八年级数学下册第17章勾股定理达标测试卷作业课件(新版)新人教版
人教版八年级数学下册《第17章 勾股定理》单元练习卷
第17章勾股定理一.选择题(共8小题)1.下列选项中,不能用来证明勾股定理的是()A.B.C.D.2.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.8,12,13D.3.若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是()A.5B.6C.D.5或4.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4C.3D.5.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3C.D.56.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC沿A﹣D的方向平移AD长,得△DEF(B、C的对应点分别为E、F),则BE长为()A.1B.2C.D.37.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB =3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm8.如图,学校教学楼旁有一块矩形花圃,有极少数同学为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6B.5C.4D.3二.填空题(共7小题)9.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.10.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.11.如图,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.12.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为.13.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为km.14.如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD 的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为cm2.15.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.三.解答题(共7小题)16.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.17.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.18.如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC 的面积.19.如图,在Rt△ABC中,∠A=90°,D为斜边BC中点,DE⊥DF,求证:EF2=BE2+CF2.20.如图,将Rt△ABC绕其锐角顶点A旋转90°得到Rt△ADE,连接BE,延长DE、BC 相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.21.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2.火柴盒的一个侧面ABCD倒下到AEFG的位置,连接CF,AB=a,BC=b,AC=c.(1)请你结合图1用文字和符号语言分别叙述勾股定理.(2)请利用直角梯形BCFG的面积证明勾股定理:a2+b2=c2.22.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?参考答案一.选择题(共8小题)1.D.2.C.3.D.4.A.5.B.6.C.7.D.8.C.二.填空题(共7小题)9..10..11.10.12.79.13.(1)20;(2)13;14.2.15.4三.解答题(共7小题)16.解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15、DB=9,∴CD===12;(2)在Rt△ACD中,∵AC=20、CD=12,∴AD===16,则AB=AD+DB=16+9=25.17.解:∵AB=13,AD=12,BD=5,∴AB2=AD2+BD2,∴△ADB是直角三角形,∠ADB=90°,∴△ADC是直角三角形,在Rt△ADC中,CD==9.18.解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,,∴S△ABC=,因此△ABC的面积为84.答:△ABC的面积是84.19.证明:延长ED到G,使DG=DE,连接EF、FG、CG,如图所示:在△EDF和△GDF中,∴△EDF≌△GDF(SAS),∴EF=FG又∵D为斜边BC中点∴BD=DC在△BDE和△CDG中,,∴△BDE≌△CDG(SAS)∴BE=CG,∠B=∠BCG∴AB∥CG∴∠GCA=180°﹣∠A=180°﹣90°=90°在Rt△FCG中,由勾股定理得:FG2=CF2+CG2=CF2+BE2∴EF2=FG2=BE2+CF2.20.(1)△ABE是等腰直角三角形,证明:∵Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,∴∠BAC=∠DAE,∴∠BAE=∠BAC+∠CAE=∠CAE+∠DAE=90°,又∵AB=AE,∴△ABE是等腰直角三角形;(2)∵四边形ABFE的面积等于正方形ACFD面积,∴四边形ABFE的面积等于:b2.(3)∵S正方形ACFD=S△BAE+S△BFE即:b2=c2+(b+a)(b﹣a),整理:2b2=c2+(b+a)(b﹣a)∴a2+b2=c2.21.解:(1)直角三角形两直角边的平方和等于斜边的平方.Rt△ABC中,∠B=90°,AB=a,BC=b,AC=c,则有b2+c2=a2.(2)∵S梯形BCFG=S△AFG+S△AFC+S△ACB=ab+ab+c2=ab+c2,S梯形BCFG=•(FG+BC)•BG=(a+b)(a+b)=a2+ab+b2,∴ab+c2=a2+ab+b2,整理得:a2+b2=c2.22.解:∵∠ABD=120°,∠D=30°,∴∠AED=120°﹣30°=90°,在Rt△BDE中,BD=520m,∠D=30°,∴BE=BD=260m,∴DE==260≈450(m).答:另一边开挖点E离D450m,正好使A,C,E三点在一直线上.。
人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)
人教新版八年级下册《第17章勾股定理》单元测试卷(1)一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.54.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c26.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25 7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高米.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了米.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成个直角三角形.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了米.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=,BC=,AC=;(2)试判断△ABC的形状,并说明理由.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?人教新版八年级下册《第17章勾股定理》单元测试卷(1)参考答案与试题解析一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.【考点】勾股定理.【分析】直接利用勾股定理计算得出答案.【解答】解:∵直角三角形的两条直角边的长分别为3和5,∴斜边的长为:=.故选:D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别写出各个命题的逆命题,逐项判断即可.【解答】解:①有两边相等的三角形是等腰三角形的逆命题是等腰三角形的两边相等,正确,有逆定理;②有两边相等的三角形是等腰三角形的逆命题是若两个数的奇次幂互为相反数,这两个数互为相反数,正确,有逆定理;③面积相等的长方形周长也一定相等的逆命题是周长相等的长方形面积也相等,为假命题,无逆定理;④若a=b,则a2=b2的逆命题是若a2=b2,则a=b,为假命题,无逆定理;故有逆定理的个数是2个,故选:B.3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.5【考点】勾股定理.【分析】根据勾股定理即可得到结论.【解答】解:AB==13,故选:A.4.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、【考点】勾股定理的逆定理.【分析】先找出两小边,求出两小边的平方和,求出大边的平方,再根据勾股定理的逆定理判断即可.【解答】解:A、(62)2+(82)2≠(102)2,即组成的三角形不是直角三角形,故本选项错误;B、62+82≠92,即组成的三角形不是直角三角形,故本选项错误;C、22+()2≠()2,即组成的三角形不是直角三角形,故本选项错误;D、()2+()2=()2,即组成的三角形是直角三角形,故本选项正确;故选:D.5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c2【考点】命题与定理.【分析】写出各个命题的逆命题,然后判断正误即可.【解答】解:A、逆命题为:如果a﹣b>0,那么a>b,逆命题成立;B、逆命题为:如果a2=b2,那么a+b=0,逆命题不成立;C、逆命题为:等角对等边,逆命题成立;D、逆命题为:如果三角形三边满足a2+b2=c2,那么该三角形是直角三角形,逆命题成立;故选:B.6.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故A选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:(1)92+802≠812,根据勾股定理的逆定理,故不是直角三角形;(2)102+242≠252,根据勾股定理的逆定理,故不是直角三角形;(3)152+202=252,根据勾股定理的逆定理,故是直角三角形;(4)82+152=172,根据勾股定理的逆定理,故是直角三角形.故选:B.二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】由题意可知长方体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,利用勾股定理求解即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=10.【考点】勾股定理.【分析】由勾股定理得AB2=BC2+AC2,再结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∠ACB=90°,∴AB2=BC2+AC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S3=15,S1=5,∴BC2=5,AB2=15,S3=S1+S2,则S2=S3﹣S1=15﹣5=10,故答案为:10.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高8米.【考点】勾股定理的应用.【分析】如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB,根据勾股定理求出AB即可解决问题.【解答】解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,AB===5(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故答案为:8.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了9米.【考点】勾股定理的应用.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成2个直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】由勾股定理求出线段AD、AC、AB、BC、BD、CD的平方,由勾股定理的逆定理即可得出结果.【解答】解:由勾股定理得:AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,∵AD2+BD2=AB2,AC2+AB2=BC2,∴能够组成2个直角三角形.故答案为:2.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了 2.5米.【考点】勾股定理的应用.【分析】要求小猫在木板上爬动的距离,即求木板长,可以设CD=x,AB=DE=y,则根据木板长不会变这个等量关系列出方程组,即可求BC的长度,在直角△ABC中,根据BC,AC即可求AB.【解答】解:已知AE=1.3米,AC=0.7米,BD=0.9米,设CD=x,AB=DE=y,则BC=0.9+x则在直角△ABC中,y2=(0.9+x)2+0.72,在直角△CDE中,y2=x2+(1.3+0.7)2,解方程组得:x=1.5米,y=2.5米,故答案为 2.5.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.【考点】勾股定理.【分析】在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.【解答】解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?【考点】勾股定理的应用.【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据EC =EB+BC即可求得EC的长度,在直角三角形DEC中,已知DE,EC即可求得DC的长度,根据AD=AC﹣DC即可求得AD的长度.【解答】解:在直角△ABC中,AC==2.4(m),∴EC=BC+BE=1.5m在直角△DEC中,DC===2(m),∴AD=AC﹣DC=0.4(m),答:梯子的顶端沿墙下滑0.4m.16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?【考点】勾股定理的逆定理.【分析】(1)先分别求出两个小组走的路程,再根据勾股定理的逆定理即可作出判断;(2)根据路程和÷速度和=相遇的时间,列式计算即可求解.【解答】解:(1)第一组的路程:30×30=900(米),第二组的路程:40×30=1200(米),∵9002+12002=15002,∴两组同学行走的夹角是直角;(2)1500÷(30+40)=1500÷70=21(分钟).答:经过21分钟后才能相遇.17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC 的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=3,BC=2,AC=;(2)试判断△ABC的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】(1)根据勾股定理即可求得△ABC的三边的长;(2)由勾股定理的逆定理即可作出判断.【解答】解:(1)根据勾股定理即可得到:AB2=62+32=45,BC2=42+22=20,AC2=72+42=65,则AB=3,BC=2,AC=.故答案为3,2,;(2)△ABC是直角三角形,理由如下:∵AB2=45,BC2=20,AC2=65,AB2+BC2=45+20=65,∴AB2+BC2=AC2,∴△ABC是直角三角形.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?【考点】勾股定理的应用.【分析】根据题意结合勾股定理求出答案.【解答】解:设白杨树在离根部x米的位置断裂,根据题意可得:x2+82=(16﹣x)2,解得:x=6.答:白杨树在离根部6米的位置断裂.19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,=AC•CD=×5×12=30.∴S△ACD+S△ACD=6+30=36.∴四边形ABCD的面积=S△ABC20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?【考点】勾股定理的应用.【分析】设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.【解答】解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,,∴CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∴该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?【考点】勾股定理;一元一次不等式的应用.【分析】作PH⊥l,垂足为H,由勾股定理求出MH=500,则MM'=1000,由题意可得5x≤1000,解不等式可得出答案.【解答】解:作PH⊥l,垂足为H,∵PM=1300米,PH=1200米,∠PHM=90°,∴MH===500(米),根据对称性可知,M'H=MH,∴MM'=1000米,即宣传车能够让P点有效听到的距离为1000米,设宣传车时速是x米/分钟,由题意可得5x≤1000,∴x≤200,200米/分钟=12km/h.答:宣传车最高时速是12km/h.。
