第六章 概率初步

合集下载

七年级数学第六章概率初步

七年级数学第六章概率初步

随机事件与概率【学习目标】1、感受生活中的随机现象,并体会不确定事件发生的可能性大小;2、通过试验感受不确定事件发生的频率的稳定性,理解概率的意义.【要点梳理】要点一、确定事件与不确定事件1.确定事件在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为必然事件.有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件.必然事件与不可能事件统称为确定事件.2.不确定事件也有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件.要点进阶:要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小可能不同.要点二、频率与概率1.频率与概率的定义频率:在n次重复试验中,不确定事件A发生了m次,则比值mn称为事件A发生的频率.无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.概率:我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记作P(A).事件A 的概率是一个大于等于0,且小于等于1的数,即.2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.要点进阶:①事件A的概率是一个大于等于0,且小于等于1的数,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件) <1.②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.【典型例题】类型一、确定事件与不确定事件例1.指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.举一反三【变式1】下列事件中不是随机事件的是()A.打开电视机正好在播放广告B.从有黑球和白球的盒子里任意拿出一个正好是白球C.从课本中任意拿一本书正好拿到数学书D.明天太阳会从西方升起【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.例2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.类型二、频率与概率例3.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.例4. 如图所示,转盘停止后,指针落在哪个颜色区域的可能性大?为什么?例5. 某篮球运动员在近几场大赛中罚球投篮的结果如下:投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7m进球频率n(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m) 9 19 44 91 178 451击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【巩固练习】一、选择题1. 下列说法正确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球3.下列说法正确的是( )A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4. 在不透明的袋中装有除颜色外,其余均相同的红球和黑球各一个,从中摸出一个球恰为红球的概率与一枚均匀硬币抛起后落地时正面朝上的概率的大小关系是( )A.摸出红球的概率大于硬币正面朝上的概率B.摸出红球的概率小于硬币正面朝上的概率C.相等D.不能确定5.下列说法正确的是( )A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B.“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面.6. 下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在 6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在 6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A.1个 B.2个 C.3个 D.4个二. 填空题7. 夏雪同学每次数学测试成绩都是优秀,则在这次中考中他的数学成绩 ____________(填“可能”,“不可能”,“必然”)是优秀.8. 判断下列事件的类型:(必然事件,随机事件,不可能事件)(1)掷骰子试验,出现的点数不大于6._____________(2)抽签试验中,抽到的序号大于0._____________(3)抽签试验中,抽到的序号是0.____________(4)掷骰子试验,出现的点数是7._____________(5)任意抛掷一枚硬币,“正面向上”._____________(6)在上午八点拨打查号台114,“线路能接通”.__________(7)度量五边形外角和,结果是720度.________________9. 在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.10.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子85 398 652 793 1 604 4 005粒数发芽频率0.850 0.745 0.851 0.793 0.802 0.801 根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).11. 掷一枚均匀的骰子,2点向上的概率是_______,7点向上的概率是_______.12. 下面4个说法中,正确的个数为_______.(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大.(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红没有把握,所以小张说:“从袋中取出一只红球的概率是50%”.(3)小李说“这次考试我得90分以上的概率是200%”.(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小.三.综合题13. 下表是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率抛掷结果5次50次300次800次3200次6000次9999次出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率20% 62% 45% 51% 49.4% 49.7% 50.1%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到一次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______.(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到_____次正面,正面出现的频率是_____;那么,也就是说机器人抛掷完9999次时,得到_____次反面,反面出现的频率是______(3)请你估计一下,抛这枚硬币,正面出现的概率是_______.14. 如图是小明和小颖共同设计的自由转动的十等分转盘,上面写有10个有理数.(1)求转得正数的概率.(2)求转得偶数的概率.(3)求转得绝对值小于6的数的概率.15. 一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现在再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为,求n的值.。

北师大版七年级数学下册第六章 概率初步3 第1课时 简单概率的计算

北师大版七年级数学下册第六章  概率初步3 第1课时 简单概率的计算

解:(1) 点数为 2 有 (2) 点数为奇数有 3
1 种可能,因此 P(点数为 2 ) = 种可能,即点数为 1,3,5,
1 6
.
因此 P(点数为奇数) = 1 .
2
(3) 点数大于 2 且小于 5 有 2 种可能,即点数为 3,4,
因此 P(点数大于 2 且小于 5 ) = 1 .
3
定义


事件 A 包含其中的 m 种结果
1
相同,每个的概率都是 5 .
上述试验有什么共同点?
(1) 每个试验的所有可能的结果有若干种, 每次试验有且只有其中的一种出现; (2) 每种结果出现的可能性相同.
归纳总结
设一个试验的所有可能的结果有 n 种,每次试验 有且只有其中的一种出现;
如果每种结果出现的可能性相同. 那么我们就称这个试验的结果是等可能的.
想一想
你能找一些结果是等可能的 试验吗? 抛硬币、掷骰子、抽签等
归纳总结
概率公式:
一般地,如果一个试验有 n 种等可能的结果,
事件 A 包含其中的 m 种结果,那么事件 A 发生
的概率为:
P( A) m . n
典例精析
例1 任意掷一枚质地均匀骰子. (1)掷出的点数大于 4 的概率是多少? (2)掷出的点数是偶数的概率是多少?
试验1:一个质地均匀的骰子. (1) 它落地时向上的点数有几种可能的结果? 6 种
(2) 各点数出现的可能性会相等吗? 相等
(3) 试猜想:各点数出现的可能性大小是 多少? 1
6
第六章 概率初步
6.3 等可能事件的概率
第1课时 简单概率的计算
1 简单频率的计算
试验2:掷一枚硬币,落地后: (1) 会出现几种可能的结果?两种

