初中数学2016-2017学年七年级期末考试·数学试题
【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案
)
2
1 B 、8 C 、 1
A、 6
8
D 、3 2
7. 某商品进价 a 元,商店将价格提高 30%作零售价销售, 在销售旺季过后, 商店以 8 折(即
售价的 80%)的价格开展促销活动,这时一件商品的售价为(
)
A.a 元; B.0.8a
元
C.1.04a
元;
D.0.92a 元
8.已知:如图,点 C 是线段 AB的中点,点 D 是线段 BC的中点, AB=20cm,那么线段 AD
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
1.- 2016 的相反数是(
)
A.
1
2016
1
B.
2016
C . 6102
D . 2016
2.有理数 ( 1)2 , ( 1)3 , 12 ,
)
A、 2n 1 3n 2
B
、 2n 2 1 n
C 、 2n 1 3n 2
11. 下列图形 ( 如图所示 ) 经过折叠不能围成正方体的是 (
D
、
2n
2
1
n
)
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
C. ax=-ay D.3-ax=3-ay
6、现规定一种新运算“ * ”:a* b= a b ,如 3*2= 32 =9,则( 1 ) *3= (
2016-2017学年七年级上期末数学试卷含答案解析
2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。
学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)
2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。
2016-2017学年最新人教版七年级数学第一学期期末试卷和答案
2016-2017学年七年级数学第一学期期末试卷一、数与式1.的相反数是()A.3 B.C.D.﹣32.化简:﹣(﹣3)=.3.﹣5的绝对值是.4.|﹣|=.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣36.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需元.7.当x=﹣1时,代数式(x﹣1)2的值为.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.二、方程与不等式11.3与﹣4的大小关系是.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.213.数a、b在数轴上对应点的位置如图所示,则①a0,②b0,③a b(填“>”、“<”或“=”)14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□16.解方程(1)15+x=50;(2)2x﹣3=11.17.下列图案中,不是轴对称图形的是()A.B.C.D.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B ()、C()、D().20.长方形的周长为12cm,长是宽的2倍,则长为cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是;(2)体重正常比体重偏重的职工多占%;(3)体重偏轻的职工有人.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是%.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高℃.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?参考答案与试题解析一、数与式1.的相反数是()A.3 B.C.D.﹣3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故选:C.2.化简:﹣(﹣3)=3.【考点】相反数.【分析】根据相反数的性质,负负为正化简求解即可.【解答】解:本题是求﹣3的相反数,根据概念(﹣3的相反数)+(﹣3)=0,则﹣3的相反数是3.故化简后为3.3.﹣5的绝对值是5.【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.4.|﹣|=.【考点】绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣|=.故答案为:.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.6.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需2a+3b 元.【考点】列代数式.【分析】用买2千克龙眼的钱数加上3千克香蕉的钱数即可.【解答】解:买2千克龙眼和3千克香蕉共需(2a+3b)元;故答案为:2a+3b.7.当x=﹣1时,代数式(x﹣1)2的值为4.【考点】代数式求值.【分析】将x的代入,然后先算括号内的减法,再算乘方即可.【解答】解:当x=﹣1时,原式=(﹣1﹣1)2=(﹣2)2=4.故答案为:4.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是﹣1.【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故答案为:﹣1.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=【考点】有理数的混合运算.【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式利用同号两数相加的法则计算即可得到结果;(5)原式利用减法法则变形,计算即可得到结果;(6)原式利用同号两数相乘的法则计算即可得到结果;(7)原式利用异号两数相除的法则计算即可得到结果;(8)原式利用乘方的意义计算即可得到结果;(9)原式利用乘方的意义计算即可得到结果.【解答】解:(1)原式=﹣(2﹣1)=﹣1;(2)原式=(﹣5)+(﹣7)=﹣12;(3)原式=16+4=20;(4)原式=﹣(+)=﹣1;(5)原式=5.6+3.8=9.4;(6)原式=1;(7)原式=﹣9;(8)原式=﹣;(9)原式=﹣1﹣1=﹣2.10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.【考点】有理数的混合运算.【分析】(1)先去括号,然后合并同类项即可解答本题;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘除法法则可以解答本题;(4)根据有理数的乘除法法则和幂的乘方,负整数指数幂可以解答本题.【解答】解;(1)﹣5+(﹣0.25)+14﹣(﹣)=﹣5﹣0.25+14+0.25=9;(2)(+﹣1)×(﹣12)==﹣9﹣10+12=﹣7;(3)1÷(﹣)×(﹣4)==;(4)2﹣60÷(﹣2)3×(﹣)﹣1=2﹣60÷(﹣8)×(﹣5)=2﹣=﹣.二、方程与不等式11.3与﹣4的大小关系是>.【考点】有理数大小比较.【分析】根据正数大于负数,即可解答.【解答】解:∵正数大于负数,∴3>﹣4,故答案为:>.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.2【考点】实数大小比较.【分析】根据实数比较大小的法则进行比较即可.【解答】解:∵﹣1<0,1>0,2>0,∴可排除B、C、D,∵﹣2<0,|﹣2|>|﹣1|,∴﹣2<﹣1.故选A.13.数a、b在数轴上对应点的位置如图所示,则①a<0,②b>0,③a<b(填“>”、“<”或“=”)【考点】数轴.【分析】数轴上右边表示的数总大于左边表示的数.原点左边的数为负数,原点右边的数为正数.【解答】解:根据题意得,a<0,b>0,a<b.故答案为:<,>,<.14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:3x﹣2=7,移项合并得:3x=9,解得:x=3,故选C九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□【考点】解一元一次方程.【分析】根据解方程的方法可以求得各个方程的解,从而可以解答本题.【解答】解:(1)x﹣18=60x﹣18+18=60+18x=78;(2)x+21=54x+21﹣21=54﹣21x=33;(3)x=315;(4)4x=484x÷4=48÷4x=12;故答案为:(1)+,18,78;(2)﹣,21,33;(3)×,3,315;(4)÷,4,12.16.解方程(1)15+x=50;(2)2x﹣3=11.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项即可;(2)先移项,再合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,x=50﹣15,合并同类项得,x=35;(2)移项得,2x=11+3,合并同类项得,2x=14,x的系数化为1得,x=7.17.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故选:C.