最新人教版数学八年级下册第十七章测试卷(含答案解析)
人教版数学八年级下册第十七章测试卷姓名:分数:一、选择题1.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个2.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45° D.60°4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm25.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.56.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1: B.1::2 C.1::D.1:4:17.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A. B.3 C.+2 D.8.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.210.直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为()A.182 B.183 C.184 D.185二、填空题11.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.13.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为米.14.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为度.16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.17.命题:“同角的余角相等”的逆命题是.18.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)19.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.20.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,则上午10:00,两小船相距海里.三、解答题21.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).22.三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所示的图形,则△ABC一定是直角三角形吗?说明理由.23.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?25.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.26.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?27.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.答案1.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个【考点】勾股定理的逆定理;三角形内角和定理.【专题】选择题.【分析】计算出三角形的角利用定义判定或在知道边的情况下利用勾股定理的逆定理判定则可.【解答】解:①,根据勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,根据勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,根据勾股定理的逆定理不是直角三角形,故不是.故选A.【点评】本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【考点】勾股定理的逆定理;完全平方公式.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.【点评】本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45° D.60°【考点】勾股定理.【专题】选择题.【分析】根据斜边的平方等于两条直角边乘积的2倍,以及勾股定理可以列出两个关系式,直接解答即可.【解答】解:设直角三角形的两直角边是a、b,斜边是c.根据斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,根据勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则这个三角形是等腰直角三角形,因而这个三角形的锐角是45°.故选C.【点评】已知直角三角形的边长问题,不要忘记三边的长,满足勾股定理.4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【考点】勾股定理;翻折变换(折叠问题).【专题】选择题.【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.5.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.5【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1: B.1::2 C.1::D.1:4:1【考点】勾股定理.【专题】选择题.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选B.【点评】本题考查了三角形的内角和定理和勾股定理,通过知道角的度数计算特殊三角形边的比.7.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A. B.3 C.+2 D.【考点】勾股定理;含30度角的直角三角形.【专题】选择题.【分析】根据直角三角形的性质及勾股定理即可解答.【解答】解:如图所示,Rt△ABC中,∠B=60°,AB=1,则∠A=90°﹣60°=30°,故BC=AB=×1=,AC===,故此三角形的周长是.故选D.【点评】考查了勾股定理和含30度角的直角三角形,熟悉直角三角形的性质:直角三角形中,30°所对的直角边是斜边的一半.熟练运用勾股定理.8.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】选择题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.2【考点】勾股定理.【专题】选择题.【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.10.直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为()A.182 B.183 C.184 D.185【考点】勾股定理.【专题】选择题.【分析】设出另一直角边和斜边,根据勾股定理列出方程,再根据边长都是自然数这一特点,写出二元一次方程组,求解即可.【解答】解:设另一直角边长为x,斜边为y,根据勾股定理可得x2+132=y2,即(y+x)(y﹣x)=169×1因为x、y都是连续自然数,可得,∴周长为13+84+85=182;故选A.【点评】本题综合考查了勾股定理与二元一次方程组,解这类题的关键是利用勾股定理来寻求未知系数的等量关系.11.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.【考点】勾股定理;等腰三角形的性质.【专题】填空题.【分析】根据等腰三角形的三线合一得BD=8,再根据勾股定理即可求出AB的长.【解答】解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.【点评】注意等腰三角形的三线合一,熟练运用勾股定理.12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.【考点】勾股定理的应用.【专题】填空题.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480米.【点评】考查了勾股定理的应用,是实际问题但比较简单.13.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为米.【考点】勾股定理的应用.【专题】填空题.【分析】根据题意画出图形根据勾股定理解答.【解答】解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,根据勾股定理得AB====15m.【点评】本题很简单,只要根据题意画出图形即可解答,体现了数形结合的思想.14.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是.【考点】勾股定理;三角形内角和定理.【专题】填空题.【分析】根据三角形的三个内角之比是1:2:3,求出各角的度数,再根据直角三角形的性质解答即可.【解答】解:设一份是x,则三个角分别是x,2x,3x.再根据三角形的内角和定理,得:x+2x+3x=180°,解得:x=30°,则2x=60°,3x=90°.故此三角形是有一个30°角的直角三角形.根据30°的角所对的直角边是斜边的一半,得,最长边的长度是16.【点评】此题要首先根据三角形的内角和定理求得三个角的度数,再根据直角三角形的性质求得最长边的长度即可.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为度.【考点】勾股定理的逆定理.【专题】填空题.【分析】一个三角形的三边符合a2+b2=c2,根据勾股定理的逆定理,这个三角形是直角三角形,依此可得这个三角形中最大的角的度数.【解答】解:设三角形的三边分别为5x,12x,13x,则(5x)2+(12x)2=(13x)2,根据勾股定理的逆定理,这个三角形是直角三角形.则这个三角形中最大的角为90度.故答案为:90.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.【考点】勾股定理.【专题】填空题.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.17.命题:“同角的余角相等”的逆命题是.【考点】互逆命题.【专题】填空题.【分析】先把同角的余角相等写成“如果…那么…”的形式,然后交换题设和结论即可得到逆命题.【解答】解:“同角的余角相等”的逆命题为“如果两个角相等,那么这两个角是同一个角的余角”.故答案为:如果两个角相等,那么这两个角是同一个角的余角.【点评】本题考查了命题与定理,正确理解原命题与逆命题的关系是解题关键.18.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)【考点】勾股定理的应用.【专题】填空题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为25dm,宽为(3+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=252+[(3+3)×3]2=949,解得x=.故答案为dm.【点评】此题主要考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.19.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.【考点】勾股定理的应用.【专题】填空题.【分析】利用勾股定理,用一边表示另一边,代入数据即可得出结果.【解答】解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.【点评】本题主要是考查学生对勾股定理的熟练掌握,解题的关键是从实际问题中整理出直角三角形并正确的利用勾股定理.20.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,则上午10:00,两小船相距海里.【考点】勾股定理的应用.【专题】填空题.【分析】正东方向与正南方向正好构成直角,因而两船所经过的路线,与10:00时,两船之间的连线正好构成直角三角形.根据勾股定理即可求解.【解答】解:在直角△OAB中,OB=2×8=16海里.OA=12海里,根据勾股定理:AB===20海里.故答案为:20.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.21.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).【考点】勾股定理的应用.【专题】解答题.【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.22.三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所示的图形,则△ABC一定是直角三角形吗?说明理由.【考点】勾股定理的逆定理.【专题】解答题.【分析】根据S1、S2、S3,可得出AC2,BC2及AB2,根据勾股定理的逆定理可得出三角形是直角三角形.【解答】解:∵S1=π()2=4.5π,S2=π()2=8π,S3=π()2=12.5π,∴AC2=36,BC2=64,AB2=100,又∵AC2+BC2=AB2,∴△ABC一定是直角三角形.【点评】本题考查了勾股定理的逆定理的知识,关键是根据面积表示出AC2,BC2及AB2,要求熟练掌握勾股定理的逆定理.23.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【考点】勾股定理的应用;勾股定理的逆定理.【专题】解答题.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC 为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查了勾股定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?