北师大版七年级数学下第六章-概率初步

北师大版七年级数学下第六章-概率初步

(1)摸到几号卡片的可能
1
2 性最大?摸到几号卡片的可
14
能性最小?
2
(2)摸到的号码是奇数,和
1 摸到的号码是偶数的可能性,
哪个大?
检测提升
6.袋子里有8个红球,m个白球,3个 黑球,每个球除颜色外都相同,从中 任意摸出一个球,若摸到红球的可能 性最大,则m的值不可能是( D )
A.1
B.3
C.5
游戏3:掷骰子
1 游戏规则与表格参照教材
检测提升
1、指出下列事件中,哪些是必然事件, 哪些是不可能事件,哪些是随机事件?
(1)两直线平行,内错角相等;
(2)将油滴入水中,油会浮在水面上;
(3)任意买一张电影票,座位号是2的倍数 比座位号是5的倍数可能性大;
(4)任意投掷一枚均匀的骰子,掷出的点 数是奇数;
检测提升
3、某路口红绿灯的时间设置为:红灯 40秒,绿灯60秒,黄灯4秒。当人或车 随意经过该路口时,遇到哪一种灯的 可能性最大,遇到哪一种灯的可能性 最小?根据什么?
检测提升
4、口袋里有10只黑袜子,6只 白袜子,8只红袜子,任意摸 出一只袜子,什么颜色袜子被 摸出的可能性最大?
检测提升
5.有一些写着数字的卡片,他们的背面都相 同,先将他们背面朝上,从中任意摸出一张:
第六章 概率初步
6.1感受可能性
子洲三中 ห้องสมุดไป่ตู้智
你猜你想
思考下列事件(一): 如果随机投掷一枚均匀的骰子,那么
⒈ 掷出的点数会是10吗? ⒉ 掷出的点数一定不超过6吗? ⒊ 掷出的点数一定是1吗?
探究新知一
思考下列事件(二):
1.玻璃杯从10米高处落到水泥地面上 会碎;

北师大版七年级数学下册说课稿(含解析):第六章概率初步尖子生成长计划7概率中的代数问题

北师大版七年级数学下册说课稿(含解析):第六章概率初步尖子生成长计划7概率中的代数问题

北师大版七年级数学下册说课稿(含解析):第六章概率初步尖子生成长计划7概率中的代数问题一. 教材分析北师大版七年级数学下册第六章“概率初步”是学生初步接触概率论的内容,对于培养学生的逻辑思维能力和概率观念具有重要意义。

本章主要介绍了概率的基本概念、等可能事件的概率、条件概率以及独立事件的概率等。

在这些内容中,代数问题占据了重要的地位,因为概率本身就是一个涉及代数运算的数学分支。

在教材中,代数问题主要出现在条件概率和独立事件的概率部分。

例如,在条件概率的计算中,我们需要利用代数方法来求解给定条件下事件A发生的概率;在独立事件的概率中,我们需要利用代数运算来判断两个事件是否独立。

这些问题对于学生来说具有一定的挑战性,需要他们能够灵活运用代数知识来解决实际问题。

二. 学情分析面对七年级的学生,他们对概率的概念和代数知识都有一定的了解,但要将这两个领域结合起来解决问题,还需要进行一定的引导和培养。

根据学生的实际情况,我将教学内容进行适当的调整,将重点放在如何引导学生利用已知的代数知识解决概率问题,以及如何培养学生灵活运用知识的能力。

三. 说教学目标1.知识与技能:理解条件概率和独立事件的概率的概念,掌握计算条件概率和判断两个事件是否独立的方法。

2.过程与方法:培养学生运用代数知识解决实际问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观:激发学生对概率论的兴趣,培养学生积极探究、勇于挑战的精神。

四. 说教学重难点1.教学重点:条件概率和独立事件的概率的计算方法。

2.教学难点:如何引导学生灵活运用代数知识解决概率问题。

五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、小组讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的参与度。

同时,利用多媒体手段辅助教学,如PPT、网络资源等,以直观、生动的方式展示概率问题,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个简单的概率问题,引发学生对概率代数问题的思考,激发学生的学习兴趣。

第六章 概率初步

第六章 概率初步

可能程度不同用“很可能”“可能”“不太可能”等词来描述.
【例1】(2012·孝感中考)下列事件中,属于不确定事件的是 ( (A)通常水加热到100 ℃时沸腾 (B)测量孝感某天的最低气温,结果为-150 ℃ )
(C)一个袋中装有5个黑球,从中摸出一个是黑球
(D)篮球队员在罚球线上投篮一次,未投中
【思路点拨】不确定事件就是可能发生也可能不发生的事件,
(3)不确定事件.
【解析】(1)必然事件发生的可能性是100%,当n=2时,4名女生
就会全部入选凑齐6名.
(2)不可能事件发生的可能性是0,即没有女生入选,当n=6时,
选中的全部为男生.
(3)当2<n<6时,小颖当选是一个不确定事件,即n=3,4,5.
9.如图,芳芳自己设计的自由转动的转盘,上面写有10个有理 数.求: (1)转得正数的概率. (2)转得正整数的概率. (3)转得绝对值小于6的数的概率. (4)转得绝对值大于等于8的数的概率.
述违背已被确认的真理或客观存在的事实的事件是不可能事件,
否则是不确定事件.不确定事件的一个明显特征是试验的结果不 惟一.
2.事件发生可能性大小的判断 一般地,不确定事件发生的可能性是有大小的.不确定事件发生 的可能性的大小通常与部分的量占总体的量的大小有关,部分 的量越多,则发生这部分的事件的可能性越大,反之越小.
三、概率的计算 1.一般地,不确定事件发生的可能性(概率)的计算方法和步骤 是 (1)列出所有可能发生的结果,并判定每个结果发生的可能性都 相等.
(2)确定所有可能发生的结果个数n和其中满足所求事件的结果
个数m.
(3)计算所求事件发生的可能性:P(所求事件)= m .
n
2.必然事件的概率是:P(必然事件)=1 不可能事件的概率是:P(不可能事件)=0. 3.在求不确定事件的概率时,要注意事件的等可能性,不是等 可能事件的概率问题,可以转化为等可能事件的概率问题.

