1.1变化率与导数_图文.ppt

合集下载

人教版高中数学选修2-2全套课件

人教版高中数学选修2-2全套课件

(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量

1.1.1变化率问题与导数概念

1.1.1变化率问题与导数概念
2004年雅典奥运会
法国《队报》网站的文章称刘翔以不可思议的速度 统治了赛场。这名21岁的中国人跑的几乎比炮弹还 快,赛道上显示的12.94秒的成绩已经打破了12.95 奥运会记录,但经过验证他是以12.91秒平了世界纪 录,他的平均速度达到8.52m/s。
1.1.1 变化率问题
问题1
吹气球
的值为-13.1 .
探1.运动员在某一时刻t0的瞬时速度 究 怎样表示? ?
瞬时速度,即是时间增量趋近于0时某一时刻的速度, 由极限的观点可知:当t 0, 时,
h t0Байду номын сангаас t h t0 瞬时速度为: lim t 0 t
2.函数f(x)在x=x0处的瞬时变化率怎样表示?
观 察 ?
当△t趋近于0时,平均 速度有什么样的变化趋 势?
我们发现:当△t趋近于0时,即无论t从 小于2的一边,还是从大于2的一边趋近 v 于2时,平均速度 都趋近于一个确定 的值-13.1。
从物理的角度看: 时间间隔| △t |无限变小时,平均速度 v 就无限趋近于t=2时的瞬时速度。 所以:运动员在t=2时的瞬时速度是-13.1m/s 为了表述方便,我们用:
令△x = x2 – x1 , △ y = f (x2) – f (x1) ,则
y f (x 2 ) f (x1 ) f (x 1 x) f (x 1 ) x x x 2 x1
问题: 平均变化率的几何意义是什么?
y f (x 2 ) f (x 1 ) x x 2 x1
y 及临近一点B(-1+Δx,-2+Δy), 则 =( x
)
A、3
B、3Δx-(Δx)2 D、3-Δx
C 、 3-(Δx)2

变化率与导数的概念、导数的运算

变化率与导数的概念、导数的运算

03 高阶导数及其应用
高阶导数的定义与计算
高阶导数的定义
函数一阶导数的导数称为二阶导数,二阶导 数的导数称为三阶导数,以此类推,n-1阶 导数的导数称为n阶导数。
高阶导数的计算
高阶导数的计算可以通过连续求导得到,每 求一次导,阶数增加一阶。对于常见的基本 初等函数,其高阶导数有特定的公式或规律 可循。
导数在几何上表示曲线在某一点处的切线斜率。当函数在某一点处的导数大于0时,表示函数在该点处单调增加; 当导数小于0时,表示函数在该点处单调减少;当导数等于0时,表示函数在该点处可能达到极值点或拐点。
可导与连续的关系
可导必连续
如果一个函数在某一点处可导,则该函数在该点处必定连续。这是因为可导的定义中已经包含了函数 在该点处的极限存在且等于函数值这一条件。
成本最小化
企业在给定产量下追求成本最小化时,需要找到使得边际 成本等于平均成本的产量,即求解成本函数的一阶导数等 于零的点。
效用最大化
消费者追求效用最,即求解效用函数的一阶导数等于 零的点。
05 导数在工程学中的应用
曲线拟合与最小二乘法中的导数应用
工程优化问题中的导数应用
优化算法
在工程设计和制造过程中,经常需要解决各种优化问 题,如最小化成本、最大化效率等。导数在这些优化 算法中发挥着重要作用,它们被用来计算目标函数的 梯度或方向导数,以确定搜索方向或步长。
敏感性分析
在工程经济学中,敏感性分析是一种评估项目风险的 方法。它通过计算项目效益指标(如净现值、内部收 益率等)对于各个不确定因素的导数或偏导数,来量 化各因素对项目效益的影响程度。
变化率与导数的概念、导数的运算
目 录
• 变化率与导数的基本概念 • 导数的运算规则 • 高阶导数及其应用 • 导数在经济学中的应用 • 导数在工程学中的应用 • 数值计算中的导数逼近方法

