分式方程的增根专题练习

合集下载

人教版八年级数学上册有关分式方程解的问题——期末专题练习

人教版八年级数学上册有关分式方程解的问题——期末专题练习

人教版八年级数学上册期末专题练习—有关分式方程解的问题一、分式方程增根类问题1、若关于x 的方程+=2﹣有增根x =﹣1,则2a ﹣3的值为( ) A .2 B .3 C .4 D .62、若关于x 的方程=0有增根,则m 的值是( ) A .B .﹣C .3D .﹣3 3、关于x 的方程有增根,则m 的值为( ) A .2 B .﹣7 C .5 D .﹣54、解分式方程1322m x x x -+=--时会产生增根,则m 的值是( )A .﹣1B .0C .1D .2 5、若关于x 的分式方程62155x k x x -+=--有增根,则k 的值是 ( )A .12-B .-1C .1D .12 6、如果解关于x 的方程1x−2=kx 2−4+1有增根2x =,那么k 的值为________.二、分式方程无解类问题1、若关于x 的分式方程2m +x x -3-1=2x无解,则m 的值为( ) A .-1.5 B .1 C .-1.5或2 D .-0.5或-1.52、若关于x 的分式方程232422kx x x x =--+-无解,则k 的值为( )A .1或﹣4或6B .1或4或﹣6C .﹣4或6D .4或﹣6 3、当x= 时,分式方程1211+=-x x 无解。

4、关于x 的方程 11+=+x m x x 无解,则m 的值为多少? 5、已知关于x 的方程1x−1+a x−2=2a+2x 2−3x+2无解,求a 的值. 6、已知关于x 的方程x−4x−3+a =a 3−x 无解,求a 的值.三、由分式方程的特殊解确定字母的取值范围1、若关于x 的分式方程﹣=3的解为正整数,且关于y 的不等式组至多有六个整数解,则符合条件的所有整数m 的取值之和为( )A .1B .0C .5D .62、关于x 的分式方程=3的解是正数,则负整数m 的个数为( )A .3B .4C .5D .63、已知关于x 的方程=3的解是负数,那么m 的取值范围是() A .m >﹣6且m ≠﹣2 B .m <﹣6C .m >﹣6且m ≠﹣4D .m <﹣6且m ≠﹣24、关于的分式方程的解为负数,则a 的取值范围是( )A. B. C. 且 D. 且5、若关于x 1222x x =--有整数解,整数m 的值是_____.6、已知关于x 的方程x x−3−2=m x−3的解是正数,求m 的取值范围.。

2022分式方程增根无解专题练习附答案

2022分式方程增根无解专题练习附答案
23.若关于x的方程 + =2的解为正数,则m的取值范围是.
24.若关于x的方程 + =3的解为正数,则m的取值范围是.
25.若关于x的方程 无解,则m的值为.
26.若关于x的分式方程 =2的解为非负数,则m的取值范围是.
27.若 无解,则m的值是.
28.若关于x的分式方程 + =3的解为正实数,则实数m的取值范围是.
【解答】解:方程两边都乘以公分母(x﹣3),得:x=2(x﹣3)﹣m①,
由x﹣3=0,得:x=3,
把x=3代入①,得:m=﹣3.
∴当m=﹣3时,原方程有增根.
14.使分式方程 产生增根,m的值为± .
【解答】解:方程两边都乘(x﹣3),得
x﹣2(x﹣3)=m2
∵原方程有增根,
∴最简公分母x﹣3=0,即增根是x=3,
∵方程有增根,
∴最简公分母x﹣3=0,即增根是x=3,
把x=3代入整式方程,得m=2.
故答案为2.
3.若关于x的分式方程 有增根,则m的值为2.
【解答】解:方程两边都乘(x﹣2),
得x﹣2(x﹣2)=m
∵原方程有增根,
∴最简公分母(x﹣2)=0,
解得x=2,
当x=2时,m=2.
故答案为2.
4.关于x的方程 +1= 有增根,则m的值为3.
x﹣3=﹣m,
∵方程有增根,
∴最简公分母x﹣2=0,即增根是x=2,
把x=2代入整式方程,得m=1.
故答案为:1.
19.若分式方程 =1有增根,则m的值为﹣1.
【解答】解:方程两边都乘(x﹣1),得
m+x=x﹣1,
∵方程有增根,
∴最简公分母x﹣1=0,即增根是x=1,

分式方程增根专题

分式方程增根专题

确定增根
2m 1 10或 2m 1 10
m 4或m 6
把增根 代入整式方程求出字母的值
当 m 4或m 6 时 原 分 式 方 程 有 增 根
自学检测1:(4分钟)
1、若分式方程 m x 1有增根,则m的值 为 1 。 x 1
2、分式方程
1 x2
学习目标:(1分钟)
1.有关分式方程增根求字母系数问题;
2.有关分式方程无解求字母系数问题;
3.有关分式方程根的符号求字母系数取 值范围的问题。
自学指导1:(3分钟)



:x x
1

1
(x

3 1)(x

2)
解:xx 2 x 1x 2 3
x2 2x x2 x 2 3 整式方
自学检测3(3分钟)
1、若方程
x3Leabharlann 3x2
k
有负数根,则k的取值范围
解:3x 3k 2x 6
x 6 3k
x 0且x 3且x k
6 3k 0 由题意得不等式6 3k k
6 3k 3 解得:k 2且k 3
变式1: 3+4分钟

m1 x2 x

x 1 x
产生增根,
A.-1或-2 B. -1或2 C. 1或2 D. 1或-2
7.当k为何值时,解关于x的方程
1
k 5 k 1x
xx 1 xx 1 x2 1 只有增根x=1。
当堂训练(5分钟)
1.解方程
X=2是增根原方程无解
2.关于x的方程
有增根,则a=_7_ 。

2021年九年级数学中考复习知识点专题突破训练:分式方程的增根(附答案)

2021年九年级数学中考复习知识点专题突破训练:分式方程的增根(附答案)

2021年九年级数学中考复习知识点专题突破训练:分式方程的增根(附答案)1.分式方程有增根,则m的值为()A.0和2B.1C.1和﹣2D.22.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣23.方程的解为增根,则增根是()A.x=2B.x=0C.x=﹣1D.x=0或x=﹣1 4.若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣15.已知分式方程有增根,则增根是()A.x=1B.x=1或x=0C.x=0D.不确定6.若分式方程﹣=有增根,则m的值是.7.若关于x的分式方程+=2有增根,则m的值为.8.若分式方程﹣2=有增根,则m的值为.9.若关于x的分式方程有增根时,则m的值为.10.关于x的方程+=2有增根,则m=.11.解分式方程+=会产生增根,则m=.12.若关于x的分式方程=+1有增根,则m=.13.关于x的分式方程有增根,则m的值为.14.若解关于x的方程产生增根,则m的值为.15.当m=时,分式方程+3=有增根.16.(1)若解关于x的分式方程+=会产生增根,求m的值.(2)若方程=﹣1的解是正数,求a的取值范围.17.已知关于x的方程+=2有增根,求m的值.18.解方程:.19.计算:当m为何值时,关于x的方程+=会产生增根?20.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.21.=有增根,求所有可能的t之和.22.m为何值时,关于x的方程+=会产生增根?23.关于x的方程﹣=有增根,求m的值.24.若关于x的方程+=有增根,求增根和m的值.25.若关于x的方程﹣=有增根,求增根和k的值.参考答案1.解:方程两边都乘(x﹣1)(x+1),得x(x+1)﹣(x﹣1)(x+1)=m,∵方程有增根,∴最简公分母(x﹣1)(x+1)=0,即增根是x=1或﹣1,把x=1代入整式方程,得m=2,把x=﹣1代入整式方程,得m=0,方程无解,∴m=2.故选:D.2.解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.3.解:化为整式方程为:2x+2=xm,整理得:(m﹣2)x=2,则可得x≠0,∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1.∵x≠0,∴增根是﹣1.故选:C.4.解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.5.解:去分母得:6x=x+5,解得:x=1,经检验x=1是增根.故选:A.6.解:去分母得,m﹣2(x﹣2)=x+2,∵方程﹣=有增根,∴x=±2,当x=2时,m=4;当x=﹣2时,m=﹣8;故答案为4或﹣8.7.解:方程两边都乘(x﹣3),得2﹣x﹣m=2(x﹣3)∵原方程增根为x=3,∴把x=3代入整式方程,得2﹣3﹣m=0,解得m=﹣1.故答案为:﹣1.8.解:方程的两边都乘以(x﹣3),得x﹣2﹣2(x﹣3)=m,化简,得原方程的增根为x=3,把x=3代入m=﹣x+4,得m=1,故答案为:1.9.解:,方程两边都乘(x﹣3)得x﹣5=﹣m,方程化简得m=﹣x+5,∵原方程增根为x=3,∴把x=3代入整式方程得m=2.故答案为:2.10.解:去分母得:5x﹣3﹣mx=2x﹣8,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:20﹣3﹣4m=0,快捷得:m=,故答案为:11.解:去分母得:2x﹣2﹣5x﹣5=m,由分式方程有增根,得到(x+1)(x﹣1)=0,解得:x=﹣1或x=1,把x=﹣1代入整式方程得:﹣2﹣2+5﹣5=m,即m=﹣4;把x=1代入整式方程得:2﹣2﹣5﹣5=m,即m=﹣10,则m=﹣10或﹣4,故答案为:﹣10或﹣412.解:=+1,两边乘x+2得到,3=m+x+2,∴x=1﹣m,∵分式方程有增根,∴x=﹣2,即1﹣m=﹣2,∴m=3,故答案为3.13.解:去分母得:7x+5x﹣5=2m﹣1,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:12﹣5=2m﹣1,解得:m=4,故答案为:414.解:方程两边同乘x﹣1得:x+3=m+1,解得:x=m﹣2,方程产生增根,当x﹣1=0,即x=1时,方程产生增根,∴m﹣2=1,∴m=3.故答案为:3.15.解:方程两边都乘以(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,把x=1代入7+3(x﹣1)=m,中,得m=7.故答案为:7.16.解:(1)方程两边都乘(x+2)(x﹣2),得2(x+2)+mx=3(x﹣2)∵最简公分母为(x+2)(x﹣2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=﹣4.把x=﹣2代入整式方程,得m=6.综上,可知m=﹣4或6.(2)解:去分母,得2x+a=2﹣x解得:x=,∵解为正数,∴,∴2﹣a>0,∴a<2,且x≠2,∴a≠﹣4∴a<2且a≠﹣4.17.解:方程两边都乘x﹣2,得2﹣(x+m)=2(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=0.18.解:方程两边同乘以(x+2)(x﹣2),得:x+2﹣(x+2)(x﹣2)=4,整理,得:x2﹣x﹣2=0,解此方程,得:x1=2,x2=﹣1,经检验:x=2是增根,舍去x=﹣1是原方程的根,则原方程的根为x=﹣1.19.解:方程得两边都乘以(x+1)(x﹣1),得2(x﹣1)﹣5(x+1)=m.化简,得m=﹣3x﹣7.分式方程的增根是x=1或x=﹣1.当x=1时,m=﹣3﹣7=﹣10,当x=﹣1时,m=3﹣7=﹣4,当m=﹣10或m=﹣4时,关于x的方程+=会产生增根.20.解:(1)当a=3时,原方程为﹣=1,方程两边同时乘以(x﹣1)得:3x+1+2=x﹣1,解这个整式方程得:x=﹣2,检验:将x=﹣2代入x﹣1=﹣2﹣1=﹣3≠0,∴x=﹣2是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1+2=x﹣1,即(a﹣1)x=﹣4,当a≠1时,若原方程有增根,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3,综上,a的值为﹣3.21.解:=有增根,说明0或﹣1可能是方程的根,即(x+1)2+x2=x+t,代入x=0,有t=1;代入x=﹣1,有t=2.故所有可能的t之和为3.22.解:原方程化为+=,方程两边同时乘以(x+2)(x﹣2)得2(x+2)+mx=3(x﹣2),整理得(m﹣1)x+10=0,∵关于x的方程+=会产生增根,∴(x+2)(x﹣2)=0,∴x=﹣2 或x=2,∴当x=﹣2时,(m﹣1)×(﹣2)+10=0,解得m=6,当x=2时,(m﹣1)×2+10=0,解得m=﹣4,∴m=﹣4或m=6时,原方程会产生增根.23.解:两边乘(x+2)(x﹣2)得到,x(x+2)﹣x﹣m=2x(x﹣2)①∵方程有增根,∴x=2或﹣2,x=2时,8﹣2﹣m=0,m=6,x=﹣2时,2﹣m=16,m=﹣14,经检验,m=6或﹣14均符合题意,∴m的值为6或﹣14.24.解:去分母得:﹣3(x+1)=m,由分式方程有增根,得到x2﹣1=0,即x=1或x=﹣1,把x=1代入整式方程得:m=﹣6;把x=﹣1代入整式方程得:m=0(此时方程无解,舍去),则增根为x=1,m=﹣6.25.解:最简公分母为3x(x﹣1),去分母得:3x+3k﹣x+1=﹣2x,由分式方程有增根,得到x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=﹣.。

中考数学专项练习分式方程的增根(含解析)

中考数学专项练习分式方程的增根(含解析)