第六章 概率初步

第六章 概率初步

辛二七数下导学案—50 第六章概率初步教学目的:复习本章知识点一、事件1、事件分为事件、事件、事件。

2、必然事件:事先就能肯定发生的事件。

也就是指该事件每次一定发生,不可能不发生,即发生的可能是(或1)。

3、不可能事件:事先就能肯定发生的事件。

也就是指该事件每次都完全没有机会发生,即发生的可能性为。

4、不确定事件:事先无法肯定发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在和之间。

5、三种事件都是相对于事件发生的可能性来说的,若事件发生的可能性为,则为必然事件;若事件发生的可能性为,则为不可能事件;若事件不一定发生,即发生的可能性在之间,则为不确定事件。

6、简单地说,必然事件是发生的事件;不可能事件是绝对发生的事件;不确定事件是指有发生,也有可能发生的事件。

7、表示事件发生的可能性的方法通常有三种:(1)用可能性的大小。

(2)用表示。

(3)用表示。

二、等可能性1、等可能性:是指几种事件发生的可能性。

2、游戏规则的公平性:就是看游戏双方的结果是否具有可能性。

(1)首先要看游戏所出现的结果的两种情况中有没有必然事件或不可能事件,若有一个必然事件或不可能事件,则游戏是的;(2)其次如果两个事件都为不确定事件,则要看这两个事件发生的可能性是否相同;即看双方获胜的可能性是否相同,只有双方获胜的可能性,游戏才是的。

(3)游戏是否公平,并不一定是游戏结果的两种情况发生的可能性都是二分之一,只要对游戏双方获胜的事件发生的可能性即可。

三、概率1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)= 。

2、必然事件发生的概率为,记作P(必然事件)= ;3、不可能事件发生的概率为,记作P(不可能事件)= ;4、不确定事件发生的概率在之间,记作 <P(不确定事件)< 。

5、概率是对“可能性”的定量描述,给人以更直接的感觉。

6、概率并不提供确定无误的结论,这是由不确定现象造成的。

新北师大版七年级数学下册第6章 概率初步《等可能事件的概率》优质课件

新北师大版七年级数学下册第6章 概率初步《等可能事件的概率》优质课件
16
P(小明获胜)= 17 。
小明和小颖做摸牌游戏,他们先后从这
副去掉大、小王的扑克牌中任意抽取一
张牌(不放回),谁摸到的牌面大,谁
就获胜。
现小明已经摸到的牌面为A,然后小颖摸
牌,
P(小颖获胜)= 0

请举出一些事件,它们发生的概率都是 3
4
小明和小刚都想去看周末的足球赛,但 却只有一张球票,小明提议用如下的办 法决定到底谁去看比赛: 小明找来一个转盘,转盘被等分为8份,随 意的转动转盘,若转到颜色为红色,则小刚 去看足球赛;转到其它颜色,小明去。 你认为这个游戏公平吗?如果你是小明,你 能设计一个公平的游戏吗?
小明所在的班有40名同学,从中选出一名 同学为家长会准备工作。
请你设计一种方案,使每一名同学被选中 的概率相同。
随堂小结
我学到了…… 我收获了……
课后作业
1.设计两个概率为-13 的游戏。 2.预习下一课。
等可能事件的概率 (第2课时)
小组合作讨论:
小明和小凡一起做游戏。在一个装有2 个红球和3个白球(每个球除颜色外都 相同)的盒子中任意摸出一个球,摸到 红球小明获胜,摸到白球小凡获胜,这 个游戏对双方公平吗?
1
率是 4 。
一副扑克牌,任意抽取其中的一张,
(1)P(抽到大王)=
1 54
(2)P(抽到3)=
2 27
(3)P(抽到方块)=
13 54
请你解释一下,打牌的时候,你摸到大 王的机会比摸到3的机会小。
任意掷一枚均匀的骰子。
1
(1)P(掷出的点数小于4)= 2
1
(2)P(掷出的点数是奇数)= 2
(3)P(掷出的点数是7)=
0
(4)P(掷出的点数小于7)= 1