【考点】勾股定理的应用.【专题】解答题.【分析】先作A关于MN的对称点,连接A′B,构建直角三角形,利用勾股定理即可得出答案.【解答】解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则A′B就是最短路线,在Rt△A′DB中,由勾股定理求得A′B=DA==17km,答:他要完成这件事情所走的最短路程是17km.【点评】本题考查的是勾股定理和轴对称在实际生活中的运用,需要同学们联系实际,题目是一道比较典型的题目,难度适中.25.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.【考点】勾股定理的应用.【专题】解答题.【分析】红莲在水中的长度,花离原位的长度和花的总长可构成直角三角形,设出湖水的深度为x,根据勾股定理列出方程可求出.【解答】解:设湖水深为x尺,则红莲总长为(x+0.5)尺,根据勾股定理得:在Rt△ABC中,有:x2+s2=(x+0.5)2,在Rt△ADC中,有:0.52+s2=22,由以上两式解得:x=3.5,即湖水深3.5尺.【点评】本题的关键是读懂题意,找出题中各个量之间的关系,建立等式进行求解.26.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【考点】勾股定理的应用.【专题】解答题.【分析】(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.【解答】解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).【点评】此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.27.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.【考点】勾股定理;平面展开﹣最短路径问题.【专题】解答题.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.【解答】解:如图:根据题意,如上图所示,最短路径有以下三种情况:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,所以AB′2=25,即AB′=5cm.【点评】此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。
第十七章 勾股定理 达标测试卷 (含答案)
第十七章勾股定理达标测试卷时间:90分钟分值:120分得分:__________一、选择题(本大题10小题,每小题3分,共30分)1.如图1,在△ABC中,∠B=90°,AC=2,则AB2+BC2的值是()图1A.2 B.3 C.22D.42.如图2,从电线杆上离地面5 m的C处向地面拉一条长为7 m的钢缆,则地面钢缆固定点A 到电线杆底部点B的距离是()图2A.24 B.12 C.74D.263.如图3,在数轴上取一点A,使OA=5,过点A作直线l⊥OA,在直线l上取点B,使AB=2,以点O为圆心,OB长为半径作弧,交数轴于点C,则点C表示的数是()图3A.21B.29C.7 D.294.下列各组数中,能作为直角三角形的三边长的是()图4A .1,2,3B .4,5,6C .3 ,2 ,5D .6,8,125.如图4,长为8 cm 的橡皮筋放置在水平面上,固定两端点A 和B ,然后把AB 的中点C 垂直向上拉升3 cm 至点D ,则橡皮筋被拉长了( )A .2 cmB .3 cmC .4 cmD .5 cm6.已知△ABC 的三边长分别为a ,b ,c ,且a +b =4,ab =1,c =14 ,则△ABC 的形状为( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .不能确定7.下列命题的逆命题是真命题的是( ) A .若a =b ,则|a |=|b | B .全等三角形的周长相等 C .若a =0,则ab =0D .有两边相等的三角形是等腰三角形8.如图5,在△ABC 中,AB =AC =5,CD =1,BD ⊥AC ,则BC 的长度为( )图5A .3B .4C .10D .179.如图6,正方形ABCD 的边长为2,其面积记为S 1,以CD 为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2,…,按照此规律继续下去,则S 9的值为( )图6A .⎝⎛⎭⎫12 6B .⎝⎛⎭⎫12 7C .⎝⎛⎭⎫12 8D .⎝⎛⎭⎫12 910.如图7,在△ABC 中,∠ABC =90°,∠A =30°,BC =1,M ,N 分别是AB ,AC 上的任意一点,则MN +NB 的最小值为( )图7A .32B .2C .32 +34D .32二、填空题(本大题5小题,每小题3分,共15分) 11.请写出一组勾股数:__________.12.(2022朝阳)如图8,在Rt △ABC 中,∠ACB =90°,AB =13,BC =12,分别以点B 和点C 为圆心,大于12 BC 的长为半径作弧,两弧相交于E ,F 两点,作直线EF 交AB 于点D ,连接CD ,则△ACD 的周长是__________.图813.(2022黑龙江)如图9,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,则CD =__________.图914.如图10,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则木板的长为__________米.图1015.如图11,AB为订书机的托板,压柄BC绕着点B旋转,连接杆DE的一端点D固定,点E 从A处向B处滑动,在滑动的过程中,DE的长度保持不变,在图11①中,BD=6 cm,BE=15 cm,∠B=60°,现将压柄BC从图11①的位置旋转到与底座AB垂直,如图11②所示,则此过程中点E滑动的距离为__________cm.图11三、解答题(本大题7小题,共75分)16.(8分)在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边.(1)若a=b=5,求c的值;(2)若a=5,∠A=30°,求b,c的值.17.(8分)图12是半圆形隧道的截面示意图,已知半圆的直径为5米,有一辆装满货物的卡车,高2.6米,宽1.4米,要从此隧道经过,则该卡车是否能通过隧道?请说明理由.图1218.(9分)如图13,在4×3的正方形网格中,每个小正方形的边长都为1,点A,B,C,D都在格点上.(1)线段AB的长为__________;(2)在图中作出线段EF,使得点E,F都在格点上,且EF的长为13,判断AB,CD,EF三条线段能否构成直角三角形,并说明理由.图1319.(11分)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图14①,②(图②为图①的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),求门槛AB的长.图1420.(11分)如图15,已知等腰三角形ABC的底边BC=15 cm,AH⊥BC于点H,D是腰AB上一点,且CD=12 cm,BD=9 cm,求AH的长.图1521.(13分)如图16,某小区有两个喷泉A,B,两个喷泉的距离为250 m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M到AB的距离MN的长为120 m,BM的长为150 m.(1)求供水点M到喷泉A,B需要铺设的管道总长;(2)求喷泉B到小路AC的最短距离.图1622.(15分)如图17,在△ABC中,∠ACB=90°,AB=10 cm,BC=6 cm,若点P从点A出发,以4 cm/s的速度沿折线A-C-B-A运动,设运动时间为t s(t>0).(1)填空:AC的长为__________cm;(2)若点P在AC上,且满足△BCP的周长为14 cm,求此时t的值;(3)若点P在∠BAC的平分线上,求此时t的值.第十七章 达标测试卷1.A 2.D 3.B 4.C 5.A 6.C 7.D 8.C 9.A 10.A 11.5,12,13(答案不唯一) 12.18 13.314.2.5 15.(15-315 )16.解:(1)在Rt △ABC 中,∠C =90°,a =b =5,∴c =a 2+b 2 =52+52 =52 .(2)在Rt △ABC 中,∠C =90°,a =5,∠A =30°,∴c =2a =10.∴b =c 2-a 2 =102-52 =53 . 17.解:不能.理由如下:如答图1,OD 为卡车宽度的一半,过点D 作CD ⊥AB 交半圆弧于点C ,连接OC .答图1由题意,得OD =0.7米,AB =5米,OC =12 AB =2.5米.在Rt △OCD 中,CD =OC 2-OD 2 =2.4米. ∵2.4<2.6,∴这辆卡车不能通过隧道. 18.解:(1)5 .(2)作线段EF 如答图2所示.(答案不唯一)答图2AB ,CD ,EF 三条线段能构成直角三角形.理由如下:∵CD 2=22+22=8,AB 2=12+22=5,EF 2=(13 )2=13,∴CD 2+AB 2=EF 2. ∴AB ,CD ,EF 三条线段能构成直角三角形.19.解:如答图3,记AB 的中点为O ,过点D 作DE ⊥AB 于点E .答图3由题意,得OA =OB =AD =BC ,DE =10寸,OE =12 CD =1寸.设OA =OB =AD =BC =r 寸,则AB =2r 寸,AE =(r -1)寸. 在Rt △ADE 中,AE 2+DE 2=AD 2,即(r -1)2+102=r 2.解得r =50.5.∴2r =101.∴AB =101寸,即门槛AB 的长为101寸.20.解:∵BC =15,BD =9,CD =12,∴BC 2=BD 2+CD 2.∴△BCD 为直角三角形. ∴∠BDC =∠ADC =90°. 设AD =x ,则AC =AB =x +9.在Rt △ACD 中,AD 2+CD 2=AC 2,即x 2+122=(x +9)2.解得x =72 .∴AB =72 +9=252 .∵AB =AC ,AH ⊥BC ,∴BH =12 BC =152 .由勾股定理,得AH =AB 2-BH 2=⎝⎛⎭⎫2522-⎝⎛⎭⎫1522=10 (cm).∴AH 的长为10 cm.21.解:(1)在Rt △BMN 中,MN =120 m ,BM =150 m , ∴BN =BM 2-MN 2 =1502-1202 =90 (m). ∵AB =250 m ,∴AN =AB -BN =250-90=160 (m).在Rt △AMN 中,AM =AN 2+MN 2 =1602+1202 =200 (m). ∴AM +BM =200+150=350 (m).答:供水点M 到喷泉A ,B 需要铺设的管道总长为350 m. (2)∵AM =200 m ,BM =150 m ,AB =250 m ,∴AM 2+BM 2=AB 2. ∴△ABM 是直角三角形,且∠AMB =90°,即BM ⊥AM . 由垂线段最短可知,BM 即为所求的最短距离. 答:喷泉B 到小路AC 的最短距离为150 m. 22.解:(1)8.(2)如答图4.由题意,得AP =4t .答图4∴CP =AC -AP =8-4t .∵△BCP 的周长为14,∴BP =14-6-(8-4t )=4t . 在Rt △BCP 中,由勾股定理,得62+(8-4t )2=(4t )2. 解得t =2516 ,即t 的值为2516.(3)①当点P 在BC 边上时,如答图5,过点P 作PE ⊥AB 于点E .答图5∵点P 恰好在∠BAC 的平分线上,且∠C =90°,∴CP =EP .在Rt △ACP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,CP =EP , ∴△ACP ≌△AEP (HL). ∴AE =AC =8.∴BE =AB -AE =2.设CP =x ,则BP =6-x ,PE =x .在Rt △BEP 中,BE 2+PE 2=BP 2,即22+x 2=(6-x )2.解得x =83. ∴CP =83 .∴AC +CP =8+83 =323 .∴t =323 ÷4=83. ②当点P 沿折线A -C -B -A 运动到点A 时,点P 也在∠BAC 的平分线上,此时t =(8+6+10)÷4=6.综上,若点P 恰好在∠BAC 的平分线上,则此时t 的值为83 或6.。
八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)
八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。
八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)
八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“勾股方圆图”(又称赵爽弦图),它是由四个全等的直角三角形(直角边分别为a ,b ,斜边为c )与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积为11,小正方形的面积为3,则44a b +的值为( )A .68B .89C .119D .1302.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198 B .2 C .254 D .743.已知点M 的坐标为()3,4-,则下列说法正确的是( )A .点M 在第二象限内B .点M 到x 轴的距离为3C .点M 关于y 轴对称的点的坐标为()3,4D .点M 到原点的距离为54.如图,点A 表示的实数是( )AB C D5.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .A .14B .12C .10D .86.△ABC 的三边长a ,b ,c (b ﹣12)2+|c ﹣13|=0,则△ABC 的面积是( )A .65B .60C .30D .267.如图,Rt ABC 中,90,4,6B AB BC ∠=︒==,将ABC 折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段CN 的长为( ).A .73B .83C .3D .1038.如图,在ABC 中,△B =22.5°,△C =45°,若AC =2,则ABC 的面积是( )A B .C . D .9.我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c 能表示为两个正整数a ,b 的平方和,即22c a b =+,那么称a ,b ,c 为一组广义勾股数,c 为广义斜边数,则下面的结论:△m 为正整数,则3m ,4m ,5m 为一组勾股数;△1,2,3是一组广义勾股数;△13是广义斜边数;△两个广义斜边数的和是广义斜边数;△若2222,12,221a k k b k c k k =+=+=++,其中k 为正整数,则a ,b ,c 为一组勾股数;△两个广义斜边数的积是广义斜边数.依次正确的是( )A .△△△B .△△△△C .△△△D .△△△10.为预防新冠疫情,民生大院入口的正上方 A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 AB =2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民 CD 正对门缓慢走到离门 0.8 米的地方时(即 BC =0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离 AD 等于( )A .1.0 米B .1.2 米C .1.25 米D .1.5 米11.