有理数的乘法(2)练习题

合集下载

有理数乘法计算题(20题)

有理数乘法计算题(20题)

有理数乘法计算题(20题)1. 简介本文档包含20个有理数乘法计算题,旨在帮助学生练和掌握有理数的乘法运算。

每个题目都包含两个有理数,需要求出它们的乘积。

通过解答这些题,学生可以提高他们的数学技能,并加深对有理数乘法的理解。

2. 题列表1. $2 \times (-3)$2. $-5 \times (-4)$3. $1 \times 0$4. $3 \times \left(\frac{2}{3}\right)$5. $\left(-\frac{1}{2}\right) \times 4$6. $\left(-\frac{3}{4}\right) \times \left(-\frac{2}{5}\right)$7. $(-2) \times 7$8. $0 \times 6$9. $5 \times \left(-\frac{4}{5}\right)$10. $\left(-\frac{6}{7}\right) \times \left(-\frac{3}{2}\right)$11. $\left(\frac{5}{6}\right) \times \left(\frac{2}{3}\right)$12. $(-3) \times \left(-\frac{1}{4}\right)$13. $(-1) \times \left(-\frac{3}{2}\right)$14. $\left(\frac{3}{4}\right) \times \left(-\frac{1}{2}\right)$15. $\left(-\frac{2}{3}\right) \times \left(\frac{4}{5}\right)$16. $2 \times (-5)$17. $(-4) \times (-3)$18. $0 \times 3$19. $(-10) \times \left(\frac{3}{5}\right)$20. $\left(-\frac{4}{7}\right) \times \left(\frac{5}{2}\right)$3. 题解答1. $2 \times (-3) = -6$2. $-5 \times (-4) = 20$3. $1 \times 0 = 0$4. $3 \times \left(\frac{2}{3}\right) = 2$5. $\left(-\frac{1}{2}\right) \times 4 = -2$6. $\left(-\frac{3}{4}\right) \times \left(-\frac{2}{5}\right) = \frac{3}{10}$7. $(-2) \times 7 = -14$8. $0 \times 6 = 0$9. $5 \times \left(-\frac{4}{5}\right) = -4$10. $\left(-\frac{6}{7}\right) \times \left(-\frac{3}{2}\right) = \frac{9}{7}$11. $\left(\frac{5}{6}\right) \times \left(\frac{2}{3}\right) = \frac{5}{9}$12. $(-3) \times \left(-\frac{1}{4}\right) = \frac{3}{4}$13. $(-1) \times \left(-\frac{3}{2}\right) = \frac{3}{2}$14. $\left(\frac{3}{4}\right) \times \left(-\frac{1}{2}\right) = -\frac{3}{8}$15. $\left(-\frac{2}{3}\right) \times \left(\frac{4}{5}\right) = -\frac{8}{15}$16. $2 \times (-5) = -10$17. $(-4) \times (-3) = 12$18. $0 \times 3 = 0$19. $(-10) \times \left(\frac{3}{5}\right) = -6$20. $\left(-\frac{4}{7}\right) \times \left(\frac{5}{2}\right) = -\frac{10}{7}$以上是20个有理数乘法计算题的解答。

有理数的乘法2

有理数的乘法2

就坐在椅子上;伊去灶前生火,我就攀着菜橱一格一格看;伊去水井边与阿母一起洗衫,我隔着窗户喊伊:“阿--嬷!” 丽花听到了,把话传给她:“你阿敏嫃哪在叫你咧!” “做啥?”伊往我这里看了。 “莫什么代记啦!”我觉得话团太大了,说不出口。 “呷
饱碗筷也不收来洗,放在那里生蚂蚁。”阿母说。 把一副碗筷埋到井池里去的时候,伊三人都不说话,我速速说:“我去读册了。”便出门。 走到小石子路头,正打算抄田埂去追江岸路上的同学,才跨过河沟,竹林里传出话来: “阿--敏--嫃哪,回来啰,你阿嬷要
1.(1)如果2个数的乘积为负数,其中有个 1 (2)如果3个数的乘积为负数,其中有个 1或3
负因数。 负因数。
(3)如果4个数的乘积为负数,其中有个 1或3 负因数。
(4)如果5个数的乘积为负数,其中有个 1,3,5 负因数。
(5)如果101个数的乘积为负数,其中有个 1,3,…,101 负因数。
? 小时候,为着家里孩子多,零食分到每个人手上只有一点点,阿嬷总是偷偷惜我,把多的糖果、饼干、水果藏起来,趁弟妹不在时悄悄告诉我:
“米瓮内有一粒桠柑,拿去呷,莫给阿林、阿丽、阿云、阿东看到,剩一粒而已。”“斗柜内第二个抽屉毛巾盖住,用日记纸包着,有两粒金甘仔糖。”“灶前装粗糠的布袋里还有半包纽仔饼。”阿嬷的藏功是一流的,瘄边家嫁女儿送的爆米香,她藏到屋梁上去。我们的偷功
给你五角银买糖仔呷பைடு நூலகம்,快回来拿,慢一脚步就莫啰!” 可恶的丽花。我压着书包快快跑回去,把大大的五毛钱放进铅笔盒里,一天的重量都有了。 “阿嬷我要去了,阿母我要去了,‘--丽花我要去了!" 丽花咯咯笑,扬了一片水花过来. 背后,阿嬷的耳语飘来:"五角
银没给伊,伊的脚底像给店仔胶黏住,走不开脚啦!" 二十多年过了,老的愈老,年轻的也要老。每日早晨我一醒来,阿嬷便蹑手蹑脚进房劝: “你也好心,莫饮咖啡,呷点热粥才有元气!” 房里已经弥漫着咖啡的香,晨间阅读正要开始。我说:“不想呷咧,咖啡好饮。”

《有理数》练习题2(有答案)

《有理数》练习题2(有答案)

《有理数》练习题2学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1、若-3、5、a的积是一个负数,则a的值可以是()A. -15B. -2C. 0D. 15参考答案: D【思路分析】此题考查的是有理数的乘法。