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B (7,8)、C(9,3)、D(3,4).【考点】坐标与图形性质.【分析】由坐标与图形性质容易得出结果.【解答】解:根据题意得:B(7,8),C(9,3),D(3,4);故答案为:7,8;9,3;3,4.20.长方形的周长为12cm,长是宽的2倍,则长为4cm.【考点】一元一次方程的应用.【分析】设长方形的宽是xcm.根据周长,得长方形的长与宽的和是6cm,即可列方程求解.【解答】解:设长方形的宽是xcm.根据题意得:x+2x=6,解得:x=2.则2x=4.答:长方形的长是4cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)【考点】完全平方公式的几何背景.【分析】根据图形可以求得拼成的长方形的另一边长,从而可以求得拼成的长方形的面积.【解答】解:由图可得,拼成的长方形一边长为2,它的另一边长为:a+2+a=2a+2,则拼成的长方形的面积是:(2a+2)×2=2(2a+2),故选A.统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是54%;(2)体重正常比体重偏重的职工多占16%;(3)体重偏轻的职工有28人.【考点】扇形统计图.【分析】(1)由图直接可得;(2)将体重正常与体重偏重的百分比相减可得;(3)先根据三者百分比之和等于1求得体重偏轻的百分比,再用其百分比乘以总人数350即可.【解答】解:(1)由图可知,体重正常的职工占的百分比是54%,故答案为:54%;(2)体重正常比体重偏重的职工多占54%﹣38%=16%,故答案为:16;(3)∵体重偏轻的职工占的百分比是1﹣54%﹣38%=8%,∴体重偏轻的职工有350×8%=28(人),故答案为:28.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性大于摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是62.5%.【考点】可能性的大小.【分析】(1)哪种球的只数多哪种球的可能性就大;(2)用白球的只数除以所有球的总只数即可;【解答】解:(1)∵红球有3只,白球有5只,∴白球的只数大于红球的只数,∴摸出白球的可能性大,故答案为:大于;(2)∵红球3只,白球5只,∴摸到白球的可能性为=62.5%,故答案为:62.5.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高6℃.【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:5﹣(﹣1)=5+1=6(℃),故答案为:6.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【考点】一元一次方程的应用.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.2016年10月24日。
人教版 2016-2017学年七年级上册初一数学期末考试卷及答案
人教版 2016-2017学年七年级上册初一数学期末考试卷及答案2016-2017学年度第一学期期末数学试题七年级数学一、选择题(共20分)1.零不属于()A。
正数集合 B。
有理数集合 C。
整数集合 D。
非正有理数集合2.已知下列各数-8,2.1,3,0,-2.5,10,-1中,其中非负数的个数是()A。
2个 B。
3个 C。
4个 D。
5个3.下列各组数中,互为相反数的是()A。
|3|和-3 B。
|1|和-3 C。
|3|和3 D。
|1|和14.甲、乙、丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高()A。
10米 B。
25米 C。
35米 D。
5米5.质检员抽查某零件的质量,超过规定尺寸的记为正数,不足规定尺寸的记为负数,结果第一个.13mm,第二个-0.12mm,第三个0.15mm,第四个0.11mm,则质量最好的零件是()A。
第一个 B。
第二个 C。
第三个 D。
第四个6.绝对值相等的两数在数轴上对应两点的距离为8,则这两个数为()A。
±8 B。
0和-8 C。
0和8 D。
4和-47.下列判断正确的是()A。
比正数小的数一定是负数 B。
零是最小的有理数 C。
有最大的负整数和最小的正整数 D。
一个有理数所对应的点离开原点越远,则它越大8.一个数的平方仍然得这个数,则此数是()A。
0 B。
±1 C。
±1和0 D。
1和-19.圆柱的侧面展开图是()A。
圆形 B。
扇形 C。
三角形 D。
四边形10.下列说法正确的是()A。
两点之间的距离是两点间的线段;B。
同一平面内,过一点有且只有一条直线与已知直线平行;C。
同一平面内,过一点有且只有一条直线与已知直线垂直;D。
与同一条直线垂直的两条直线也垂直。
二、填空(共24分)1.六棱柱有 8 个顶点,12 个面。
2.如果运进72吨记作+72吨,那么运出56吨记作-56吨。
3.任意写出5个正数,5个负数,并且分别填入所属集合里,正数集合{1.2.3.4.5},负数集合{-1.-2.-3.-4.-5}。
2016-2017学年度第二学期七年级数学期末试卷
2016-2017学年度第二学期七年级数学期末试卷(考试试卷120分钟、卷面满分200分)一、选择题(共10小题、每小题3分、共39分) 1、下列说法中,错误的是( )。
A 、4的算术平方根是2B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-12、方程组⎩⎨⎧=+-=523y x yx 的解是( )A .⎩⎨⎧==53y xB 。
⎩⎨⎧==21y xC 。
⎩⎨⎧==12y xD 。
⎩⎨⎧==13y x3、若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A .(3,0) B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)4、(2014春•岑溪市期末)已知a <b ,则下列式子正确的是( )A .a+5>b+5 B .3a >3b C .﹣5a >﹣5b D .>5、如图,如果AB ∥CD ,则α∠、β∠、γ∠之间的关系是( )A 、0180=∠+∠+∠γβαB 、0180=∠+∠-∠γβαC 、0180=∠-∠+∠γβαD 、0270=∠+∠+∠γβα6、在下列调查中,比较容易用普查方式的是( )A.了解凯里市居民年人均收入B.了解凯里市初中生体育中考的成绩C.了解凯里市中小学生的近视率D.了解某一天离开凯里市的人口流量7、张雷同学从A 地出发沿北偏东500的方向行驶到B 地,再由B 地沿南偏西200的方向行驶到C 地,则∠ABC 的度数为( )A 、400B 、300C 、200D 、1008、将不等式组12(1)131322x x x x -≥+⎧⎪⎨-≤-⎪⎩的解集在数轴上表示,正确的是( ) A 、 B 、C 、D 、9.(3分)(2014春•岑溪市期末)下列说法正确的是( ) A . 25的平方根是5 B . (﹣4)2的平方根是4C .±4是64的立方根D .﹣8的立方根是﹣210.(3分)(2014春•岑溪市期末)2014年中考已经结束,市教科研所随机抽取1000名学生试卷进行调查分析,这个问题的样本是( ) A . 1000B . 1000名C . 1000名考生的数学试卷D . 1000名学生11.(3分)(2014春•岑溪市期末)下列调查中,适合用全面调查的是( ) A . 了解某班同学立定跳远的情况 B . 了解一批炮弹的杀伤半径 C . 了解某种品牌奶粉中含三聚氰胺的百分比 D . 了解全国青少年喜欢的电视节目13.(3分)(2014春•岑溪市期末)如果点M (3a ﹣9,1﹣a )是第三象限的整数点,则M 的坐标为( )A . (﹣3,﹣1)B . (﹣2,﹣1)C . (﹣6,0)D . (0,﹣4)二、填空题(每小题3分,共39分)14、一个数的平方根等于它的立方根,这个数是 。
最新人教版2016-2017学年七年级上册期末数学试卷及答案
最新人教版2016-2017学年七年级上册期末数学试卷及答案2016-2017学年七年级(上)期末数学试卷一、选择题1.|-3|的值是()A。
-3 B。
0 C。
3 D。
无法确定2.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是()A。
两点之间线段最短 B。
两点确定一条直线C。
线段可以大小比较 D。
线段有两个端点3.海面上灯塔位于一艘船的XXX的方向上,那么这艘船位于灯塔的()A。
南偏西50° B。
南偏西40° C。
北偏东50° D。
XXX°4.下面四个几何体中,从正面观察得到的平面图形是圆的几何体是()A。
球体 B。
圆锥体 C。
圆柱体 D。
圆台体5.江苏省的面积约为102 600km²,这个数据用科学记数法表示正确的是()A。
1.226×10^4 B。
1.026×10^4 C。
1.026×10^5 D。
1.026×10^66.与算式XXX的运算结果相等的是()A。
33 B。
23 C。
36 D。
387.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A。
∠1=∠3 B。
∠1=180°-∠3 C。