中考数学专项练习分式方程的增根(含解析)【一】单项选择题1•以下关于分式方程增根的说法正确的选项是〔〕A. 使所有的分母的值都为零的解是增根 B.分式方程的解为零就是增根C. 使分子的值为零的解就是增根D. 使最简公分母的值为零的解是增根2•解关于x的方程产生增根,那么常数的值等于〔〕A. —1B. —2C. 1D. 23•关于x的方程- =0有增根,那么m的值是〔〕A. 2B. -2C. 1D. -14•假设关于x的分式方程有增根,那么k的值是〔〕A.B. -2flC. 2D. 1x 2m5. 假设关于x的分式方程-m= 无解,那么m的值为〔〕A. m=3B. m=32C. m=1D. m=1 或x-3 m6. 解关于x的方程 = 产生增根,那么常数m的值等于〔〕A. -1B. -2C. 1D. 22-j___ m_A. 37. 如果关于x的方程无解,那么m 等于〔〕A. 32 B. 4C.3C. 51in8•分式方程 +1= 有增根,那么m 的值为〔)A. 0和 2B. 1C. 2D. 0_L ,9.解关于x 的分式方程 时不会产生增根,那么m 的取值是〔 〕A. m H 1B. m H — 1C. m H 0D. m H 士 12T_ vH10.假设解分式方程产生增根,那么m 的值是〔 〕A.或-2B. 或2C. 1或D. 1或213 r+趴11•假设关于x的分式方程—f + =1有增根,那么m的值是〔〕A. m=0 或m=3B. m=3C. m=D. m= - 112. 以下说法中正确的说法有〔〕〔1〕解分式方程一定会产生增根;〔2〕方程「匚27=0的根为x=2; 丄_J_〔3〕x+ >-〕=1+ 一】是分式方程.A. 0个B.1个C.2个D.3个13. 假设关于x的方程有增根,求a 的值〔〕A. 0B. -C. 1D. -2【二】填空题1 214. 假设关于x的分式方程二- 有增根,那么k的值为15. 如果-3是分式方程缶+X不的增根,那么a= _____________ _•16. 关于X的分式方程总T - r+2 =0无解,那么m= _______ .17. 关于x的方程戸+1= 口有增根,那么m的值为_______________ •18. 假设分式方程Ll I F _-有增根,那么这个增根是________________口419. 假设关于x方程T = x=2 +1无解,那么a的值为_____________ •20. 假设方程(WXD _________________ —1有增根,那么它的增根是, m=【三】解答题2 丄加_n21. 当m为何值时,解方程会产生增根?2 作m22. 计算:当m为何值时,关于x的方程+ = 会产生增根?【一】单项选择题1•以下关于分式方程增根的说法正确的选项是〔〕A. 使所有的分母的值都为零的解是增根 B.分式方程的解为零就是增根C. 使分子的值为零的解就是增根D. 使最简公分母的值为零的解是增根【考点】分式方程的增根T-3 _ HI2•解关于x的方程产生增根,那么常数的值等于〔1 2〕A. —B.B. 1C. 2【考点】分式方程的增根【解析】【解答】解:方程两边同乘x-1,得x-3=m,因为方程有增根, 所以x=1,把x=1代入x-3=m,所以m=-2;应选B.【分析】因为增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.nr-1 x3.关于x的方程- =0有增根,那么m的值是〔〕A. 2B. -C. 1D. -1【考点】分式方程的增根【解析】【解答】解:方程两边都乘〔x-1〕,得m - 1 - x=0,T方程有增根,•••最简公分母x -仁0,即增根是x=1 ,把x=1代入整式方程,得m=2.应选A、【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x -仁0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.空_1_1_上4•假设关于x的分式方程有增根,那么k的值是〔〕A.B. -2C. 2D. 1【考点】分式方程的增根【解析】【解答】解:方程两边都乘〔x-5〕,得x - 6+x - 5= - k,T原方程有增根,最简公分母〔x - 5〕=0,解得x=5,当x=5 时,k=1.应选:D、【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母〔x-5〕=0,得到x=5,然后代入化为整式方程的方程算出k 的值.x2m5. 假设关于x的分式方程-m= 无解,那么m的值为〔〕A. m=3B. m=32C. m=13D. m=1 或【考点】分式方程的增根【解析】【分析】方程两边都乘以〔x-3)得到x-m〔x-3)=2m,整理得〔1x 2WJ-m)x+m=0,由于关于x的分式方程-m= 无解,那么x-3=0,解得x=3,然后把x=3代入〔1-m)x+m=0可求出m的值.【解答】去分母得x-m〔x-3)=2m,整理得〔1-m)x+m=0,当1-m=0, 即卩m=1 时,〔1-m)x+m=0 无解,*T关于x的分式方程-m= 无解,二x-3=0,解得x=3,「•〔1-m) x 3+m=0,二m=.应选D、【点评】此题考查了分式方程的解先把分式方程化为整式方程,解整式方程,假设整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;假设整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.x-3 m6. 解关于x的方程 = 产生增根,那么常数m的值等于〔〕A. -1B. -2C. 1D. 2【考点】分式方程的增根【解析】解;方程两边都乘〔x-1),得x-3=m,T方程有增根, •••最简公分母x-1=0,即增根是x=1 , 把x=1代入整式方程,得m=-2.应选:B、【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.此题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7. 如果关于x的方程肓丄尋无解,那么m等于〔〕A. 3B. 4C. -3D. 5【考点】分式方程的增根【解析】【分析】关于x的方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=5,据此即可求解。

分式方程的增根专题练习

分式方程的增根专题练习

x=_ 、选择题(共10小题)1 •若分式方程 有增根,则增根可能是( )卜一 1 X 2 -1B . - 1C . 1 或—1D . 0C . ±13 .若关于x 的方程一“ 产生增根,则 m 是( )x _ 2 M _ 2A . 1B . 2C . 3D . 4□ - V m4.若关于x 的方程 有增根,则m 的值是( )K - 5 5 -葢A . - 2B . 2C . 5D . 3 5 .若方程 ----- —-—=7有增根,则 k=( )K " 6 6 _ K A . - 1 B . 0 C . 1 D . 6V- 3 E6.解关于x 的方程产生增根,则常数 m 的值等于( )X - 1 X _ 1 A . - 1 B . - 2 C . 1 D . 27.右分式方程 ? :L有增根,则K _ 1 Z _ 1 m 的值为( )A . 1B . - 1C . 3D . - 39. (2005?宿迁)若关于x 的方程 - —— 有增根,则 m 的值是(X _ 1 X _ 1 A . 3 B . 2 C . 1 D . - 1 10 -若分式方程 :有增根,则m 的值是( A . - 1 或 1 B . - 1 或 2 C . 1 或 2 二、填空题(共10小题)(除非特别说明,请填准确值)11 .使分式方程 一’ 一产生增根,m 的值为 _ 一 . x _ J x - J 分式方程的增根专题练习 2.如果方程 一:有增根,那么k 的值(A . m= - 1 C . m=-2 D . m=2)D . 1或- 2B . m=1 &若关于x 的方程 71门产生增根,则m 的值是(K _ 112 .分式方程「.+1= 「有增根,贝U m= _ _ . 13 .若分式方程 -,+3= 有增根,则增根为X 一d K _J X _6 i _ K若去分母解方程」一=2 -」一时,岀现增根,则增根为 .K- 3 3-X解关于x 的方程产生增根,则常数 m 的值等于K-l X-1若一1 —:— •.有增根,则增根为 X-4 q-葢 若关于x 的方程 一一-1=0有增根,则a 的值为 fx-7! ------------------ 若方程一J =2+ ----- 有增根,则增根为 x= ___________ .x - 4 2 ~ 4若关于x 的分式方程- H 有增根,则m 的值为 K — 3 x — 3 解答填空题(共 10小题)(除非特别说明,请填准确值) 卜 T — M 有增根,则k= K _ 3 3 _ xL-y — i 若关于x 的方程一—:-一有增根,则 k= _____________________ K _ 33 - K a= 时,方程」一=2+ ----------- 会产生增根. ------------------ =—3 z-3当m=1 - z分式方程 1'||+3= 有增根.(1)这个增根是x _ J / 一 X14. 15. 16. 17.18. 19.20. 三、 21 . 22. 23.24. 25. 26. 27.28.29. 30.当m=-^-=2 -'会产生增根 x- 3 乂― 3时,方程 _____________ 时,关于x 的方程 会产生增根.若关于x 的方程 x - 4 有增根,那么关于 J _ K y 的不等式5 (y - 2) < 28+k+2y 的解集是 已知关于 「有增根, x+l D 若解关于 x 的分式方程 会产生增根,则 m=若分式方程有增根,则k=已知关于x 的方程 _ _ ; (2) m 的值为 ___________ 时,去分母解方程 —丄丄会产生增根. 2 一 K。

中考复习——分式方程的增根与无解问题(解析版)

中考复习——分式方程的增根与无解问题(解析版)

中考复习——分式方程的增根与无解问题一、选择题1、关于x的分式方程71x-+3=1mx-有增根,则增根为().A. x=1B. x=-1C. x=3D. x=-3答案:A解答:方程两边都乘(x-1),得7+3(x-1)=m,∵原方程有增根,∴最简公分母x-1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.2、若关于x的分式方程23x-+3x mx+-=1有增根,则m的值为().A. 3B. 0C. -1D. -3答案:C解答:方程两边都乘(x-3),得2-(x+m)=x-3,∵原方程有增根,∴最简公分母x-3=0,解得x=3,当x=3时,m=-1,选C.3、关于x的分式方程322mx x---=1有增根,则m的值().A. m=2B. m=1C. m=3D. m=-3答案:D解答:去分母得:m+3=x-2,由分式方程有增根,得到x-2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=-3.选D.4、若关于x 的分式方程24x m x +-+2xx -=1有增根,则m 的值是( ). A. m =2或m =6 B. m =2C. m =6D. m =-2或m =-6答案:A解答:∵关于x 的分式方程24x m x +-+2xx -=1有增根, ∴x =±2是方程x +m -x (x +2)=4-x 2的根, 当x =2时,2+m -2(2+2)=4-4, 解得:m =6,当x =-2时,-2+m =4-4, 解得:m =2. 选A.5、关于x 的分式方程71x x -+5=211m x --有增根,则m 的值为( ).A. 1B. 3C. 4D. 5答案:C解答:方程两边都乘(x -1), 得7x +5(x -1)=2m -1, ∵原方程有增根, ∴最简公分母x -1=0, 解得x =1,当x =1时,7=2m -1, 解得m =4, 所以m 的值为4. 6、若关于x 的方程31x -=1-1k x-无解,则k 的值为( ).A. 3B. 1C. 0D. -1答案:A解答:方程两边都乘x -1, 得:3=x -1+k , ∵原方程有增根,∴最简公分母x-1=0,解得x=1,当x=1时,k=3.故k的值为3.选A.7、关于x的方程321xx-+=2+1mx+无解,则m的值为().A. -5B. -8C. -2D. 5答案:A解答:去分母得:3x-2=2x+2+m,由分式方程无解,得到x+1=0,即x=-1,代入整式方程得:-5=-2+2+m,解得:m=-5,选A.8、关于x的方程12xx--=2mx-+2无解,则m的值是().A. -1B. 0C. 1D. 2答案:C解答:去分母得x-1=m+2(x-2),解得x=3-m,当x=2时分母为0,方程无解,即3-m=2,m=1时方程无解.选C.9、若关于x的方程32233x mxx x-----=-1无解,则m的值为().A. 1B. 3C. 1或53D.53答案:C解答:两边同时乘x-3,得3-2x+mx-2=-x+3,∴(m-1)x=2.①当m=1时,0=2矛盾,∴无解.②当m ≠1时,x =21m -, ∴方程无解. ∴方程有增根, ∴x =3,即21m -=3, ∴m =53.综上所述m =1或53. 选C. 10、若分式232x a x x --+12x -=2x无解,则实数a 的取值为( ).A. 0或2B. 4C. 8D. 4或8答案:D 解答:解方程:232x a x x --+12x -=2x,去分母,得3x -a +x =2(x -2), 去括号,得3x -a +x =2x -4, 移项,得3x +x -2x =-4+a , 合并同类项,得2x =-4+a , 系数化为1,得x =42a -, 又∵原分式方程无解, ∴42a -=0或2, ∴a =4或8. 选D.11、若关于x 的方程12x =3k x +无解,则k 的值为( ).A. 0或12B. -1C. -2D. -3答案:A解答:去分母得:x +3=2kx , ∴(2k -1)x =3,当k =12时,(2k -1)x =3无解,即原方程无解. 由分式方程无解,得到2x (x +3)=0, 解得:x =0或x =-3.把x =0代入整式方程得:3=0,无解. 把x =-3代入整式方程得:-6k =0,解得k =0. 综上所述,k 的值为0或12. 选A. 二、填空题 12、若关于x 的方程32x x --=2mx-有增根,则m =______. 答案:1解答:方程两边都乘(x -2),得x -3=-m , ∵方程有增根,∴最简公分母x -2=0,即增根是x =2, 把x =2代入整式方程,得m =1. 故答案为:1. 13、关于x 的方程23x x m--=0有增根.则m =______. 答案:9 解答:要使方程23x x m--=0有增根,则x =3使x 2-m =0, 得m =9. 14、分式方程233m x x---=1有增根,则m =______. 答案:-2解答:去分母得:m +2=x -3,由分式方程有增根,得到x -3=0,即x =3, 把x =3代入整式方程得:m +2=0, 解得m =-2. 故答案为:-2.15、若关于x 的分式方程31x a x x---=1无解,则a =______. 答案:1或-2解答:去分母得x 2-ax -3x +3=x 2-x ,(a +2)x =3, ①去分母后的整式方程无解,∴a +2=0,a =-2; ②解为增根,舍去,∴x =1,a =1, x =0,不符合题意. 16、若关于x 的分式方程3x x --2=3mx -有增根,则m 的值为______. 答案:3解答:方程两边都乘x -3, 得x -2(x -3)=m . ∵原方程有增根, ∴最简公分母x -3=0, 解得x =3, 当x =3时,m =3. 故m 的值是3. 17、若关于x 的方程22x -+2x m x+-=2有增根,则m 的值是______. 答案:0解答:方程两边都乘以(x -2), 得2-x -m =2(x -2), ∵分式方程有增根, ∴x -2=0, 解得x =2, ∴2-2-m =2(2-2), 解得m =0.18、已知关于x 的分式方程21x ax +-=1无解,则a 的值为______. 答案:-2 解答:21x ax +-=1 方程两边同乘以x -1,得移项及合并同类项,得 x =-1-a ,∵关于x 的分式方程21x ax +-=1无解, ∴x -1=0,得x =1, ∴-1-a =1,得a =-2. 故答案为:-2. 19、关于x 的分式方程2m x -+2xx-=2无解,则实数m 的值为______. 答案:2解答:去分母得:m -x =2x -2, 把x =2,代入得:m -2=22-2, 解得:m =2.20、如果关于x 的分式方程25x x --=5mx-无解,m 的值为______. 答案:-3解答:将原分式方程整理为整式方程:x =2-m , ∵分式方程无解,∴分式方程有增根x =5, ∴m =-3.21、关于x 的分式方程2142m x x --+=0无解,则m =______. 答案:0或-4解答:方程去分母得:m -(x -2)=0,解得:x =2+m ,∴当x =2时分母为0,方程无解,即2+m =2,∴m =0时方程无解.当x =-2时分母为0,方程无解,即2+m =-2,∴m =-4时方程无解.综上所述,m 的值是0或-4. 22、若分式方程2111x mx x x +-+-=11x x +-无解,则m 的值是______. 答案:-3或-5或-1解答:方程去分母得:x (x -1)-(mx +1)=(x +1)(x +1), 解得:x (3+m )+2=0,当x =0时整式方程无解,即m =-3, ∴当x =1时分母为0,方程无解,∴当x =-1时分母为0,方程无解, 即m =-1.故答案为:-3或-5或-1. 23、若关于x 的分式方程52a x -+=2xx++3无解,那么a 的值为______. 答案:7 解答:52a x -+=2xx++3, 去分母得:5-a =x +3(x +2), 将x =-2代入上式得:5-a =-2, 所以a =7. 故答案为:7.24、若关于x 的分式方程32xx --1=32m x +-有增根,则m 的值为______.答案:3解答:方程两边都乘(x -2),得3x -x +2=m +3, ∵原方程有增根,∴最简公分母x -2=0,解得x =2,把x =2代入3x -x +2=m +3,得3×2-2+2=m +3,解得m =3. 25、关于x 的方程3mx x -=33x -无解,则m 的值是______. 答案:1或0解答:去分母得mx =3,∵x =3时,最简公分母x -3=0,此时整式方程的解是原方程的增根, ∴当x =3时,原方程无解,此时3m =3,解得m =1, 当m =0时,整式方程无解. ∴m 的值为1或0时,方程无解. 故答案为:1或0. 三、解答题26、若关于x 的分式方程31x a x x---=1无解,求a 的值. 答案:a =1或a =-2.解答:去分母得:x(x-a)-3(x-1)=x(x-1),去括号得:x2-ax-3x+3=x2-x,移项合并得:(a+2)x=3,(1)把x=0代入(a+2)x=3,∴a无解,当x=1代入(a+2)x=3,解得a=1,(2)(a+2)x=3,当a+2=0时,0×x=3,x无解,即a=-2时,整式方程无解,综上所述,当a=1或a=-2时,原方程无解,故答案为:a=1或a=-2.27、当a为何值时,关于x的方程ax=()21xx x+-无解?答案:1或-2解答:方程两边同乘x(x-1)得:a(x-1)=x+2,整理得:(a-1)x=2+a(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=0或1,当x=0时,2+a=0,即a=-2;当x=1时,a-1=2+a,无解,即当a=1或-2时原方程无解.28、已知关于x的分式方程21x-+()()12mxx x-+=12x+.(1)已知m=4,求方程的解.(2)若该分式方程无解,试求m的值.答案:(1)x=-1.(2)m的值可能为-1、1.5或-6.解答:(1)方程两边同时乘以(x+2)(x-1),去分母并整理得5x=-5,解得x=-1,经检验,x =-1是原方程的解.(2)方程两边同时乘以(x +2)(x -1), 去分母并整理得(m +1)x =-5, ∵原分式方程无解,∴m +1=0或(x +2)(x -1)=0, 当m +1=0时,m =-1; 当(x +2)(x -1)=0时, 解得:x =-2或x =1, 当x =-2时,m =1.5; 当x =1时,m =-6;所以m 的值可能为-1、1.5或-6. 29、已知关于x 的分式方程1xx --1=()()12m x x -+ (1)m 为何值时,这个方程的解为x =2? (2)m 为何值时,这个方程有增根? 答案:(1)m =4.(2)m =3.解答:(1)分式方程去分母得:x (x +2)-(x -1)(x -2)=m , 将x =2代入得:8-4=m ,即m =4.(2)分式方程去分母得:x (x +2)-(x -1)(x -2)=m , 将x =1代入得:m =3;将x =-2代入得:m =0(舍去). 则m =3.30、已知关于x 的方程111m xx x ----=0无解,方程x 2+kx +6=0的一个根是m . (1)求m 和k 的值.(2)求方程x 2+kx +6=0的另一个根.答案:(1)m =2,k =-5.(2)方程的另一个根为3. 解答:(1)∵关于x 的方程111m xx x ----=0无解, ∴x -1=0, 解得x =1,方程去分母得:m -1-x =0,把x=1代入m-1-x=0得:m=2.把m=2代入方程x2+kx+6=0得:4+2k+6=0,解得:k=-5.(2)方程x2-5x+6=0,(x-2)(x-3)=0,∴x1=2,x2=3,∴方程的另一个根为3.。