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。

第六章概率初步专题讲解

第六章概率初步专题讲解

概率初步专题讲解一.学习目标1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确判断。

2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。

3.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。

二.教学重点与难点1.随机事件的特点并能对生活中的随机事件做出准确判断;2.对随机事件发生的可能性大小的定性分析。

3.随机事件的特点并能对生活中的随机事件做出准确判断;4.对随机事件发生的可能性大小的定性分析。

三.考点分析1.理解随机事件的概念;2.理解概率的概念;3.掌握树状法和图表法求解事件概率问题。

四.知识体系(一)事件的有关概念1.必然事件在现实生活中__________发生的事件称为必然事件.2.不可能事件在现实生活中__________发生的事件称为不可能事件.3.随机事件在现实生活中,有可能__________,也有可能__________的事件称为随机事件.4.分类事件⎩⎪⎨⎪⎧ 确定事件⎩⎨⎧ 必然事件不可能事件随机事件(二)用列举法求概率1.定义 在随机事件中,一件事发生的可能性__________叫做这个事件的概率.2.适用条件(1)可能出现的结果为__________多个;(2)各种结果发生的可能性__________.3.求法(1)利用__________或__________的方法列举出所有机会均等的结果;(2)弄清我们关注的是哪个或哪些结果;(3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率.列表法一般应用于两个元素,且结果的可能性较多的题目,当事件涉及三个或三个以上元素时,用树形图列举.(三)利用频率估计概率1.适用条件当试验的结果不是有限个或各种结果发生的可能性不相等.2.方法进行大量重复试验,当事件发生的频率越来越靠近一个__________时,该__________就可认为是这个事件发生的概率.(四)概率的应用概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策.六.随堂练习1.下列说法正确的是( )A .打开电视机,正在播放新闻B .给定一组数据,那么这组数据的中位数一定只有一个C .调查某品牌饮料的质量情况适合普查D .盒子里装有2个红球和2个黑球,搅匀后从中摸出两个球,一定一红一黑2.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A .14B .316C .34D . 3.有一箱规格相同的红、黄两种颜色的小塑料球共1 000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为__________.4.扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有__________种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种方案用A ,B ,C ,…或①,②,③,…等符号来代表可简化解答过程)五.典型例题分析考点一、事件的分类【例1】下列事件属于必然事件的是( )A .在1个标准大气压下,水加热到100 ℃沸腾B .明天我市最高气温为56 ℃C .中秋节晚上能看到月亮D .下雨后有彩虹触类旁通1 下列事件中,为必然事件的是( )A .购买一张彩票,中奖B .打开电视,正在播放广告C .抛掷一枚硬币,正面向上D .一个袋中只装有5个黑球,从中摸出一个球是黑球考点二、用列举法求概率【例2】在一个不透明的口袋中装有4张形状、大小相同的纸牌,它们分别标有数字1,2,3,4.随机地摸出一张纸牌,记下数字,然后放回,洗匀后再随机摸出一张纸牌并记下数字.(1)计算两次摸出的纸牌上的数字之和为6的概率;(2)甲、乙两个人玩游戏,如果两次摸出纸牌上的数字之和为奇数,则甲胜;如果两次摸出纸牌上的数字之和为偶数,则乙胜.这个游戏公平吗?请说明理由.触类旁通2 甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.考点三、频率与概率【例3】小明在学习了统计与概率的知识后,做了投掷骰子的试验,小明共做了100次试验,试验的结果如下:(1)试求“4(2)由于“4点朝上”的频率最大,能不能说一次试验中“4点朝上”的概率最大?为什么?触类旁通3 某质检员从一大批种子中抽取若干批,在同一条件下进行发芽试验,有关数据如下:种子粒数50100200500 1 000 3 000 5 000发芽种子粒4592184458914 2 732 4 556数发芽频率(1)(2)根据频率的稳定性估计种子的发芽概率.考点四、概率的应用【例4】在一副扑克牌中取牌面花色分别为黑桃、红心、方块各一张,洗匀后正面朝下放在桌面上.(1)从这三张牌中随机抽取一张牌,抽到牌面花色为红心的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面花色后放回,洗匀后,再由小李随机抽出一张牌,记下牌面花色.当两张牌面的花色相同时,小王赢;当两张牌面的花色不相同时,小李赢.请你利用树状图或列表法分析该游戏规则对双方是否公平?并说明理由.触类旁通4(1)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A .14B .12C .34D .1 (2)5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗庙、烂柯河、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩.则王先生恰好上午选中孔氏南宗庙,下午选中江郎山这两个地点的概率是( )A .19B .13C .23D .29七.课后总结与回顾八.课后练习练习11.(2012浙江宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为( )A .23B .12C .13D .1 2.(2012浙江义乌)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )A .35B .710C .310D .16253.(2012浙江杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是( )A .摸到红球是必然事件B .摸到白球是不可能事件C .摸到红球与摸到白球的可能性相等D .摸到红球比摸到白球的可能性大4.(2012四川攀枝花)抛掷一枚质地均匀、各面分别标有1,2,3,4,5,6的骰子,正面向上的点数是偶数的概率是__________.5.(2012湖南长沙)任意抛掷一枚硬币,则“正面朝上”是__________事件.6.(2012四川达州)如下图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为__________.7.(2012湖南益阳)有长度分别为2 cm,3 cm,4 cm,7 cm 的四条线段,任取其中三条能组成三角形的概率是__________.8.(2012福建泉州)在一个不透明的盒子中,共有“一白三黑”4个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出1子,则提出白子的概率是多少?(2)随机地从盒中提出1子,不放回再提第二子,请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.练习21.某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )A .12B .13C .14D .162.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为( ) A .2 B .4 C .12 D .163.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均100次出现正面朝上50次D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的4.在x 2 2xy y 2的空格 中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )A .1B .34C .12D .145.在半径为2的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概率为__________.(注:π取3)6.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是__________.7.如图所示,一个圆形转盘被等分为八个扇形区域,上面分别标有数字1,2,3,4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P (3),指针指向标有“4”所在区域的概率为P (4),则P (3)__________P (4).(填“>”、“<”或“=”)8.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸到的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.九.课后连接。

北师大版七年级下册数学教学设计:第六章《概率初步回顾与思考》

北师大版七年级下册数学教学设计:第六章《概率初步回顾与思考》

北师大版七年级下册数学教学设计:第六章《概率初步回顾与思考》一. 教材分析本节课为人教版七年级下册数学的第六章《概率初步回顾与思考》。

这一章节主要让学生回顾之前学习的概率知识,并通过实际问题引出概率的意义和应用。

内容主要包括事件的确定性和不确定性,以及如何利用概率来描述和解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固概率知识,提高解决问题的能力。

二. 学情分析学生在之前的学习中已经接触过概率的基本概念,对事件的确定性和不确定性有一定的了解。

然而,由于年龄和认知水平的限制,学生在理解概率的抽象概念和解决实际问题时仍存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,用生动具体的例子来帮助学生理解和掌握概率知识。

三. 教学目标1.知识与技能:让学生回顾和巩固概率的基本概念和方法,学会用概率来描述和解决实际问题。

2.过程与方法:通过小组合作、讨论等方式,培养学生的合作精神和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的思维能力和创新精神。

四. 教学重难点1.重点:回顾和巩固概率的基本概念和方法,学会用概率来描述和解决实际问题。

2.难点:理解概率的抽象概念,并将概率知识应用于解决实际问题。

五. 教学方法1.情境教学法:通过具体的生活实例,引导学生理解和掌握概率知识。

2.小组合作学习:引导学生分组讨论和解决问题,培养学生的合作精神和解决问题的能力。

3.激励评价法:在教学过程中,对学生的表现给予积极的评价,激发学生的学习兴趣和自信心。

六. 教学准备1.教具:电脑、投影仪、黑板、粉笔等。

2.教学资源:教材、PPT课件、练习题等。

3.教室环境:座位排列以小组合作学习的形式进行调整。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些与概率相关的生活实例,如抛硬币、抽奖等,引导学生回顾之前学习的概率知识。

同时,让学生思考:概率在实际生活中有什么作用?2.呈现(10分钟)利用PPT课件呈现本节课的主要内容,包括事件的确定性和不确定性,以及如何利用概率来描述和解决实际问题。