∠1=90°+∠3 D。
以上都不对8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A。
(1+50%)x×80%=x-20 B。
(1+50%)x×80%=x+20C。
(1+50%x)×80%=x-20 D。
(1+50%x)×80%=x+20二、填空题(每题3分,共24分)9.计算:-1-2=______.答:-310.已知|m-2|+|3-n|=0,则-nm=______.答:611.如图,是一个简单的数值运算程序。
当输入x的值为-1时,则输出的数值为______.答:-212.方程2x+1=3和方程2x-a=0的解相同,则a=______.答:113.若(5x+3)与(-2x+9)互为相反数,则x=______.答:3/714.已知∠α的余角等于30°,则∠α的补角=______.答:60°15.按规律填数:1,4,9,16,______,…答:2516.已知∠AOB=50°,∠BOC=30°,则∠AOC=______.答:80°三、解答题(本大题共2小题,每题6分,共12分)17.计算:-14答:-1418.解方程:2x+3=5x-1答:x=2四、解答题(共2小题,每题7分,共14分)19.某剧团为“希望工程”募捐组织了一次义演,共卖出900张票,成人票1张15元,学生票1张8元,共筹款元。
2016~2017学年第二学期初一数学期末试卷(含答案)
2016~2017学年第二学期初一数学期末试卷 2017.6一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填写在题后的括号内) 1.下列运算中,正确的是( )A .22x x x =⋅B .22)(xy xy =C .632)(x x =D .422x x x =+ 2.如果a b <,下列各式中正确的是( ) A .22ac bc < B .11a b > C .33a b ->- D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .5 5.如图,不能判断l 1∥l 2的条件是( )A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠3 6.下列长度的四根木棒,能与长度分别为2cm 和5cm 的木棒构成三角形的是( ) A .3 B .4 C .7 D .107.下列命题是真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若a 2=b 2,则a =b D .同角的余角相等8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC ≌△DFE 的依据是( )A .SASB .AASC .HLD .ASA9.若关于x 的不等式组0321x m x -<⎧⎨-≤⎩的所有整数解的和是10,则m 的取值范围是( )A .45m <<B .45m <≤C .45m ≤<D .45m ≤≤(第5题图)(第8题图)(第15题图)(第17题图)10.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;……, 依此类推,则S 5的值为( )A .81 B D .111 二、填空题(本大题共有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在题中的横线上)11.肥皂泡额泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm . 12.分解因式:23105x x -= . 13.若4,9nnx y ==,则()nxy = . 14.内角和是外角和的2倍的多边形是 边形.15.如图,A 、B 两点分别位于一个池塘的两端,C 是AD 的中点,也是BE 的中点,若DE =20米,则AB 的长为____________米.16.若多项式9)1(2+-+x k x 是一个完全平方式,则k 的值为 .17.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =88°,则∠C 的度数为= .18.若二元一次方程组⎩⎨⎧=++=+m y x m y x 232的解x ,y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为____________.三、解答题(本大题共有8小题,共54分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题共有2小题,满分8分)计算: (1)201701)1()2017()21(---+-π (2)32423)2()(a a a a ÷+⋅-1FDA 20.(本题共有2小题,满分8分)因式分解: (1)a a a +-232 (2)14-x21.(本题共有2小题,满分8分) (1)解方程组:⎩⎨⎧=++=18223y x y x (2)求不等式241312+<--x x 的最大整数解.22.(本题满分5分)先化简,再求值: 22(3)(2)(2)2x x x x +++--,其中1x =-.23.(本题满分5分)已知63=-y x .(1)用含x 的代数式表示y 的形式为 ; (2)若31≤<-y ,求x 的取值范围.24.(本题满分6分)如图,在△ABC 和△DEF 中,已知AB = DE ,BE = CF ,∠B =∠1, 求证:AC ∥DF .25.(本题满分7分)规定两数a ,b 之间的一种运算,记作(a ,b ):如果b a c,错误!未找到引用源。
16—17学年下学期七年级期末考试数学试题(附答案)
2016-2017学年度下学期期末数学质量检测试卷七年级数学(考试时间120分钟,满分120分)一、选择题(本大题共8个小题每小题4分,共32分)1. 将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)2.下列调查中,适宜采用全面调查(普查)方式的是( )A.调查市场上老酸奶的质量情况B.调查马龙县中学生每周体育锻炼的时间C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了危禁物品3.已知21yχ⎧=⎨=⎩是二元一次方程81m nyn myχχ⎧+=⎨-=⎩的解,则2m-n的算术平方根为( )A.±2 B.2 C D.44.已知下列各数:3.14,0.1010010001,0.0123有( )A.1个B.2个C. 3个D.4个5.如果点P(2 x +6,x -4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为( )A.B.C.D.6.如图1,已知AB∥CD,E是AB上一点,ED平分∠BEC交CD于点D,∠BEC=100°,则∠D的度数是( )A.50°B.100°C.80°D.60°7的平方根是( )A.±3 B.3 C.±9 D.9 8.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次为A1,A2,A3,A4,A5,…,则顶点A55的坐标是( )A.(13,13)B.(-13,-13)C.(-14,-14)D.(14,14)二、填空题(本大题共6个小题;每小题3分,共18分)9.在方程4x-2y=7中,如果用含x的式子表示y,则y=.10.已知点P的坐标为(5,a),且点P在一、三象限角平分线上,则a=.11.把命题“对顶角相等”改写成“如果……那么……”的形式.12.关于x、y的二元一次方程组3234y ay aχχ⎧+=+⎨+=-⎩的解满足x+y>2,则a的取值范围为.13.若(x-1)2=4则x=.14.如图,一个含有30°角的直角三角板的两个顶点放在一个长方形的对边上,若∠1=25°,则∠2=.三、解答题(本大题共9个小题;共70分.)15.(616.(7分)解方程组43624y y χχ⎧+=⎨+=⎩17.(7分) 并把它们的解集在数轴上表示出来。
2016-2017新版人教版七年级数学上册期末测试题及答案