初中数学分式方程的增根、无解问题选择题培优训练6(附答案详解)

初中数学分式方程的增根、无解问题选择题培优训练6(附答案详解)
34.若数a使得关于x的不等式组 ,有且仅有四个整数解,且使关于y的分式方程 =1有整数解,则所有满足条件的整数a的值之和是( )
A.3B.2C.﹣2D.﹣3
35.若关于x的分式方程 有增根,则m的值为( )
A.﹣1或﹣2B.﹣1或2C.1或2D.0或﹣2
36.若方程 有增根,则增根可能为( )
A.0B.2C.0或2D.1
17.关于 的分式方程 的解是正数,则字母 的取值范围是().
A. B. C. D.
18.若数 使关于 的分式方程 的解为正数,且使关于 的不等式组 的解集为 ,则符合条件的所有整数 的和为( )
A.10B.12C.14D.16
19.若数a使关于x的分式方程 的解为正数,且使关于y的不等式组 的解集为y<﹣2,则符合条件的所有整数a的和为( )
A.4B.3C.2D.1
14.若关于 的分式方程 的根是正数,则实数 的取值范围是().
A. ,且 B. ,且
C. ,且 D. ,且
15.若关于 的分式方程 的根是正数,则实数 的取值范围().
A.且 B. 且
C. 且 D. 且
16.已知关于x的方程 的解是正数,那么m的取值范围为()
A.m>-6且m≠2B.m<6C.m>-6且m≠-4D.m<6且m≠-2
初中数学分式方程的增根、无解问题选择题培优训练6(附答案详解)
1.若关于 的方程 的解为 ,则 等于()
A. B.2C. D.-2
2.若a使得关于x的分式方程 有正整数解。且函数y=ax −2x−3与y=2x−1的图象有交点,则满足条件的所有整数a的个数为( )
A.1B.2C.3D.4
3.若分式方程 +3= 有增根,则a的值是( )

分式方程的增根与无解问题专题练习(解析版)

分式方程的增根与无解问题专题练习(解析版)

分式方程的增根与无解问题专题练习一、分式方程的增根问题 1、关于x 的分式方程522x mx x -=++有增根,则m 的值为( ).A. 0B. -5C. -2D. -7答案:D解答:原分式方程去分母得:x -5=m , ∵方程有增根, ∴x +2=0即x =-2, ∴m =-2-5=-7. 选D.2、关于x 的方程1xx --1=()()21a x x +-有增根,那么a =( ).A. -2B. 0C. 1D. 3答案:D解答:去分母得:x (x +2)-(x +2)(x -1)=a , 由分式方程有增根,得到x +2=0或x -1=0, 解得:x =-2或x =1,把x =-2代入整式方程得:a =0,经检验不合题意,舍去; 把x =1代入整式方程得:a =3, 选D3、已知关于x 的方程22x mx +-=3有增根,则m 的值为______. 答案:-4 解答:∵22x mx +-=3, ∴2x +m =3x -6, ∴x =m +6. 又∵有增根, ∴m +6=2, ∴m =-4.4、若分式方程2111x m x x ----=1有增根,则m 的值是______. 答案:3 解答:2111x m x x ----=1, 同乘以x -1得: 2x -(m -1)=x -1, 2x -x =-1+m -1, x =m -2.∵该分式方程存在增根,即x -1=0,x =1, ∴m -2=1, ∴m =3.5、已知关于x 的分式方程1x mx +-=2有增根,则m 的值为______. 答案:-1解答:原方式可化为2(x -1)=m +x . 当原分式方程有增根时,x =1. 将x =1代入得m +1=0. 解得m =-1. 6、已知关于x 的方程311x kx x ----=2有增根,则增根为______,k 的值为______. 答案:1;-2解答:原方程去分母,整理,得k =-x -1. ∵原方程有增根,而原方程的最简公分母为x -1. ∴由x -1=0可知原方程的增根为x =1. 当x =1时,k =-1-1=-2.因此,原方程的增根为1,k 的值为-2. 故答案为:1;-2. 7、若关于x 的分式方程12x x ++=2mx -有增根,则增根为______. 答案:2或-2解答:∵原方程有增根, ∴最简公分母(x +2)(x -2)=0,解得x=-2或2.故答案为2或-2.8、已知方程21 4x-+2=2kx-有增根,则k=______.答案:1 4解答:原方程去分母,得1+2(x2-4)=k(x+2)①,∵原方程有增根,∴x+2=0或x-2=0,∴x=-2或2.把x=-2代入①,得,方程无解.把x=2代入①,得,1+2×(22-4)=k(2+2),解得k=14.故答案为14.9、若关于x的方程21x x -+25kx x-+=211kx--有增根,则k的值为______.答案:3,6或9解答:去分母,得:x+1+(k-5)(x-1)=(k-1)x ①若x=1为增根,则:1+1+0=k-1,k=3,②若x=-1为增根,则:-1+1-2(k-5)=-(k-1),得:k=9,③若x=0为增根,则:0+1-(k-5)=0,k=6,综上,k的值为3,6或9.10、若关于x 的分式方程2611mx x ---=1有增根,则增根是______. 答案:x =1解答:去分母,得:6-m (x +1)=x 2-1, 移项,得:7-m (x +1)=x 2, 当x =-1时,原方程无解, 则x =1为原方程的增根. 11、关于x 的分式方程12mx x +-=-1有增根,求m 的值. 答案:-12. 解答:方程两边都乘(x -2),得mx +1=-(x -2), ∵原方程有增根, ∴最简公分母x -2=0, 解得x =2,当x =2时,2m +1=-(2-2),解得m =-12. 12、若关于x 的方程33x -+29ax x -=43x +有增根,求a 的值.答案:a =-6或a =8.解答:化为整式方程得:3(x +3)+ax =4(x -3), 整理得ax =x -21,再将x =3,x =-3分别代入ax =x -21中,得a =-6或a =8. 二、分式方程的无解问题 13、关于x 的方程321x x -+=2+1mx +无解,则m 的值为( ).A. -5B. -8C. -2D. 5答案:A解答:去分母得:3x -2=2x +2+m , 由分式方程无解,得到x +1=0, 即x =-1,代入整式方程得:-5=-2+2+m , 解得:m =-5, 选A.14、若分式方程31xx+=1mx++2无解,则m=().A. -3B. -2C. -1D. 0答案:A解答:31xx+=1mx++2,3x=m+2x+2,x=m+2,∵x=-1是原方程的增根,原方程无解,∴m+2=-1,∴m=-3.选A.15、关于x的分式方程23m xx+--1=2x无解,则m的值为().A. -1.5B. 1C. -1.5或2D. -0.5或-1.5答案:D解答:23m xx+--1=2x,方程两边都乘以x(x-3),得:x(x+2m)-x(x-3)=2(x-3),整理,得:(2m+1)x=-6,x=-621 m+,∵原分式方程无解,∴2m+1=0或-621m+=3或-621m+=0.解得:x=-0.5或x=-1.5,选D.16、关于x的方程12xx--=1mx-+1无解,则m的值是().A. 0B. 0或1C. 1D. 2答案:B解答:解分式方程12xx--=1mx-+1,整理得(x-1})2}=m(x-2)+(x-1)(x-2),(1-m )x =1-2m ,当m =1时,整式方程无解; 当m ≠1时,x =121mm--. ∵当x =1或x =2时,x 为原方程的増根, 当x =1时,解得m =0; 当x =2时,方程121mm--=2无解. ∴当m =0或1时,原方程无解, 选B.17、若关于x 的方程323x x --+23mxx+-=-1无解,则m 的值为( ).A. 3B. -3C. -53或-1 D. 0答案:C解答:去分母得:3-2x -2-mx =-x +3整理为:( )(1+m )x =-2 该整式方程无解时,原分式方程无解,此时m =-1该整式方程有解,此解恰好是原分式方程的增根,此时m =-53. 18、若分式方程31a x --=2无解,则a =______. 答案:3 解答:31a x --=2, 解得:a =2x +1, ∵x =1时,方程无解, ∴a =2×1+1=3. 19、若方程52m x --+1=12x -无解,则m =______. 答案:4 解答:52m x --=12x --1. 52m x --=()122x x ---.52m x --=32x x --.5-m =3-x . x =-2+m .当x =2时,方程无解. ∴-2+m =2. ∴m =4.20、若关于x 的方程3m x -+2=43xx --无解,则m 的值为______. 答案:1 解答:3m x -+2=43xx -- m +2(x -3)=4-x m +2x -6=4-x 3x =10-m∵方程无解,可知x =3. ∴9=10-m , ∴m =1.21、若关于x 的分式方程1x k x +-=4x+1无解,则k 的值是______. 答案:3或-1解答:化整式方程得:x 2+kx =4x -4+x 2-x , 化简得:(k -3)x =-4.当k -3=0时,整式方程无解,即k =3时,分式方程无解. 当k -3≠0时,整式方程的解x =43k-为分式方程增根1时, 即k =-1时分式方程无解, ∴k =3或-1.22、若关于x 的分式方程23kx x -+532x-=4无解,则k 的值为______. 答案:8或103解答:去分母,得:kx -5=4(2x -3), kx -5=8x -12, kx -8x =-7,当k =8时,原方程无解,当k ≠8时,x =78k --, ∵无解, ∴2x -3=0,∴x =32, ∴78k --=32, ∴k =103,综上,k 的值为8或103. 23、关于x 的方程2ax x -=42x -+1无解,求a 的值.答案:a =1或2.解答:方程去分母得:ax =4+x -2, 解得:(a -1)x =2,∴当a -1=0即a =1时,整式方程无解,分式方程无解, 当a ≠1时,x =21a -, x =2时分母为0,方程无解, 即21a -=2,a =2时方程无解, 综上,当a =1或2时,原分式方程无解. 24、已知关于x 的分式方程2211a a x x x x---++=0无解,求a 的值. 答案:a =12,0,-1时,原方程无解. 解答:方程两边同时乘x (x +1),得: ax -(2a -x -1)=0, 整理得(a +1)x =2a -1,当a =-1时,整式方程无解,原分式方程无解; 当整式方程的解是原分式方程的增根时, 将x =0或x =-1代入整式方程,解得a =12或a =0. 综上所述,a =-1,12或0.。