仔细读题,获取题中已知条件,结合有理数的乘法相关情况,即可解答此题。

【解题过程】解:多个非零有理数相乘时积的符号取决于负因数的个数。

若-3、5、a的积是一个负数,则a>0,符合条件的只有D选项。

故选:D。

2、如图1-2-2-11,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 3参考答案: D【思路分析】数轴上数的特点。

【解题过程】解:由题图可知,点B在点A右边,距离点A 4个单位长度,所以点B表示的数是3。

故选D。

3、有一张厚度为0.05毫米的纸,将它对折1次后,厚度为2×0.05毫米.对折2次后,厚度为2×2×0.05毫米,对折6次后,厚度为()毫米.A. 24×0.05B. 25×0.05C. 26×0.05D. 27×0.05参考答案: C【思路分析】这道题是考查应用有理数的乘方运算解决对折问题,根据对折规律,对折后的厚度成2的指数次幂变化,写出即可.【解题过程】解:对折1次后,厚度为2×0.05毫米;对折2次后,厚度为2²×0.05毫米;对折3次后,厚度为2³×0.05毫米;…对折n次后,厚度为2n×0.05毫米.当n=6时,厚度为26×0.05毫米,所以对折6次后,厚度为26×0.05毫米.故选C.4、如图1-2-4-1,数轴上的点A、B分别对应有理数a、b,下列结论正确的是()A. a>bB. |a|>|b|C. -a < bD. a+b<0参考答案: C【思路分析】实数包括有理数和无理数.其中无理数就是无限不循环小数,有理数就包括整数和分数.数学上,实数直观地定义为和数轴上的点一一对应的数。

有理数的乘法和除法练习题汇总及答案

有理数的乘法和除法练习题汇总及答案

有理数的乘法和除法练习题汇总及答案一、有理数乘法练习题1、计算:(-3)×5答案:-15解析:两数相乘,异号得负,并把绝对值相乘。

所以(-3)×5 =-152、计算:4×(-6)答案:-24解析:异号相乘得负,4×(-6) =-243、计算:(-7)×(-8)答案:56解析:同号相乘得正,(-7)×(-8) = 564、计算:(-5)×0答案:0解析:任何数与 0 相乘,都得 05、计算:(-2)×(-3)×(-4)答案:-24解析:先确定符号,三个负数相乘,结果为负。

然后计算绝对值,2×3×4 = 24,所以最终结果为-246、计算:5×(-2)×(-6)答案:60解析:先确定符号,两个负数相乘得正,正数乘以正数得正。

5×2×6 = 607、计算:(-8)×(-125)答案:1000解析:同号相乘得正,8×125 = 10008、计算:(-025)×4答案:-1解析:异号相乘得负,025×4 = 1,所以(-025)×4 =-19、计算:(-3/4)×(-8/9)答案:2/3解析:同号相乘得正,分子相乘作分子,分母相乘作分母,约分可得 2/310、计算:(-6)×(-1/6)答案:1解析:互为倒数的两个数相乘得 1二、有理数除法练习题1、计算:(-18)÷6答案:-3解析:两数相除,异号得负,并把绝对值相除。

所以(-18)÷6 =-32、计算:24÷(-8)答案:-3解析:异号相除得负,24÷8 = 3,所以 24÷(-8) =-33、计算:(-36)÷(-9)答案:4解析:同号相除得正,36÷9 = 44、计算:0÷(-7)答案:0解析:0 除以任何一个不等于 0 的数,都得 05、计算:(-20)÷(-5)÷(-2)答案:-2解析:按照从左到右的顺序依次计算,(-20)÷(-5) = 4,4÷(-2) =-26、计算:(-12)÷(1/3)答案:-36解析:除以一个数等于乘以这个数的倒数,(-12)÷(1/3) =(-12)×3 =-367、计算:(-2/3)÷(-4/9)答案:3/2解析:同号相除得正,除以一个分数等于乘以这个分数的倒数,(-2/3)÷(-4/9) =(-2/3)×(-9/4) = 3/28、计算:56÷(-14/15)答案:-60解析:56÷(-14/15) = 56×(-15/14) =-609、计算:(-18)÷(-2/3)÷(-3)答案:-9解析:先将除法转化为乘法,(-18)÷(-2/3) =(-18)×(-3/2) = 27,27÷(-3) =-910、计算:(-8/9)÷(-4/27)×(-3/2)答案:-3解析:先将除法转化为乘法,(-8/9)÷(-4/27) =(-8/9)×(-27/4) = 6,6×(-3/2) =-9三、综合练习题1、计算:(-4)×6÷(-2)答案:12解析:先计算乘法,(-4)×6 =-24,再计算除法,-24÷(-2) = 122、计算:(-5/6)×(-3/10)÷(-1/2)答案:-1/2解析:先计算乘法,(-5/6)×(-3/10) = 1/4,再计算除法,1/4÷(-1/2) =-1/23、计算:(-8)×(-5)×(-0125)答案:-5解析:先确定符号,三个负数相乘,结果为负。

人教版七年级数学上北大绿卡教师用课时练习1.4.1有理数的乘法(2)(含答案解析)

人教版七年级数学上北大绿卡教师用课时练习1.4.1有理数的乘法(2)(含答案解析)