导数第一节1.1.1-1.1.3

导数第一节1.1.1-1.1.3

P
α
o
x 我们发现,当点 沿着曲线无限接近点P即 当点Q沿着曲线无限接近点 我们发现 当点 沿着曲线无限接近点 即 割线PQ如果有一个极限位置 Δx→0时,割线 如果有一个极限位置 则我 → 时 割线 如果有一个极限位置PT.则我 们把直线PT称为曲线在点 处的切线 们把直线 称为曲线在点P处的切线. 称为曲线在点 处的切线
2 ∆t →0
= −9.8t0 + 6.5
y = f ( x)
处的瞬时变化率怎样表示? 函数在 x = x0 处的瞬时变化率怎样表示
f ( x0 + ∆x) − f ( x0 ) △y lim = lim ∆x→0 △ x ∆x→0 ∆x
导数的定义: 4. 导数的定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
1.1变化率与导数 1.1变化率与导数
1.变化率 1.变化率 一个变量相对于另一个变 量的变化而变化的快慢程度叫 做变化率. 变化率.
问题1 问题 气球膨胀率
3V r (V ) = 3 4π
当空气容量从V 增加到V 气球的平 当空气容量从 1增加到 2时,气球的平 气球的 均膨胀率是多少 均膨胀率是多少? 是多少
练习: 位移s(t)(单位:m)与时间t(单位: s) 的关系为: s(t ) = 3t +1, 求t = 2时的瞬时速度v.
△s s (2 +△t ) − s (2) 解 v = s (2) = lim = lim △ t → 0 △t △t →0 △t

[3(2 +△t) + 1] − (3 × 2 + 1) = lim = lim 3 = 3 △ t→0 △ t →0 2

人教a版数学【选修2-2】1.1.2《导数的概念》ppt课件

人教a版数学【选修2-2】1.1.2《导数的概念》ppt课件

常数 叫做t0时刻的瞬时速度.即 常数 ,我们就把这个______ 于______
st0+Δt-st0 Δs lim Δt Δt→0 v= lim = ______________________. → Δt
Δt 0
故瞬时速度就是运动方程是S=-4t2+16t(S的单位为m;t的 单位为s),则该物体在t=2s时的瞬时速度为( ) A.3m/s B.2m/s C.1m/s D.0m/s [答案] D
Δx 0
典例探究学案
瞬时速度
1 2 已知自由落体的运动方程为s=2gt ,求: (1)落体在t0到t0+Δt这段时间内的平均速度; (2)落体在t0时的瞬时速度; (3)落体在t0=2秒到t1=2.1秒这段时间内的平均速度; (4)落体在t=2秒时的瞬时速度.
[分析] 平均速度 v 即平均变化率,而瞬时速度即是平均 速度 v 在Δt→0时的极限值,为此,要求瞬时速度,应先求出 平均速度,再求 v 当Δt→0时的极限值.
)
f1+Δx-f1 1 1 [解析] 原式=3 lim =3f ′(1). Δx Δx→0
4.(2013· 揭阳一中段考)若f(x)=x3,f ′(x0)=3,则x0的值 为( ) A.1 C.± 1 [答案] C B.-1 D.3 3
fx0+Δx-fx0 [解析] ∵f ′(x0)= lim Δx Δx→0 x0+Δx3-x3 0 = lim Δx Δx→0
3.对导数定义的理解要注意: 第一:Δx是自变量x在x0处的改变量,所以Δx可正可负,但 Δx≠0;Δy是函数值的改变量,可以为0; 第二:函数在某点的导数,就是在该点的函数值改变量与自 变量改变量之___的极限.因此,它是一个常数而不是变量 ; 比

变化率与导数-PPT

变化率与导数-PPT

式子
f
(
x2 ) x2
f( x1
x1
)
称为函数f(x)从x1到
x2的平均变化率.
x 若设 y
x2 y2
x1 y1
,
则平均变化率为
y x
这里,我们称△x是相对于x1的一个增量 (也叫做自变量的增量),可用x1+△x代替x2, 同理△y叫做函数值的增量,可用y1+△y代替y2
注意:△x(△y)是一个整体,可正可负!
lim x0 x x0 lim
x
x 0
x
x0 x( x0 x x0 )
lim
1
1
x0 x0 x x0 2 x0
例3 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果在第 x h时, 原油的温 度为 y=f (x) = x2–7x+15 (0≤x≤8) . 计算第2h与第6h时, 原 油温度的瞬时变化率,并说明它们的意义.
(3)质点运动规律为s=t2+3,求质点t=3的瞬时速度。
解:(3) s 3 t 2 32 t 2 6t
s t 6 t
s
Vt 3
lim
x 0
t
6
例2、已知函数 y x 在x=x0处附近有定义,

f
' x0
1 2 ,求x0的值。
解:f
' x0
lim
x0
f
x0
x
x
f
x0
解:(2) y f 1 x f 1
= 1 x2 1 x (2)
所以平均 变化率为
-x2 x
y 1- x x
y f '(1) lim