2021年八年级数学上分式方程的增根无解及解范围问题专题训练含答案解析

2021年八年级数学上分式方程的增根无解及解范围问题专题训练含答案解析

2021年分式方程的增根无解及解范围问题专题训练一.选择题(共17小题) 1.关于x 的分式方程6(x+1)(x−1)−m x−1=1有增根,则它的增根是( )A .x =1B .x =﹣1C .x =1或x =﹣1D .x =32.若关于x 的方程2x x−3−1=m−13−x有增根,则m 的值是( )A .﹣5B .7C .5D .﹣33.已知关于x 的分式方程3−2x x−3+9−mx 3−x=−1无解,则m 的值为( )A .1B .4C .3D .1或44.若关于x 的分式方程m−1x+1=1的解为非负数,则m 的取值范围是( )A .m >1B .m ≥2且m ≠1C .m ≥2D .m ≥﹣1且m ≠15.已知关于x 的分式方程xx−2−3=k2−x 的解为正数,则k 的取值范围是( )A .k >﹣6B .k >﹣2C .k >﹣6且k ≠﹣2D .k ≥﹣6且k ≠﹣26.若关于x 的分式方程x+a x−3+2a 3−x=13的解是非负数,则a 的取值范围为( )A .a >1B .a ≥1C .a ≥1且a ≠3D .a >1且a ≠37.若关于x 的方程m x+1−2x=0的解为负数,则m 的取值范围是( )A .m <2B .m <2且m ≠0C .m >2D .m >2且m ≠48.若关于x 的方程x x−3=m x−3有解,则( )A .m <3B .m ≥3C .m ≠3D .m >39.关于x 的分式方程m+x 2−x−3=0有解,则实数m 应满足的条件是( )A .m =﹣2B .m ≠﹣2C .m =2D .m ≠210.若关于x 的方程ax x−1=x−21−x+1无解,则a 的值为( )A .0或1B .0C .1D .﹣1或011.已知关于x 的分式x−a x−2+2a 2−x=2的解为非负数,则a 的范围为( )A .a ≤43且a ≠23 B .a ≥23且a ≠43C .a ≤−13且a ≠−23D .a ≥13且a ≠2312.已知关于x 的方程3x−1=x+ax(x−1)的增根是x =1,则字母a 的值为( )A .﹣1B .1C .﹣2D .213.若关于x 的分式方程kx x 2−4=3x+2−2x−2无解,则k 的值为( ) A .1或﹣4或6B .1或4或﹣6C .﹣4或6D .4或﹣614.若关于x 的一元一次不等式组{3(x −1)<2x +1x ≤2+a的解集为x <4,且关于y 的分式方程y+a y−2+2a 2−y=4的解是非负整数解,则所有满足条件的整数a 的值之和是( )A .5B .7C .13D .1515.若关于x 的分式方程x−a x−1−2x=1有一个正整数解,则整数a 的值为( )A .﹣1B .0C .1D .1或﹣116.已知关于x 的分式方程10x−33−x=k−27x−3−3的解满足2<x <5且x ≠3,则k 的取值范围是( ) A .﹣7<k <14 B .﹣7<k <14且k ≠0 C .﹣14<k <7且k ≠0D .﹣14<k <717.已知关于x 的分式方程m x−1+2=3x−1的解为正数,则正整数m 的取值可能是( ) A .6B .5C .4D .3二.填空题(共4小题) 18.分式方程4x 2−4=a x−2有增根,则a = .19.关于x 的方程5xx−4+3+mx 4−x=2无解,则m 的值为 . 20.已知关于x 的分式方程m−2x x−2=13.(1)若该方程有增根,则增根是 .(2)若该方程的解大于1,则m 的取值范围是 . 三.解答题(共15小题) 22.若关于x 的分式方程m x 2−1−1x−1=2x+1无解,求m 的值.23.若关于x 的分式方程x x−3−2=mx−3的解是正数,当m 取最大整数时,求m 2+2m +1的平方根.24.如果关于x 的方程x+1x+2−x x−1=ax+2(x−1)(x+2)无解,求a 的值.25.若关于x 的方程2mx+1−m+1x 2+x=1x无解,求实数m 的值.26.若x =k ﹣1是方程x−3x−2=32−x−1的解,求k ﹣1+√4的值.27.已知关于x 的分式方程2x−3+x+a 3−x =2的解为正数,求a 的取值范围. 28.已知关于x 的方程k2x−4−1=xx−2的解为正数,求k 的取值范围.29.关于x 的分式方程:mx x 2−4−22−x=3x+2.(1)当m =3时,求此时方程的根;(2)若这个关于x 的分式方程会产生增根,试求m 的值. 30.若关于x 的方程m x 2−9+2x+3=1x−3有增根,则增根是多少?并求方程产生增根时m 的值.31.已知关于x 的分式方程4x+1+3x−1=kx 2−1.(1)若方程有增根,求k 的值.(2)若方程的解为负数,求k 的取值范围. 32.已知关于x 的方程x x−3−2=k 3−x.(1)当k =3时,求x 的值?(2)若原方程的解是正数.求k 的取值范围? 33.已知关于x 的方程x x−3−2m =mx−3,分别在下列情况下求m 的取值范围.(1)若方程无解; (2)若方程有负根.34.请你利用我们学习的“分式方程及其解法”解决下列问题: (1)已知关于x 的方程2mx−1x+2=1的解为负数,求m 的取值范围; (2)若关于x 的分式方程3−2x x−3+2−nx 3−x=−1无解,求n 的取值范围.35.若关于x 的方程k(x−1)x+2k+1x 2+x=1+2kx+1有且只有一个实数根,求实数k 的所有可能值.36.已知关于x 的方程mx−2+1x−1=2m−2x 2−3x+2.(1)若方程无解,求m的值;(2)若方程的解是正数,求m的取值范围.2021年分式方程的解及增根参考答案与试题解析一.选择题(共17小题) 1.关于x 的分式方程6(x+1)(x−1)−m x−1=1有增根,则它的增根是( )A .x =1B .x =﹣1C .x =1或x =﹣1D .x =3解:去分母得 6﹣m (x +1)=(x +1)(x ﹣1), ∵分式方程有增根,最简公分母(x +1)(x ﹣1)=0, ∴解得 x 1=1,x 2=﹣1.当x =﹣1时,得 6=0,此式不成立. 故x =﹣1不是原分式方程的增根. ∴原分式方程的增根为1. 故选:A . 2.若关于x 的方程2x x−3−1=m−13−x有增根,则m 的值是( )A .﹣5B .7C .5D .﹣3解:∵分式方程有增根, ∴x ﹣3=0, 解得x =3,2x x−3−1=m−13−x,2x x−3−1=1−mx−3, 2x ﹣(x ﹣3)=1﹣m , x +3=1﹣m ,把x =3代入原方程得m =﹣5, 故选:A .3.已知关于x 的分式方程3−2x x−3+9−mx 3−x=−1无解,则m 的值为( )A .1B .4C .3D .1或4解:3−2x x−3+9−mx 3−x=−1,方程两边同时乘以x ﹣3,得3﹣2x +mx ﹣9=3﹣x ,移项、合并同类项,得(m ﹣1)x =9, ∵方程无解, ∴x =3或m ﹣1=0, ∴m ﹣1=3或m =1, ∴m =4或m =1, 故选:D .4.若关于x 的分式方程m−1x+1=1的解为非负数,则m 的取值范围是( )A .m >1B .m ≥2且m ≠1C .m ≥2D .m ≥﹣1且m ≠1解:m−1x+1=1,方程两边同时乘x +1,得m ﹣1=x +1, 移项得x =m ﹣2, ∵方程的解为非负数, ∴m ﹣2≥0, ∴m ≥2, ∵x +1≠0, ∴x ≠﹣1, ∴m ﹣2≠﹣1, ∴m ≠1, ∴m ≥2, 故选:C .5.已知关于x 的分式方程x x−2−3=k2−x的解为正数,则k 的取值范围是( ) A .k >﹣6 B .k >﹣2 C .k >﹣6且k ≠﹣2 D .k ≥﹣6且k ≠﹣2解:分式方程x x−2−3=k2−x ,去分母得:x ﹣3(x ﹣2)=﹣k , 去括号得:x ﹣3x +6=﹣k , 解得:x =6+k2,由分式方程的解为正数,得6+k 2>0,且6+k 2≠2,解得:k >﹣6且k ≠﹣2.故选:C .6.若关于x 的分式方程x+a x−3+2a 3−x=13的解是非负数,则a 的取值范围为( )A .a >1B .a ≥1C .a ≥1且a ≠3D .a >1且a ≠3解:∵x+a x−3+2a 3−x=13,∴3(x +a )﹣6a =x ﹣3, 整理,可得:2x =3a ﹣3, 解得:x =1.5a ﹣1.5, ∵关于x 的分式方程x+a x−3+2a 3−x=13的解是非负数,∴1.5a ﹣1.5≥0,且1.5a ﹣1.5≠3, 解得:a ≥1且a ≠3. 故选:C . 7.若关于x 的方程m x+1−2x=0的解为负数,则m 的取值范围是( )A .m <2B .m <2且m ≠0C .m >2D .m >2且m ≠4解:m x+1−2x=0,方程两边同时乘以x (x +1)得, mx ﹣2(x +1)=0, 去括号得,mx ﹣2x ﹣2=0, 解得x =2m−2, ∵解为负数, ∴2m−2<0,∴m <2, ∵x ≠0,x ≠﹣1, ∴m ≠0,∴m 的取值范围为m <2且m ≠0, 故选:B . 8.若关于x 的方程xx−3=m x−3有解,则( )A .m <3B .m ≥3C .m ≠3D .m >3解:xx−3=m x−3去分母,得x =m . ∵关于x 的方程x x−3=mx−3有解,∴m ﹣3≠0. ∴m ≠3. 故选:C . 9.关于x 的分式方程m+x 2−x −3=0有解,则实数m 应满足的条件是( )A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2解:m+x 2−x−3=0,方程两边同时乘以2﹣x ,得m +x ﹣3(2﹣x )=0, 去括号得,m +x ﹣6+3x =0, 合并同类项得,4x =6﹣m , ∵方程有解, ∴x ≠2, ∴6﹣m ≠8, ∴m ≠﹣2, 故选:B . 10.若关于x 的方程ax x−1=x−21−x+1无解,则a 的值为( )A .0或1B .0C .1D .﹣1或0解:去分母,得:ax =﹣(x ﹣2)+x ﹣1, ∴ax =1,(1)当a =0时,原分式方程无解. (2)x ﹣1=0,即x =1,把x =1代入整式方程,可得:a =1. 综上,a 的值为0或1. 故选:A . 11.已知关于x 的分式x−a x−2+2a 2−x=2的解为非负数,则a 的范围为( )A .a ≤43且a ≠23B .a ≥23且a ≠43C .a ≤−13且a ≠−23D .a ≥13且a ≠23解:x−a x−2+2a 2−x=2,方程两边同时乘以x ﹣2,得 x ﹣a ﹣2a =2(x ﹣2), 解得x =4﹣3a , ∵方程的解为非负数, ∴4﹣3a ≥0, ∴a ≤43, ∵x ≠2, ∴4﹣3a ≠2, ∴a ≠23,∴a 的取值范围是a ≤43且a ≠23, 故选:A . 12.已知关于x 的方程3x−1=x+ax(x−1)的增根是x =1,则字母a 的值为( )A .﹣1B .1C .﹣2D .2解:方程两边同时乘以x (x ﹣1)得:3x =x +a , 把x =1代入得:3×1=1+a , 解得:a =2, 故选:D .13.若关于x 的分式方程kx x 2−4=3x+2−2x−2无解,则k 的值为( ) A .1或﹣4或6 B .1或4或﹣6 C .﹣4或6D .4或﹣6解:kx x 2−4=3x+2−2x−2, kx(x+2)(x−2)=3x+2−2x−2,kx =3(x ﹣2)﹣2(x +2), kx =3x ﹣6﹣2x ﹣4,kx ﹣3x +2x =﹣10, (k ﹣1)x =﹣10, ∵分式方程无解,∴k ﹣1=0,x ﹣2=0,x +2=0, ∴k =1,x =2或﹣2,把x =2代入kx =3(x ﹣2)﹣2(x +2),得k =﹣4, 把x =﹣2代入kx =3(x ﹣2)﹣2(x +2),得k =6, 综上所述:k 的值为1或﹣4或6. 故选:A .14.若关于x 的一元一次不等式组{3(x −1)<2x +1x ≤2+a的解集为x <4,且关于y 的分式方程y+a y−2+2a 2−y=4的解是非负整数解,则所有满足条件的整数a 的值之和是( )A .5B .7C .13D .15解:一元一次不等式组整理得到:{x <4x ≤2+a ,∵不等式组的解集为x <4, ∴2+a ≥4, ∴a ≥2;分式方程两边都乘以(2﹣y )得:﹣y ﹣a +2a =8﹣4y , 3y =8﹣a , y =8−a3.∵y 有非负整数解,且2﹣y ≠0, ∴8−a 3≥0,且8−a 3≠2,解得:a ≤8,且a ≠2.∴能使y 有非负整数解的a 为:5,8,和为13. 故选:C .15.若关于x 的分式方程x−a x−1−2x=1有一个正整数解,则整数a 的值为( )A .﹣1B .0C .1D .1或﹣1解:x (x ﹣a )﹣2(x ﹣1)=x (x ﹣1), x 2﹣ax ﹣2x +2=x 2﹣x ,(a+1)x=2,x=2a+1,∵分式方程有正整数解,∴x>0,∴a+1=1或2,∴a=0或1,∵x﹣1≠0,∴x≠1,∴a≠1,∴整数a的值为:a=0.故选:B.16.已知关于x的分式方程10x−33−x=k−27x−3−3的解满足2<x<5且x≠3,则k的取值范围是()A.﹣7<k<14B.﹣7<k<14且k≠0 C.﹣14<k<7且k≠0D.﹣14<k<7解:在方程两边同乘(x﹣3)得:3﹣10x=k﹣27﹣3(x﹣3),解得:x=21−k 7,∵方程的解满足2<x<5,∴2<21−k7<5,且21−k7≠3,解得:﹣14<k<7且k≠0.故选:C.17.已知关于x的分式方程mx−1+2=3x−1的解为正数,则正整数m的取值可能是()A.6B.5C.4D.3解:mx−1+2=3x−1.方程两边同乘(x﹣1),得m+2(x﹣1)=3.解得:x=5−m 2.∵关于x的分式方程mx−1+2=3x−1的解为正数,∴x =5−m 2>0且5−m 2−1≠0. ∴m <5且m ≠3.故选:C .二.填空题(共4小题)18.分式方程4x 2−4=a x−2有增根,则a = 1 .解:∵4x 2−4=a x−2,∴4=a (x +2),当x =﹣2时,4=a (x +2)无解,当x =2时,4=a (2+2),解得a =1,故a =1,故答案为1.19.关于x 的方程5x x−4+3+mx 4−x =2无解,则m 的值为 3或174 .解:5x x−4+3+mx 4−x =2,方程两边同时乘以x ﹣4,得5x ﹣3﹣mx =2x ﹣8,移项、合并同类项,得(3﹣m )x =﹣5,∵方程无解,∴3﹣m =0或x =4,∴m =3或4(3﹣m )=﹣5,解得m =3或m =174,故答案为:3或174.20.已知关于x 的分式方程m−2x x−2=13. (1)若该方程有增根,则增根是 2 .(2)若该方程的解大于1,则m 的取值范围是 m >53,且k ≠4. .解:(1)∵这个方程有增根,∴x ﹣2=0,∴x =2.故答案为:2;(2)分式方程去分母得:3(m ﹣2x )=x ﹣2,去括号合并得:7x ﹣2=3m ,即x =3m+27, 根据题意得:3m+27>1,且3m+27≠2, 解得:m >53,且m ≠4.故答案为:m >53,且m ≠4.三.解答题(共15小题)22.若关于x 的分式方程m x 2−1−1x−1=2x+1无解,求m 的值. 解:解分式方程mx 2−1−1x−1=2x+1得,x =m+13, ∵上述分式方程无解,∴x 2﹣1=0,即x =1或x =﹣1,∴m+13=1或m+13=−1,解得m =2或m =﹣4.23.若关于x 的分式方程x x−3−2=m x−3的解是正数,当m 取最大整数时,求m 2+2m +1的平方根.解:解分式方程x x−3−2=m x−3, 得x =6﹣m ,若它的解是正数,即6﹣m >0,且6﹣m ≠3时,得m <6且m ≠3,可得m 取最大整数5,当m =5时,m 2+2m +1的平方根为:±√52+2×5+1=±√36=±6.24.如果关于x 的方程x+1x+2−x x−1=ax+2(x−1)(x+2)无解,求a 的值.解:方程去分母得:(x ﹣1)(x +1)﹣x (x +2)=ax +2,即(a +2)x +3=0 ∵关于x 的方程x+1x+2−x x−1=ax+2(x−1)(x+2)无解,∴x =1或x =﹣2,∴当x =1时,﹣3=a +2,即a =﹣5,当x =﹣2时,3=﹣2a +2,即a =−12,另当a =﹣2时,方程变为3=0,不成立,所以a =﹣2时,方程也无解∴a =﹣5或﹣2或−12时方程无解.25.若关于x 的方程2m x+1−m+1x 2+x =1x 无解,求实数m 的值. 解:方程两边同时乘以x (x +1),得:2mx ﹣(m +1)=x +1,解得:x =2+m 2m−1, ∵方程无解,∴x (x +1)=0,∴x =0或x =﹣1,当x =0时,2+m 2m−1=0,解得:m =﹣2,当x =﹣1时,2+m 2m−1=−1,解得:m =−13,当2m ﹣1=0时,方程也无解,解得:m =12,综上,m 的值为﹣2或−13或12. 26.若x =k ﹣1是方程x−3x−2=32−x −1的解,求k ﹣1+√4的值. 解:x−3x−2=32−x −1.去分母得:x ﹣3=﹣3﹣(x ﹣2).∴x =1.经检验,x =1是原方程的解.∵x =k ﹣1是方程x−3x−2=32−x −1的解,∴k ﹣1=1.∴k =2.∴原式=2−1+√4=12+2=52. 27.已知关于x 的分式方程2x−3+x+a 3−x =2的解为正数,求a 的取值范围.解:去分母得:2﹣x ﹣a =2x ﹣6,解得:x =8−a 3,由分式方程的解为正数,得到8−a 3>0且8−a 3≠3, 解得:a <8且a ≠﹣1.28.已知关于x 的方程k 2x−4−1=x x−2的解为正数,求k 的取值范围.解:k 2x−4−1=x x−2,去分母得:k ﹣2x +4=2x解得:x =k+44,∵x ﹣2≠0,∴k+44>0且k+44−2≠0解得:k >﹣4且k ≠4.29.关于x 的分式方程:mxx 2−4−22−x =3x+2.(1)当m =3时,求此时方程的根;(2)若这个关于x 的分式方程会产生增根,试求m 的值.解:(1)把m =3代入方程得:3x x 2−4+2x−2=3x+2,去分母得:3x +2x +4=3x ﹣6,解得:x =﹣5,检验:当x =﹣5时,(x +2)(x ﹣2)≠0,∴分式方程的解为x =﹣5;(2)去分母得:mx +2x +4=3x ﹣6,∵这个关于x 的分式方程会产生增根,∴x =2或x =﹣2,把x =2代入整式方程得:2m +4+4=0,把x =﹣2代入整式方程得:﹣2m =﹣12,解得:m =6.30.若关于x 的方程m x 2−9+2x+3=1x−3有增根,则增根是多少?并求方程产生增根时m 的值.解:去分母,得:m +2(x ﹣3)=x +3,由分式方程有增根,得到x ﹣3=0或x +3=0,即x =±3,把x =3代入整式方程,可得:m =6,把x =﹣3代入整式方程,可得:m =12,综上,可得:方程的增根是x =±3,方程产生增根时m =6或12.31.已知关于x 的分式方程4x+1+3x−1=kx 2−1.(1)若方程有增根,求k 的值.(2)若方程的解为负数,求k 的取值范围.解:(1)分式方程去分母得:4(x ﹣1)+3(x +1)=k ,由这个方程有增根,得到x =1或x =﹣1,将x =1代入整式方程得:k =6,将x =﹣1代入整式方程得:k =﹣8,则k 的值为6或﹣8.(2)分式方程去分母得:4(x ﹣1)+3(x +1)=k ,去括号合并得:7x ﹣1=k ,即x =k+17,根据题意得:k+17<0,且k+17≠1且k+17≠−1,解得:k <﹣1,且k ≠﹣8.32.已知关于x 的方程x x−3−2=k 3−x .(1)当k =3时,求x 的值?(2)若原方程的解是正数.求k 的取值范围?解:(1)k =3时,方程为x x−3−2=33−x ,两边同乘以(x ﹣3),得x ﹣2(x ﹣3)=﹣3,经检验 x =9是原方程的根,∴原分式方程的解为x =9;(2)x x−3−2=k 3−x ,两边同乘以(x ﹣3),得x ﹣2(x ﹣3)=﹣k ,解得:x =6+k ,∵原方程解是正数,∴6+k >0,∴得k >﹣6∵x ≠3,∴6+k ≠3,∴k ≠﹣3,∴k >﹣6且k ≠﹣3.33.已知关于x 的方程x x−3−2m =m x−3,分别在下列情况下求m 的取值范围.(1)若方程无解;(2)若方程有负根.解:(1)分式方程去分母得:x ﹣2m (x ﹣3)=m ,整理得:(1﹣2m )x =﹣5m ,当1﹣2m =0时,方程无解,此时m =12;当1﹣2m ≠0时,解得:x =5m 2m−1,要使方程无解,则有5m 2m−1=3,即m =3, 综上,m =12或m =3.(2)解关于x 的分式方程得:x =5m 2m−1, ∵方程有解,且解为负数,∴{ 2m −1>05m <05m 2m−1≠3或{ 2m −1<05m >05m 2m−1≠3, ∴0<m <12.34.请你利用我们学习的“分式方程及其解法”解决下列问题:(1)已知关于x 的方程2mx−1x+2=1的解为负数,求m 的取值范围; (2)若关于x 的分式方程3−2x x−3+2−nx 3−x=−1无解,求n 的取值范围. 解:(1)解关于x 的分式方程得:x =32m−1,∵方程有解,且解为负数,∴{2m −1<032m−1≠−2, ∴m <12且m ≠−14;(2)分式方程去分母得:3﹣2x +nx ﹣2=3﹣x ,整理得:(n ﹣1)x =2,当n ﹣1=0时,方程无解,此时n =1;当n ﹣1≠0时,解得:x =2n−1,要使方程无解,则有2n−1=3,即n =53, 综上,n =1或n =53.35.若关于x 的方程k(x−1)x +2k+1x 2+x =1+2k x+1有且只有一个实数根,求实数k 的所有可能值.解:k(x−1)x +2k+1x 2+x =1+2k x+1两边同时乘以x (x +1)得:k (x ﹣1)(x +1)+2k +1=x (x +1)+2kx整理得:(k ﹣1)x 2﹣(2k +1)x +k +1=0(1)当k =1时,原方程可变为:﹣3x +2=0解得:x =23经检验,x =23是原分式方程的唯一实数根,符合题意.(2)当k ≠1时,关于x 的方程(k ﹣1)x 2﹣(2k +1)x +k +1=0是一元二次方程, ∵原分式方程有且只有一个实数根,∴△=[﹣(2k +1)]2﹣4(k ﹣1)(k +1)=0解得k =−54将k =−54代入方程得:−94x 2+32x −14=0解得:x 1=x 2=13经检验,x =13是原分式方程的唯一实数根,符合题意综上,实数k 的所有可能值为1和−54.36.已知关于x 的方程m x−2+1x−1=2m−2x 2−3x+2.(1)若方程无解,求m 的值;(2)若方程的解是正数,求m 的取值范围.解:(1)去分母得m (x ﹣1)+x ﹣2=2m ﹣2,整理得(m +1)x =3m ,当m +1=0时,整式方程无解,即m =﹣1时,原方程无解;当x =2时,2(m +1)=3m ,解得m =2;当x =1时,m +1=3m ,解得m =12, 即m =2或m =12时,整式方程的解为2或1,此时分式方程无解,综上所述,m 的值为﹣1或2或12; (2)解方程(m +1)x =3m 得x =3m m+1,∵x >0且x ≠2且x ≠1,∴3m m+1>0且3m m+1≠2且3m m+1≠1, ∴m <﹣1或m >0且m ≠12且m ≠2.。