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:△20是“整弦数”;△两个“整弦数”之和一定是“整弦数”;△若c 2为“整弦数”,则c 不可能为正整数;△若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n 之积为“整弦数”;△若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个12.如图,三角形纸片ABC 中,点D 是BC 边上一点,连接AD ,把△ABD 沿着直线AD 翻折,得到△AED ,DE 交AC 于点G ,连接BE 交AD 于点F .若DG =EG ,AF =4,AB =5,△AEG 的面积为92,则2BD 的值为( )A .13B .12C .11D .10二、填空题(本大题共8小题,每小题3分,共24分)13.无理数可以用数轴上的点表示.如图,数轴上点A 表示的数是______.14.我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离P A 的长为1尺,将它向前水平推送10尺时,即10P C '=尺,秋千踏板离地的距离P B '就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.15.如图,在Rt ABC △中,9068C AC BC ∠=︒==,,,将ABC 按如图方式折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为________.16.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是____________米.17.如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为_____ m.18.观察下列几组勾股数,并填空:△6,8,10,△8,15,17,△10,24,26,△12,35,37,则第△组勾股数为______.19.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是______cm20.如图,在△ABC中,AB=AC,BD△AC于点D,把线段AC绕点C旋转得到线段CE,点E恰好落在AB的延长线上,12BE CD,△BCD的面积是8,则BC的长为________.三、解答题(本大题共5小题,每小题8分,共40分)21.某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且△CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.(1)求小岛两端A,B的距离.(2)过点C作CF△AB交AB的延长线于点F,求BFBC值.22.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离12PP=式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.23.某天,暴雨突然来袭,两艘搜救艇接到消息,在海面上有遇险船只从A、B两地发出求救信号.于是,第一艘搜救艇以20海里/时的速度离开港口O沿北偏东40°的方向向A地出发,同时,第二艘搜救艇也从港口O出发,以15海里/时的速度向B地出发,2小时后,他们同时到达各自的目标位置.此时,他们相距50海里.的大小)(1)求第二艘搜救艇的航行方向是北偏西多少度?(求BOD(2)由于B地需要被援救的人数较多,故需要搭载人数较少的第一艘搜救艇改道去到B地支援,在从A地前往到B 地的过程中,与港口O最近的距离是多少?24.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?25.【阅读思考】已知0<x<1分析:如图,我们可以构造边长为1的正方形ABCD,P为BC边上的动点.设BP=x,则PC=1-x,那么可以用含x的式子表示AP、DP,问题可以转化为AP与PD的和的最小值,用几何知识可以解答(1)AP+PD的最小值为________(2)的最小值,其中x、y为两正数,且x+y=6(3)参考答案1.B2.D3.D4.B5.C6.C7.D8.D9.D10.A11.C12.A13.214.14.515.7 416.817.118.16,63,6519.1620.1021.(1)33.4海里(2)72522.(1)AB=13(2)AB=5(3)△DEF是等腰三角形,23.(1)50度(2)24海里24.这个梯子的顶端距地面24m;梯子的底端在水平方向上不是滑动了4m,而是滑动了8m.25.5(2)(3)。
人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)
人教版八年级下册数学第17章勾股定理单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=( )A. 6 B.6 2 C.6 3 D. 123.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于( )A.10 B.11 C.12 D.134.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A.4米B.8米C.9米D.7米5.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为( )A.50° B.60° C.70° D.80°7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或108.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1B.3+1C.5-1D.5+110.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C.45° D.30°二、填空题(每小题4分,共24分)11.直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.13.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.14.如图,阴影部分是一个正方形,则此正方形的面积为.。
人教版初2数学8年级下册 第17章(勾股定理)单元练习卷(含解析)
第17章勾股定理单元练习卷一、选择题1.下列三个长度的线段能组成直角三角形的是( )A.1,,B.1,,C.2,4,6D.5,5,62.有下列命题:①若|a|>|b|,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等.其中,原命题与逆命题均为真命题的有( )A.0个B.1个C.2个D.3个3.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是( )A.9B.36C.27D.344.下列各三角形中,面积为无理数的是( )A.B.C.D.5.如图,一棵大树,在一次强风中于离地面3米处折断倒下,倒下部分树头A着地与树底部B的距离为米,这棵大树的高度为( )米.A.6B.9C.12D.276.《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A.3步B.5步C.6步D.8步7.如图,分别以直角△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,若S2=7,S3=2,那么S1=( )A.9B.5C.53D.458.如图,小明准备测量一段水渠的深度,他把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离CD=1.5米.竹竿高出水面的部分AD长0.5米,如果把竹竿的顶端A 拉向岸边点C处,竿顶和岸边的水面刚好相齐,则水渠的深度BD为( )米.A.2B.2.5C.2.25D.39.如图,在四边形ABCD中,AB=3,BC=4,CD=1,AD=2,AB⊥BC,四边形ABCD 的面积为( )A.12B.6+C.2D.2+610.如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD的面积是( )A.2B.C.D.11.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )A.①②B.①③C.①④D.②④二、填空题12.观察下列几组数:①,,;②1,1,2;③5,12,13;④6,7,8;⑤3,4,5其中能作为直角三角形三边长的是: (填序号).13.已知一个直角三角形的两边长分别为3,4,则第三边的长为 .14.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路“.他们仅仅少走了 .15.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面 (填“合格”或“不合格”).16.如果△ABC三边长为a,b,c满足|a﹣5|++(13﹣c)2=0,则该三角形是 三角形.17.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为 .18.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B300m,结果他在水中实际游了500m,求该河流的宽度为 m.19.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是 .三、解答题20.一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向.21.喜迎军运会,青山区加大绿化力度,和平公园有一块如图所示的四边形空地ABCD,现计划在空地上种植草皮,经测量AB=3m,BC=4m,CD=12m,DA=13m,∠ABC=90°,若每平方米草皮需要200元,求这块地种植草皮需要投入多少元?22.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a+b,则a,b的值可能是多少?23.如图,铁路上A,B两点相距23km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=8km.现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?24.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.25.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.参考答案一、选择题1.下列三个长度的线段能组成直角三角形的是( )A.1,,B.1,,C.2,4,6D.5,5,6【分析】根据勾股定理的逆定理进行判断.【解答】解:A、∵12+()2=()2,∴A能构成直角三角形,故本选项正确;B、∵12+()2≠()2,∴B不能构成直角三角形,故本选项错误;C、∵22+42≠62,∴C不能构成直角三角形,故本选项错误;D、∵52+52≠62,∴D不能构成直角三角形,故本选项错误;故选:A.2.有下列命题:①若|a|>|b|,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等.其中,原命题与逆命题均为真命题的有( )A.0个B.1个C.2个D.3个【分析】根据不等式的性质、等边三角形的性质和判定、绝对值逐个判断即可.【解答】解:①若|a|>|b|,则a不一定>b,是假命题;②若a+b=0,则|a|=|b|是真命题,但逆命题若|a|=|b|,则a=b或a+b=0,是假命题;③等边三角形的三个内角都相等原命题与逆命题均为真命题;故选:B.3.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是( )A.9B.36C.27D.34【分析】由正方形的性质和勾股定理求出小正方形和大正方形的面积,即可得出小正方形与大正方形的面积差.【解答】解:根据题意得:小正方形的面积=(6﹣3)2=9,大正方形的面积=32+62=45,45﹣9=36.故选:B.4.下列各三角形中,面积为无理数的是( )A.B.C.D.【分析】根据三角形的面积公式和勾股定理计算每个图形的面积即可知道问题的答案.【解答】解:A、三角形的面积为×8×3=12,12不是无理数,故该选项错误;B、三角形的面积为××=3,3不是无理数,故该选项错误C、三角形的面积为×5×=,是无理数,故该选项正确;D、三角形的面积为×2×3=3,3不是无理数,该选项错误,故选:C.5.如图,一棵大树,在一次强风中于离地面3米处折断倒下,倒下部分树头A着地与树底部B的距离为米,这棵大树的高度为( )米.A.6B.9C.12D.27【分析】设出大树原来的高度为x,用勾股定理列方程求解即可.【解答】解:设这颗大树原来的高度为x米,根据题意得,32+(3)2=(x﹣3)2,解得:x=9或x=﹣3(舍去),答:这棵大树原来的高度为9米.故选:B.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A.3步B.5步C.6步D.8步【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径.【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故选:C.7.如图,分别以直角△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,若S2=7,S3=2,那么S1=( )A.9B.5C.53D.45【分析】根据勾股定理与正方形的性质解答.【解答】解:在Rt△ABC中,AB2=BC2+AC2,∵S1=AB2,S2=BC2,S3=AC2,∴S1=S2+S3.∵S2=7,S3=2,∴S1=7+2=9.故选:A.8.如图,小明准备测量一段水渠的深度,他把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离CD=1.5米.竹竿高出水面的部分AD长0.5米,如果把竹竿的顶端A 拉向岸边点C处,竿顶和岸边的水面刚好相齐,则水渠的深度BD为( )米.A.2B.2.5C.2.25D.3【分析】设BD的长度为xm,则AB=BC=(x+0.5)m,根据勾股定理构建方程即可解决问题;【解答】解:设BD的长度为xm,则AB=BC=(x+0.5)m,在Rt△CDB中,1.52+x2=(x+0.5)2,解得x=2.故选:A.9.如图,在四边形ABCD中,AB=3,BC=4,CD=1,AD=2,AB⊥BC,四边形ABCD 的面积为( )A.12B.6+C.2D.2+6【分析】连接AC,知四边形的面积是△ADC和△ABC的面积和,由已知得其符合勾股定理的逆定理从而得到△ACD是一个直角三角形.则四边形面积可求.【解答】解:连接AC,则有AC==5,∵52+122=132,即AD2+CD2=AC2,∴△ACD为直角三角形,∴四边形的面积=S△ABC+S△ACD=AB•BC+AD•CD=×3×4+×2×1=6+.故选:B.10.如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD的面积是( )A.2B.C.D.【分析】在直角三角形ABC中,利用勾股定理求出AC的长,在三角形ACD中,利用勾股定理的逆定理判断得到三角形ACD为直角三角形,两直角三角形面积之和即为四边形ABCD的面积.【解答】解:在Rt△ABC中,AB=1,BC=1,根据勾股定理得:AC==,在△ACD中,CD=2,AD=,∴AC2+CD2=AD2,∴△ACD为直角三角形,则S=S△ABC+S△ACD=×1×1+×2×=+.故选:B.11.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )A.①②B.①③C.①④D.②④【分析】本题主要依据勾股定理的逆定理,判定三角形是否为直角三角形.【解答】解:①正确,∵a2+b2=c2,∴(4a)2+(4b)2=(4c)2,②错误,应为“如果直角三角形的两直角边是3,4,那么斜边必是5”③错误,∵122+212≠252,∴不是直角三角形;④正确,∵b=c,c2+b2=2b2=a2,∴a2:b2:c2=2:1:1,故选:C.