1.4.1 有理数的乘法(2)(课时练习)(时间: 30 分钟,满分68 分)班级: ___________姓名: ___________得分: ___________一、选择题(每题 3 分)1.以下算式中,积为负数的是()A.B.C.D.【答案】 D【分析】试题剖析:当多个非零的有理数相乘,积的正负要看负因数的个数.当负因数的个数为奇数个时,积为负数;当负因数的个数为偶数个时,积为正数.考点:有理数的乘法2 .这是为了运算简易而使用().A.乘法互换律B.乘法联合律C.分派律D.乘法互换律和联合律【答案】 D .【分析】试题剖析:察看可知,题目中的计算运用了乘法互换律和联合律,故答案选 D .考点: C 乘法的运算律.3.以下结论正确的选项是()A . 0 是正数也是有理数B.两数之积为正,这两数同为正C.几个数相乘,积的符号由负因数的个数决定D.互为相反数的两个数的绝对值相等.【答案】 D【分析】试题剖析: 0 不是正数,则 A 错误;当两数同号时,两数的积为正数,则 B 错误;几个非零的有理数相乘,积的符号由负因数的个数决定,则 C 错误; D 正确.考点:相反数、有理数乘法4.若a<c<0<b ,则abc 与0 的大小关系是()A . abc<0B . abc=0C. abc>0 D .没法确立【答案】C.【分析】试题剖析:由题意可知,a、 b、 c 中有两个负数,一个正数,所以abc> 0,故答案选C.考点:有理数的乘法.5.从数- 6, 1,- 3, 5,- 2 中任取三个数相乘,则其积最小的是(A .- 60B .- 36C.- 90D.- 30【答案】 B .【分析】).试题剖析:由于正数大于0, 0 大于全部负数,正数大于全部负数,在乘法算式中,当负因数有偶数个时,积为正数,当负因数有奇数个时,积为负数,此题所给的数中,有三个负数,故它们相乘时积最小,所以应为 -6×( -3)×( -2) =-36 .故此题选 B.考点: 1.有理数计算;2.有理数比较大小.6.式子 4×25×(1-3+2) =100(1-3+2) =50 -30+40 顶用的运算律是()21052105(A )乘法互换律及乘法联合律(B )乘法互换律及分派律(C)乘法联合律及分派律(D )分派律及加法联合律【答案】 C.【分析】试题剖析:式子 4×25×(1-3+2)=100(1-3+2) =50- 30+40 中 ,先利用乘法的21052105联合律计算4×25,再利用乘法的分派律计算100(1-3+2),故答案选 C. 2105考点:乘法的运算律.7.以下算式中,积为负数的是()A.0( 5)B . 4 ( 0.5) ( 10)C . ( 1.5) ( 2)D . ( 2)( 1) ( 2)5 3【答案】 D【分析】试题剖析:依占有理数的乘法运算的运算规律可知:0 乘以任何数都得 0,负数的个数为偶数个时得正,为奇数个时为负,所以可判断为 D .应选D考点:有理数的乘法8. a 、 b 、 c 的符号切合下边哪一种状况时,这三个数的乘积必为正数()A 、 a 、 b 、 c 同号B 、 b 为负, a 与 c 同号C 、a 为负,b 与c 异号D 、 c 为正, a 与 b 异号【答案】C【分析】试题剖析:要想三个数的积为正数,那么只好有两个负数可三个全为正数,察看所给选项:A 、a 、b 、 c同号,同正时为正,同负时为负,不切合;B 、 b 为负, a 与c 同号,结果为负,不符合; C 、 a 为负,b 与c 异号,结果为正,切合;D 、 c 为正,a 与b 异号,结果为负,不符合;应选 C.考点:有理数的乘法.9.假如四个有理数的积是负数,那么此中负因数有多少个?()A .3B .1C .0 或 2D .1 或 3【答案】 D.【分析】试题剖析:由于共有四个因数,其积为负数,则负因数共有1个或 3个.应选 D .考点:有理数的乘法.二、填空题(每题 3 分)10.计算:(21)(6).32【答案】- 1【分析】试题剖析:此题利用乘法分派律进行计算.原式=2×(- 6)-1×(- 6)=(- 4)-(-323) =- 1.考点:有理数的乘法计算11.计算(- 2. 5)× 0. 37× 1. 25×(— 4)×(— 8)的值为.【答案】- 37【分析】试题剖析:原式=[(- 2.5)×(- 4)]× [1.25×(- 8)] × 0.37=10 ×(- 10)× 0.37=-37.考点:有理数的计算12.计算(131) 12=.1246【答案】 10【分析】试题剖析: (131)12=1123121121921012461246考点:有理数的运算.13.有三个互不相等的整数a、b、 c,假如 abc=9,那么 a+b+c=.【答案】-1或-9【分析】试题剖析:(- 1)× 1×(- 9) =9,(- 1)× 3×(- 3) =9,则 a+b+c=- 1+1+ (- 9) =-9或 a+b+c=- 1+3+ (- 3) =- 1.考点:有理数乘法14.计算 :11111111111111.1342345134523= 2241【答案】5.【分析】试题分析:设1+1+1=a,1+1+1+1=b,2342345∵原式 =[1- (1+1+1][1+1+1+1]-[1- (1+1+1+1)(1+1+1) ] 23423452345234=( 1-a) b-( 1-b) a =b-ab-a+ab=b-a,∴原式 =(1+1+1+1)-(1+1+1 )23452341111-111=+ ++52--42343 1=5.考点:有理数的混淆运算15.计算:( 1-2)(2-3)(3-4)(2013-2014)=.【答案】 -1【分析】试题剖析:由于1-2= -1 , 2-3= -1 ,3-4= -1 ,2013-2014= -1 ,共 1007 个 -1 相乘,所以结果为 -1.考点:有理数的运算.16.在数- 3,- 2,4,5 中任取三个数相乘,所得的积中最大的是,最小的积是.【答案】 30,-60.【分析】试题剖析:依据题意知,任取的三个数应是 -3,-2, 5,它们的积最大,是( -3)×( -2)× 5=30 ;任取的三个数是 -3, 4, 5,它们的积最小,是( -3)× 4×5=-60.试题分析:( -3)×( -2)× 5=30 时,积最大;( -3)× 4×5=-60 .时,积最小.考点: 1.有理数的乘法;2.有理数大小比较.三、计算题17.( 20 分)计算:计算.( 1)2.3× 4.1× 0×( -7);(2)(- 1)× (-2)×3×(-9) .234815 3 (3)( 4 ) 1.25 ( 8)( 4)( 2.4)2065解:( 1) 2.3× 4.1×0×( -7) =0;(2)(-1)×(-2)× 3×(- 9)=-(1×2×3×9)=- 9.2348 2 3 4832(3) ( 4 1) 1.25 (8) =( 81 )×【 5 ×( -8)】 =( 81 )×( -10) = 81 ;2020 420 2 (4) 5( 2.4)3 = ( 53) ( 2.4) = 1×( -2.4) =-1.2. 65 6 5 2。