1.1变化率与导数(4课时)

1.1变化率与导数(4课时)

作业:
P10习题1.1A组:2,3,4.
1.1
1.1.3
变化率与导数
导数的几何意义
问题提出
1.函数f(x)在x=x0处的导数的含义是 什么?
Vy f (x 0 + Vx ) - f (x 0 ) f¢ (x 0 ) = lim = lim Vx 0 Vx Vx 0 Vx
2.求函数f(x)在x=x0处的导数有哪 几个基本步骤?
若给定函数f(x)和x0的值,那么f′(x0) 是变量还是定值?
f¢ (x 0 ) = lim
思考3:如何求函数f(x)=x2在x=1处的 导数?一般地,求函数f(x)在x=x0处的 导数有哪几个基本步骤? 第一步,求函数值增量:
Vy Vx ® 0 Vx
△y=f(x+△x)-f(x0); 第二步,求平均变化率:
思考2:如果将半径r表示为体积V的函数, 则该函数的解析式是什么?
r (V ) =
3
3V 4p
思考3:当空气容量V从0增加到1时,气 球的半径增加了多少?可以用哪个数据 来刻画气球的平均膨胀率?
r(1)-r(0)≈0.62(dm),
r (1) - r (0) » 0.62(dm / L ) 1- 0
探究(一):气球的膨胀率 【背景材料】在吹气球的过程中,随着 气球内空气容量的增加,气球的半径增 加的速度越来越慢.设气球的体积为V (单位:L),某一时刻的半径为r(单 位:dm). 思考1:气球的体积V与半径r的函数关系 是什么? 4 3 V (r ) = p r 3
4 3 pr 3
V (r ) =
3.函数的平均变化率与自变量的初始 值及其增量有关,它能刻画函数在某个 区间内函数值的平均取值情况,但不能 反映函数在区间内各点的函数值.

高中数学选修2《导数在研究函数中的应用》课件

高中数学选修2《导数在研究函数中的应用》课件


x>1
时,
f (x)>0,
-
1 3
x
1
时,
∴ 函数在 (-∞,
f (x)<0.
- 13) 或 (1,
+∞) 上是增函数,

(
-
1 3
,
1)上是减函数.
4. 证明函数 f(x)=2x3-6x2+7 在 (0, 2) 内是减函数.
证明: f (x)=6x2-12x,
解不等式 6x2-12x<0 得 0<x<2,
函数是增函数.
例2. 判断下列函数的单调性, 并求出单调区间: (1) f(x)=x3+3x;
(2) f(x)=x2-2x-3;
(3) f(x)=sinx-x, x(0, p);
(4) f(x)=2x3+3x2-24x+1.
y
解: (3) f (x) = cosx-1,
解不等式 cosx-1>0 得
果 f(x)<0, 那么函数 y=f(x)在
这个区域内单调递减.
例1. 已知导函数 f (x) 的下列信息:
当 1<x<4 时, f (x)>0;
当 x>4, 或 x<1 时, f (x)<0;
当 x=4, 或 x=1 时, f (x)=0.
试画出函数 f(x) 图象的大致形状.
解: 在区间 (1, 4) 内, f (x)>0,
解不等式 6x2+6x-24>0 得
x
-
1 2
-
17 2
,

x
-
1 2
+

1.1.1变化率问题1.1.2导数的概念课件高二下学期数学人教A版选修22

1.1.1变化率问题1.1.2导数的概念课件高二下学期数学人教A版选修22

度, 写成
lim
t 0
h(2
+
t) t
-
h(2)
.