2016~2017学年度上学期七年级期末学情调研数学试卷(人教版)(试卷共4页,考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中)的方C .(1+50%x)×80%=x -28D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )第8题图A .110B .158C .168 二、填空题(本大题共8个小题;每小题3分,共24 13.-3的倒数是________. 14.单项式12-xy2的系数是_________. 15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为18.19.20.个小题;共60分)(本小题满分分)计算:(-1)3-14×[2-(-3)2] . (本小题满分分)一个角的余角比这个角的21少30°,请你计算出这个角的大小. 3(((3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值. 26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数. 27.(本小题满分8分)6 2 224 20 4 88 4 446 (43)共94元如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请通 21.C ;213.31-21. 22.2解得:x =80 …………………………………………………………………5分答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x………………………………………………3分 =12--x ………………………………………………………………4分把x =21代入原式: AE DBFC原式=12--x =121(2--……………………………………………………………5分=45-……………………………………………………………………………7分 24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分25.( ( ( (26.27.∴∴∵∴ ∴28. (2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分根据题意,得21y +25(105-y )=2447.………………………………………………7分 解之得:y =44.5 (不符合题意) . ……………………………………………………8分 所以王老师肯定搞错了. ……………………………………………………………9分 (3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a ,因为 a 、z 都是整数,且178+a 应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
2016—2017学年七年级第二学期期末数学试卷
2016—2017学年七年级第二学期期末数学试卷出题人:刘佳侯继昌侯保军黄排芳一、选择题(本大题10小题,每小题3分,共36分.)1.下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x52.用科学记数法表示0.000043这个数的结果为()A.4.3×10﹣4B.4.3×10﹣5C.4.3×10﹣6D.43×10﹣53.以下各组线段为边不能组成三角形的是()A.4,3,3 B.1,5,6 C.2,5,4 D.5,8,44下列多项式乘法中,可用平方差公式计算的是()A.(2a+b)(2a﹣3b) B.(x+1)(1+x)C.(x﹣2y)(x+2y) D.(﹣x﹣y)(x+y)5.如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°6.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.7.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b28.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或179.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路10.如图,属于内错角的是()A . ∠1和∠2B . ∠2和∠3C . ∠1和∠4D .∠3和∠411.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是()A . ∠ADB=∠ADCB . ∠B=∠C C .D B=DC D .AB=AC12.如图,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则△ACD 的周长为()A . 10cmB . 12cmC . 15cmD .20cm二、填空题 (本大题8小题,每小题3分,共24分.)13.若,23,83==n m 则=+-1323n m14.计算:(x+2y )(x ﹣2y )=15.已知x 2+mx+25是完全平方式,则m= .16.已知三角形的两边长分别为3和6,那么第三边长x 的取值范围是 .17.在一不透明的口袋中有4个为红球,3个篮球,他们除颜色不同外其它完全一样,现从中任摸一球,恰为红球的概率为 .18.如图在中,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 于D ,则∠DBC= 度.19.如图,直线a∥b,∠C=90°,则∠α=°.20.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)三、解答下列各题.(共60分)21.(8分)计算下列各题(1)(﹣2x2y)2•(2).22.(8分)先简化、再求值:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2÷2x,其中x=﹣2,y=.23.(10分)如图所示,转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,求:(1)指针指向4的概率;(2)指针指向数字是奇数的概率;(3)指针指向数字不小于5的概率.24.(10分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD°,交AB 与H,∠AGE=50°,求∠BHF的度数.25.(12分)一根长60厘米的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长1.5厘米.(1)正常情况下,当挂着x千克的物体时,弹簧的L长度是多少?(2)利用(1)的结果完成下表:(3)当弹簧挂上物体后弹簧的长度为78厘米时,弹簧上挂的物体重多少千克?26.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.2016-2017学年七年级下学期期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.(3分)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用完全平方公式展开得到结果,即可做出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:A、原式=﹣8x6,故A错误;B、原式=9a2﹣6ab+b2,故B错误;C、原式=x5,故C正确;D、原式不能合并,故D错误,故选:C点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.2.用科学记数法表示0.000043这个数的结果为()A.4.3×10﹣4B.4.3×10﹣5C.4.3×10﹣6D.43×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000043=4.3×10﹣5,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.以下各组线段为边不能组成三角形的是()A.4,3,3 B.1,5,6 C.2,5,4 D.5,8,4【考点】三角形三边关系.【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A、∵3+3>4,∴能组成三角形,故本选项错误;B、∵1+5=6,∴不能组成三角形,故本选项正确;C、∵2+4>5,∴3,4,5能组成三角形,故本选项错误;D、∵5+5>8,∴能组成三角形,故本选项错误.故选B.【点评】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.4.(3分)下列多项式乘法中,可用平方差公式计算的是()A.(2a+b)(2a﹣3b)B.(x+1)(1+x)C.(x﹣2y)(x+2y)D.(﹣x﹣y)(x+y)考点:平方差公式.分析:平方差公式是两个数的和乘以这两个数的差,即(a+b)(a﹣b).解答:A、这两个数不同,一个b,另一个是3b,故A错误;B、只有两个数的和,没有两个数的差,故B错误;C、x与2y的和乘以x与2y的差,符合平方差公式,故C正确;D、(﹣x﹣y)(x+y)=﹣(x+y)(x+y),不符合平方差公式,故D错误;故选:C.点评:本题考查了平方差公式,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5.(3分)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°考点:平行线的判定与性质.分析:首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.解答:解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,∴a∥b,∴∠3=∠6=100°,∴∠4=100°.故选:D.点评:此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等.6.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b2考点:完全平方公式.分析:根据两数的符号相同,所以利用完全平方和公式计算即可.解答:解:(﹣a﹣b)2=a2+2ab+b2.故选C.点评:本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.8.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.9.