二、填空题12.观察下列几组数:①,,;②1,1,2;③5,12,13;④6,7,8;⑤3,4,5其中能作为直角三角形三边长的是: ①③⑤ (填序号).【分析】利用给出的三边长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:①()2+()2=()2,能作为直角三角形三边长,故此选项正确;②12+12≠22,不能作为直角三角形三边长,故此选项错误;③52+122=132,能作为直角三角形三边长,故此选项正确;④62+72≠82,不能作为直角三角形三边长,故此选项错误;⑤32+42=52,能作为直角三角形三边长,故此选项正确.故答案为:①③⑤.13.已知一个直角三角形的两边长分别为3,4,则第三边的长为 5或 .【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=;∴第三边的长为5或.故答案为:5或.14.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路“.他们仅仅少走了 2m .【分析】根据题意结合勾股定理得出AB的长,进而得出AC+BC﹣AB的值即可.【解答】解:如图所示:AB==5(m),∵AC+BC=3+4=7(m),∴在草坪内走出了一条“路“.他们仅仅少走了:7﹣5=2(m).故答案为:2m.15.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面 合格 (填“合格”或“不合格”).【分析】只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,根据勾股定理直接解答.【解答】解:==68cm,故这个桌面合格.16.如果△ABC三边长为a,b,c满足|a﹣5|++(13﹣c)2=0,则该三角形是 直角 三角形.【分析】根据非负数的性质可得a=5,b=12,c=13,再根据勾股定理逆定理即可得结论.【解答】解:因为|a﹣5|++(13﹣c)2=0,而|a﹣5|≥0,≥0,(13﹣c)2≥0,所以a﹣5=0,b﹣12=0,13﹣c=0,所以a=5,b=12,c=13,因为52+122=132,所以该三角形是直角三角形.故答案为:直角.17.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为 12 .【分析】根据大正方形的面积是25,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴直角三角形的面积是(25﹣1)÷4=6,又∵直角三角形的面积是ab=6,∴ab=12.故答案为:12.18.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B300m,结果他在水中实际游了500m,求该河流的宽度为 400 m.【分析】根据勾股定理可得AB=,代入数即可.【解答】解:由题意得:AB===400(米).故答案为:400.19.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是 .【分析】在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.【解答】解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:三、解答题20.一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向.【分析】根据路程=速度×时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解.【解答】解:如图,根据题意,得OA=30×1.5=45(千米),OB=40×1.5=60(千米),AB=75千米.∵452+602=752,∴OA2+OB2=AB2,∴∠AOB=90°,即第二艘船的航行方向与第一艘船的航行方向成90°,∴第二艘船的航行方向为东北或西南方向.21.喜迎军运会,青山区加大绿化力度,和平公园有一块如图所示的四边形空地ABCD,现计划在空地上种植草皮,经测量AB=3m,BC=4m,CD=12m,DA=13m,∠ABC=90°,若每平方米草皮需要200元,求这块地种植草皮需要投入多少元?【分析】直接利用勾股定理的逆定理得出∠ACD=90°,再利用直角三角形的性质得出答案.【解答】解:连接AC∵∠B=90°,AB=3m,BC=4m,BC=12m,AC2=AB2+BC2=32+42=25,则AC=5m,∴AC2+CD2=25+144=169=132又∵AD2=132,∴AC2+CD2=CD2∴∠ACD=90°,∴△ACD是直角三角形,∴四边形ABCD的面积=6+30=36(m2),∴学校要投入资金为:200×36=7200(元);答:学校需要投入7200元买草皮.22.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a+b,则a,b的值可能是多少?【分析】观察三个数之间的关系可得出规律:第n组数为(2n+1)2,(),()由此规律解决问题.【解答】解:题目蕴含的规律为:(2n+1)2=+;∵13=2×6+1,∴132=+=84+85,∴a=84,b=85.23.如图,铁路上A,B两点相距23km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=8km.现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?【分析】根据使得C,D两村到E站的距离相等,则DE=CE,再利用勾股定理得出AE 的长.【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(23﹣x),∵DA=15km,CB=8km,∴x2+152=(23﹣x)2+82,解得:x=8,∴AE=8km.答:E站应建在离A站8km处.24.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.【分析】因为BD=BC﹣CD,可以在Rt△CAD中,根据勾股定理先求出CD的值.【解答】解:∵AD⊥AC,AC=20,AD=15,∴CD==25∴BD=BC﹣CD=32﹣25=7.25.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.【分析】(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【解答】解:(1)在Rt△ABC中,BC2=AB2﹣AC2=102﹣62=64,∴BC=8(cm);(2)由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=8cm,即t=4;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣8)cm,AC=6cm,在Rt△ACP中,AP2=62+(2t﹣8)2,在Rt△BAP中,AB2+AP2=BP2,即:102+[62+(2t﹣8)2]=(2t)2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=16cm,t=8;③当BP=AP时,AP=BP=2tcm,CP=|2t﹣8|cm,AC=6cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=62+(2t﹣8)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.。
2021-2022学年人教版八年级数学下册《第17章勾股定理》同步达标测试题(附答案)
2021-2022学年人教版八年级数学下册《第17章勾股定理》同步达标测试题(附答案)一.选择题(共8小题,满分24分)1.下列条件:①b2=c2﹣a2;②∠C=∠A﹣∠B;③a:b:c=::;④∠A:∠B:∠C=3:4:5,能判定△ABC是直角三角形的有()A.4个B.3个C.2个D.1个2.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形网格中不是直角三角形的是()A.B.C.D.3.给出下列四个说法:①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,其中正确的是()A.①②B.②③C.③④D.①④4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米5.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x26.如图,分别以Rt△ABC的三边为斜边向外作等腰直角三角形,若斜边AB=6,则图中阴影部分的面积为()A.6B.12C.16D.187.如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是()A.9m B.14m C.11m D.10m8.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.3cm B.5cm C.6cm D.8cm二.填空题(共10小题,满分40分)9.如图,淇淇在离水面高度为5m的岸边C处,用绳子拉船靠岸,开始时绳子BC的长为13m.(1)开始时,船距岸A的距离是m;(2)若淇淇收绳5m后,船到达D处,则船向岸A移动m.10.如图,一架秋千静止时,踏板离地的垂直高度DE=0.5m,将它往前推送1.5m(水平距离BC=1.5m)时,秋千的踏板离地的垂直高度BF=1m,秋千的绳索始终拉直,则绳索AD的长是m.11.有一个三角形的两边长是1和,要使这个三角形成为直角三角形,则第三边边长的平方是.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,若P为直线AB上一动点,连接DP,则线段DP的最小值是.13.如图,某学校(A点)到公路(直线l)的距离为300米,到公交车站(D点)的距离为500米,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,则商店C与车站D之间的距离是米.14.如图,点C是线段AB上一点,以AC、BC为边向两边作正方形ACDE和BCFG,已知AB=10,两正方形的面积和S1+S2=60,则图中阴影部分的面积为.15.如图,OA1=A1A2=A2A3=A3A4=A4A5=1,∠OA1A2=∠OA2A3=∠OA3A4=∠OA4A5=90°,则OA5的长是.16.如图,在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,动点P从点B出发沿射线BA以2cm/s的速度运动.则当运动时间t=s时,△BPC为直角三角形.17.如今人们锻炼身体的意识日渐增强,但是发现少数人保护环境的意识仍显淡薄,应提醒注意.如图是房山某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=30米,BC=40米,他们踩坏了米的草坪,只为少走米的路.18.如图,在四边形ABCD中,∠ABC=150°,BD平分∠ABC,过A点作AE∥BC交BD于点E,EF⊥BC于点F.若AB=6,则EF的长为.三.解答题(共7小题,满分56分)19.在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,CE平分∠ACB,AB=20,AC=15(1)求AD的长;(2)求证:△AEF是等腰三角形.20.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.21.为推进乡村振兴,把家乡建设成为生态宜居、交通便利的美丽家园,某地大力修建崭新的公路.如图所示,现从A地分别向C、D、B三地修了三条笔直的公路AC、AD和AB,C地、D地、B地在同一笔直公路上,公路AC和公路CB互相垂直,又从D地修了一条笔直的公路DH与公路AB在H处连接,且公路DH和公路AB互相垂直,已知AC=9千米,AB=15千米,BD=5千米.(1)求公路CD的长度;(2)若修公路DH每千米的费用是2000万元,请求出修建公路DH的总费用.22.如图,△ABC中,AB=AC=BC=20厘米,如果点M从点C出发,点N从点B出发,沿着三角形三边以4厘米/秒的速度运动,当点N第一次到达C点时,M,N两点同时停止运动.运动时间为t(秒).(1)当0<t<5且△BMN为直角三角形时,求t的值;(2)当t为何值,△BMN为等边三角形.23.如图,一个长为5米的梯子斜靠在墙上,梯子的顶端到地面的垂直距离为4米,梯子的顶端下滑2米时,底端是不是也滑动了2米?如果是,为什么?如果不是,底端滑动了多少米?24.如图,学校操场边有一块四边形空地ABCD,其中AB⊥AC,AB=8m,BC=17m,CD =9m,AD=12m.为了美化校园环境,创建绿色校园,学校计划将这块四边形空地进行绿化整理.(1)求需要绿化的空地ABCD的面积;(2)为方便师生出入,设计了过点A的小路AE,且AE⊥BC于点E,试求小路AE的长.25.如图,四边形ABCD为某街心公园的平面图,经测量AC=BC=AD=80米,BD=80米,且∠C=90°.(1)求∠DAC的度数;(2)若直线CA为公园的车辆进出口道路(道路的宽度忽略不计),工作人员想要在点D 处安装一个监控装置来监控道路CA的车辆通行情况,已知摄像头能监控的最大距离为80米,求被监控到的道路长度为多少米?参考答案一.选择题(共8小题,满分24分)1.解:∵b2=c2﹣a2,∴a2+b2=c2,∴△ABC是直角三角形,故①能判断是直角三角形,∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故②能判断是直角三角形,∵a:b:c=::,∴可以假设,a=20k,b=15k,c=12k,∴a2≠b2+c2,∴△ABC不是直角三角形,故③不能判断是直角三角形,∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=()°>90°,故④不能判断是直角三角形故选:C.2.解:设网格中每个小正方形的边长是1.图A中各边长为2、4、2,22+42=(2)2,故该三角形为直角三角形;图B中各边长、2、,()2+(2)2=()2,故该三角形为直角三角形;图C中三角形各边长为、、,()2+()2=()2,故该三角形为钝角三角形;图D中各边长为、2、5,()2+(2)2=52,故该三角形为直角三角形.即A、B、D是直角三角形,C不是直角三角形.故选:C.3.解:①由于0.32+0.42=0.52,所以以0.3,0.4,0.5为边长的三角形是直角三角形,但是0.3,0.4,0.5不是整数,所以0.3,0.4,0.5不是勾股数,故①说法错误;②虽然以0.5,1.2,1.3为边长的三角形是直角三角形,但是0.5,1.2,1.3不是整数,所以0.5,1.2,1.3不是勾股数,故②说法错误;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2,故③说法正确;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,故④说法正确.故选:C.4.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.5.解:设芦苇长x尺,由题意得:(x﹣1)2+52=x2,故选:B.6.解:在Rt△AHC中,AC2=AH2+HC2,AH=HC,∴AC2=2AH2,∴HC=AH=,同理:CF=BF=,BE=AE=,在Rt△ABC中,AB2=AC2+BC2,AB=6,S阴影=S△AHC+S△BFC+S△AEB=HC•AH+CF•BF+AE•BE,=×()2+×()2+()2=(AC2+BC2+AB2)=(AB2+AB2)=×2AB2=AB2=×62=18.故选:D.7.解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=2m,∵OC=6m,∴DC=4m,∴由勾股定理得:BC===5(m),∴大树的高度为5+5=10(m),故选:D.8.