lim
t 0
h(2
+
t) t
-
h(2)
=
-13.1.
2. 瞬时变化率
对于函数的平均变化率
y = f (x2 ) - f (x1) ,
x
x2 - x1
由△x=x2-x1 得 x2=△x+x1,
y = f (x + x1) - f (x1) .
x
x
当△x 很小很小时, △x+x1 就接近于 x1.
我们用符号
lim
x0
表示△x
趋近于零,
用平均变化
率的极限 lim y = lim f (x + x1) - f (x1)
x x0
x0
x
表示函数在 x1 处的瞬时变化率.
3. 导数
一般地, 函数 y=f(x) 在 x=x0 处的瞬时变化率是
lim f (x0 + x) - f (x0 ) = lim y ,
x0
x
x0 x
我们称它为函数 y=f(x) 在 x=x0 处的导数, 记作 f(x0)
或 y |x=x0, 即
f
(x0) =
lim
x0
f
(x0 + x)x
f
(x0) .
问题 1 中, 运动员在时间 t=2 时的瞬时速度就是 求函数 h(x) 在 t=2 时的导数.
导数可以描述任何物体的瞬时变化.
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
人教A版·高中数学·选修2-2 第一章

变化率与导数 数学 优秀课件

变化率与导数  数学 优秀课件
f ( x0 )与x的 具体取无关
导数的几何意义:
(几何画板演示)
函数 f ( x ) 在 x x0 处的导数就是切线的
斜率 k ,即
k lim
f ( x0 Δx) f ( x0 ) x
x 0
f ( x0 )
例1 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果第 x h时, 原油的温度(单 位: C )为 f (x) = x2 – 7x+15 ( 0≤x≤8 ) . 计算第2h和第6h, 原 油温度的瞬时变化率, 并说明它们的意义.
在第2h和第6h时, 原油温度的瞬时变化率分别为–3和 5. 它说 三极限 明在第2h附近, 原油温度大约以3 C / h的速率下降; 在第6h附近, 原油温度大约以5 C / h的速率上升.
例 2.求f (x) 3x 2 5在x 0处 的 导 数.
解法一: 一差二比三极限
f (0) 0
解法二: 利用导数的几何意义
在x 0处 , 切 线 斜 率 k 0 f (0).
课堂小结:
平均变化率
y f (x)

x2
x1 到
y x
的 平均变化率
割线的斜率
f ( x0 )
导数
y = f ( x ) 在 x = x0 处的瞬时变化率
lim
x 0
y x
一差 二比 三题1.1:
A组1、2题 B组1、3题
r (V )
3
3V 4
h(t) 4.9t 2 6.5t 1 0
y f ( x)
体积从1L增加到 2L的 平均膨胀率
在0 t 0.5这段时间 里的平均速度

变化率与导数导数的计算

变化率与导数导数的计算
导数与积分的关系
导数与积分是互逆运算,一个函数的导数与其积分之间的关系可以通过微积分基本定理来表示。
04 导数的应用
导数在几何中的应用
求切线斜率
导数可以用来求曲线在某一点的切线斜率,从而了解曲线在该点的 变化趋势。
研究函数极值
通过求导数并令其为零,可以找到函数的极值点,进而研究函数的 最大值和最小值。
莱布尼茨法则
对于复合函数的 $n$ 阶导数,可以利用莱布尼 茨法则进行计算。
幂级数展开法
对于复杂的函数,可以利用幂级数展开法求得高阶导数。
THANKS FOR WATCHING
感谢您的观看
曲线的凹凸性判断
通过求二阶导数,可以判断曲线的凹凸性,进而了解曲线的弯曲程度。
导数在物理中的应用
速度和加速度的研究
在物理学中,导数可以用来研究物体的速度和加速度, 例如瞬时速度和瞬时加速度。
斜抛运动的研究
通过导数可以研究斜抛物体的运动轨迹,例如研究射 程、射高等。
振动和波动的研究
导数可以用来研究振动和波动的规律,例如振幅、频 率等。
03
导数可以用来研究函数的单调性、极值、拐点等性质。
导数的几何意义
导数的几何意义是函数在某一 点处的切线斜率,即切线与x
轴正方向的夹角正切值。
当导数大于0时,函数在该点 处单调递增;当导数小于0时,
函数在该点处单调递减。
导数的符号变化点为函数的拐 点,即函数图像的凹凸分界点。
导数的计算方法
定义法
隐函数的导数计算
对数求导法
对于形如 $y = f(x)$ 的隐函数,可以通 过两边取对数,转化为显函数进行求导 。
VS
参数方程法
对于参数方程 $x = x(t), y = y(t)$,可以 通过对参数 $t$ 求导来求得隐函数的导数。