解方分式方程及增根问题专项训练(30题)(学生版)

解方分式方程及增根问题专项训练(30题)(学生版)

解方分式方程及增根问题专项训练(30题)一、解答题1.解分式方程:2−x x−3+13−x=12.解方程:2x2−1+1=x x−1.3.解分式方程:x x−3−2=4x−34.解方程:1x−1=2x.5.解答下面两题:(1)解方程:x−3x−2+52−x=3(2)化简:(x−3x x+1)÷x−2x2+2x+1 6.x2−2x+3+6x+182−x2=−17.解分式方程:x x−1−31−x=8.解方程:52x+4−12−x=x2x2−4−19.解方程:2x2x−5−22x+5=1.10.解方程:x x−5=22x−10−1 11.解方程:6x−3−2x+184x−12=1.12.解方程:x+2x−2−16x2−4=1x+2.14.解分式方程:x x−3﹣1=18x2−9.15.解分式方程:2−x x−3+4=13−x.16.解方程:3+x x−4+1=14−x.18.解方程:2x−2+3=1−x2−x.19.解方程:102x−1+51−2x=2 20.解分式方程x+1x+2+x+6x+7=x+2x+3+x+5x+621.若关于x的方程m x2−9+2x+3=1x−3有增根,则增根是多少?并求方程产生增根时m的值.22.m为何值时,关于x的方程2x−2+mx x2−4=3x+2会产生增根?23.当m为何值时,关于x的方程2x-3x-2=m+4x-2会产生增根?24.当a为何值时,关于x的方程2x−2+ax x2−4=3x+2会产生增根?25.计算:当m为何值时,关于x的方程2x+1+51−x=m x2−1会产生增根?26.若关于x的方程2x−1+51−x=m x2−1有增根,求增根和m的值.27.当k为何值时,分式方程6x−1=x+2k x(x−1)−5x有增根?28.试问:当k为何值时,方程x x−2−2x x+2=x+k x2−4有增根?29.当m为何值时,解方程2x−2+mx x2−4=0会产生增根?30.当a为何值时,关于x的方程x x+3=2+a x+3会产生增根?。

分式专项训练之07-分式方程的解与增根(含答案)

分式专项训练之07-分式方程的解与增根(含答案)