北师大版七年级数学下册第六章 概率初步3 第2课时 与摸球相关的概率

北师大版七年级数学下册第六章  概率初步3 第2课时 与摸球相关的概率

P(摸到白球) = 3,
而由上可知,P
5
(摸到红球)
=
2
.
因为 2 < 3,所以这个游戏不5公平.
55
思考 在一个双人游戏中,你怎样理解游戏对双方
是否公平?
双方赢的可能性相等就公平明的袋中有 6 个除颜色外其他都相 同的小球,其中 3 个红球,2 个黄球,1 个白球. (1) 乐乐从中任意摸出一个小球,摸到的白球机会是
1. 袋子里有 1 个红球,3 个白球和 5 个黄球,每一个
球除颜色外都相同,从中任意摸出一个球,则
P(摸到红球)= P(摸到白球)=
1
9;
1
3;
5
P(摸到黄球)= 9 .
2. 用 10 个除颜色外完全相同的球设计一个摸球游戏.
每个颜色的弹珠各有多少个?
(1)使得摸到红球的概率是 1 ,摸到白球的概率
答:(1) 4 个红球、4 个白球; (2) 4个红球、2 个白球、2 个黄球.
你能选取 7 个除颜色外完全相同的球分别设 计满足如上条件的游戏吗?
答:不可能.
1. 与摸球相关的等可能事件概率的求法 该种颜色的球的数量
P (摸出某种颜色球)
球的总数 2. 游戏公平的原则:关注事件的发生概率一定相同.
到红球的概率是多少?
得对吗?
摸出的球不是红球就是白球,所以摸到
红球和白球的可能性相同,P(红球)
=
1 2
.
如果将每一个球都编上号码,
从盒中任意摸出一个球, 1 2 3 4 5
共有 5 种等可能的结果:1 号球,2 号球,3 号球, 4 号球,5 号球. 摸出红球可能出现两种等可能的结果:摸出 1 号 球或 2 号球. P (摸到红球) = 2 .

(新)北师大版七年级数学下册第6章《概率初步》课件(全章,190张PPT)

(新)北师大版七年级数学下册第6章《概率初步》课件(全章,190张PPT)

谢 谢 观 看 !
第六章 概率初步
第44课时 频率的稳定性
目录 contents
课前小测
课堂精讲
课后作业
目录 contents
课前小测
Listen attentively
课前小测
公式定理 1.大量重复试验中,事件发生的频率逐渐稳定到某个常数 附近,这个常数可以估计事件发生的 概率 . 知识小测 2.(2015•石家庄模拟)甲、乙两名 同学在一次用频率去估计概率的实验 中,统计了某一结果出现的频率绘出 的统计图如图所示,则符合这一结果的实验可能是(B ) A.掷一枚正六面体的骰子,出现1点的概率 B.从一个装有2个白球和1个 红球的袋子中任取一球,取到红球的概率 C.抛一枚硬币,出现正面的概率 D.任意写一个整数,它能被2整除的概率
Listen attentively
课堂精讲
知识点1 事件的分类 例1. (2016•抚顺)下列事件是必然事件的为(B ) A.购买一张彩票,中奖 B.通常加热到100℃时,水沸腾 C.任意画一个三角形,其内角和是360° D.射击运动员射击一次,命中靶心 解:A、购买一张彩票,中奖,是随机事件;B、 通常加热到100℃时,水沸腾,是必然事件;C、 任意画一个三角形,其内角和是360°,是不可能 事件;D、射击运动员射击一次,命中靶心,是随 机事件;故选:B.
目录 contents
课后作业
Listen attentively
课后作业
基础过关
4.(2016•本溪一模)已知下列事件: ①太阳从西边升起; ②抛一枚硬币正面朝上; ③口袋里只有两个红球,随机摸出一个球是红球; ④三点确定一个圆, 其中是必然事件的有( A) A.1个 B.2个 C.3个 D.4个