(3分)星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路考点:函数的图象.分析:根据图象上特殊点的坐标和实际意义即可求出答案.解答:解:小王去时的速度为:2÷20=0.1千米/分,回家的速度为:2÷(40﹣30)=0.2千米/分,所以A、C均错.小王在朋友家呆的时间为:30﹣20=10,所以B对.故选B.点评:应根据所给条件进行计算得到最佳答案,注意排除法的运用.10.(3分)如图,属于内错角的是()A.∠1和∠2 B.∠2和∠3 C.∠1和∠4 D.∠3和∠4考点:同位角、内错角、同旁内角.分析:两条直线被第三条直线所截,不在同一个顶点的两个角中,如果在这两条直线之间,并且在第三条直线的两旁,这两个角就叫内错角,根据以上定义判断即可.解答:解:A、∠1和∠2不是内错角,故本选项错误;B、∠2和∠3不是内错角,故本选项错误;C、∠1和∠4不是内错角,故本选项错误;D、∠3和∠4是内错角,故本选项正确;故选D.点评:本题考查了对内错角、同位角、同旁内角的定义的应用,注意:两条直线被第三条直线所截,不在同一个顶点的两个角中,如果在这两条直线之间,并且在第三条直线的两旁,这两个角就叫内错角.11.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.D B=DC D.AB=AC考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD (ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选C.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.12.(3分)如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为()A.10cm B.12cm C.15cm D.20cm考点:翻折变换(折叠问题).专题:探究型.分析:根据图形反折变换的性质得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出结论.解答:解:∵△ADE由△BDE反折而成,AC=5cm,BC=10cm,∴AD=BD,∴△ACD的周长=AC+CD+AD=AC+BC=15cm.故选C.点评:本题考查的是翻折变换,熟知图形反折不变性的性质是解答此题的关键.二、填空题13.结果:2414.计算:(x+2y)(x﹣2y)=x2﹣4y2.【考点】平方差公式.【分析】符合平方差公式结构,直接利用平方差公式计算即可.【解答】解:(x+2y)(x﹣2y)=x2﹣4y2.故答案为:x2﹣4y2.【点评】本题重点考查了用平方差公式进行整式的乘法运算.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.15.已知x2+mx+25是完全平方式,则m=±10.【考点】完全平方式.【分析】根据a2±2ab+b2=(a±b)2,x2+mx+25=x2+mx+52,可得m=±2×5=±10,据此解答即可.【解答】解:∵x2+mx+25=x2+mx+52是完全平方式,∴m=±2×5=±10.故答案为:±10.【点评】此题主要考查了完全平方式,要熟练掌握,解答此题的关键是要明确计算口诀:首末两项算平方,首末项乘积的2倍中间放,符号随中央.(就是把两项的乘方分别算出来,再算出两项的乘积,再乘以2,然后把这个数放在两数的乘方的中间,这个数以前一个数间的符号随原式中间的符号,完全平方和公式就用+,完全平方差公式就用﹣,后边的符号都用+);解答此题还要注意m有两个值.16.已知三角形的两边长分别为3和6,那么第三边长x的取值范围是3<x<9.【考点】三角形三边关系.【分析】根据三角形三边关系:任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.【解答】解:∵此三角形的两边长分别为3和6,∴第三边长的取值范围是:6﹣3=3<第三边<6+3=9.即:3<x<9,故答案为:3<x<9.【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.17.在一不透明的口袋中有4个为红球,3个篮球,他们除颜色不同外其它完全一样,现从中任摸一球,恰为红球的概率为.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为4+3=7,而红球有4个,则从中任摸一球,恰为红球的概率为.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.【点评】本题主要考查等腰三角形的性质,线段垂直平分线的性质,角的计算,关键在于根据相关的性质定理推出∠ABC和∠ABD的度数.19.如图,直线a∥b,∠C=90°,则∠α=25°.【考点】平行线的性质.【分析】过点C作CE∥a,运用平行线的性质,证明∠ACE=65°,∠α=∠BCE,再运用垂直求∠α的度数.【解答】解:过点C作CE∥a,∵a∥b,∴CE∥a∥b,∴∠ACE=65°,∠α=∠BCE.∵∠C=90°,∴∠α=∠BCE=90°﹣∠ACE=25°.故答案为:25.【点评】本题考查的是平行线的性质以及垂直的定义,解题的关键是求得∠BCE的度数.20.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件AC=DF.(只要填一个)【考点】全等三角形的判定.【分析】要使△ABC≌△DEF,已知∠1=∠2,BC=EF,添加边的话应添加对应边,符合SAS 来判定.【解答】解:补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,故填AC=DF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.三、解答下列各题.21.计算下列各题(1)(﹣2x2y)2•(2).【考点】整式的混合运算;零指数幂;负整数指数幂.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算即可得到结果;(2)原式第一项利用乘方的意义计算,第二项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:(1)原式=4x4y2•xy2+x3y2=2x5y4+x3y2;(2)原式=﹣9﹣8+1=﹣16.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.22.先简化、再求值:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2÷2x,其中x=﹣2,y=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2÷2x=x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣=﹣2x2+2xy+5y2﹣,当x=﹣2,y=时,原式=﹣2×(﹣2)2+2×(﹣2)×+5×()2﹣=﹣8﹣2+ +=﹣8.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.23.如图所示,转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,求:(1)指针指向4的概率;(2)指针指向数字是奇数的概率;(3)指针指向数字不小于5的概率.【考点】概率公式.【分析】(1)用数字4的个数除以总数6即可;(2)用奇数的个数除以总数6即可;(3)用不小于5的数的个数除以总数6即可.【解答】解:(1)转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6,有1个扇形上是4,故若自由转动转盘,当它停止转动时,指针指向4的概率为;(2)转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6,有3个扇形上是奇数,故若自由转动转盘,当它停止转动时,指针指向数字是奇数的概率为=;(3)转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6,指针指向数字不小于5的扇形有5、6,故若自由转动转盘,当它停止转动时,指针指向数字不小于5的概率为.【点评】本题主要考查了概率的求法,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24.已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD°,交AB与H,∠AGE=50°,求∠BHF的度数.【考点】平行线的性质.【分析】由AB∥CD得到∠AGE=∠CFG,再由FH平分∠EFD,∠AGE=50°,由此可以先后求出∠GFD,∠HFD,∠BHF.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又∵FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.【点评】本题考查的是平行线的性质,此题涉及到角平分线的性质等知识,在解答此类问题时要灵活应用.25.一根长60厘米的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长1.5厘米.(1)正常情况下,当挂着x千克的物体时,弹簧的L长度是多少?(2)利用(1)的结果完成下表:(3)当弹簧挂上物体后弹簧的长度为78厘米时,弹簧上挂的物体重多少千克?【考点】一次函数的应用.【分析】(1)根据题意可得L=60+1.5x,(2)把x=1,2,3,4代入函数式可求L的值.(3)把L=78代入函数式可求挂的物体重x的值.【解答】解:(1)L=60+1.5x;(2)(3)把L=78代入(1)得,78=60+1.5x,解得x=12.答:所挂物体重12千克.【点评】本题考查一次函数解决实际问题,根据题意列出函数式代入自变量可求函数值,代入函数值可求自变量.26.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°﹣∠ACE﹣∠CDF=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.【解答】解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.。