七年级数学上册《有理数的乘法》练习题及答案解析

七年级数学上册《有理数的乘法》练习题及答案解析

七年级数学上册《有理数的乘法》练习题及答案解析学校:___________姓名:___________班级:___________考号:___________一、填空题1.在2,﹣3,4,﹣5这四个数中,任取两个数相乘,所得的积最大是______.2.两数相乘,同号得_____;异号得____,并把____相乘; 任何数与0相乘,积仍为_____. 3.1201-的相反数的倒数是______. 4.在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是_____.5.如图,在一块长20m ,宽10m 的长方形草地上,修建两条宽为1m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 _____m 2.二、单选题6.数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示有理数,这样就建立起了“数”与“形”之间的联系.同时,数轴也是我们研究相反数、绝对值的直观工具.数a ,b 在数轴上的位置如图所示,以下结论正确的是( )A .0a b +=B .b a <C .0ab >D .b a <7.☐42÷-=(),那么“☐”内应填的实数是( )A .8-B .8C .4D .4-8.下列算式中,积不是负数的是( )A .05()⨯-B .40.5(10)⨯⨯-C . 1.52-⨯D .12253⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭9.下列计算正确的是( )A .﹣2+3=5B .﹣7﹣(﹣4)=﹣3C .()236-=-D .(﹣18)÷(﹣8)=1 10.下列算式中,积为负数的是( )A .0(6)⨯-B .4(5)(3)⨯-⨯-C .( 2.5)(2)-⨯-D .(2)(3)(4)-⨯-⨯-三、解答题11.计算:(1)-2÷56×65⎛⎫- ⎪⎝⎭; (2)(-510)÷(+34)÷(-0.125); (3)2112÷114⎛⎫- ⎪⎝⎭÷213⎛⎫- ⎪⎝⎭; (4)(-81)÷2×14×29⎛⎫- ⎪⎝⎭. 12.阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为||AB ,当两点中有一点在原点时,不妨设点A 在原点,如图(1)||||||||AB OB b a b ===-当A 、B 两点都不在原点时,☐点A 、B 都在原点的右边,如图(2)||||||||||||AB OB OA b a b a a b =-=-=-=-;☐点A 、B 都在原点的左边,如图(3)||||||||||()||AB OB OA b a b a a b =-=-=---=-;☐点A 、B 在原点的两边,如图(4)||||||||||()||AB OA OB a b a b a b =+=+=+-=-;总上,数轴上A 、B 两点之间的距离||||AB a b =-.回答下列问题(1)数轴上表示2和5的两点之间的距离是_______,数轴上表示1和3-的两点之间的距离是_______. (2)数轴上表示x 和1-的两点A 和B 之间的距离是_______,如果||2AB =,那么x 为_______. (3)当代数式|1||1|x x ++-取最小值时,相应的x 的取值范围是_______.13.计算.(1)9÷4÷2.5 (2)72112151512⨯-÷ (3)132(0.25)443⎡⎤÷--⎢⎥⎣⎦参考答案:1.15【分析】两个数相乘,同号得正,异号得负,且正数大于一切负数,所以找积最大的应从同号的两个数中寻找即可.【详解】解:2×4=8,(﹣3)×(﹣5)=15,15>8.☐积最大是15.故答案为:15.【点睛】本题主要考查的知识点是有理数的乘法及有理数大小比较,关键要明确不为零的有理数相乘的法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.正负绝对值0【解析】略3.201【分析】根据相反数及倒数的定义即可求解.【详解】解:1201的相反数是1201,1201的倒数是201,故答案为:201.【点睛】本题考查了相反数及倒数,熟练掌握其定义是解题的关键.4.-4【分析】根据题意两数相加,求出最小的和.【详解】解:由题意得:和要为最小,只有两个负数相加才会得到最小值,☐和的最小值为(﹣1)+(﹣3)=﹣4;故答案为:﹣4.【点睛】本题主要考查有理数的加法,熟练掌握有理数的加法运算是解题的关键.5.171【分析】直接利用草地的绿地面积=长方形面积-长的小路面积-短的小路去掉1平米的小路面积,进而得出答案.【详解】解:由图形可得,这块草地的绿地面积为:20×10-20×1-(10﹣1)×1=200-20-9=171(m 2).故答案为:171.【点睛】此题主要考查了长方形面积,正确求出小路面积是解题关键.6.D【分析】根据题意和数轴,绝对值的意义,有理数乘法和加法法则,可以解答本题.【详解】解:由数轴可得,有理数a 表示21a --<<,b 表示b 0<<1;A.0a b +<,故A 错误;B.>b a ,故B 错误;C.0ab <,故C 错误;D.b a <,故D 正确.故选:D .【点睛】本题考查数轴、绝对值、有理数加法和乘法,解答本题的关键是明确题意,利用相反数和数形结合的思想解答.7.A【分析】根据有理数的乘除法运算法则,将除法恒等变形为乘法即可求解. 【详解】解:☐42÷-=(), ∴等式两边同乘以4-得到☐()()()4424÷-⨯-=⨯-,即☐8=-,故选:A .【点睛】本题考查有理数的乘除法运算,根据等式的基本性质将除法转换成乘法是解决问题的关键.8.A【分析】根据有理数的乘法运算符号法则,积的符号由负因数的个数决定,对各选项分析判断后利用排除法求解.【详解】解析:A .0(5)0⨯-=,符合题意;B .40.5(10)20⨯⨯-=-,不符合题意;C . 1.523-⨯=-,不符合题意;D .12425315⎛⎫⎛⎫-⨯-⨯-=- ⎪ ⎪⎝⎭⎝⎭,不符合题意. 故选:A【点睛】本题考查了有理数的乘法,主要利用了几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负数,当负因数的个数为偶数时,积为正数. 9.B【分析】根据有理数的运算法则逐项计算即可.【详解】解:A 、﹣2+3=1,故选项A 错误,不符合题意;B 、﹣7﹣(﹣4)=﹣7+4=﹣3,故选项B 正确,符合题意;C 、()239-=,故选项C 错误,不符合题意; D 、(﹣18)÷(﹣8)=1118864⨯=,故选项D 错误,不符合题意; 故选:B .【点睛】本题考查了有理数的相关运算,熟练掌握运算法则是解题的关键.10.D【分析】根据有理数的乘法运算法则分别计算可得结果.【详解】解:A .0(6)0⨯-=,故此选项不合题意;B .4(5)(3)60⨯-⨯-=,故此选项不合题意;C .( 2.5)(2)5-⨯-=,故此选项不合题意;D .(2)(3)(4)24-⨯-⨯-=-,此选项符合题意;故选:D .【点睛】本题考查了有理数的乘法,熟记运算法则是解本题的关键.11.(1)7225;(2)120;(3)1;(4)94. 【分析】(1)先计算有理数的乘法,再计算有理数的乘法即可得;(2)利用有理数的除法法则计算即可得;(3)先将带分数化为假分数,再计算有理数的除法即可得;(4)先计算有理数的除法,再计算有理数的乘法即可得.【详解】(1)原式66255⎛⎫=-⨯⨯- ⎪⎝⎭, 12655⎛⎫=-⨯- ⎪⎝⎭, 7225=; (2)原式151034()8=-÷÷-, 115()8=-÷-,15(8)=-⨯-,120=;(3)原式25551234⎛⎫-⎛⎫=÷- ⎪⎝÷ ⎪⎭⎭⎝, 25431255⎛⎫-⎛⎫=⨯- ⎪⎝⨯ ⎪⎭⎭⎝, 5335⎛⎫-⨯⎛ ⎪⎝⎭⎫=- ⎪⎝⎭, 1=;(4)原式8112249⎛⎫-=⨯⨯ ⎝-⎪⎭, 29818=--⨯⎛⎫ ⎪⎝⎭, 94=. 【点睛】本题考查了有理数的乘除法运算,熟记运算法则是解题关键.12.(1)3;4;(2)1x +;1或3-;(3)11x -≤≤.【分析】(1)直接根据数轴上A 、B 两点之间的距离|AB |=|a ﹣b |.代入数值运用绝对值即可求任意两点间的距离;(2)直接根据数轴上A 、B 两点之间的距离|AB |=|a ﹣b |.代入数值运用绝对值即可求任意两点间的距离;(3)代数式|x +1|+|x -1|表示数轴上一点到1、﹣1两点的距离的和,根据两点之间线段最短,进而得出答案.【详解】解:(1)数轴上表示2和4的两点之间的距离是|2﹣5|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:3,4(2)数轴上x 与-1的两点间的距离为|x -(-1)|=|x +1|,如果|AB |=2,则x +1=±2,解得x =1或-3;故答案为:|x +1|,1或-3;(3)☐代数式|x +1|+|x -1|表示数轴上一点到1、﹣1两点的距离的和,☐根据两点之间线段最短可以得到当-1≤x ≤1时,代数式|x +1|+|x -1|的值最小,故答案为:-1≤x ≤1.【点睛】本题主要考查了绝对值的几何意义,解题的关键在于能够准确读懂题意进行求解.13.(1)9 10(2)4(3)3 4【分析】(1)根据有理数的除法法则进行计算;(2)先将除法变成乘法,再逆用乘法分配律进行计算即可;(3)先算括号内的运算,然后将除法变成乘法进行计算.(1)解:原式95929 424510=÷=⨯=;(2)解:原式72721121212124 151515153⎛⎫=⨯-⨯=-⨯=⨯=⎪⎝⎭;(3)解:原式132111133 44344344⎛⎫=÷-+=÷=⨯=⎪⎝⎭.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.。