解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),所以18﹣15=3(cm),18﹣12=6(cm).则这只铅笔在笔筒外面部分长度在3cm~6cm之间.观察选项,只有选项D符合题意.故选:D.二.填空题(共10小题,满分40分)9.解:(1)在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴(m),故答案为:12;(2)∵淇淇收绳5m后,船到达D处,∴CD=5(m),∴AD=(m),∴BD=AB﹣AD=(12﹣)m.故答案为:(12﹣).10.解:∵BF⊥EF,AE⊥EF,BC⊥AE,∴四边形BCEF是矩形,△ACB是直角三角形,∴CE=BF=1m,∴CD=CE﹣DE=1﹣0.5=0.5(m),设绳索AD的长为xm,则AB=AD=xm,AC=AD﹣CD=(x﹣0.5)m,在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即(x﹣0.5)2+1.52=x2,解得:x=2.5(m),即绳索AD的长是2.5m,故答案为:2.5.11.解:当第三边是斜边时,第三边边长的平方是:12+()2=3;当第三边是直角边时,第三边边长的平方是:()2﹣12=1;故答案是:1或3.12.解:当线段DP取最小值时,DP⊥AB.如图,过点D作DP⊥AB于P,∵BC=15,且BD:DC=3:2,∴CD=6.∵∠C=90°,AD平分∠BAC交BC于D,∴DP=CD=6.故答案是:6.13.解:过点A作AB⊥l于B,则AB=300m,AD=500m.∴BD==400m,设CD=xm,则CB=(400﹣x)m,根据勾股定理得:x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5.答:商店与车站之间的距离为312.5米,故答案为:312.5.14.解:设AC=m,BC=n,则S1=m2,S2=n2,S1+S2=m2+n2=60,因为AB=10,即m+n=10,所以(m+n)2=100,m2+n2+2mn=100,2mn=100﹣60=40,mn=20,所以S△BCD=mn==10.故图中阴影部分的面积为10.故答案为:10.15.解:在Rt△OA1A2中,OA1=A1A2,由勾股定理得:OA2===,同理:OA3=,……则OA5=,故答案为:.16.解:在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,∴AB===50(cm).如图,作AB边上的高CD.∵S△ABC=AB•CD=AC•BC,∴CD===24(cm).①当∠BCP为直角时,点P与点A重合,BP=BA=50cm,∴t=50÷2=25(秒).②当∠BPC为直角时,P与D重合,BP=2tcm,CP=24cm,BC=40cm,在Rt△BCP中,∵BP2+CP2=BC2,∴(2t)2+242=402,解得t=16.综上,当t=25或16秒时,△BPC为直角三角形.故答案为:25或16.17.解:在Rt△ABC中,∵AB=30米,BC=40米,∴AC==50,30+40﹣50=20(米),∴他们踩坏了50米的草坪,只为少走20米的路.故答案为:50,20.18.解:∵AE∥BC,∴∠AEB=∠FBE,∵BD平分∠ABC,∠ABC=150°,∴∠ABE=,∴∠BAE=30°,AB=AE=6,如图,过点E作EG⊥AB于G,∵∠GAE=30°,∴GE=,∵BD是∠ABC的平分线,EG⊥AB,EF⊥BC,∴EF=EG=3,故答案为:3.三.解答题(共7小题,满分56分)19.(1)解:由勾股定理得:BC==25,根据三角形面积计算公式,解得:;(2)证明:∵∠BAC=90°,∴∠AEC+∠ACE=90°,∵AD⊥BC,∴∠ADC=90°,∴∠DCF+∠DFC=90°,∵CE平分∠ACB,∴∠DCF=∠ACE,∵∠DFC=∠AFE(对顶角相等),∠AEF=∠AFE,∴AE=AF,∴△AEF是等腰三角形.20.解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,∴S△ABC=AC•BC=×6×8=24,答:△ACB的面积24.21.解:(1)∵∠C=90°,AC=9千米,AB=15千米,∴BC===12(千米),∵BD=5千米,∴CD=12﹣5=7(千米),答:公路CD的长度为7千米;(2)∵AC=9千米,CD=7千米,∴AD==(千米),∵DH⊥AB,∴AD2﹣AH2=BD2﹣BH2,∴130﹣(15﹣BH)2=52﹣BH2,∴BH=4,∴DH==3,∴修建公路DH的总费用为3×2000=6000(万元).22.解:(1)当0<t<5时,点M在BC上,点N在AB上,BN=4t,MB=20﹣4t,△BMN为直角三角形,则∠BNM=90°或∠NMB=90°,①当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°,∴BM=2BN,∴20﹣4t=2×4t,解得:t=;②当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°,∴BN=2BM,∴4t=2(20﹣4t),解得:t=.③点M在AC上,点N在AB上,AN=CM=40﹣4t,(80﹣8t)+(40﹣4t)=20,t=(不合题意舍去),综上,当t=或时,△BMN为直角三角形;(2)点N第一次到达C点时,M,N两点同时停止运动,则0<t≤10,①当0<t≤5时,当MB=BN时,△BMN为等边三角形,此时,4t=20﹣4t,解得:t=;②当5<t≤10时,△BMN为等边三角形,只能点M与点A重合,点N与点C重合,此时,t=10,综上,t=或t=10时,△BMN为等边三角形.23.解:底端不是滑动了2米.理由:由题意可得:AB=CD=5米AO=4米AC=2米,在Rt△AOB中,AB=5米,AO=4米,∴OB===3(米),在Rt△COD中,∠0=90°,CD=AB=5米,AC=2米,∴OC=AO﹣AC=4﹣2=2米,∴OD===(米),∴BD=OD﹣OB=(﹣3)米,答:底端滑动不是2米,底部滑动了(﹣3)米.24.解:(1)∵AB⊥AC,∴∠BAC=90°,∴AC===15(m),∵CD=9m,AD=12m,∴AD2+CD2=122+92=225=AC2,∴△ACD是直角三角形,∠D=90°,∴需要绿化的空地ABCD的面积=S△ABC+S△ACD=AB×AC+AD×CD=×8×15+×12×9=114(m2);(2)∵∠BAC=90°,AE⊥BC,∴S△ABC=BC×AE=AB•AC,∴17×AE=8×15,解得:AE=(m),即小路AE的长为m.25.解:(1)∵AC=BC=AD=80米,BD=80米,∠C=90°.∴△ABC是等腰直角三角形,∴AB===80(米),∠CAB=∠ABC=45°,∵BD=80米,在△ABD中,有AD2+AB2=802+(80)2=(80)2=BD2,∴△ABD是直角三角形,∴∠BAD=90°,∴∠DAC=90°+45°=135°;(2)过点D作DE⊥AC,交CA的延长线于E,作点A关于DE的对称点F,连接DF,如图:由轴对称的性质,得:DF=DA=80,AE=EF,由(1)知,∠CAD=135°,∴∠DAE=45°,∴△ADE是等腰直角三角形,即AE=DE,在Rt△ADE中,有AE2+DE2=802,解得:AE=40(米),∴AF=80(米),∴被监控到的道路长度为80米.。
人教版数学八年级下册第十七章 勾股定理测试卷(附答案)
人教版数学八年级下册第十七章勾股定理测试卷一、单选题(共10题;共20分)1.判断以下各组线段为边作三角形,可以构成直角三角形的是()A. 6,15,17B. 7,12,15C. 13,15,20D. 7,24,252.如图,在的正方形网格中,的顶点都在格点上,下列结论错误的是A. B. C. D.3.下列各组数中不能作为直角三角形的三边长的是()A. 7,24,25B. ,4,5C. ,1,D. 40,50,604.小明搬来一架3.5 米长的木梯,准备把拉花挂在2.8 米高的墙上,则梯脚与墙脚的距离为( )A. 2.7 米B. 2.5 米C. 2.1 米D. 1.5 米5.如图,在中,是上一点,已知,,,,则的长为()A. B. C. D.6.将一根24cm 的筷子,置于底面直径为15cm,高8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h 的取值范围是()A. h≤15cmB. h≥8cmC. 8cm≤h≤17cmD. 7cm≤h≤16cm7.将面积为2π的半圆与两个正方形A和正方形B拼接如图所示,这两个正方形面积的和为()A. 4B. 8C. 2πD. 168.在四边形中,,若,则的大小为()A. B. C. D.9.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺A. 10B. 12C. 13D. 1410.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A. 360B. 400C. 440D. 484二、填空题(共10题;共30分)11.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________12.如图,一棵大树在一次强台风中于离地面处折断倒下,树干顶部在距离根部处,这棵大树在折断前的高度为________ .13.三角形的三边长为a,b,c,满足(a+b)2﹣c2=2ab,则此三角形是________.14.没有上盖的圆柱盒高为10cm,周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为________cm.15.在△ABC中,∠C=90°,若AB= ,则AB2+AC2+BC2=________。
第十七章 勾股定理 章节达标测试卷2022-2023学年人教版八年级数学下册
第十七章《勾股定理》章节达标测试卷一、选择题(每题3分,共30分)1.下列各组长度的线段能构成直角三角形的是( )A.30,40,50 B.7,12,13C.5,9,12 D.3,4,62.设直角三角形的两条直角边长分别为a和b,斜边长为c,已知b=12,c=13,则a=( )A.1 B.5 C.10 D.253.下列命题的逆命题不成立的是( )A.如果两个数互为相反数,那么它们的和等于0B.如果两个角相等,那么这两个角的补角也相等C.如果两个数相等,那么它们的平方相等D.如果|a|=|b|,那么a=b4.把命题“如果x=y,那么x=y”作为原命题,下列对原命题和它的逆命题真假判断正确的是( )A.原命题和逆命题都是真命题B.原命题和逆命题都是假命题C.原命题是真命题,逆命题是假命题D.原命题是假命题,逆命题是真命题5.在三边分别为4、4、6的等腰三角形中,底边上的高是( )A.5 B.3 C.4 D.76.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )A. 3 B.2 3 C.3 3 D.4 3(第6题) (第8题) (第9题) (第10题)7.若△ABC的三边长a,b,c满足(a-b)2+|a2+b2-c2|=0,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等腰直角三角形 D.无法确定8.【2022·张家界】如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC =3,则△AOB与△BOC的面积之和为( )A.34B.32C.334D. 39.如图,长方体的底面邻边长分别是5 cm和7 cm,高为20 cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B(点B为棱的中点),那么所用细线最短为( )A.20 cm B.24 cm C.26 cm D.28 cm 10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )A.9 B.6 C.4 D.3二、填空题(每题3分,共24分)11.已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°,c =10,a∶b=3∶4,则a=________.12.已知正方形的面积为8,则其对角线的长为________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:__________________________________________,该逆命题是________(填“真”或“假”)命题.14.【2022·西安高新一中模拟】已知a,b,c是△ABC的三边长,且满足关系式c2-a2-b2+|a-b|=0,则△ABC的形状为______________.15.【2021·岳阳】《九章算术》是我国古代数学名著,书中有下列问题:今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为____________________.16.习总书记提出的“绿水青山就是金山银山”这一科学论断,成为树立生态文明观,引领中国走向绿色发展之路的理论之基.小张在数学活动课上用正方形纸片制作成图①的“七巧板”,设计拼成了图②的水杉树树冠,如果已知图①中正方形纸片的边长为2 cm,则图②中水杉树树冠的高(即点A到线段BC的距离)是________cm.17.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆形,面积分别记为S1,S2,则S1+S2的值等于________.18.如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1.在AC上有一动点P,则EP+BP的最短长度为________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在△ABC中,CD⊥AB于D,AB=AC=13,BD=1.求:(1)CD的长;(2)BC的长.(第19题)20.如图,在四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.(第20题)21.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1 cm的速度移动;点Q从点B开始沿BC边向点C以每秒2 cm的速度移动.如果同时出发,经过3 s,△PBQ的面积为多少?(第21题)22.【数学建模】小渝和小川是一对好朋友.如图,小渝家住在A处,小川家住在B处,两家相距10千米,小渝家A在一条笔直的公路AC边上,小川家到这条公路的距离BC为6千米,两人相约在公路D处见面,且两家到见面地点D的距离相等.求小渝家A到见面地点D的距离.23.【数学抽象】阅读下面一段文字,然后回答问题.已知在平面内两点P1(x1,y),P2(x2,y2),其两点间的距离P1P2=(x1-x2)2+(y1-y2)2,同时,当两1点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离.(2)已知M,N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M,N两点之间的距离.(3)已知一个三角形各顶点坐标为D(1,6),E(-2,2),F(4,2),你能判定此三角形的形状吗?说明理由.24.【2022·北京】在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图①,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD ⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图②,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.答案:一、1.A 2.B 3.C 4.D 5.D 6.D 7.C 8.C 9.C 10.D二、11.6 12.4 13. 如果两个三角形的面积相等,那么这两个三角形全等;假 14.等腰直角三角形 15.