分式专项训练之七(分式方程的解与增根)含答案一.解答题(共30小题)1.已知关于x的分式方程无解,求m的取值范围.2.若关于x的方程﹣1=无解,求m的值.3.若关于x的方程无解,求m的值.4.若关于x的方程无解,求m的值.5.若关于x的方程无解,试确定a的值.6.如果关于x的分式方程:无解,试求可能的k值.7.(2012•锦州二模)若关于x的方程+1=无解,则m=_________.8.(2008•安顺)若关于x的分式方程的解是正数,求a的取值范围.9.当m为何值时,分式方程的解不小于1.10.若方程2x+=﹣1的解是正数,求a的取值范围.11.若关于x的分式方程﹣=1的解为负数,求a的范围;若解为整数,求整数a的值.12.若关于x的分式方程的解是正数,则m的取值范围是_________.13.已知分式方程=1的解为非负数,求a的取值范围.14.通过观察,发现方程不难求得方程:的解是;的解是;的解是;…(1)观察上述方程及其解,可猜想关于x的方程的解是_________;(2)试验证:当都是方程的解;(3)利用你猜想的结论,解关于x的方程.15.先阅读下面的材料,然后回答问题:方程x+=2+的解为x1=2,x2=;方程x+=3+的解为x1=3,x2=;方程x+=4+的解为x1=4,x2=;…(1)观察上述方程的解,猜想关于x的方程x+=5+的解是_________;(2)根据上面的规律,猜想关于x的方程x+=的解是_________;(3)由(2)可知,在解方程:y+=时,可变形转化为x+=的形式求值,按要求写出你的变形求解过程.16.先阅读下面的材料,然后回答问题:方程x+=2+的解为x1=2,x2=;方程x+=3+的解为x1=3,x2=;方程x+=4+的解为x1=4,x2=;…(1)观察上述方程的解,猜想关于x的方程x+=5+的解是_________;(2)根据上面的规律,猜想关于x的方程x+=a+的解是_________;知识拓展:(3)猜想关于x的方程x﹣=的解并验证你的结论(4)在解方程:y+=时,可将方程变形转化为(2)的形式求解,按要求写出你的变形求解过程.17.(1)阅读以下内容:①根据以上规律,可得(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1)=_________(n为正整数);②根据这一规律,计算:1+2+22+23+24+…22011+22012+22013=_________.(2)阅读下列材料,回答问题:关于x的方程:的解是x1=a,;的解是x1=a,;的解是x1=a,;…①请观察上述方程与解的特征,猜想关于x的方程的解;②请你写出关于x的方程的解.18.解方程:①=﹣1的解x=_________;②=﹣1的解x=_________;③=﹣1的解x=_________;④=﹣1的解x=_________;(1)请完成上面的填空;(2)根据你发现的规律直接写出第⑤个方程和它的解;(3)请你用一个含正整数n的式子表示上述规律,并指出它的解.19.如下表,方程1,方程2,方程3…是按照一定规律排列的一列方程.===(2)已知方程的解是x=11,求a的值;该方程在表内的一列方程中吗?如果在,是第几个方程?(3)写出表内这列方程中的第n个方程和它的解,并验证这个解适合第n个方程.20.已知:方程﹣=﹣的解是x=,方程﹣=﹣的解是x=,试猜想:(1)方程+=+的解;(2)方程﹣=﹣的解(a、b、c、d表示不同的数).21.(2009•荆州二模)若关于x的方程有增根,求k的值.22.若关于x的方程=有增根,求m的值.23.若关于x的方程﹣=有增根,求增根和k的值.24.若方程﹣=有增根,求m的值.25.关于x的方程=有增根,求m的值.26.m为何值时,关于x的方程+=会产生增根?27.若解关于x的分式方程会产生增根,求m的值.28.已知方程有增根x=1,求k的值.29.已知关于x的方程有增根,求m的值.30.(1)解分式方程:(2)当m为何值时,关于x的分式方程有增根.分式专项训练之七(分式方程的解与增根)含答案参考答案与试题解析一.解答题(共30小题)1.已知关于x的分式方程无解,求m的取值范围.x=2.若关于x的方程﹣1=无解,求m的值.3.若关于x的方程无解,求m的值.解:方程x=4.若关于x的方程无解,求m的值.方程方程±5.若关于x的方程无解,试确定a的值.6.如果关于x的分式方程:无解,试求可能的k值.x=7.(2012•锦州二模)若关于x的方程+1=无解,则m=﹣4.解:∵+1=,8.(2008•安顺)若关于x的分式方程的解是正数,求a的取值范围.x=,∴9.当m为何值时,分式方程的解不小于1.x=分式方程∴10.若方程2x+=﹣1的解是正数,求a的取值范围.>.11.若关于x的分式方程﹣=1的解为负数,求a的范围;若解为整数,求整数a的值.﹣=1,∴12.若关于x的分式方程的解是正数,则m的取值范围是m<8且m≠4.分式方程13.已知分式方程=1的解为非负数,求a的取值范围.14.通过观察,发现方程不难求得方程:的解是;的解是;的解是;…(1)观察上述方程及其解,可猜想关于x的方程的解是x1=a,x2=;(2)试验证:当都是方程的解;(3)利用你猜想的结论,解关于x的方程.)根据给的具体方程的解得特点易得到方程;分别代入方程左边,易得到左右两边相等,根据分式方程的解即可得到都是方程的解;)把方程变形得到=a+,=a+,得到具有(=a,于是有,分别解即可得到原方程的解.;1+1+代入方程,左边=,左边是方程)方程变形得,=a+,=a+=a,1=.15.先阅读下面的材料,然后回答问题:方程x+=2+的解为x1=2,x2=;方程x+=3+的解为x1=3,x2=;方程x+=4+的解为x1=4,x2=;…(1)观察上述方程的解,猜想关于x的方程x+=5+的解是x1=5,x2=;(2)根据上面的规律,猜想关于x的方程x+=的解是x1=a,x2=;(3)由(2)可知,在解方程:y+=时,可变形转化为x+=的形式求值,按要求写出你的变形求解过程.=3+,由材料得出y+1=x+=5+,=x+的解是:==y+===3+,+=3+,.16.先阅读下面的材料,然后回答问题:方程x+=2+的解为x1=2,x2=;方程x+=3+的解为x1=3,x2=;方程x+=4+的解为x1=4,x2=;…(1)观察上述方程的解,猜想关于x的方程x+=5+的解是x1=5,x2=;(2)根据上面的规律,猜想关于x的方程x+=a+的解是x1=a,x2=;知识拓展:(3)猜想关于x的方程x﹣=的解并验证你的结论(4)在解方程:y+=时,可将方程变形转化为(2)的形式求解,按要求写出你的变形求解过程.x+=5+的解是;=a+的解是=﹣的解为=﹣﹣(﹣(﹣;y+1+=3+,可得y+1=,解得:﹣17.(1)阅读以下内容:①根据以上规律,可得(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1)=x n+1﹣1(n为正整数);②根据这一规律,计算:1+2+22+23+24+…22011+22012+22013=22014﹣1.(2)阅读下列材料,回答问题:关于x的方程:的解是x1=a,;的解是x1=a,;的解是x1=a,;…①请观察上述方程与解的特征,猜想关于x的方程的解;②请你写出关于x的方程的解.=3+3+,.18.解方程:①=﹣1的解x=0;②=﹣1的解x=1;③=﹣1的解x=2;④=﹣1的解x=3;(1)请完成上面的填空;(2)根据你发现的规律直接写出第⑤个方程和它的解;(3)请你用一个含正整数n的式子表示上述规律,并指出它的解.方程为=的式子表示为=19.如下表,方程1,方程2,方程3…是按照一定规律排列的一列方程.===(2)已知方程的解是x=11,求a的值;该方程在表内的一列方程中吗?如果在,是第几个方程?(3)写出表内这列方程中的第n个方程和它的解,并验证这个解适合第n个方程.代入方程=,发现它是(),代入方程=所得方程为=个方程为====是方程=20.已知:方程﹣=﹣的解是x=,方程﹣=﹣的解是x=,试猜想:(1)方程+=+的解;(2)方程﹣=﹣的解(a、b、c、d表示不同的数).﹣=﹣,先左右两边分别通分可得:化简可得:x=﹣=﹣,先左右两边分别为通分可得:化简可得:x=)先把方程分为两边差的形式:方程﹣=﹣x==421.(2009•荆州二模)若关于x的方程有增根,求k的值.22.若关于x的方程=有增根,求m的值.±.23.若关于x的方程﹣=有增根,求增根和k的值.24.若方程﹣=有增根,求m的值.25.关于x的方程=有增根,求m的值.26.m为何值时,关于x的方程+=会产生增根?+会+=+=27.若解关于x的分式方程会产生增根,求m的值.28.已知方程有增根x=1,求k的值.29.已知关于x的方程有增根,求m的值.30.(1)解分式方程:(2)当m为何值时,关于x的分式方程有增根.。