2016-2017年新人教版七年级上数学期末试卷有答案
2016-2017学年度第一学期期末质量检测试卷七年级数学(满分 150分, 时间 120 分钟)题号一二三四A 卷总分B 卷总分A+B 总分总分人审核人得分一、选择题。
(下列各题均有四个答案,其中只有一个是正确,共10个小题,每小题 3 分,共30 分)1.﹣6的绝对值是()A .6 B .﹣6 C .±6 D .2.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A .0.109×105 B .1.09×104C .1.09×103D .109×1023.计算﹣32的结果是()A .9 B .﹣9 C .6 D .﹣6w w w .x k b 1.c o m4.如图1是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A .数B .学C .活D .的得分评卷人题号 1 2 3 4 5 6 7 8 9 10选项考点考生所在学校姓名考场考号图15.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是()A .3x+2x 2=5x 3B .2a 2b ﹣a 2b=1C .﹣ab ﹣ab=0D .﹣y 2x+xy 2=07.如图2,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为()A .35°B .45°C .55°D .65°8.下列说法中错误的是()A .的系数是B .0是单项式C .的次数是 1D .﹣x 是一次单项式9.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为()A .88元B .98元C .108元D .118元10.如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M ,N 分别为AB ,BC的中点,那么M ,N 两点之间的距离为()A .5cmB .1cmC .5或1cmD .无法确定二、填空题,(共8个小题,每小题4分,共32分)11.如果零上2℃记作+2℃,那么零下5℃记作℃.12.若3x 2k ﹣3=5是一元一次方程,则k=.13.若2a 2b m 与﹣a n b 3是同类项,则n m =.得分评卷人图214.已知a2+|b+1|=0,那么(a+b)2015的值为.15.一条直线上有n个不同的点,则该直线上共有线段条.16.如图,已知点O在直线AB上,∠1=65°15′,∠2=78°30′,则∠1+∠2=,∠3=.图317.小明与小刚规定了一种新运算△:a△b=3a﹣2b.小明计算出2△5=﹣4,请你帮小刚计算2△(﹣5)=.18.若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为.三、解答题(共38分)19.(每小题5分,共10分)计算(1)(﹣6)2×[﹣+(﹣)](2)0﹣23÷(﹣4)3﹣20.(每小题5分,共10分)解方程(1)4x﹣3=﹣4 (2)(1﹣2x)=(3x+1)21.(8分)化简:3b+5a﹣[﹣(2a﹣4b)﹣( 3b+5a)]22.(10分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?xkb1B 卷23.(8分)先化简,再求值:2(a 2b+ab 2)﹣2(a 2b ﹣1)﹣ab 2﹣2.其中a=1,b=﹣3.来源学|科|网Z|X|X|K]24.(8分)解方程:.25.(10分)如图,已知点M 是线段AB 的中点,点N 在线段MB 上,MN=AM ,若MN=3cm ,求线段AB 和线段NB 的长.26.(12分)如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC=70°,求∠BOD 的度数;得分评卷人得分评卷人图6。
2016-2017学年七年级下学期期末考试数学试卷
2016—2017学年度第二学期初一年级数学期末试卷注意:本试卷共4页, 24题,满分100分,时间100分钟一、选择题(每小题3分,共30分)1.下列图中不是轴对称图形的是( )A. B. C. D.2.下列运算正确的是( )A .a 2+a 3=a 5B .2a 2-3a 2=-a 2C .(a -2)2=a 2-4 D .(a +1)(a -1)=a 2-2 3.一枚质地均匀的正方体骰子,其六面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是( )A.12B.16C.13D. 234.下列事件中,属于必然事件的是( )A. 367人中至少有两人的生日相同B. 抛掷一次硬币正面朝上C. 任意买一张电影票,座位号是2的倍数D. 某种彩票的中奖率为1%,购买100张彩票一定中奖 5.如图,若∠A=75°,则要使EB ∥AC 可添加的条件是( )A.∠C=75°B.∠DBE=75°C.∠ABE=75°D.∠EBC=105° 6.在△ABC 中,已知已知△ABC 的三个内角之比为1:2:3,则这个三角形的形状为( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D.等腰三角形 7. 如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( ) A .∠A=∠D B .AB=DCC .∠ACB=∠DBCD .AC=BD8.已知:如图,在△ABC 中,AB=AC,DE 是AB 的垂直平分线,若BE+CE=12,BC=8,则△ABC 的周长为( )A. 20B. 32C. 24D. 36(第5题图) (第7题图) (第8题图)9. 等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( )A. 65°B. 65°或115°C. 50°D. 50°或115° 10.如图,点E 是BC 的中点,AB ⊥BC, DC ⊥BC,AE 平分∠BAD ,下列结论: ① ∠A E D =90°; ② ∠A D E = ∠ C D E ; ③ D E = B E ;④ AD =AB +CD , 四个结论中成立的是( ) A. ① ② ④ B. ① ② ③ C. ② ③ ④ D. ② ④(第10题图) (第11题图) 二、填空题(每小题3分,共18分)11.如图是七年级(1)班学生参加课外活动人数的扇形统计图,如果参加艺术类的人数是16人,那么参加其它活动的人数是________人.12.若43x y +=,则216x y ⋅的值为 .13.对于实数a ,b ,定义新运算如下:a ※b = (0)(0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,且,且,例如2※3=2-3=18,计算[2※(-4)]×[(-4)※(-2)]=___________. 14.等腰三角形的两边长分别为4和9,则它的周长是________15.已知x +y =3,且(x +2)(y +2)=12,则x 2+3xy +y 2的值为________.16. 已知△ABC 的边AB=3,AC=5,那么边BC 上的中线AD 的范围为 . 三、解答题(共52分) 17.(共6分)计算题:(1)23332(2)6(2)x x x x x -++ (2)2(3)(1)(2)x x x +---18.(5分)化简求值:()22xy 2(2)24xy x y xy ⎡⎤+--+÷⎣⎦E DCBA19.(5分)已知:直线AB 及直线AB 外一点C ,过点C 作直线CD ,使CD//AB. (要求:尺规作图,保留作图痕迹,不写作法)20.(6分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是310. (1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.21.(6分)如图,在△ABC 中,AB= AC,BD=CD, DE ⊥AC 于点E, DF ⊥AB 于点F. 证明:DE=DF22. (6分)我市某医药公司要把药品运往外地,现有两种运输方式可供选择: 方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元; 方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米再加收2元. (1) 请分别写出邮车、火车运输的总费用y 1 (元)、y 2 (元)与运输路程x(千米)之间的关系式;(2)若医药公司现有1600元将一批药品运输到同一个地方,最远可运输多少千米? 23.(8分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ;(2)AB =BC +AD .24、(10分)如图,在长方形ABCD 中,AB=CD=6cm ,BC=10cm ,点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC=______cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ? (3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以v cm/秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.第23题图2015-2016学年度第二学期初一年级数学学科期末试卷答案一、选择题:二、填空题:11. 4 12. 8 13. 1 14. 22 15.15 16. 1<AD<4 三、解答题:17. 6542126x x x -- 97x + 18.–xy2519.如图,直线CD 为所求。
