顶点的度数,握手定理 定义 7.1.4 (1)在无向图 G=〈V,E〉中,v∈V。与 v 关联的边数称为 v 的度数,记为 deg(v); (2) 在有向图 G=〈V,E〉中,v∈V。以 v 为始点的边数称为 v 的出度,记为 deg+(v);以 v 为终点的边数称为 v 的入度,记为 deg-(v);称 deg(v)= deg+(v)+ deg-(v)称为 v 的度 (数)。
相关文档
最新文档