分式方程的增根_

分式方程的增根_

分式方程的增根一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 若方程x2x−2=4x−2有增根,则增根是()A.−2B.2C.±2D.02. 若关于x的分式方程m−1x−1−xx−1=0无解,则m的值是()A.3B.2C.1D.−13. 若关于x的方程2m−3x−1−xx−1=0有增根,则m的值是()A.3B.2C.1D.−14. 若关于x的方程mx−2=1−xx−2有增根,则m的值为()A.0B.1C.−1D.25. 若关于x的分式方程2x−1x−2=2m+13x−6+1无解,则m的值是()A.2B.3C.4D.56. 如果解分式方程xx−3=3x−3出现了增根,那么增根是()A.0B.−1C.3D.17. 若关于x的方程kx−2+x+12−x=3有增根,则k的值是()A.−1B.2C.3D.0或38. 分式方程xx−1−1=m(x−1)(x+2)有增根,则m的值为()A.0和3B.1C.1和−2D.39. 若分式方程3x2−4=x−1+mx+2有增根,则它的增根是()A.1B.2或−2C.−2D.210. 已知分式方程kx −xx−1=0有增根,则k的值是()A.1B.−1C.±1D.以上都不对二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 当m=________时,分式方程2xx−3−1=mx−3会产生增根.12. 当m=________时,关于x的方程2xx−3=2+mx−3会产生增根.13. 若关于x的分式方程3xx+4=2ax+4会产生增根,则此时a=________.14. 若关于x的分式方程xx−2−2=mx−2有增根,则m的值为________.15. 当m=________时,解关于x的分式方程2x+1+51−x=mx2−1会产生增根.16. 若方程2x−2+mxx2−4=3x+2有增根,则m的值为________.17. 若关于x的方程x+3x−1=1−m1−x有增根,则m=________.18. 若关于x的分式方程mxx+1=−1x+1有增根,则m的值为________.19. 若方程2x−1=1−k1−x有增根,则k=________.20. 当a=________时,关于x的方程3xx−3=2−a3−x会产生增根.三、解答题(本题共计 10 小题,每题 10 分,共计100分,)21. 若方程6(x+1)(x−1)−mx−1=1x+1有增根,求m的值.22. 若关于x的方程3x−3+axx2−9=4x+3有增根,求a的值.23. 已知关于x的方程xx−3=2−mx−3,m取何值时,方程有增根.24. 若关于x的分式方程2xx+1−m+1x2+x=x+1x存在增根,求m的值.25. 若分式方程1x−2+3=1−a2−x有增根,求a的值.26. 若关于x的方程2x−4=3+m4−x有增根,则m的值为多少?27. 当k为何值时,分式方程6x−1=x+2kx(x−1)−5x有增根?28. 已知方程xx−1+kx−1=xx+1有增根,求k的值.29. a为何值时,方程2xx−3=2+ax−3会产生增根.30. 若解关于x的分式方程会产生增根,求的值.参考答案与试题解析分式方程的增根一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】分式方程的增根【解析】方程两边乘以x−2去分母后转化为整式方程,求出整式方程的解得到x的值,得到x= 2为分式方程的增根.【解答】解:去分母得:x2=4,解得:x=2或x=−2,根据题意得到增根为x=2.故选B2.【答案】B【考点】分式方程的增根【解析】【解答】解:分式方程两边同乘以(x−1),m−1−x=0,移项得,x=m−1,∵ x}的分式方程无解,∴ 分母x−1=0,即x=1,∴ m−1=1,∴ m=2.故选B.3.【答案】B【考点】分式方程的增根【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x−1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x−1),得2m−3−x=0,∵方程有增根,∴最简公分母x−1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选B.4.【答案】C【考点】分式方程的增根【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x−2),得m=1−x∵最简公分母(x−2)∴原方程增根为x=2,∴把x=2代入整式方程,得m=−1.故选C.5.【答案】C【考点】分式方程的增根【解析】去分母化分式方程为整式方程,将增根x=2代入整式方程即可得.【解答】解:去分母可得:3(2x−1)=2m+1+3x−6,化简可得3x+2=2m,由于该分式方程无解,则x=2为分式方程的增根,故x=2为方程3x+2=2m的根,故2m=8,m=4.故选C.6.【答案】C【考点】分式方程的增根【解析】增根是化为整式方程后产生的不适合分式方程的根,所以应先确定增根的可能值,让最简公分母(x−3)=0,即可求出增根.【解答】:原方程有增根,:最简公分母(x−3)=0解得x=3故答案为:C.7.【答案】C【考点】分式方程的增根【解析】去分母可得,k−(x+1)=3(x−2),∴ k=4x−5,∵ 存在增根,∴ x−2=0,∴ 增根为x=2,∴ k=4×2−5=3,故选C.【解答】解:去分母可得,k−(x+1)=3(x−2),∴ k=4x−5,∵ 存在增根,∴ x−2=0,∴ 增根为x=2,∴ k=4×2−5=3,故选C.8.【答案】D【考点】分式方程的增根【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−1)(x+2)=0,得到x=1或−2,然后代入化为整式方程的方程,满足即可.【解答】解:方程两边都乘(x−1)(x+2),得x(x+2)−(x−1)(x+2)=m,∴ m=x+2.∵原方程有增根,∴最简公分母(x−1)(x+2)=0,解得x=1或−2,当x=1时,m=3,此方程有增根,符合题意;−1=0,此方程无解,当x=−2时,m=0,此时原方程化为xx−1所以m=0不符合题意.所以m的值为3.故选D.9.【答案】C【考点】分式方程的增根【解析】让最简公分母为0可得分式方程可能的增根,进而代入得到的整式方程,舍去不合题意的解即可.【解答】由题意得x2−4=0,解得x=2或−2,原方程化为整式方程为3=(x−1+m)(x−2)当x=2时,右边为0,所以不能是2,当x=−2时,左边可能等于右边,10.【答案】D【考点】分式方程的增根【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让分母x(x−1)=0,得到增跟的可能值,然后代入分子检验可得出k的值.【解答】解:将左边通分可得,kx−k−x 2x(x−1)=0,则kx−k−x2=0①,∵原方程有增根,∴分母x(x−1)=0,解得x=0或1,当x=0时,代入①得k=0.当x=1时,代入①得−1=0,这不可能,舍去,综上可得k的值为0.故选D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】6【考点】分式方程的增根【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x−3),得2x−(x−3)=m∵最简公分母为(x−3),∴原方程增根为x=3,∴把x=3代入整式方程,6−(3−3)=m,解得:m=6.即当m=6时,分式方程2xx−3−1=mx−3会产生增根,故答案为:6.12.【答案】6【考点】分式方程的增根【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x−3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x−3)得,2x=2(x−3)+m,∵原方程有增根,∴最简公分母x−3=0,即增根是x=3,把x=3代入整式方程,得m=6.故答案为:6.13.【答案】−6【考点】分式方程的增根【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x+4=0,所以增根是x=−4,把增根代入化为整式方程的方程即可求出a的值.【解答】解:方程两边都乘(x+4),得3x=2a,∵原方程有增根,∴最简公分母x+4=0,即增根是x=−4,把x=−4代入整式方程,得a=−6.14.【答案】2【考点】分式方程的增根【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−2)=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x−2),得x−2(x−2)=m.∵原方程有增根,∴最简公分母x−2=0,解得x=2.当x=2时,m=2.故答案为:2.15.【答案】−10或−4【考点】分式方程的增根【解析】根据等式的性质,可得整式方程,根据分式方程的增根是整式方程的解,可得关于m 的方程,根据解方程,可得答案.【解答】解:方程的两边都乘以(x+1)(x−1),得2(x−1)−5(x+1)=m,化简,得m=−3x−7.由分式方程有增根,得到x2−1=0,即x=1或x=−1,当x=1时,m=−3−7=−10;当x=−1时,m=3−7=−4.综上,当m=−10或m=−4时,解关于x的分式方程2x+1+51−x=mx2−1会产生增根.故答案为:−10或−4.16.【答案】6或−4【考点】分式方程的增根【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x+2)(x−2)=0,得到x=2或−2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边同乘(x−2)(x+2),得2(x+2)+mx=3(x−2),∵原方程有增根,∴最简公分母(x+2)(x−2)=0,解得x=−2或2,当x=−2时,m=6,当x=2时,m=−4.故答案为:6或−4.17.【答案】5【考点】分式方程的增根【解析】先去分母求出方程的根用含m的式子表示,再把增根x=1代入解中求出m.【解答】解x+3x−1=1−m1−xx+3 x−1=m−1 x−1故x+3=m−1,故x=m−4把增根x=1代入得1=m−4解得m=5故填:5.18.【答案】1【考点】分式方程的增根【解析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+1=0,求出x的值,代入整式方程即可求出m的值.【解答】解:分式方程去分母得:mx=−1,由分式方程有增根,得到x+1=0,即x=−1,把x=−1代入整式方程得:−m=−1,解得:m=1.故答案为:1.19.【答案】2【考点】分式方程的增根【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方成两边都乘以(x−1)得,2=x−1+k,∵方程有增根,∴x−1=0,解得x=1,∴2=1−1+k,解得k=2.故答案为:2.20.【答案】9【考点】分式方程的增根【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x−3=0,得到x=3,然后代入化为整式方程的方程算出a的值.【解答】解:方程两边都乘x−3,得3x=2(x−3)+a∵原方程有增根,∴最简公分母x−3=0,解得x=3,当x=3时,a=9故答案为:9.三、解答题(本题共计 10 小题,每题 10 分,共计100分)21.【答案】解:去分母,得6−m(x+1)=x−1.化简,得−mx−m=x−7.分式方程的增根是x=1或x=−1.当x=1时,−m−m=−6,解得m=3;当x=−1时,m−m=−8,m不存在.综上所述:m=3.【考点】分式方程的增根【解析】根据去分母,可得整式方程,根据分式方程的增根是整式方程的解,把分式方程的增根代入整式方程,可得关于m的一元一次方程,根据解一元一次方程,可得答案.【解答】解:去分母,得6−m(x+1)=x−1.化简,得−mx−m=x−7.分式方程的增根是x=1或x=−1.当x=1时,−m−m=−6,解得m=3;当x=−1时,m−m=−8,m不存在.综上所述:m=3.22.【答案】解:去分母得:3x+9+ax=4x−12,由分式方程有增根,得到(x+3)(x−3)=0,即x=−3或x=3,把x=−3代入整式方程得:−9+9−3a=−12−12,即a=8;把x=3代入整式方程得:9+9+3a=12−12,即a=−6,综上,a的值为−6或8.【考点】分式方程的增根【解析】分式方程去分母转化为整式方程,根据分式方程有增根,得到最简公分母为0求出x的值,代入整式方程即可求出a的值.【解答】解:去分母得:3x+9+ax=4x−12,由分式方程有增根,得到(x+3)(x−3)=0,即x=−3或x=3,把x=−3代入整式方程得:−9+9−3a=−12−12,即a=8;把x=3代入整式方程得:9+9+3a=12−12,即a=−6,综上,a的值为−6或8.23.【答案】解:由题意得:x x−3=2−mx−3,x=2(x−3)−m,x=6+m.因为方程有增根,所以x−3=0,解得x=3.m=x−6=3−6=−3. 【考点】分式方程的增根【解析】此题暂无解析【解答】解:由题意得:x x−3=2−mx−3,x=2(x−3)−m,x=6+m.因为方程有增根,所以x−3=0,解得x=3.m=x−6=3−6=−3.24.【答案】解:方程两边同乘以x(x+1)得,2x2−(m+1)=(x+1)2,整理得,x2−2x−m−2=0,∵关于x的分式方程2xx+1−m+1x2+x=x+1x存在增根,∴x(x+1)=0,∴x=0或x=−1,把x=0代入x2−2x−m−2=0得,−m−2=0,解得m=−2;把x=1代入x2−2x−m−2=0得,1−2−m−2=0,解得m=1;∴m的值为−2或1.【考点】分式方程的增根【解析】先把方程两边同乘以x(x+1)得到整式方程x2−2x−m−2=0,由于原方程存在增根,则x(x+1)=0,即增根只能为0或−1,然后把x=0与x=−1分别代入x2−2x−m−2=0得到关于m的方程,解方程即可得到m的值.解:方程两边同乘以x(x+1)得,2x2−(m+1)=(x+1)2,整理得,x2−2x−m−2=0,∵关于x的分式方程2xx+1−m+1x2+x=x+1x存在增根,∴x(x+1)=0,∴x=0或x=−1,把x=0代入x2−2x−m−2=0得,−m−2=0,解得m=−2;把x=1代入x2−2x−m−2=0得,1−2−m−2=0,解得m=1;∴m的值为−2或1.25.【答案】2.【考点】分式方程的增根【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x−2=0,得到x=2,然后代入化为整式方程的方程算出a的值.【解答】解:方程两边都乘(x−2),得1+3(x−2)=a−1∵原方程有增根,∴最简公分母(x−2)=0,解得x=2,当x=2时,a=2.26.【答案】解:方程两边都乘(x−4),得2=3(x−4)−m∵原方程有增根,∴最简公分母(x−4)=0,解得x=4,当x=4时,m=−2.【考点】分式方程的增根【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x−5=0,得到x=4,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x−4),得2=3(x−4)−m∵原方程有增根,∴最简公分母(x−4)=0,解得x=4,当x=4时,m=−2.27.当k=2.5或−2.5时,分式方程有增根.【考点】分式方程的增根【解析】此题暂无解析【解答】解:方程两边同乘以x(x−1)得:6x=x+2k−5(x−1).∵分式方程有增根,∴x(x−1)=0,∴x=0或1.当x=1时,代入整式方程得:6×1=1+2k−5(1−1),解得:k=2.5,当x=0时,代入整式方程得:6×0=0+2k−5(0−1),解得:k=−2.5,则当k=2.5或−2.5时,分式方程有增根.28.【答案】解:方程两边都乘(x−1)(x+1),得x(x+1)+k(x+1)=x(x−1)∵原方程有增根,∴最简公分母(x+1)(x−1)=0,∴增根是x=1或−1,当x=1时,k=1;当x=−1时,k无解.【考点】分式方程的增根【解析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出k的值.【解答】解:方程两边都乘(x−1)(x+1),得x(x+1)+k(x+1)=x(x−1)∵原方程有增根,∴最简公分母(x+1)(x−1)=0,∴增根是x=1或−1,当x=1时,k=1;当x=−1时,k无解.29.【答案】解:方程两边同乘x−3,得2x=2(x−3)+a∵x=3是原方程的增根,但它是上面整式方程的根,∴x=3应满足2x=2(x−3)+a.将x=3代入,得2×3=2(3−3)+a,解得a=6.【考点】分式方程的增根【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x−3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出a的值.【解答】解:方程两边同乘x−3,得2x=2(x−3)+a∵x=3是原方程的增根,但它是上面整式方程的根,∴x=3应满足2x=2(x−3)+a.将x=3代入,得2×3=2(3−3)+a,解得a=6.30.【答案】解答:方程两边都乘(x+2)(x−2),得2(x+2)+mx=3(x−2)∵最简公分母为(x+2)(x−2),∴原方程增根为x=±2,∴把x=2代入整式方程,得=−4.把x=−2代入整式方程,得=6.综上,可知=−4或6.【考点】分式方程的增根【解析】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.【解答】此题暂无解答。