七年级数学上册第2章有理数的运算2.3有理数的乘法(第2课时)训练浙教版(2021年整理)

七年级数学上册第2章有理数的运算2.3有理数的乘法(第2课时)训练浙教版(2021年整理)

七年级数学上册第2章有理数的运算2.3 有理数的乘法(第2课时)分层训练(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第2章有理数的运算2.3 有理数的乘法(第2课时)分层训练(新版)浙教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第2章有理数的运算2.3 有理数的乘法(第2课时)分层训练(新版)浙教版的全部内容。

2。

3 有理数的乘法(第2课时)1.乘法交换律、结合律和分配律:(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即____________.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即____________.(3)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加,即____________.2.多个有理数相乘时,积的符号由负因数的个数决定,若负因数的个数是____________,则积为正;若负因数的个数是____________,则积为____________.A组基础训练1.计算(-2错误!)×(-3错误!)×(-1)的结果是( )A.-616B.-5错误! C.-8错误!D.5错误!2.在计算(错误!-错误!+错误!)×(-48)时,可以避免通分的运算律是()A.加法交换律 B.乘法交换律C.乘法分配律 D.加法结合律3.下列计算中,错误的是( )A.-6×(-5)×(-3)×(-2)=180B.(-36)×(错误!-错误!-错误!)=-6+4+12=10C.(-15)×(-4)×(+错误!)×(-错误!)=6D.-3×(+5)-3×(-1)-(-3)×2=-3×(5-1-2)=-64.下列说法不正确的是()A.一对相反数的积可能为0B.多个有理数相乘的积不为0C.绝对值和倒数都等于它本身的数只有1D.多个不为0的有理数相乘,积的符号取决于负因数的个数5.在算式1.25×错误!×(-8)=1。