人教a版数学【选修2-2】1.1.3《导数的概念》ppt课件

人教a版数学【选修2-2】1.1.3《导数的概念》ppt课件

重点:导数的几何意义及曲线的切线方程. 难点:对导数几何意义的理解.
导数的几何意义
新知导学 1.曲线的切线:过曲线y=f(x)上一点P作曲线的割线PQ,当
Q点沿着曲线无限趋近于P时,若割线PQ趋近于某一确定的 直线PT,则这一确定的直线PT称为曲线y=f(x)在点P的 __________.
[解析] (1)将x=2代入曲线C的方程得y=4,
∴切点P(2,4).
y′|x=2=Δlixm→0
ΔΔyx=Δlixm→0
132+Δx3+43-13×23-43 Δx
=Δlixm→0[4+2·Δx+13(Δx)2]=4. ∴k=y′|x=2=4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y
)
A.1
B.π4
C.54π
D.-π4
[答案] B
[解析] ∵y=12x2-2,
∴y′= lim Δx→0
12x+Δx2-2-12x2-2 Δx
= lim Δx→0
12ΔxΔ2+x x·Δx=Δlixm→0
x+12Δx=x.
∴y′|x=1=1.
∴点P1,-32处切线的斜率为1,则切线的倾斜角为45°.
数f(x)的导函数__________.
(3)函数y=f(x)在点x0处的导数f ′(x0)就是导函数f ′(x)在点x=x0 处的函数值,f即′(xf)′(x0)=__________.
f′(x)|x=x0
牛刀小试
1.(2014·三峡名校联盟联考)曲线y=x2在点P(1,1)处的切线 方程为( )
A.y=2x
B.y=2x-1
C.y=2x+1 D.y=-2x
[答案] B

(-人教A版)导数的概念课件-(共28张)

(-人教A版)导数的概念课件-(共28张)

[随堂训练]
1.已知函数 y=f(x)=x2-1,则当 x=2,Δx=0.1 时,Δy 的值为( )
A.0.40
B.0.41
C.0.43
D.0.44
解析:Δy=f(2.1)-f(2)=(2.12-1)-(22-1)=4.41-4=0.41.
答案:B
2.若函数 f(x)=2x2 的图象上有点 P(1,2)及邻近点 Q(1+Δx,2+Δy),则 liΔmx→0 ΔΔxy等
(3)h′(1)=liΔmt→0 ΔΔht =liΔmt→0 h1+ΔΔtt-h1=liΔmt→0[5(Δt)2+45Δt+120]=120,即 第 1 s 末高度的瞬时变化率为 120 m/s. 它说明在第 1 s 末附近,航天飞机的高度大约以 120 m/s 的速度增加.
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上,要不断反思、关 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大事者,不惟有超世 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已,不亦远乎?心中有 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭疏食,饮水,曲肱 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策,有包藏宇宙之机, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐民之乐者,民亦乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与不学同;知而不能 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不信者行不果。立志 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋而不忠乎?与朋友 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担当。为天地立心, 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地势坤,君子以厚德 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立志,难成!海纳百 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧。”真正努力精 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学技术,都需要无数 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁击溃过你,都不重 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。最深的孤独不是长 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一个人的价值,应该 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知,最苦的是等待,最 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世界的真正财富。人 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便是黑暗中的那一盏 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太过短暂,今天放弃 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目标,去承受常人承 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服的枕头。嫉妒他人, 表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微中站起来,带着封 存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以,过去的懒惰,决 定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是逃避或绕开它们, 而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做不了决定的时候, 让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志, 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。公共的利益,人 类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。意志 的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。即使遇到了不幸的 灾难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈从,不论程度如何, 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点是:在不利和艰难 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。