2025版七年级数学下册第六章概率初步6

2025版七年级数学下册第六章概率初步6

第六章概率初步1 感受可能性【教学目标】学问技能目标通过揣测与嬉戏的方式,让学生进入问题情境,切身感受什么是不行能事务、必定事务、确定事务与不确定事务,知道事务发生的可能性是有大小的.过程性目标使学生在老师的指导下自主地发觉问题、探究问题,获得结论,感受数学和实际生活的联系,进一步发展学生合作沟通的实力和数学表达实力.情感看法目标通过创设嬉戏情景,使学生主动参加数学试验,增加学生的数学应用意识,初步培育学生以科学数据为依据分析问题、解决问题的良好习惯.【重点难点】重点:体会事务发生的确定性与不确定性.难点:理解生活中不确定事务的特点,不确定事务发生的可能性大小,树立肯定的随机观念.【教学过程】一、创设情景生活中有哪些事情肯定会发生,哪些事情肯定不会发生,哪些事情可能会发生?思索:1.随机投掷一枚匀称的骰子,掷出的点数会是10吗?2.随机投掷一枚匀称的骰子,掷出的点数肯定不超过6吗?3.随机投掷一枚匀称的骰子,掷出的点数肯定是1吗?今日我们学习第六章《概率初步》第一节的内容“感受可能性”,本节课我们将探讨并解决相关问题. 二、探究归纳老师提问——“下列事务肯定发生吗?”思索:(1)玻璃杯从10米高处落到水泥地面上会破裂.(2)太阳从东方升起.(3)今日星期天,明天星期一.(4)太阳从西方升起.(5)一个数的肯定值小于0.1.嬉戏——接力竞赛:(看谁说得多)竞赛要求:(1)组长确定接力依次,并画“正”字记录每组的题数.(2)掷骰子确定一名同学记时,必需在10秒内说出一个事务.①可以是确定事务(并说明是必定事务还是不行能事务);②也可以是不确定事务;(3)以说的最多的小组为胜,事务贴近生活.2.嬉戏——摸球本嬉戏最终一个环节要求试验次数多些,所以依据所教班级实际状况与时间上的要求,可以让学生以小组为单位在课前进行,并完成表格的填写,老师要视学生状况而定.3.利用匀称的骰子和同桌做嬉戏并填表,嬉戏规则与表格参照教材;通过沟通回答问题:(1)在嬉戏过程中如何确定是接着投掷骰子还是停止投掷骰子?(2)在嬉戏过程中,若前面掷出的点数和已经是5,你是确定接着投掷骰子还是停止投掷骰子?若掷出的点数和是9呢?三、沟通反思1.理解确定事务与不确定事务.2.知道不确定事务发生的可能性有大有小.3.合理运用所学学问分析解决相关问题.四、检测反馈学生以竞赛方式回答下列问题:1.指出下列事务中,哪些是必定事务,哪些是不行能事务,哪些是随机事务?(1)两直线平行,内错角相等.(2)将油滴入水中,油会浮在水面上.(3)随意买一张电影票,座位号是2的倍数比座位号是5的倍数可能性大.(4)随意投掷一枚匀称的骰子,掷出的点数是奇数.(5)13个人中,至少有两个人诞生的月份相同.(6)经过有信号灯的十字路口,遇见红灯.(7)在装有3个球的布袋里摸出4个球.(8)抛出的篮球会下落.(9)打开电视机,它正在播放动画.2.下面第一排表示了各袋中球的状况,请你用其次排的语言来描述摸到红球的可能性大小,并用线连起来.3.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大,遇到哪一种灯的可能性最小?4.口袋里有10只黑袜子,6只白袜子,8只红袜子,随意摸出一只袜子,什么颜色袜子摸出的可能性最大?5.有一些写着数字的卡片,它们的背面都相同,先将它们背面朝上,从中随意摸出一张:(1)摸到几号卡片的可能性最大?(2)摸到几号卡片的可能性最小?(3)摸到的号码是奇数和摸到的号码是偶数的可能性,哪个大?6.袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中随意摸出一个球,若摸到红球的可能性最大,则m的值不行能是 ( )A.1B.3C.5D.10五、布置作业1.师生共同回顾新知探究的整个过程,相互沟通总结本节的学问点:(1)理解确定事务与不确定事务.(2)知道不确定事务发生的可能性有大有小.(3)合理运用所学学问分析解决相关问题.2.课后作业(1)教材P139问题解决“谁转出的四位数大”(小组探究沟通).(2)自己收集生活中的随机事务,并了解其发生的可能性有多大.六、板书设计事务: 例题:七、教学反思1.精确定位学习起点,保证学生有效起步结合初一学生活泼好动,爱发言、爱表现的性格特点,让学生充分试验、收集数据、分析探讨,在直观形象感知的基础上得出结论.学生分组合作是完成本节内容的关键,因此留意调动和增加学生的主动性,保证良好的课堂效果,也为下面的学习做好学问和心理上的铺垫.2.信任学生,为学生供应展示自我的平台细心设计活动和提问,引导学生学习生活中的数学,同时,要创建性的运用教材,教材只是为老师供应最基本的教学素材,老师完全可以依据所教学生的实际状况进行适当调整.布置学习任务时,以组为单位,信任学生能够做好,从而增加学生自主学习的实力.3.留意改进,不断提高这种开放性的嬉戏活动,学生热忱高涨,时间要把握好,课前打算要充分,否则影响整个课堂效果;另外,怎样应对学生“动”起来后发生的各种令老师始料不及的问题,是老师随时要面临的,这也要求老师不断地提高业务水平与课堂应对技巧.。

第六章概率初步(教案)

第六章概率初步(教案)
在总结回顾环节,学生对本节课的知识点有了更深刻的理解。但我认为,自己在这一环节还可以做得更好,例如通过设置一些有趣的思考题,让学生在课后继续思考和探索,以达到巩固提高的目的。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是描述事件发生机会的量,它是数学中的一个重要工具,帮助我们在不确定性中做出决策。
2.案例分析:接下来,我们来看一个具体的案例。通过抛硬币的实验,观察正面和反面朝上的概率,探讨概率在实际中的应用。
3.重点难点解析:在讲授过程中,我会特别强调必然事件、不可能事件和随机事件的概念,以及概率的计算方法。对于难点部分,我会通过抛硬币和掷骰子的例子,帮助学生理解并掌握枚举法和树状图法的使用。
1.讨论主题:学生将围绕“概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们教学难点与重点
1.教学重点
-理解并区分必然事件、不可能事件和随机事件,并能用符号表示。
-掌握概率的定义,了解概率是描述事件发生机会的量。
-学会运用枚举法和树状图法计算简单事件的概率。
-能够运用概率知识解决实际问题,如游戏、彩票等。
举例解释:
-重点之一是让学生能够明确各种事件的类型,例如,抛硬币正面朝上是随机事件,而抛一枚不均匀的骰子出现1点是必然事件。
-在解决实际问题时,如何从问题中抽象出数学模型,确定相关事件和计算概率是学生容易感到困惑的地方,需要教师引导和示范。
四、教学流程
(一)导入新课(用时5分钟)

北师大版七年级数学下册第六章 概率初步2 第1课时 掷图钉试验

北师大版七年级数学下册第六章  概率初步2 第1课时  掷图钉试验

试验总次数
20 80 160 240 320 400
(4) 小明共做了 400 次掷图钉游戏,并记录了游戏 的结果绘制了下面的折线统计图,观察钉尖朝上的 频率的变化有什么规律?
1.0 钉尖朝上的频率 0.8 0.6 0.4 0.2 40 120 200 280 360 试验总次数
20 80 160 240 320 400
答:他们的说法是有一定道理的,在试验次数很大 (1 000次) 的情况下,有 640 次钉尖朝上,360 次钉 尖朝下,我们有理由认为钉尖朝上的可能性比钉尖 朝下的可能性大.
随堂练习 某射击运动员进行射击训练,结果如下表:
射击总次数 n 击中靶心的次数 m 击中靶心的频率 m
n
(1)完成上表;
10 20 50 100 200 500 1000
合作探究
(1)两人一组做 20 次掷图钉游戏,并将数据 记录在下表中:
试验总次数 钉尖朝上的次数 钉尖朝下的次数
接下表
钉尖朝上的次数 钉尖朝上的频率( 试验总次数 ) 钉尖朝下的频率( 钉尖朝上的次数 )
试验总次数
接上表
பைடு நூலகம்
在 n 次重复试验中,不确定 事件 A 发生了 m 次,则比值 称为事件 A 发生的频率.
A.频率是0.4 B.频率是0.6 C.频率是6 D.频率接近0.6
2. 一水塘里有鲤鱼、鲫鱼、鲢鱼共 1 000 尾,一渔民 通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率 是 31% 和 42%,则这个水塘里大约有鲤鱼 310 尾, 鲢鱼 270 尾.
(3)随着射击次数的增加,击中靶心的频率基 本稳定在 0.86 左右 .
频率:在 n 次重复试验中,事件 A 发生了 m 次,则 比值 m 称为事件 A 发生的频率. n