(x-6.8)2+x2=10216.2+1 17.2π18.5三、19.解:(1)∵AB=13,BD=1,∴AD=13-1=12.在Rt△ACD中,CD=AC2-AD2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.20.解:连接BD.在Rt△BAD中,因为AB=AD=2,所以∠ADB=45°,BD2=AD2+AB2=22+22=8.在△BCD中,因为BD2+CD2=8+1=9=BC2,所以△BCD是直角三角形,且∠BDC=90°.所以∠ADC=∠ADB+∠BDC=45°+90°=135°.21.解:依题意,设AB=3k cm,BC=4k cm,AC=5k cm,则3k+4k+5k=36,∴k=3.∴AB=9 cm,BC=12 cm,AC=15 cm.∵AB2+BC2=AC2,∴△ABC是直角三角形且∠B=90°.点P,Q分别从点A,B同时出发3 s后,BP=9-1×3=6 (cm),BQ=2×3=6 (cm),∴S△PBQ=12BP·BQ=12×6×6=18 (cm2).22.解:由题意得AB=10千米,BC=6千米,AD=BD,BC⊥AC,∴AC=AB2-BC2=102-62=8(千米).设AD=BD=x千米,则CD=AC-AD=(8-x)千米,在Rt△BCD中,BC2+CD2=BD2,即62+(8-x)2=x2,解得x=25 4.答:小渝家A到见面地点D的距离为254千米.23.解:(1)由题意可知A,B两点间的距离为(2+3)2+(4+8)2=13.(2)由题意可知,直线MN平行于y轴,∴M,N两点之间的距离为4-(-1)=5.(3)△DEF是等腰三角形.理由如下:DE=(-2-1)2+(2-6)2=5,EF=(4+2)2+(2-2)2=6,DF=(4-1)2+(2-6)2=5,∴DE=DF. ∴△DEF是等腰三角形.24.(1)证明:在△BCD和△FCE中,⎩⎨⎧BC =CF ,∠BCD =∠FCE ,CD =CE ,∴△BCD ≌△FCE (SAS). ∴∠DBC =∠EFC . ∴BD ∥EF . ∵AF ⊥EF , ∴BD ⊥AF .(2)解:由题意补全图形如图:CD =CH .证明:延长BC 到F ,使CF =BC ,连接AF ,EF , ∵∠ACB =90°,∴AC ⊥BF . 又∵BC =CF ,∴AB =AF .由(1)可知BD ∥EF ,△BCD ≌△FCE ,则BD =EF , ∵AB 2=AE 2+BD 2, ∴AF 2=AE 2+EF 2. ∴∠AEF =90°. ∴AE ⊥EF . ∴BD ⊥AE .∴∠DHE =90°. 又∵CD =CE , ∴CH =CD .。
人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)
人教版数学八年级下册第十七章勾股定理单元测试卷一、单选题(共10题;共20分)1.下列说法:①无理数分为正无理数,零,负无理数;②-4是16的平方根;③如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;④任何实数都有立方根,其中正确的有()A. 4B. 3C. 2D. 12.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2=()A. 169B. 119C. 169或119D. 13或253.如图,∠B=∠ACD=90°;AD=13;CD=12;BC=3,则AB的长为()A. 4B. 5C. 8D. 104.下列各组数是勾股数的是()A. 12、15、18B. 6、8、12C. 4、5、6D. 7、24、255.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处.若M,N两点相距100海里,则∠NOF的度数为()A. 50°B. 60°C. 70°D. 90°6.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂0A=OB=10分米,晾衣臂支架HG=FE=5分米,HO=FO=4分米。
当∠AOC=90°,且OB∥CD时,线段OG与OE的长分别为( )A. 3和7B. 3和C. 3和2+D. 和2+8.如图,圆柱形容器高为18cm,底面周长为32cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好也在杯内壁,离杯上沿2cm与蜂蜜正相对的点A处,则蚂蚁从内壁A处到达内壁B处的最短距离为()A. 13cmB. cmC. 2 cmD. 20cm9.如图,在△ABC中,AB=AC,∠BAC=60°,BC=2,AD⊥BC于D,点F是AB的中点,点E在AD边上,则BE+EF的最小值是( )A. 1B.C. 2D.10.如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。
八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)
八年级数学下册《第十七章勾股定理》单元测试卷及答案(人教版)一、单选题1.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52 =(x+1)2B.x2+52 =(x﹣1)2C.x2+(x+1)2 =102D.x2+(x﹣1)2=522.如图,Rt△ABC中,∠BAC=90°,AB=AC,D、E为BC边上两点,∠DAE=45°,过A 点作AF⊥AE,且AF=AE,连接DF、BF.下列结论:①△ABF≌△ACE,②AD平分∠EDF;③若BD=4,CE=3,则AB=6√2;④若AB=BE,S△ABD=12S△ADE,其中正确的个数有()A.1个B.2个C.3个D.4个3.在△ABC中,AB=10,AC=17,BC边上的高AD=8,则△ABC的面积为()A.72B.84C.36或84D.72或844.如图,在△ABC中,△C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.55.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为8m,则BB′的长为()A.1m B.2m C.3m D.4m6.有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.1B.2020C.2021D.20227.如图,直线l上有三个正方形A、B、C,若正方形A、C的边长分别为4和6,则正方形B的面积为()A.26B.49C.52D.648.要焊接一个如图所示的钢架,需要的钢材长度是()A.(3√5+7)m B.(5√3+7)m C.(7√5+3)m D.(3√7+5)m9.如图,某超市为了吸引顾客,在超市门口离地高4.5m的墙上,装有一个由传感器控制的门铃A,如①图所示,人只要移至该门铃5m及5m以内时,门铃就会自动发出语音“欢迎光临”.如②图所示,一个身高1.5m的学生走到D处,门铃恰好自动响起,则BD的长为()A.3米B.4米C.5米D.7米10.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC 绕点B逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2+1C.1﹣√2D.﹣√2二、填空题11.如图,在△ABC中,∠A=90°,AB=AC,点D为AB中点,过点B作BE⊥CD交CD的延长线于点E,BE=2,CD=5,则DE=.12.如图,在Rt△ABC中,AB=BC=4,以AB为边作等边三角形ABD,使点D与点C在AB同侧,连接CD,则CD=.13.如图,已知Rt△ABC,△C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是。
人教版八年级下册 第17章《勾股定理》综合考试测试卷(附答案)
2020年春季八年级下册第17章《勾股定理》综合测试卷时间100分钟,满分120分班级____________姓名____________学号____________成绩____________一.选择题(共12小题,满分36分)1.下列各组数是勾股数的是()A.1,2,3B.0.3,0.4,0.5C.6,8,10D.5,11,122.由下列条件不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A﹣∠B=∠CC.a=1,b=2,c=D.(b+c)(b﹣c)=a23.如图,一个梯形分成一个正方形(阴影部分)和一个三角形(空白部分),已知三角形的两条边分别是12cm和13cm,那么阴影部分的面积是()cm2.A.16B.25C.36D.494.如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.25.如图,在Rt△ABC中,∠C=90°,D为AC上一点.若DA=DB=15,△ABD的面积为90,则CD的长是()A.6B.9C.12D.6.如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段P A、PB、PC、PD、PE,其中长度是有理数的有()A.1条B.2条C.3条D.4条7.如图,等腰△ABC中,AB=AC=10cm,BC=12cm,D为BC上一点,连接AD,E为AD上一点,连接BE,若∠ABE=∠BAE═∠BAC,则DE的长为()A.cm B.cm C.cm D.1cm8.如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()km.A.4B.5C.6D.9.如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是()A.121B.144C.169D.19610.如图,在Rt△ABC中,∠ABC=90°,BC=12,AB=5.分别以A,C为圆心,以大于线段AC长度的一半为半径作弧,两弧相交于点E,F,过点E,F作直线EF,交AC于点D,连结BD,则△ABD的周长为()A.13B.17C.18D.2511.某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是2.0米,高分别为2.8米,3.1米,3.4米,3.7米,则能通过该工厂厂门的车辆数是()(参考数据:≈1.41,≈1.73,≈2.24)A.1B.2C.3D.412.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积为S2,…按此规律继续下去,则S5的值为()A.B.C.D.二.填空题(共8小题,满分24分)13.直角三角形的直角边长分别为8,15,斜边长为x,则x2=.14.如果点A的坐标为(﹣4,0),点B的坐标为(0,3),则AB=.15.已知一个等腰三角形的一边长为4,一边长为6,则这个三角形底边上的高的长为.16.《九章算术》勾股卷有一题目:今有垣高一丈.依木于垣,上于垣齐.引木却行四尺,其木至地,问木长几何?意即:一道墙髙一丈,一根木棒靠于墙上,木棒上端与墙头齐平,若木棒下端向后退,则木棒上端会随着往下滑,当木棒下端向后退了四尺时,木棒上端恰好落到地上,则木棒长尺(1丈=10尺).17.如图,分别以直角△ABC的三边为直径作半圆,若两直角边分别为6,8,则阴影部分的面积是.18.已知三角形三边长分别为、、(a>0,b>0),请借助构造图形并利用勾股定理进行探究,得出此三角形面积为(用含a、b的代数式表示).19.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4cm,动点P从点B出发沿射线BC方向以2cm/s的速度运动.设运动的时间为t秒,则当t=秒时,△ABP 为直角三角形.20.如图,在平面直角坐标系中,OA1=2,∠A1Ox=30°,以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以A1A2为直角边作Rt△A1A2A3,并使∠A2A1A3=60°,再以A2A3为直角边作Rt△A2A3A4,并使∠A3A2A4=60°,…,按此规律进行下去,则A2020的坐标是.三.解答题(共8小题,满分60分)21.某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.22.如图所示,在△ABC中,AB=AC=5,BC=8,CD是AB边上的高.求线段AD的长.23.如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.24.某条道路限速70km/h,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s,小汽车到达B处,此时测得小汽车与车速测检测仪间的題离为50m,这辆小汽车超速了吗?25.利用如图4×4方格,每个小正方形的边长都为1.(1)请求出图1中阴影正方形的面积与边长;(2)请在图2中画出一个与图1中阴影部分面积不相等的正方形,要求它的边长为无理数,并求出它的边长;(3)把分别表示图1与图2中的正方形的边长的实数在数轴上表示出来.26.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD =4m吗?为什么?27.如图,△ABC中,∠ABC=90°,AC=25cm,BC=15cm.(1)设点P在AB上,若∠P AC=∠PCA.求AP的长;(2)设点M在AC上.若△MBC为等腰三角形,求AM的长.28.(1)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2.称为勾股定理.证明:∵大正方形面积表示为S=c2,又可表示为S=∴=c2∴.即直角三角形两直角边的平方和等于斜边的平方.(2)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程,(3)如图3所示,∠ABC=∠ACE=90°,请你添加适当的辅助线证明结论a2+b2=c2.参考答案一.选择题(共12小题)1.【解答】解:A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵62+82=102,∴这组数是勾股数;D、∵52+112≠122,∴这组数不是勾股数.故选:C.2.【解答】解:A、由题意:∠C=×180°=75°,△ABC是锐角三角形,本选项符合题意.B、∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,本选项不符合题意.C、∵a=1,b=2,c=,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,本选项不符合题意.D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,∴b2=a2+c2,∴△ABC是直角三角形,本选项不符合题意.故选:A.3.【解答】解:如图所示:Rt△CDE中,DE=12,CE=13,∴CD==5,∴阴影部分的面积=5×5=25cm2;故选:B.4.【解答】解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.5.【解答】解:∵∠C=90,DA=15,∴S△DAB=DA•BC=90,∴BC=12在Rt△BCD中,CD2+BC2=BD2,即CD2+122=152,解得:CD=9(负值舍去).故选:B.6.【解答】解:观察图形可知P A=4,由勾股定理得:PB==,PC==5,PD==2,PE==,故其中长度是有理数的有2条.故选:B.7.【解答】解:∵AB=AC,∠BAE═∠BAC,∴AD⊥BC,∴∠BDE=90°,BD=BC=6,∵AB=10,∴AD==8,∵∠ABE=∠BAE,∴AE=BE,设DE=x,则AE=BE=8﹣x,在Rt△BDE中,BE2=DE2+BD2,∴(8﹣x)2=x2+62,解得:x=,即DE=cm,故选:C.8.【解答】解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.9.【解答】解:∵直角三角形较短的直角边长是5,小正方形的边长是7,∴直角三角形的较长直角边=5+7=12,∴直角三角形斜边长=13,∴大正方形的边长是13,∴大正方形的面积是13×13=169.