2016-2017学年第二学期七年级期末测试数学
2016-2017学年第二学期七年级期末测试(2017.6)数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷,满分为60分;第Ⅱ卷,满分为90分.本试卷满分为150分.考试时间为90分钟.2.答题前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.3. 第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,超出答题区域作答无效。
本考试不允许使用计算器.第Ⅰ卷(选择题共60分)一、选择题(本大题共15个小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 4的算术平方根是()A.±2B.2C.2D.22、下列图形中,不是轴对称图形的个数是()A.1B.2C.3D.43、如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°3题图4、下列各式计算正确的是( )A .()()xy xy xy 332=÷B .()1122+=+a a C .55a a a ÷= D .523a a a =⋅5、若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( ) A.50°B.80°C .65°或50°D .50°或80°6、下列计算正确的是( ) A.235=- B.()ππ-=-332C.1535=⨯D.5315=7、下面的说法正确的个数为 ( )①若∠α=∠β,则∠α和∠β是一对对顶角;②若∠α与∠β互为补角,则∠α+∠β=180o; ③同旁内角相等,两直线平行;④过一点有且只有一条直线平行于已知直线; ⑤从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离.A .1B .2C .3D .48、某装满水的水池按一定的速度放掉水池的部分水后,停止放水并立即按一定的速度注水,水池注满后停止注水,又立即按一定的速度放完水池的水,若水池的存水量为V (m 3),放水或注水时间为t (min ),则V 与t 的关系的大致图象只能是( )9 、满足75<<-x 的整数x 有( )个A.6个B.5个C.4个D.3个 10.下列说法正确的是( )A.有理数只是有限小数B.无理数是无限小数C.无限小数是无理数D. 是分数3πFE_ DCBA11. 如图所示,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 与D ,则∠DBC=( )A.30°B.20°C.15°D.10°12. 有6张写有数字的卡片(图1),它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是( )A.61 B.31 C.21 D.3213. 如图,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE ,(2)BC =EF ,(3)AC =DF ,(4)∠A =∠D ,(5)∠B =∠E ,(6)∠C =∠F ,以其中三个作为已知条件,不能判断△ABC 与△DEF 全等的是( )A .(1)(5)(2)B .(1)(2)(3)C .(2)(3)(4)D .(4)(6)(1)14、分别计算下列图形的周长;当图形的个数是n 时,用代数式表示图形的周长( ).图形个数 1 2 3 4 5 6 …… n周 长581114……A .3n+1 B.3n+5 C.3n+2 D.3n-111题图图1 图212题图15.如图,先将正方形ABCD 对折,折痕为EF , 将这个正方形展平后,再分别将A 、B 对折,使点A 、 点B 都与折痕EF 上的点G 重合,则∠NCG 的 度数是( )A.15°B.30°C.60°D.20°第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6个小题,每小题4分,共24分) 16.若x 2+kx +25是一个完全平方式,则k = . 17.下列事件中,不确定事件是 .①两直线平行,内错角相等; ②拔苗助长; ③掷一枚硬币,国徽的一面朝上; ④太阳每天早晨从东方升起;⑤车辆随机到达一个路口,遇到红灯. 18. 如图,△ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度.19.如图,有一个五角星的图案,那么图中的∠A +∠B +∠C +∠D +∠E= 度. 20. 一只蚂蚁在如图1所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是 .21.已知:如图,△ABC 中,BO ,CO 分别是∠ABC 和∠ACB 的平分线,过O 点的直线分别交AB 、AC 于点D 、E ,且DE ∥BC .若AB =6cm ,AC =8cm ,则△ADE 的周长为______.765421320题图21题图18题图NM DG FCB EA15题EDCB A19题图三、解答题(共7小题,共66分,解答应写出文字说明,证明过程或演算步骤) 22.(本小题12分)化简或计算(1)3426)()(2y y - (2)232)()2(ab b a ÷ (3)2017201702)5()2.0()3()101(-⨯-+---π23. (本小题7分)如图,已知∠EFD=∠BCA , BC=EF ,AF=DC.线段 AB 和线段DE 平行吗?请说明理由.24.(本小题满分8分)①先化简,再求值:(x-2y )2-2(x-y)(x+y)+2y(x-3y),其中x=3,y=-1. ②解方程(x-3)³=6425.(本小题8分).Windows2003下有一个有趣的游戏“扫雷”,图中是扫雷游戏的一部分:说明:图中数字2表示在以该数字为中心的8个方格中有2个地雷,小旗表示该方格已被探明有地雷,现在还剩下A 、B 、C 三个方格未被探明,其它地方为安全区(包括有数字的方格). (1)现在还剩下几个地雷?(2)A 、B 、C 三个方格中有地雷的概率分别是多大?26.(本小题9分)某地区要在S 小区内修建一个超市M , 如图,按照要求,超市M 到两个新建的居民小区A 、B 的 距离相等,到两条公路OC,OD 的距离也相等,这个超市M 应建在何处(在图上标出它的位置)?(要求:用尺规作图,保留作图痕迹,不写作法)23题图ABC DEF26图27.(本小题10分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 ; (3)试估算口袋中黑、白两种颜色的球各有多少只?28.(本小题12分)在△ABC 中,AB=AC ,P 是△ABC 内任意一点,将AP 绕点A 顺时针旋转至AQ ,使∠QAP=∠BAC ,连接BQ ,CP ;(1)如图1,试说明BQ=CP ;(2)若将点P 在△ABC 外,如图2,其它条件不变,结论依然成立吗?试说明理由.摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m58 96116295496610 摸到白球的频率nm0.580.64 0.58 0.59 0.620.6128题图(2)QBCPA28题图(1)BP。
2016-2017学年度七年级(上)期末数学试卷含答案解析
2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
七年级下期数学练习
(考试时间:120分钟 满分:150分)
一、选择题:(本大题12
个小题,每小题4分,共48分)
每个小题都给出了代号为 A 、B 、C 、D 的四个答案,其中
只
有一个是正确的,请将正确答案的代号填入题后的括号中. 1.计算32a a 的结果是( )
A .a
B .5a
C .6a
D .9a
2.将一张长方形纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你见到
的图
形可能
是( )
C.