5.4.5分式方程的增根

5.4.5分式方程的增根

一.选择题(共35小题)1.(2005•扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.【点评】求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.2.(2017秋•常熟市期末)若关于x 的分式方程有增根,则m的值为()A.﹣2B.0C.1D.2【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程计算即可求出m的值.【解答】解:方程两边都乘以x﹣2,得:x+m﹣2m=3(x﹣2),∵方程有增根,第1页(共29页)∴x=2,将x=2代入整式方程,得:2+m﹣2m=0,解得:m=2,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.(2017•聊城)如果解关于x 的分式方程﹣=1时出现增根,那么m的值为()A.﹣2B.2C.4D.﹣4【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,m+4=2﹣2,m=﹣4,故选:D.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.第2页(共29页)4.(2017•毕节市)关于x的分式方程+5=有增根,则m的值为()A.1B.3C.4D.5【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣1),得7x+5(x﹣1)=2m﹣1,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,当x=1时,7=2m﹣1,解得m=4,所以m的值为4.故选:C.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.5.(2017•河南模拟)若关于x的分式方程+=1有增根,则m的值是()A.m=0或m=3B.m=3C.m=0D.m=﹣1第3页(共29页)【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣4=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3﹣x﹣m=x﹣4,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:3﹣4﹣m=0,解得:m=﹣1,故选:D.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6.(2017春•灌云县期末)若关于x 的方程+=0有增根,则m的值是()A.﹣2B.﹣3C.5D.3【分析】根据分式方程增根的定义进行选择即可.【解答】解:∵关于x 的方程+=0有增根,∴x﹣5=0,∴x=5,∴2﹣x+m=0,∴m=3,故选:D.【点评】本题考查了分式方程的增根,掌握分式方程增根的定义是解题的关键.第4页(共29页)7.(2017春•辉县市期末)若关于x 的方程=有增根,则m的值为()A.3B.2C.1D.﹣1【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:m﹣1=﹣x,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m=﹣1,故选:D.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.(2017春•建德市期末)若分式方程﹣=3有增根,则m的值为()A.﹣1B.1C.2D.3【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:分式方程去分母得:x+2m=3x﹣6,由分式方程无解,得到x﹣2=0,即x=2,把x=2代入整式方程得:2+2m=0,解得:m=﹣1,故选:A.第5页(共29页)【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.(2017春•新城区校级期末)若关于x 的分式方程有增根,则m的值为()A.3B.﹣C.D.【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出值m的值.【解答】解:去分母得:x﹣2x+6=m2,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:m2=3,解得:m=±,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.10.(2017春•泗阳县期末)解关于x 的分式方程﹣1=时会产生增根,则增根可能为()A.0或3B.3C.0D.以上都不对【分析】根据分式方程增根的定义得出x=0或3,再检验是不是整式方程x(2m+x)﹣x(x ﹣3)=2(x﹣3)的根即可解决问题.【解答】解:去分母得到x(2m+x)﹣x(x﹣3)=2(x﹣3)①第6页(共29页)∵关于x 的分式方程﹣1=时会产生增根,∴x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或3,x=0代入①,左右不等,说明x=0不是整式方程①的根,0不可能是增根,∴增根只能是3,故选:B.【点评】本题考查了分式方程的增根,掌握增根的定义是解题的关键,11.(2017春•吉安县期末)若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣5【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x+4),得x﹣1=m,∵原方程增根为x=﹣4,∴把x=﹣4代入整式方程,得m=﹣5,故选:D.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;第7页(共29页)②把增根代入整式方程即可求得相关字母的值.12.(2017春•任城区期末)若分式方程有增根,则m等于()A.3B.﹣3C.2D.﹣2【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.【解答】解:分式方程去分母得:x﹣3=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣2,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.13.(2017春•宝安区校级期末)解方程会产生增根,则m等于()A.﹣10B.﹣10或﹣3C.﹣3D.﹣10或﹣4【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:2x﹣2﹣5x﹣5=m,即﹣3x﹣7=m,由分式方程有增根,得到(x+1)(x﹣1)=0,即x=1或x=﹣1,把x=1代入整式方程得:m=﹣10,把x=﹣1代入整式方程得:m=﹣4,故选:D.第8页(共29页)【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.(2016秋•娄星区期末)已知关于x的方程﹣=0的增根是1,则字母a的取值为()A.2B.﹣2C.1D.﹣1【分析】去分母得出整式方程,把x=1代入整式方程,即可求出答案.【解答】解:﹣=0,去分母得:3x﹣(x+a)=0①,∵关于x的方程﹣=0的增根是1,∴把x=1代入①得:3﹣(1+a)=0,解得:a=2,故选:A.【点评】本题考查了分式方程的增根,能理解增根的意义是解此题的关键.15.(2017春•锦江区期末)解关于x 的方程=产生增根,则常数a的值等于()A.2B.﹣3C.﹣4D.﹣5【分析】先把分式方程化为整式方程得到x=a+6,由于原分式方程有增根,则增根只能为2,然后在整式方程中当x=2时,求出对应的a的值即可.【解答】解:去分母得x﹣6=a,第9页(共29页)解得x=a+6,因为关于x 的方程=产生增根,所以x=2,即a+6=2,解得a=﹣4.故选:C.【点评】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.16.(2016秋•孝南区期末)如果方程有增根,那么m的值为()A.1B.2C.3D.无解【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣3),得x=3m.∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3.m=x=1,故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.第10页(共29页)17.(2016秋•肇源县期末)去分母解关于x 的方程=时产生增根,则m的值为()A.m=1B.m=﹣1C.m=2D.m无法求出【分析】分式方程去分母转化为整式方程,由分式方程有增根确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x﹣3=m,解得:x=m+3,由分式方程有增根,得到x=2,则有m+3=2,解得:m=﹣1,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.18.(2017春•东阳市期末)已知关于x 的方程有增根,则k=()A.﹣1B.1C.﹣2D.除﹣1以外的数【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x﹣1=0,求出x的值,代入整式方程计算即可求出k的值.【解答】解:去分母得:k+1=﹣x,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:k=﹣2,故选:C.第11页(共29页)【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.19.(2017春•历下区期末)若关x 的分式方程﹣1=有增根,则m的值为()A.3B.4C.5D.6【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:2x﹣x+3=m,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:m=6,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.(2017春•普宁市期末)若分式方程=2+有增根,则a的值为()A.5B.4C.3D.0【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可求出a的值.【解答】解:去分母得:x+1=2x﹣8+a,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:a=5,第12页(共29页)故选:A.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.21.(2017春•昆山市期末)若分式方程+1=有增根,则a的值是()A.1B.2C.3D.4【分析】根据分式方程增根的定义进行选择即可.【解答】解:∵分式方程+1=有增根,∴x﹣3=0,∴x=3,∴1+x﹣3=a﹣x,∴a=4,故选:D.【点评】本题考查了分式方程的增根,掌握分式方程增根的定义是解题的关键.22.(2017秋•滦南县期中)若关于x 的分式方程=有增根,则m的值是()A.﹣3B.1C.2D.3【分析】分式方程去分母转化为整式方程,由分式方程无解确定出m的值即可.【解答】解:去分母得:x﹣2=m,由分式方程有增根,得到x﹣3=0,即x=3,第13页(共29页)把x=3代入整式方程得:m=1,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.23.(2017秋•新泰市期中)若关于x 的方程﹣=0有增根,则m的值是()A.3B.2C.1D.﹣1【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:m﹣1﹣x=0,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=2,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.24.(2017秋•文登区期中)关于x 的方程有增根,则m的值为()A.﹣4B.6C.﹣4和6D.0【分析】把所给方程转换为整式方程,进而把可能的增根代入求得m的值即可.【解答】解:最简公分母为x2﹣4,当x2﹣4=0时,x=±2.去分母得:2(x+2)+mx=3(x﹣2),第14页(共29页)当增根为x=2时,8+2m=0,解得m=﹣4;当增根为x=﹣2时,﹣2m=3×(﹣4),解得m=6;故选:C.【点评】考查增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.25.(2017秋•环翠区校级期中)若关于x 的方程+1=0有增根,则a的值是()A.1B.﹣1C.3D.4【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x的值,代入整式方程计算即可求出a的值.【解答】解:分式方程去分母得:ax﹣1+x﹣1=0,整理得:(a+1)x=2,由分式方程有增根,得到a+1=0,即a=﹣1,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.26.(2017春•桑植县期中)若分式方程有增根,则a的值是()A.1B.0C.﹣1D.3【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计第15页(共29页)算即可求出a的值.【解答】解:去分母得:1+3x﹣6=a﹣x,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入得:1+6﹣6=a﹣2,解得:a=3,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.27.(2017春•江阴市期中)若关于x 的分式方程=2﹣有增根,则m的值为()A.﹣3B.2C.3D.不存在【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x=2(x﹣3)+m,方程化简,得m=﹣x+6∵原方程增根为x=3,∴把x=2代入整式方程,得m=3,故选:C.第16页(共29页)【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.28.(2017春•江阴市校级月考)若关于x的分式方程=3﹣有增根,则m的值为()A.﹣5B.5C.2D.不存在【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x=3x﹣15+m,由分式方程有增根,得到x﹣5=0,即x=5,把x=5代入整式方程得:m=5,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.29.(2017春•吴江区校级月考)如果关于x 的方程=1﹣有增根,那么m的值等于()A.﹣3B.﹣2C.﹣1D.3【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边同乘以x﹣3,得第17页(共29页)2=x﹣3﹣m①.∵原方程有增根,∴x﹣3=0,即x=3.把x=3代入①,得m=﹣2.故选:B.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.30.(2017秋•太仓市校级月考)若分式方程=﹣2有增根,则m的值为()A.2B.3C.1D.﹣1【分析】先把分式方程化为整式方程得到m=x﹣1﹣2(x﹣2),再利用增根的定义得到x=2,然后把x=2代入m=x﹣1﹣2(x﹣2)中可计算出m的值.【解答】解:去分母得m=x﹣1﹣2(x﹣2),因为原方程有增根,则增根为x=2,把x=2代入m=x﹣1﹣2(x﹣2)得m=2﹣1=1.故选:C.【点评】本题考查了分式方程的增根:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.第18页(共29页)31.(2017春•南关区校级月考)若分式方程+2=0有增根,则a的值是()A.a=2B.a=C.a=﹣D.a=﹣3.【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【解答】解:去分母得:ax+2a+1+2x2﹣8=0,由分式方程有增根,得到x=2或x=﹣2,把x=2代入整式方程得:4a+1=0,即a=﹣;把x=﹣2代入整式方程,无解,则a的值为﹣,故选:C.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.32.(2017春•惠安县校级月考)若关于x 的分式方程+1=有增根,则k的值为()A.2B.﹣2C.1D.3【分析】去分母化分式方程为整式方程,将增根x=2代入整式方程即可得.【解答】解:去分母,得:3+x﹣2=k,∵分式方程有增根,∴增根为x=2,第19页(共29页)将x=2代入整式方程,得:k=3,故选:D.【点评】本题主要考查分式方程的增根,熟练掌握增根的定义是解题的关键.33.(2017春•下城区校级月考)若分式方程=3+有增根,则a的值为()A.4B.2C.1D.0【分析】根据分式方程的解法即可求出a的值.【解答】解:去分母可得:x=3(x﹣4)+ax=把x=代入x﹣4=0,由于方程有增根,∴x﹣4=0∴﹣4=0,解得:a=4故选:A.【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.34.(2017秋•浦东新区月考)关于x 的分式方程有增根,则m的值为()第20页(共29页)A.2B.﹣1C.0D.1【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣2),得2x+m﹣3=3x﹣6∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,4+m﹣3=0.解得m=﹣1.故选:B.【点评】本题考查了分式方程的增根,让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.35.(2017春•雁塔区校级月考)已知关于x 的方程有增根,则m的值为()A.﹣3B.1C.1或0D.3或﹣5【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x﹣1)=0,得到x=0或x=1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x(1﹣x),得3(x﹣1)+6x=x﹣m,第21页(共29页)化简,得8x=3﹣m.∵原方程有增根,∴最简公分母x(1﹣x)=0,解得x=0或x=1,当x=0时,m=3,当x=1时,m=﹣5.故m的值为3或﹣5.故选:D.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.二.填空题(共13小题)36.(2013秋•祁阳县校级期中)若方程有增根,则a的值可能是6.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣5)(x﹣6)=0,得到x=5或6,然后代入化为整式方程的方程算出a的值.【解答】解:方程两边都乘(x﹣5)(x﹣6),得x(x﹣6)=(x﹣a)(x﹣5)∵原方程有增根,∴最简公分母(x﹣5)(x﹣6)=0,第22页(共29页)解得x=5或6,当x=5时,﹣1=0,这是不可能的.当x=6时,a=6,故a的值可能是6.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.37.(2009•邵东县自主招生)38.(2007•福州校级自主招生)若方程有增根x=2,则m=﹣6.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x+2)(x﹣2),得x﹣m﹣x(x+2)=2(x+2)(x﹣2)∵原方程增根为x=2,∴把x=2代入整式方程,得m=﹣6.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.第23页(共29页)39.(2005•烟台)已知方程有增根,则k=﹣.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(2+x)(2﹣x)=0,所以增根是x=2或﹣2,把增根代入化为整式方程的方程即可求出k的值.【解答】解:方程两边都乘(2+x)(2﹣x),得1+2×(2+x)(2﹣x)=﹣k(2+x)∵原方程有增根,∴最简公分母(2+x)(2﹣x)=0,∴增根是x=2或﹣2,当x=2时,k=﹣;当x=﹣2时,k无解.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.40.已知分式方程有增根,则a=0.【分析】先求得增根,再将分式方程化为整式方程,将增根代入求得a的值即可.【解答】解:∵有增根,第24页(共29页)∴x=﹣3或3,3a﹣a|x|=x2+4x+3,即x2+4x+3=0,解答x=﹣1或﹣3,∴﹣3为增根,原方程的解为:x=﹣1,当x=﹣1时,原分式方程为:,∴a=0.故答案为:0.【点评】本题考查分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.41.(2017•沭阳县校级二模)42.(2017•宿迁)若关于x 的分式方程=﹣3有增根,则实数m的值是1.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母,得:m=x﹣1﹣3(x﹣2),由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程可得:m=1,故答案为:1.第25页(共29页)【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.43.(2017•黄石港区校级模拟)若关于x 的方程有增根,则m的值是4.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣2)=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣2),得x+2=m∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=2+2+4,故答案为:4.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.46.(2017春•姑苏区期末)47.(2017春•金堂县期末)若关于x 的分式方程+=3有增根,则a=4.【分析】根据解分式方程的步骤可得到一个一元一次方程,由条件可知该方程的根即分式的第26页(共29页)分母为0的值,可求得a的值.【解答】解:方程两边同时乘(x﹣1),可得1﹣ax+3x=3(x﹣1),整理可得ax=4,∵分式方程有增根,∴方程的根为x=1,∴a=4,故答案为:4【点评】本题主要考查分式方程的增根,掌握分式方程的增根使其分母为0是解题的关键.48.(2017春•峄城区期末)三.解答题(共2小题)49.当k为何值时,关于x 的方程=+1,(1)有增根;(2)解为非负数.【分析】(1)根据分式方程有增根,得到最简公分母为0,代入整式方程计算即可求出k的值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x,根据解为非负数求出k 的范围即可.【解答】解:(1)分式方程去分母得:(x+3)(x﹣1)=k+(x﹣1)(x+2),由这个方程有增根,得到x=1或x=﹣2,第27页(共29页)将x=1代入整式方程得:k=0(舍去);将x=﹣2代入整式方程得:k=﹣3,则k的值为﹣3.(2)分式方程去分母得:(x+3)(x﹣1)=k+(x﹣1)(x+2),去括号合并得:x=k+1,根据题意得:k+1≥0且k+1≠1,k+1≠﹣2,解得:k≥﹣1且k≠0,k≠﹣3.故当k≥﹣1且k≠0时,关于x 的方程=+1解为非负数.【点评】此题考查了分式方程的解,以及分式方程的增根,弄清题意是解本题的关键.50.(2017秋•凤庆县期末)若解关于x的分式方程+=会产生增根,求m的值.【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出m的值即可.【解答】解:去分母得:2x+4+mx=3x﹣6,由分式方程有增根,得到(x+2)(x﹣2)=0,解得:x=2或x=﹣2,当x=2时,4+4+2m=0,即m=﹣4;当x=﹣2时,﹣2m=﹣12,即m=6,综上,m的值是﹣4或6.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式第28页(共29页)方程;②把增根代入整式方程即可求得相关字母的值.第29页(共29页)。

七下提练第12招巧解分式方程的增根问题习题新版浙教版

七下提练第12招巧解分式方程的增根问题习题新版浙教版

(1)已知m=4,求方程的解;
【解】原方程当 m=4 时, 分式方程为x-2 1+(x-14)x(x+2)=x+1 2, 去分母,得 2(x+2)+4x=x-1,解得 x=-1, 经检验:x=-1 是原方程的根.
(2)若该分式方程无解,试求m的值. 【解】原方程去分母得2(x+2)+mx=x-1, 整理得(m+1)x=-5, ∵分式方程无解,∴m+1=0或(x+2)(x-1)=0. 当m+1=0时,m=-1; 当(x+2)(x-1)=0时,x=-2或x=1.
当 x=-2 时,-2(m+1)=-5, 解得 m=32; 当 x=1 时,m+1=-5,解得 m=-6. ∴m=-1 或-6 或32.
6.当 a 为何值时,关于 x 的分式方程xx--a1-3x=1 无解. 【解】原方程化为整式方程为x(x-a)-3(x-1)= x(x-1),整理,得(a+2)x=3. 当a=-2时,方程无解,原分式方程无解; 当x=0时,方程无解;当x=1时,原分式方程有 增根,此时a=1.综上,a的值为1或-2.
7.已知关于 x 的分式方程xx(x2+-42)-x-x 2=ax无解,求 a 的值. 【解】原方程化为整式方程为x2+4-x2=a(x-2), 整理,得ax=4+2a. 当a=0时,分式方程无解; 当x=0时,原分式方程有增根,此时a=-2; 当x=2时,方程无解.综上,a的值为0或-2.
8. [2023·绍兴月考]已知关于 x 的分式方程x-2 1+ (x-1m)(xx+2)=x+1 2.
4.若关于 x 的分式方程3xx+-12=2+x+m 1 无解,求 m 的值.
【解】原方程去分母,得3x-2=2(x+1)+m,整理, 得x=m+4,由分式方程无解,得x+1=0, 所以x=-1. 将x=-1代入x=m+4,得-1=m+4, 解得m=-5.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程的增根专题练习
一、选择题(共10小题)
1.若分式方程有增根,则增根可能是()
A.1B.﹣1 C.1或﹣1 D.0
2.如果方程有增根,那么k的值()
A.1B.﹣1 C.±1 D.7
3.若关于x的方程=产生增根,则m是()
A.1B.2C.3D.4
4.若关于x的方程有增根,则m的值是()
A.﹣2 B.2C.5D.3
5.若方程=7有增根,则k=()
A.﹣1 B.0C.1D.6
6.解关于x的方程产生增根,则常数m的值等于()
A.﹣1 B.﹣2 C.1D.2
7.若分式方程有增根,则m的值为()
A.1B.﹣1 C.3D.﹣3
8.若关于x的方程产生增根,则m的值是()
A.m=﹣1 B.m=1 C.m=﹣2 D.m=2
9.(2005•宿迁)若关于x的方程有增根,则m的值是()
A.3B.2C.1D.﹣1
10.若分式方程有增根,则m的值是()
A.﹣1或1 B.﹣1或2 C.1或2 D.1或﹣2
二、填空题(共10小题)(除非特别说明,请填准确值)
11.使分式方程产生增根,m的值为_________.
12.分式方程+1=有增根,则m=_________.13.若分式方程+3=有增根,则增根为x= _________.
14.若去分母解方程=2﹣时,出现增根,则增根为_________.
15.解关于x的方程产生增根,则常数m的值等于_________.
16.若有增根,则增根为_________.
17.若关于x的方程﹣1=0有增根,则a的值为_________.
18.若方程=2+有增根,则增根为x=_________.
19.若关于x的分式方程有增根,则m的值为_________.
20.当m=_________时,方程会产生增根.
三、解答填空题(共10小题)(除非特别说明,请填准确值)
21.已知关于x的方程有增根,则k=_________.
22.若关于x的方程有增根,则k=_________.
23.a=_________时,方程=2+会产生增根.
24.a为_________时,关于x的方程会产生增根.
25.若关于x的方程有增根,那么关于y的不等式5(y﹣2)≤28+k+2y的解集是_________.26.已知关于x的方程有增根,那么m=_________.
27.当m=_________时,去分母解方程=1﹣会产生增根.
28.分式方程+3=有增根.(1)这个增根是_________;(2)m的值为_________.
29.若解关于x的分式方程会产生增根,则m=_________.
30.若分式方程﹣=有增根,则k=_________,增根是_________.。

相关文档
最新文档