故选:C.10.【解答】解:∵∠ABC=90°,BC=12,AB=5,∴AC==13,根据题意可得EF是AC的垂直平分线,∴D是AC的中点,∴AD=AC=6.5,BD=AC=6.5,∴△ABD的周长为6.5+6.5+5=18.故选:C.11.【解答】解:∵车宽2米,∴卡车能否通过,只要比较距厂门中线1米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD===≈1.73(米),CH=CD+DH=1.73+1.6=3.33,∴两辆卡车都能通过此门,故选:B.12.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为1,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=12=1,S2=S1=,S3=S2=,S4=S3=,…,∴S n=()n﹣1.当n=5时,S5=()5﹣1=()4,故选:A.二.填空题(共8小题)13.【解答】解:∵直角三角形的直角边长分别为8,15,∴由勾股定理得,x2=82+152=64+225=289,故答案为:289.14.【解答】解:由两点间的距离公式可得AB==5.故答案为:5.15.【解答】解:①若等腰三角形的腰长为4,底边为6,如图1,在△ABC中,AB=AC=4,AD⊥BC,则AD为BC边上的中线,即D为BC中点,∴BD=DC=3,在直角△ABD中AD==.②若等腰三角形的腰长为6,底边为4,如图2,AB=AC=6,AD⊥BC,BC=4,同理可得AD==4.∴AD的长为或4.故答案为:或4.16.【解答】解:如图,设木杆AB长为x尺,则木杆底端B离墙的距离即BC的长有(x﹣1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x﹣4)2=x2,解得,x=14.5故答案为:14.5.17.【解答】解:S阴=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=+==24故答案为:24.18.【解答】解:如图所示,AB==,AC==,BC==,∴S△ABC=S矩形DEFC﹣S△ABE﹣S△ADC﹣S△BFC=20ab﹣﹣=.故答案为:.19.【解答】解:∵∠C=90°,AB=4cm,∠B=30°,∴AC=2cm,BC=6cm.①当∠APB为直角时,点P与点C重合,BP=BC=6 cm,∴t=6÷2=3s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣6)cm,AC=2cm,在Rt△ACP中,AP2=(2)2+(2t﹣6)2,在Rt△BAP中,AB2+AP2=BP2,∴(4)2+[(2)2+(2t﹣6)2]=(2t)2,解得t=4s.综上,当t=3s或4s时,△ABP为直角三角形.故答案为:3或4.20.【解答】解:∵∠A1Ox=30°,∠A1OA2=60°,∴∠A2Ox=90°,∴A2在y轴上,Rt△A1A2O中,OA1=2,∴OA2=2OA1=4,A1A2=2,∴A2的纵坐标为:4=+1,∴A2(0,4),Rt△A1A2A3中,∠A2A1A3=60°,∴∠A1A3A2=30°,∴A1A3=2A1A2=4,∵∠BA1O=∠A1Ox=30°,∴A1B∥x轴,∴A1B⊥A2O,∵∠A1A2B=30°,∴A1B=A1A2=,A1B=3,∴A3B=4﹣=3,OB=4﹣3=1,∴A3的横坐标为:﹣3=﹣,∴A3(﹣3,1),Rt△A2BA3中,A2A3=2A2B=6,Rt△A2A3A4中,A2A4=2A2A3=12,∴OA4=12﹣4=8,∴A4的纵坐标为:﹣[﹣1],A4(0,﹣8),由此发现:点A1,A2,A3,A4,…,A n,每四次一循环,2020÷4=505,∴点A2020在y轴的负半轴上,纵坐标是:﹣[﹣1]=1﹣31010.则A2020的坐标是(0,1﹣31010);故答案为:(0,1﹣31010).三.解答题(共8小题)21.【解答】证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴AC2+CD2=AD2,∴△ACD是直角三角形.22.【解答】解:设AD=x∵CD⊥AB,∴∠D=90°,∴CD2=BC2﹣BD2=AC2﹣AD2,∴82﹣(5+x)2=52﹣x2,∴x=,∴AD=.23.【解答】解:连接AC.由勾股定理可知:AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×5×12﹣×3×4=24(米2).24.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC===40(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.25.【解答】解(1)面积为4×4﹣4××1×3=10,边长为;(2)如图所示,正方形的边长为均可.(答案不唯一,合理即可.)(3)表示或或的点如图所示.(答案不唯一,画出表示的点亦可)26.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.27.【解答】解:(1)∵∠ABC=90°,AC=25cm,BC=15cm,∴AB==20cm,∵∠P AC=∠PCA,∴AP=PC,设AP=BP=x,∴PB=20﹣x,∴(20﹣x)2+152=x2,解得:x=,∴AP=;(2)当CM=BC=15时,△MBC为等腰三角形,∴AM=AC﹣CM=10;当BM=BC=15,时,△MBC为等腰三角形,过B作BH⊥AC于H,∴BH===12,∴CH==9,∴AM=AC﹣2CH=7;当BM=CM时,△MBC为等腰三角形,连接BM,设AM=x,则BM=CM=25﹣x,∴(25﹣x)2=122+(25﹣x﹣9)2,解得:x=,∴AM=,综上所述,若△MBC为等腰三角形,AM的长为10,7,.28.【解答】(1)证明:∵大正方形面积表示为S=c2,又可表示为S=4×ab+(b﹣a)2,∴4×ab+(b﹣a)2=c2.∴2ab+b2﹣2ab+a2=c2,∴a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.故答案为:4×ab+(b﹣a)2,4×ab+(b﹣a)2,a2+b2=c2;(2)证明:由图得,大正方形面积=×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2;(3)解:如图3,过A作AF⊥AB,过E作EF⊥AF于F,交BC的延长线于D,则四边形ABDF是矩形,∵△ACE是等腰直角三角形,∴AC=CE=c,∠ACE=90°=∠ACB+∠ECD,∵∠ACB+∠BAC=90°,∴∠BAC=∠ECD,∵∠B=∠D=90°,∴△ABC≌△CDE(AAS),∴CD=AB=b,DE=BC=a,S矩形ABDF=b(a+b)=2×ab+c2+(b﹣a)(a+b),∴a2+b2=c2.。
人教版八年级数学下册第17章《勾股定理》单元测试卷 (word版,含解析)
人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。
人教版八年级下册第十七章《勾股定理》章末过关测试卷(含答案)
人教版八年级下册第十七章《勾股定理》章末过关测试卷一.选择题(共10小题,满分30分)1.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,6,92.已知点A的坐标为(2,﹣1),则点A到原点的距离为()A.3B.C.D.13.在Rt△ABC中,∠B=90°,AB=5,BC=4,则AC的长是()A.3B.4C.3或D.4.满足下列条件的△ABC不是直角三角形的是()A.AC=1,BC=,AB=2B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3D.∠A:∠B:∠C=3:4:55.如图,数轴上的点A表示的数是﹣1,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.2.8B.2C.2﹣1D.2+16.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m7.在△ABC中,AB=AC=10,BD是AC边上的高,DC=2,则BD等于()A.2B.4C.6D.88.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯长度至少应是()A.13m B.17m C.18m D.25m9.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是()A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab10.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为a,较短的直角边为b,且a:b=4:3,则大正方形面积与小正方形面积之比为()A.25:9B.25:1C.4:3D.16:9二.填空题(共6小题,满分18分)11.在平面直角坐标系中,点P(﹣4,3)到原点O的距离是.12.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.13.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动米.14.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.16.如图所示,一根长为7cm的吸管放在一个圆柱形杯中,测得杯的内部底面直径为3cm,高为4cm,则吸管露出在杯外面的最短长度为cm.三.解答题(共7小题,满分52分)17.(1)如图1,在如下6×6的正方形网格中(每个小正方形边长均为1),画出一个面积为17的正方形;(2)在如,2所示的数轴上找到表示的点A(保留画图痕迹).18.如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求这块草地的面积.19.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.20.如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,求BD 的长.21.清明时节,某校八年级近300名师生前往山东曲阜、台儿庄两地,参加为期三天的研学旅行活动.途中在某服务区短暂停歇后,1号大巴车以80km/h的速度离开服务区向西北方向行驶,3号大巴车在同时同地以60km/h的速度向东北方向行驶,问:它们离开服务区0.5h后相距多远?22.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是10,小正方形的面积是2,求(a+b)2的值.23.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.参考答案一.选择题(共10小题)1.【解答】解:A、32+42=52,是勾股数;B、72+242=252,是勾股数;C、82+152=172,是勾股数;D、52+62≠92,不是勾股数.故选:D.2.【解答】解:点A的坐标为(2,﹣1)到原点O的距离:OA==.故选:C.3.【解答】解:∵∠B=90°,AB=5,BC=4,∴AB2+BC2=AC2,∴AC==.故选:D.4.【解答】解:A、∵12+()2=4,22=4,∴12+()2=22,∴AC=1,BC=,AB=2满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.5.【解答】解:由题意可得,AB=2,BC=2,AB⊥BC,∴AC=2,∴AD=2,∴点D表示数为:2﹣1,故选:C.6.【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.7.【解答】解:∵AB=AC=10,CD=2,∴AD=10﹣2=8,∵BD是AC边上的高,∴∠BDA=90°,由勾股定理得:BD===6,故选:C.8.【解答】解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故选:B.9.【解答】解:观察图象可知:S1=S2=a2+b2+ab=c2+ab,故选:B.10.【解答】解:∵a:b=4:3,∴大正方形面积与小正方形面积之比为(a2+b2):(a﹣b)2=b2:b2=25:1.故选:B.二.填空题(共6小题)11.【解答】解:点P(﹣4,3)到原点的距离为=5.故答案为:5.12.【解答】解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.13.【解答】解:由题意可知梯子的长是不变的,由云梯长10米,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时,梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8﹣6=2(米).14.【解答】解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π+π+×6×8﹣π=24.故答案为:2415.【解答】解:易证△AFD′≌△CFB,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.16.【解答】解:设在杯里部分长为xcm,则有:x2=32+42,解得:x=5,所以露在外面最短的长度为7cm﹣5cm=2cm,故吸管露出杯口外的最短长度是2cm,故答案为:2.三.解答题(共7小题)17.【解答】解:(1)如图1,正方形ABCD为所作;(2)如图2,点A为所作.18.【解答】解:如图,连接AC,如图所示.∵∠B=90°,AB=20m,BC=15m,∴AC===25m.∵AC=25m,CD=7m,AD=24m,∴AD2+DC2=AC2,∴△ACD是直角三角形,且∠ADC=90°,∴S△ABC=×AB×BC=×20×15=150m2,S△ACD=×CD×AD=×7×24=84m2,∴S四边形ABCD=S△ABC+S△ACD=234m2.19.【解答】解:(1)∵AD⊥BC,在Rt△ABD中,∠ADB=90°,AB=10,BD=8,∴AD==6.(2)∵AD⊥BC,∠ACD=45°,∴△ACD为等腰直角三角形,又∵AD=6,∴CD=6,AC=6,∴C△ABC=AB+BD+CD+AC=24+6.20.【解答】解:延长AD、BC,两条延长线相交于点E,∵在Rt△ABE中,∠A=90°,∠B=60°,∴∠E=90°﹣60°=30°.∴AB=BE,∴在Rt△DCE中,∠E=30°,CD=10,∴DE=2CD=20,∴AE=AD+DE=20+4=24.∴在Rt△ABE中,AB2+AE2=BE2,解得:AB=8,∴在Rt△ABD中,BD==4.21.【解答】解:根据题意得:80×0.5=40(km),60×0.5=30(km),根据勾股定理得:=50(km),则0.5h后两辆大巴车相距50km.22.【解答】解:(1)∵大正方形面积为c2,直角三角形面积为ab,小正方形面积为(b ﹣a)2,∴c2=4×ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2.;(2)由图可知,(b﹣a)2=2,4×ab=10﹣2=8,∴2ab=8,∴(a+b)2=(b﹣a)2+4ab=2+2×8=18.23.【解答】解:(1)设存在点P,使得P A=PB,此时P A=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,P A=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,当t=6时,点P与A重合,也符合条件,∴当或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t﹣3﹣4=,解得:t=,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.。