北师大版七上数学有理数的乘法练习题

北师大版七上数学有理数的乘法练习题

北师大版七上数学有理数的乘法练习题(带答案)1.有理数的乘法法则(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0.①两个有理数相乘,积的符号是由两个因数的符号确定:同号(+,+或-,-)得正,异号(+,-或-,+)得负;②0与任何数相乘,积都是0;③1乘任何数得原数,-1乘任何数得原数的相反数.(2)两个有理数相乘的步骤①先确定积的符号;②再求出积的绝对值.(3)多个有理数的乘法①几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个有理数相乘,有一个因数为0,结果就是0;反之,若几个数的积为0,则至少有一个因数为0.释疑点有理数相乘的方法①几个有理数相乘,先确定积的符号,再把绝对值相乘;②当几个因数中有一个为0时,不用再判断符号,直接得0.【例1】计算:(1)(+4)×(-5);(2)(-0.75)×(-1.2);(3)-29×0.3;(4)0×-17;(5)-112×113×-114×-115×116.分析:按照乘法法则运算,先确定符号,再将绝对值相乘.解:(1)(+4)×(-5)=-(4×5)=-20;(2)(-0.75)×(-1.2)=+(0.75×1.2)=0.9;(3)-29×0.3=-29×310=-115;(4)0×-17=0;(5)-112×113×-114×-115×116=-32×43×54×65×76=-72.2.倒数如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个数互为倒数.若a≠0,则a的倒数是1a.谈重点对倒数的理解①0没有倒数;②互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数;③若两个数互为倒数,则它们的乘积为1;④倒数等于它本身的数是1和-1.【例2】填空:(1)-76的倒数是__________;0.2的倒数是__________;(2)倒数是4的数是__________.解析:乘积是1的两个数互为倒数.答案:(1)-67 5 (2)143.有理数的乘法运算律(1)乘法交换律:两个数相乘,交换因数的位置,积不变.用字母表示为:a×b=b×a.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用字母表示为:(a×b)×c=a×(b×c).(3)乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示为:a×(b+c)=a×b+a×c.谈重点乘法运算律的运用方法①交换因数的位置时,要连同符号一起交换;②公式中的字母a,b,c可以是正数,也可以是负数和0;③乘法的交换律和结合律对多个因数的乘法也适用;④为了能简便运算,也可以逆用乘法对加法的分配律,即a×b+a×c=a×(b+c).【例3】计算:(1)(-8)×9×(-1.25)×-19;(2)114-56+12×(-12);(3)-5.372×(-3)+5.372×(-17)+5.372×4;(4)-243435×2.5×(-8);(5)1112-79-518×36-6×1.43+3.93×6.分析:运用乘法的运算律进行简化计算.(1)用乘法交换律和结合律;(2)用乘法对加法的分配律;(3)因各乘积中都有因数5.372,故可逆用乘法对加法的分配律进行简便计算;(4)将带分数拆成整数与分数的和或差,再运用乘法结合律和乘法对加法的分配律;(5)算式的前半部分可直接正向运用乘法对加法的分配律,后半部分可逆用乘法对加法的分配律,从而可省去通分和繁杂的计算.解:(1)(-8)×9×(-1.25)×-19=[(-8)×(-1.25)]×9×-19=10×(-1)=-10;(2)114-56+12×(-12)=114×(-12)+-56×(-12)+12×(-12)=-15+10+(-6)=-11;(3)-5.372×(-3)+5.372×(-17)+5.372×4=5.372×3+5.372×(-17)+5.372×4=5.372×[3+(-17)+4]=5.372×(-10)=-53.72;(4)-243435×2.5×(-8)=243435×2.5×8=25-135×20=25×20-135×20=500-47=49937.(5)1112-79-518×36-6×1.43+3.93×6=1112×36-79×36-518×36+6×(-1.43+3.93)=33-28-10+6×2.5=-5+15=10.4.与绝对值、相反数、倒数有关的混合运算根据已知的与绝对值、相反数、倒数有关的条件,进行有关的综合计算,其步骤是:(1)利用条件,先求出有关字母的数值或有关式子的数值;(2)将所求的式子变形,使其符合上述条件;(3)将条件代入变形后的式子,按照规定的运算进行计算.【例4】已知a与b互为倒数,c与d互为相反数,m的绝对值是4,求m×(c+d)+a×b -3×m的值.分析:互为倒数的两个数的积是1,互为相反数的两个数的和是0,绝对值是4的数是±4,所以本题要分情况计算.解:因为a与b互为倒数,c与d互为相反数,m的绝对值是4,所以a×b=1,c+d=0,m=±4.当m=4时,m×(c+d)+a×b-3×m=4×0+1-3×4=-11;当m=-4 时,m×(c+d)+a×b-3×m=(-4)×0+1-3×(-4)=13.5.运用有理数乘法运算律进行简便运算有理数的乘法中的简便运算主要是运用乘法的交换律、乘法的结合律和乘法对加法的分配律进行运算.(1)乘法交换律和结合律的运用运用乘法交换律、结合律的情况:①一般将互为倒数的先结合;②将容易约分的先结合.(2)乘法对加法的分配律的运用运用乘法对加法的分配律时注意以下几点:①要把括号外面的因数连同符号与括号内的每一项相乘,它是以后要学的去括号的理论依据.②乘法对加法的分配律可以逆用,即a×b+a×c=a×(b+c).③乘法对加法的分配律可以推广为:a×(b+c+d+e)=a×b+a×c+a×d+a×e,各字母为任意有理数.运用乘法对加法的分配律时,可以先确定符号,再进行计算,或者先利用分配律,再确定符号.有时可逆用乘法分配律:a×b+a×c=a×(b+c),使计算简便._________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________【例5-1】学习了有理数的乘法运算律之后,老师出示了下面的一道题目:计算:-36×12-59+56-712.刘洋:原式=-36×12-59+56-712=-36×12-36×59+36×56-36×712=-(18-20+30-21)=-7.吕征:原式=-36×12-36×59-36×56-36×712=-18-20-30-21=89.你认为刘洋和吕征同学的解法都正确吗?若有错误,请你按其思路改正过来.分析:本题是一个整数与多个分数的和相乘,可利用乘法对加法的分配律简化运算.运用乘法对加法的分配律时,要注意符号.解:刘洋的解答是正确的,而吕征的解答是错误的.改正:原式=-36×12-(-36) ×59+(-36)×56-(-36)×712=-18-(-20)+(-30)-(-21)=-7.【例5-2】用简便方法计算:-3.14×35.2+6.28×(-23.3)-1.57×36.4.分析:通过观察,可以发现3.14,6.28,1.57之间成倍数关系,故可以将式子进行变形,使式子里每一项中都含有1 .57,再逆用乘法对加法的分配律,可避免复杂的计算.解:-3.14×35.2+6.28×(-23.3)-1.57×36.4=-1.57×2×35.2+1.57×4×(-23.3)-1.57×36.4=1.57×[-2×35.2+4×(-23.3)-36.4]=1.57×(-70.4-93.2-36.4)=1.57×(-200)=-314.6.有理数的乘法运算的实际应用有理数的乘法运算的应用,主要是利用有理数的乘法解决生活中的实际问题.其步骤是:①分析题意;②列出算式;③运用有理数的乘法法则或运算律进行计算;④写出答案.【例6】一天,小刚和小明利用温差测量山峰的高度,小明在山顶测得的温度是-2 ℃,小刚在山脚测得的温度是4 ℃.已知该地区的高度每增加100 m,气温大约下降0.6 ℃,求这个山峰的高度大约是多少.解:4-(-2)0.6×100=10×100=1 000(m).答:这个山峰的高度大约为1 000 m.。