第六章 概率初步

第六章  概率初步
学科素养课件
新课标北师版·数学 七年级下
第六章 概率初步
1 感受可能性
知识点 确定事件与随机事件的概念及分类
“心想事成”意指“心里想到的,都பைடு நூலகம்成功”,该词多用于祝福 语,可是我们知道心里想的有时能够成功,有时不能成功,所以心 想事成是一个随机事件.
知识点 确定事件与随机事件的概念及分类
确定事件不仅仅是必然事件,一个事件只要能确定发生或确定不 发生,都是确定事件.
3 等可能事件的概率
知识点 计算等可能事件发生的概率
学校操场有8条跑道,小明参加初三男子组800米预赛,他抽到4号 跑道的概率是 1 .
8
知识点 游戏的公平性
小颖和妈妈去赶早市,发现有人在设摊“摸彩”.他手里拿一个 盒子,盒子中装有5个形状、大小完全相同的乒乓球,其中4个红 球,1个白球,每次从中摸1个球,如果摸到白球,则可赢10元钱,否 则就要输掉10元钱.这个游戏是不公平的,同学们不要上当.
知识点 按要求设计游戏
今年暑假,小丽爸爸的同事送给她爸爸一张北京故宫的门票,她和哥 哥两人都很想去参观,可门票只有一张.爸爸用了一枚硬币,把硬币抛 出,硬币落地后正面朝上,哥哥去,否则小丽去.这样问题就解决啦!
知识点 几何概率
一只小狗在如图所示的地板上走来走去,地板砖共有15块,而粉色方砖有 5块,所以小狗最终停在粉色方砖上的概率为 1 .
知识点 利用频率估算概率
篮球运动员在最近几场大赛中投篮的结果如下表所示:
投篮次数
20 18 16 17 16 18
进球次数
12 12 10 13 12 14
进球频率
0.6 0.67 0.625 0.765 0.75 0.78
根据其进球频率,可以估计该运动员进球的概率约为0.70.

第六章概率初步

第六章概率初步

第六章概率初步6.1 感受可能性学习目标:1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确判断。

2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。

3.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。

重、难点:1.随机事件的特点并能对生活中的随机事件做出准确判断;2.对随机事件发生的可能性大小的定性分析。

学习过程:(一)学生预习教师导学学习课本P136-138,思考下列问题:1.在一定条件下一定发生的事件,叫做;在一定条件下一定不会发生的事件,叫做;和统称为确定事件。

2.在一定条件下可能发生也可能不发生的事件,叫做,也称为。

2.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是有理数);(4)水往低处流;(5)13个人中,至少有两个人出生的月份相同;(6)在装有3个球的布袋里摸出4个球。

3.填空:确定事件事件(二)学生探究教师引领探究1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。

签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。

小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。

请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?探究2:小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数。

请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(三)学生归纳教师提炼:1.怎样的事件称为随机事件?2.随机事件与必然事件和不可能事件的区别在哪里?探究3:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“三爱三节”主题班会
海原第二中学卢海琦
一、教学目的
1. 通过本次活动,使学生懂得学习要靠勤奋,不能投机取巧,要有正确的学习态度,找到适合自己学习方法,努力学习,取得优异成绩。

2.使学生认识到没有劳动,人类就无法生存,社会就不能发展的道理,激发学生对祖国的热爱之情。

二、教学重点
1、明确“爱学习、爱劳动、爱祖国”的目的与意义。

2、认识“爱学习、爱劳动、爱祖国”的本质特征。

三、教学内容
(一)导入部分
1、准备活动中涉及《国歌》、《我们的祖国是花园》视频、文章、音乐、图片。

2、指导学生收集有关神舟七号及祖国建设成就的有关资料。

3、收集勤奋学习爱祖国爱劳动的名言、警句。

(二)班会活动过程
师:今天,我们 023 班同学召开的“爱学习爱劳动爱祖国”主题班会,现在开始。

1、学生讲述古代名人读书的故事
(1)孔子每事问。

(2)悬梁刺股。

(3)映雪读书。

2、师:孔子每事问,孙敬悬梁、苏秦刺股,孙康映雪读书,这些古人在艰苦的条件下设法坚持读书,有的成为儒学大师,有的称为著名的学者。

那么,同学们能讲一讲现代名人读书的故事吗?
3、学生讲述现代名人读书的故事
(1)闻一多醉书。

(2)华罗庚猜书。

(3)高尔基救书。

4、师:五一国际劳动节,是全世界劳动人民的节日。

1886 年 5 月 1 日,在美国芝加哥,20 万工人举行大罢工,要求实行 8 小时工作制。

这一斗争得到世界各国人民的支持。

后来,国际工人组织为了纪念这个有意义的日子,就把这天定为国际劳动节。

主持人: 1 、“小喜鹊,造新房,小蜜蜂,采蜜糖。

幸福的生活从哪里来?要靠劳动来创造”每当唱起这支歌,亲爱的同学们,你会想到什么呢?对,小喜鹊靠劳动为自己建造新房子,小蜜蜂靠劳动换来甜美的蜜糖,是劳动为我们带来幸福的生活,劳动最光荣!下面,由我们全班同学齐唱: 《劳动最光荣》。

主持人: 劳动是人间最亮丽的风景线,幸福的生活靠劳动创造,请听诗朗诵《五一颂》。

主持人:劳动创造了世界,光荣永远属于伟大的劳动者,请听故事《我的名字叫劳动者》
主持人:劳动者的世界丰富多彩,劳动者的心灵细腻透彻,传世的乐曲在思念中,追述着劳动者的浪漫。