01 1.1.1变化率与导数 易海明

01  1.1.1变化率与导数 易海明

当 1、函数 f x x 在区间 1,3 上的平均变化率是( ) 堂 3 1 B、2 C、 D、 检 A、4 4 4 测 2 2 2、 经过函数 y 2 x 图象上两点 A、 B 的直线的斜率 ( x A 1.5, x B 1 ) 为_______;函数 y 2 x
3. 一物体的运动方程是 s=2t ,则从 2 s 到 3 s 这段时间内路程的增量为( ) A.18 B.8 C.10 D.12
4.物体的运动规律是 s=s(t),物体在 t 至 t+Δ t 这段时间内的平均速度是( )
- s(t) A. v =
t
- s(Δ t) B. v = Δt
- Δs C. v = Δt
气球的平均膨胀率为__________,当空气容量 V 从 1L 增加到 2L 时,气球的平均膨胀率为 __________________,当空气容量从 V1 增加到 V2 时,气球的平均膨胀率为_____________。 h 课前 预习 问题 2 高台跳水 在高台跳水运动中,,运动员相对于水面的高度 h(单位:m)与起跳后的 时间 t(单位:s)存在函数关系 h(t)= -4.9t2+6.5t+10. 如何用运动员在某 些时间段内的平均速度 v 粗略地描述其运动状态? 在 0 t 0.5 这段时间里, v =_________________ 在 1 t 2 这段时间里, v =_________________ 问题 3 平均变化率 已知函数 f x ,则变化率可用式子_____________表示,此式称之为函 o t
y x
解:

例 2.求 y x 2 在 x x0 附近的平均变化率。 解:
数 f x 从 x1 到 x2 的______ ____.习惯上用 x 表示 x 2 x1 ,即 x =___________,可把 x 看做 是相对于 x1 的一个“增量” ,可用 x1 x 代替 x2 ,类似有 y __________________,于是, 平均变化率可以表示为_______________________.

1.1变化率问题导数的概念

1.1变化率问题导数的概念
请计算
0≤t≤0.5和1≤t≤2时的平均速度v
o t
问题2
高台跳水
h ( 0 .5 ) h ( 0 ) v 4 . 05 ( m/s ); 0 .5 0 h ( 2 ) h (1) v 8 . 2 ( m/s ); 2 1
h(t2 ) h(t1 ) 思考: 在t1≤t≤t2时间内的平均速度v t2 t1
y 1 1 lim lim , x 0 x x 0 x0 x x0 2 x0 1 1 1 由y'| x x0 , 得 , x0 1. 2 2 x0 2
练习
1 (1)求函数 f(x)= 在 x=1 处的导数 x
2
f′(1)=-1
(2)已知函数 f(x)=ax +c, f′(1)=2a=2,∴a=1 且 f′(1)=2,求 a.
⑶运动员在某一时刻t0的瞬时速度如何表示?
ht + t- ht 0 0 lim t 0 t
思考
1、函数的平均变化率怎么表示?
f x + x- f x 0 0 x
2 、 函 数 f x 在 x = x0处 的 瞬 时 变 化 率 怎 么 表 示 ?
f x + x- f x 0 0 lim x 0 x
导数的定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
y f x0+ x - f x0 lim = lim x 0 x x 0 x
f ( x 0 ) 或 y | x x ,
0
称为函数 y = f (x) 在 x = x0 处的导数, 记作
△t = – 0.00001, △t = – 0.000001,
v 4 .9 t 1 3 .1

变化率和导数

变化率和导数

中,哪些量
(单位:dm)之间的函数关系是
V (r) 4 r3
3
在改变?变 量的变化情
❖ 如果将半径r表示为体积V的函数, 况?
❖ 那么 r(V ) 3 3V 4
我们来分析一下:
r(V ) 3 3V
4
❖ 当V从0增加到1时,气球半径增加了r(1) r(0) 0.62(dm) 气球的平均膨胀率为 r(1) r(0) 0.62(dm / L)
❖ 若设Δx=x2-x1, Δf=f(x2)-f(x1)
这里Δx看作是对于x1的一个 “增量”可用x1+Δx代替x2
同样Δf=Δy=f(x2)-f(x1)
则平均变化率为
f f(x2 ) f (x1)
x
x2 x1
理解:
1,式子中△x 、△ f 的值可正、可负,但△x
值不能为0, △ f 的值可以为0 2,若函数f (x)为常函数时, △ f =0 3, 变式
相应的平均速度为( A )
A. 6+t
B. 6+t+ 9 t
C.3+t
D.9+t
❖ 4.物体按照s(t)=3t2+t+4的规律作直 线运动,求在4s附近的平均变化率.
25 3t
练习:
❖ 5.过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当 Δx=0.1时割线的斜率.
49
t
(1) 运动员在这段时间里是静止的吗? (2) 你认为用平均速度描述运动员的运动状态有什么问题吗?
在高台跳水运动中,平均速度不能准确反映 他在这段时间里运动状态.
平均变化率定义:
上述问题中的变化率可用式子 f(x2 ) f (x1) 表示 x2 x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档