七年级数学上册《有理数的乘法》练习题及答案

七年级数学上册《有理数的乘法》练习题及答案

七年级数学上册《有理数的乘法》练习题及答案学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:(5)|4|-⨯-=___________.2.几个不等于0的有理数相乘,积的符号由____决定,___的个数是奇数时,积为______;____的个数是偶数时,积为____;几个有理数相乘时,有一个因数为0时,积为____.3.如果两个数只有________ 不同,那么称其中一个数为另一个数的________,也称这两个数____________ .特别地,0的相反数是___________ .4.(+7)+5=________.5.一般来说,一张纸的厚度大约是50微米,那么一百万张这样的纸叠起来的高度约是___米.二、单选题6.在2-□3的“□”中填入一个运算符号,使其运算结果最小,则“□”中填的是()A.+B.-C.×D.÷7.如图,在数轴上,点A,B分别表示实数a,b.下列算式中,结果一定是负数的是()A.a b+B.-a b C.⋅a b D.a b÷8.已知3554360A=⨯⨯=,255420A=⨯=,36654120A,4998763024A=⨯⨯⨯=,……,观察并找规律,计算37A的结果是()A.42B.120C.210D.8409.计算9(3)+-的结果是()A.6B.6-C.3D.3-10.下列说法正确的是()A.零除以任何数都得0B.几个有理数相乘,积的符号由负因数的个数决定C.绝对值相等的两个数相等D.两个数互为倒数,则它们的相同次幂仍互为倒数三、解答题11.计算:(1)3477512⎛⎫⎛⎫⎛⎫-⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)37(5)0(325)3230⎛⎫-⨯-⨯⨯⨯-⎪⎝⎭.12.解答下列各题:(1)试用“<”“=”“>”填空:①|+6|+|+5|________|(+6)+(+5)|;①|+6|+|﹣5|________|(+6)+(﹣5)|;①|0|+|﹣5|________|0+(﹣5)|;①|0|+|+5|________|0+(+5)(2)根据(1)的结果,请你总结任意两个有理数a、b的绝对值的和与它们的和的绝对值的大小关系为:|a|+|b|________|a+b|;(3)请问:当a、b满足什么条件时?|a|+|b|=|a+b|.13.计算:(1)223(3)3(2)-÷-+⨯-(2)5255524 757123⎛⎫÷-+⨯-÷⎪⎝⎭参考答案:1.-20【分析】先算绝对值,再按照有理数乘法运算法则计算即可.【详解】(5)|4|(5)420-⨯-=-⨯=-故答案为:-20【点睛】本题考查了有理数的乘法运算,准确计算是本题的关键.2.负因数的个数负因数负负因数正0【解析】略3.符号相反数互为相反数0【分析】根据相反数的概念求解即可.【详解】解:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地,0的相反数是0.故答案为:符号;相反数;互为相反数;0.【点睛】此题考查了相反数的概念,解题的关键是熟练掌握相反数的概念.4.12【解析】略5.50【分析】根据有理数的乘法,可得答案.【详解】解:50100000050000000⨯=微米,50000000微米50=米.故答案为:50.【点睛】本题考查了数学常识,先算出纸的厚度,再把微米换算成米.6.C【分析】把各运算符号放入“□”中,计算得到结果,即可作出判断.【详解】解:-2+3=1,-2-3=-5,-2×3=-6,-2÷3=23 -,①-6<-5<-23<1,①在2-□3的“□”中填入一个运算符号“×”使运算结果最小,故C正确.故选:C.【点睛】此题考查了有理数的混合运算,熟练掌握有理数的加、减、乘、除运算法则,是题的关键.7.A【分析】根据图示知b<a<0,并且|a|<|b|.根据有理数的加减乘除法运算的计算法则即可求解.【详解】解:解:由数轴得b<a<0,|a|<|b|.A、a+b<0,故该选项符合题意;B、a-b>0,故该选项不符合题意;C、ab>0,故该选项不符合题意;D、a÷b>0,故该选项不符合题意;故选:A.【点睛】本题考查了实数与数轴,利用数轴得出b<a<0,|a|<|b|是解题关键,又利用了有理数的运算.8.C【分析】根据前面四个式子的书写形式不难发现:每个式子都是从下面的数字开始递减的连续整数的积的形式,而因数的个数就是上面的数字.【详解】解:由所给的式子不难看出,3 7765210A=⨯⨯=.故C正确,故选:C.【点睛】本题主要考查了数字变化规律的知识.对题目的分析、发现规律是解决本题的关键.9.A【分析】根据有理数的加法法则计算即可.【详解】解:9(3)+-(93)=+-=6故选:A.【点睛】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值时解题的关键.10.D【分析】A、任何数包括0,0除0无意义;B、几个不为0的有理数相乘,积的符号由负因数的个数决定;C、绝对值相等的两个数的关系应有两种情况;D、根据倒数及乘方的运算性质作答.【详解】解:A、零除以任何不等于0的数都得0,故错误;B、几个不为0的有理数相乘,积的符号由负因数的个数决定,故错误;C、绝对值相等的两个数相等或互为相反数,故错误;D、两个数互为倒数,则它们的相同次幂仍互为倒数,故正确.故选:D.【点睛】本题主要考查了绝对值、倒数的概念和性质及有理数的乘除法、乘方的运算法则.要特别注意数字0的特殊性.11.(1)15-;(2)0【分析】(1)根据有理数乘法运算法则,运用乘法交换律计算即可;(2)根据0乘以任何数都得0计算即可.【详解】(1)34737411=754451271255⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-=-⨯-⨯-⨯-=-⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(2)37(5)0(325)03230⎛⎫-⨯-⨯⨯⨯-=⎪⎝⎭.【点睛】本题考查有理数的乘法,熟知有理数乘法的运算法则是解题的关键.12.(1)=;>;=;=;(2)≥;(3)当a、b同号或a、b至少有一个为零时(当ab≥0时)【分析】(1)先计算,再比较大小即可;(2)根据(1)的结果,进行比较即可;(3)根据(1)的结果,可发现,当a、b同号时,|a|+|b|=|a+b|.【详解】解:(1)①左边=6+5=11,右边=6+5=11;①左边=6+5=11,右边=|1|=1①左边=0+5=5,右边=|-5|=5;①左边=0+5=5,右边=0+5=5;故答案为:①=;①>;①=;①=;(2)由(1)可知:|a|+|b|≥|a+b|;故答案为:≥;(3)当a、b同号或a、b至少有一个为零时(当ab≥0时)【点睛】本题考查了有理数的大小比较及绝对值的知识,注意培养自己由特殊到一般的总结能力.13.(1)-7 (2)512-【分析】(1)先计算有理数的乘方、乘除,再计算加减;(2)将分数除法变形为分数乘法,再进行乘法和加减运算.(1)223(3)3(2)-÷-+⨯- 解:原式=993(2)-÷+⨯-=1(6)-+-=-7(2)5255524757123⎛⎫÷-+⨯-÷ ⎪⎝⎭ 解:原式=5125554757123⎛⎫÷-+⨯-÷ ⎪⎝⎭ =55551771234512⎛⎫⨯-+⨯-⨯ ⎪⎝⎭ =512555171234⎛⎫⨯-+-⨯ ⎪⎝⎭ =512- 【点睛】本题考查含乘方的有理数的混合运算,属于基础题,掌握有理数的运算法则并正确计算是解题的关键.。