A.
2
3.以下列各组线段长为边,能组成三角形的是( ) A .2cm ,2cm ,4cm B .8cm ,6cm ,4cm C .12cm ,5cm ,6cm D .2cm ,3cm ,6cm 4.计算)132(2-+x x x 的结果是( )
A .1323-+x x
B .13223-+x x
C .x x x --2232 D. x x x -+2332
5.如果小球在如图所示的地板上自由地滚动,并随机地停留在 某块方砖上,那么它最终停留在阴影区域的概率是( )
A .95
B .32
C .3
1 D .92
6.如图,如果∠1=54°,∠3=90°,那么2∠的度数是( )
A .26°
B .36°
C .46°
D .54° 7.如图,已知点 B 、
E 、C 、
F 在同一直线上,且△ABC≌△DEF ,则以下结论中,错误..
的是( ) AB ∥DE C .∠A=∠D
8.如图,三角形被遮住的两个角不可能...
是( ) A .两个钝角 B .一个锐角,一个钝角 C .两个锐角 D .一个锐角,一个直角 9.已知2=m a ,8=n a ,则m n a -的值是( )
3
A .16
B .10
C .
1
4
D .6 10.如图,∠1=∠2,AD 平分∠BAC 交直线a 于点D ,若∠ABD=100°,则∠BDA
的度数为( )
A .55°
B .50°
C .45°
D .40°
11
)
A .55
B .71
C .72
D .89
12.探究小组的同学在做“测量小车从不同高度下滑的时间”的实验时,得到
如下数据: 根据实验数据,判断下列说法正确..
的是( ) A .当支撑物的高度为100cm 时,小车下滑的时间可能为1.45秒 B .支撑物的高度每增加10cm ,小车下滑的时间都将减少0.09秒 C .当支撑物的高度为100cm 时,小车下滑的时间可能为1.35秒 D .当支撑物的高度为100cm 时,小车下滑的时间可能为1.30秒
∙∙∙ ∙∙∙
④
③
②
①
4
二、填空题:(本大题6个小题,每小题4分,共24分)
在每小题中,请将正确答案直接填在题后的横线上.
13.某种细胞的直径是1.24微米,即0.000 001 24米,用科学记数法表示0.000
001 24
为________________________. 14.计算:=-+)2)(2(a a _____________.
15.已知等腰三角形的一边为5cm ,另一边为6cm ,那么这个三角形的周长为_________.
16
着七巧板的七块,如果编号⑥对应的面积等于2块拼成的正方形的面积等于___________.
17.任意找一个是3
的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数;然后把这个新数的每 一个数位上的数字都立方、再相加,......数里出不来,我们称它为数字“黑洞”, 这个数是18.在△ABC 中,点D 为△ABC 三边中垂线的交点,BE 、CE
分别平分∠ABC 和∠ACB ,且∠BDC+∠BEC=180°,则 ∠A 的度数为_____________.
5
三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.
19.计算:2201021
2+(1)+4( 3.1415)()2
π----⨯---.
20.尺规作图:(要求:在下面右边的空白处作图,不写作法,保留作图痕迹)
已知:线段a 及α∠(如图).
求作:△ABC,使ABC α∠=∠,BC a =,BA a =.
6
四、解答题:(本大题5个小题,每小题10分,共50分)
解答
时每小题必须给出必要的演算过程或推理步骤.
21.先化简,再求值:x y x y y x y x y x 3)]52()2)(2()2[(2÷+--+--,
其中1=x ,2
1
-=y .
22.现有红球、白球、黄球足够多,且它们除颜色外形状、大小均相同.(1)在不透明的盒子里共装有这样的10个球,其中红球3个,白球4个,其余的是黄球.从中任意摸出一个球,求摸到黄球的概率;
(2)请你选这样的18个球设计摸球游戏,使摸到红球、白球、黄球的概率都相等;
(3)请你选这样的若干个球设计摸球游戏,使摸到红球的概率和摸到白球的概率相
等,且都小于摸到黄球的概率.
23.甲、乙两人同时从A地骑车出发向B地方向行驶(A、B两地在一直线上),
7
8
图中实线表示甲离A 地的距离S 随时间t 的变化情况,虚线表示乙离A 地的距离S 随时间t 的变化情况.根据图象解答下列问题. (1)甲的平均速度是多少?
(2)乙在哪一个时段速度最快,请通过计算比较说明; (3)甲乙从开始出发经过多长时间第二次相遇?
24.如图,点M 、N 在线段AC 上,AM=CN ,AB∥CD,AB=CD. (1)请说明△ABN≌△CDM 的理由; (2)线段BM 与DN 平行吗?说明理由.
t /
小时)
9
25.我们学过的乘法公式可以借助于图形来帮助解释、理解、记忆. (1)请写出图1、图2、图3分别能解释的乘法公式;
N
M
D
C
B
A
10
(2)请用两种不同的方法探究代数式2)(b a +、2)(b a -、ab 的数量关系. 方法一:代数方法.
方法二:拼图的方法.(用4个全等的长和宽分别为a 、b 的长方形拼摆成一个正方形,画出你拼摆过程中能说明这几个式子数量关系的草图.)
(3)利用(2)中结论,当5=+b a ,6-=ab 时, 求a b -2
() 的值.
11
五、解答题:(本大题1个小题,每题12分,共12分)解
答时每小题必须给出必要的演算过程或推理步骤.
26 . (1)如图1,在△ABC 中,AB=BC ,AC=5,∠B=90°,小明将AB 与AC
重叠,折痕为AD ,点B 落在点E 处.此时,他发现△DEC 为等腰直角三角
12 形,你认为他的结论对吗?请你说明理由,并求出△DEC 的周长.
(2)如图2,在等腰直角三角形ABC 中,AB=BC, ∠B= 90.小明将AB 与BC 重叠,得到两个等腰直角三角形.他发现等腰直角三角形的顶角是底角的两倍,可把等腰直角三角形分为两个等腰三角形.接着他提出问题:等
腰三角形底角是顶角的两倍时(如图3,△ABC 中,AB=AC
三角形.请你用尺规在图3得两个等腰三角形的各个内角的度数.
(3)老师在小明的基础上提出问题:任意锐角一个△ABC,如果∠A=2∠C,∠A为锐角(如图4),△ABC仍能分成两个等腰三角形吗?如果能,请在图
13。