下面请欣赏相声,《劳动创造了人》。

主持人: “锄禾日当午,汗滴禾下土,谁知盘中餐,粒粒皆辛苦”请听诗朗诵《站在季节边缘》
主持人;劳动创造了今天的业绩,劳动装点着祖国的繁荣,我们的祖国多么美啊! 碧绿的草原,蓝蓝的大海,弯弯的江河,绘成了一幅彩色的中国地图。

请欣赏朗诵《彩色的中国》。

主持人:我们的祖国像花园,花园的花朵真鲜艳。

我们就是花园的花朵,盛开在祖国这个美丽的大花园里,请欣赏表演唱《我们的祖国是花园》。

主持人:在我们祖国宽广的土地上,有两条河哺育了勤劳的中国人民,那就是长江和黄河,请男同学朗诵《长江长,黄河黄》。

主持人:我国还有很多大山、江河、名胜古迹。

最雄伟的是长城。

长城是什么样子呢?请听快板《长城长》。

主持人:请大家欣赏诗朗诵《我爱我的祖国》
(三)国旗国徽主持人:我们的祖国真美丽,我们都热爱她。

你知道我国的国旗是什么吗?
生:五星红旗。

主持人:它代表的意义是什么? 生:中间一颗大星星,代表中国共产党;四颗小星星围绕着大星星,表示全国各族人民紧紧围绕在党的周围。

主持人:国旗上的红色和黄色有什么象征意义?
生;红色象征革命,代表中华人民共和国是无数革命先烈用鲜血和生命换来的;黄色象征光明,也代表我们黄皮肤的中化民族。

主持人: 新中国第一面五星红旗在什么时间,什么地点,由谁亲手升起答:1949 年 10 月 1 日,在开安门广场,由毛泽东同志亲手升起。

主持人:什么地方应升挂国旗 (看谁说得多)
2 、答:天安门广场、新华门、全国人大常委会、国务院、中央军事委员会、最高人民法院、最高人民检查院,中国人民政协、外交部、机场、港口、火车站、边境口岸、边海防、学校、政府机关等。

主持人:中小学生多长时间举行一次升旗仪式
答:每周一次主持人:我们热爱祖国,要有自己的行动。

我们该怎么做?
生 1:我们要刻苦学习,掌握本领,报效祖国。

生 2:我们要守纪律、爱劳动、讲卫生、文明礼貌、团结友爱,健康成长。

生 3:我们要努力学习,锻炼体魄,勇夺奥运金牌。

生 4:我们要勤奋读书,考上航天大学,去研究载人飞船,让神八、神九再创第一!
生 5:我们要爱护环境,珍惜资源,让祖国更加美丽。

主持人:同学们说得好,希望同学们会做得更好!
四、总结
1、同学们在这节课中有什么收获?
2、学生畅所欲言。

3、教师总结:通过这节课的学习,我们知道了许多名人刻苦学习的事例,我们也从他们身上学到了优良的品质。

让我们用知识作为我们飞向天空的翅膀,学习前人好学不倦的精神,努力学习科学文化知识,为祖国贡献自己的力量。

同学们是祖国的未来,我相信同学们,一定会刻苦学习,努力锻炼,提高本领,报效祖国的!
“三爱三节”主题班会
海原二中霍佰燕
活动目标
通过本次活动,使学生懂得学习要靠勤奋,不能投机取巧,要有正确的学习态度,找到适合自己学习方法,努力学习,取得优异成绩。

同时使学生认识到没有劳动,人类就无法生存,社会就不能发展的道理,更使他们初步了解我们的祖国,并通过多种形式的表演来歌颂、赞美祖国,从而激发学生对祖国的热爱之情。

活动准备
1.指导学生收集有关神舟七号及祖国建设成就的有关资料。

2收集勤奋学习爱祖国爱劳动的名言、警句。

活动过程
一、谈话导入
今天,我们班同学召开的“爱学习爱劳动爱祖国”主题班会,现在开始。

二、爱学习
1.讲述古代名人读书的故事
(1)孔子每事问。

(2)悬梁刺股。

(3)映雪读书。

2.同学们能讲一讲现代名人读书的故事吗?
3.学生讲述现代名人读书的故事
(1)闻一多醉书。

(2)华罗庚猜书。

(3)高尔基救书。

三、爱劳动
1.“小喜鹊,造新房,小蜜蜂,采蜜糖。

幸福的生活从哪里来?要靠劳动来创造……”每当唱起这支歌,亲爱的同学们,你会想到什么呢?对,小喜鹊靠劳动为自己建造新房子,小蜜蜂靠劳动换来甜美的蜜糖,是劳动为我们带来幸福的生活,劳动最光荣!下面,由我们全班同学齐唱:《劳动最光荣》。

2.讲名人爱劳动的故事:《毛主席编草鞋的故事》
3.劳动益处知多少。

四、爱祖国
1.欣赏诗朗诵《我爱我的祖国》
2.国旗国徽
你知道我国的国旗是什么吗?它代表的意义是什么?
国旗上的红色和黄色有什么象征意义?
新中国第一面五星红旗在什么时间,什么地点,由谁亲手升起?
3.我们热爱祖国,要有自己的行动。

我们该怎么做?
生1:我们要刻苦学习,掌握本领,报效祖国。

生2:我们要守纪律、爱劳动、讲卫生、文明礼貌、团结友爱,健康成长。

生3:我们要努力学习,锻炼体魄,勇夺奥运金牌。

生4:我们要勤奋读书,考上航天大学,去研究载人飞船,让神八、
神九再创第一。

生5:我们要爱护环境,珍惜资源,让祖国更加美丽。

五、总结谈话
通过这节课的学习,我们知道了许多名人刻苦学习的事例,我们也从他们身上学到了优良的品质。

让我们用知识作为我们飞向天空的翅膀,学习前人好学不倦的精神,努力学习科学文化知识,为祖国贡献自己的力量。

同学们是祖国的未来,我相信同学们,一定会刻苦学习,努力锻炼,提高本领,报效祖国的!。

相关文档
最新文档