《有理数的乘法》练习题

《有理数的乘法》练习题

1.4 有理数的乘除(1)有理数的乘法1.下列计算:①(-5)×(-3)=-8;②(-5)×(-3)=-15;③(-5)×(-3)=15; ④(-4)×(-5)×(-12)=10.正确的有( ) A .4个 B .3个 C .2个 D .1个2.在1,-2,-3,4这四个数中,任取两个数相乘,所得积最大的是( )A .-12B .-2C .4D .63.计算11112342⎛⎫+-⨯ ⎪⎝⎭时,应该运用( ) A .加法交换律 B .乘法分配律C .乘法交换律D .乘法结合律4.已知0ab <,0a b +>,0a b -<,那么a ,b 在数轴上的位置关系是( )5.(1)5(4)______(2.45)0______⨯-=-⨯=;. (2) (8)(5)_____( 1.25)(8)_____-⨯-=-⨯-=;. 6.指出下列变化中所运用的运算律:(1)3×(-2)=-2×3 ____________________.(2)11113223-+=+- ____________________. 7.如果a ,b 互为相反数,那么5×(a +b )=_________.8.在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数互为相反数且等式成立,则第一个方格内的数是___________.9.一天,两位学生利用温差测某座山峰的高度,在山顶测得温度是-3℃,在山脚测得温度是4℃.已知高度每增加100米,气温大约下降0.7℃,这座山峰的高度大约是多少米?10.学习了有理数的运算后,薛老师给同学们出了这样一道题目:计算:)8(16571-⨯,看谁算得又对又快.两名同学给出的解法如下: 21575)8(1615)8(71)8()161571(215751692088161151-=-⨯+-⨯=-⨯+=-=-=⨯-小莉:原式小强:原式= (1)对于以上两种解法,你认为谁的解法最好?理由是什么?对你有何启发? (2)此题还有其他解法吗?如果有,用另外的方法把它解出来?参考答案1.D .2.D .3.B .4.B .5.(1)20-;0. (2)40;10.6.(1)乘法交换律.(2)加法交换律.7.0.8.3.9.1000米.10.解:(1)我认为小莉的方法最好.理由是小莉能巧妙的利用了分析的思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,大大的简化了计算过程.(2)还有其它的方法,解法如下:21575)8()161()8(72)8()16172(-=-⨯-+-⨯=-⨯-=解:原式.。

有理数的乘法练习题

有理数的乘法练习题

有理数的乘法练习题有理数的乘法练题一、判断:1)同号两数相乘,符号不变。

(√)2)两数相乘,积一定大于每一个乘数。

(×)3)两个有理数的积,一定等于它们绝对值之积。

(√)4)两个数的积为,这两个数全为。

(?这句话不完整,无法判断对错)5)互为相反数的两数相乘,积为负数。

(√)二、选择题1.五个数相乘,积为负数,则其中正因数的个数为(2或4)2.x和5x的大小关系是(以上三个结论均有可能)3.如果x+2+y+25=0,那么(-x)·y=(-50)4.两个有理数的积是负数,和是正数,那么这两个有理数是(绝对值大的那个有理数是负数,另一个有理数是正数)5.a、b互为相反数且都不为0,则(a+b-1)×|a/b+1|的值为(2)6.-2/7的倒数与绝对值等于2/21的数的积为(±147)7.已知a·b·c>0,acc,则下列结论正确的是(a0,c>0)8.如图1-30,a、b、c是数轴上的点,则下列结论错误的是(ab+c>0)9.如果三个数的积为正数,和也为正数,那么这三个数不可能是(一个是正数,两个是负数)三、填空1.(+6)×(-1)=-6;(-6)×(-5)×0=0.2.-7/3×13=-91/3;-7/1×3=0.3.绝对值大于3.7且不大于6的所有整数的积为-504.超过500元,则打9折;若一次购物超过500元,则打8折。

某顾客一次购物花费了450元,他享受了多少折扣?实际支付了多少钱?6.某公司在一次促销活动中,以原价的8折出售商品,结果销售额增加了20%。

如果原来的销售额为100万元,促销后的销售额为多少万元?7.某地区的人口数量从2010年的1000万人增长到2020年的1200万人,平均每年的增长率是多少?如果按照这个增长率计算,到2050年该地区的人口数量将达到多少人?8.某商品的原价为100元,现在打8折出售,购买该商品的顾客可以获得10元的代金券,代金券可以在以后的购物中抵扣现金。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档