新人教版19.2.1正比例函数导学案
人教版数学八年级下册19.2.1《正比例函数》教学设计
人教版数学八年级下册19.2.1《正比例函数》教学设计一. 教材分析人教版数学八年级下册19.2.1《正比例函数》是学生在学习了初中数学基础知识后,进一步深入研究函数性质的重要内容。
本节课的主要内容是正比例函数的定义、图像和性质。
教材通过丰富的例题和练习题,帮助学生理解和掌握正比例函数的概念,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识基础。
但是,对于正比例函数的定义和性质,以及如何运用正比例函数解决实际问题,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和讲解。
三. 教学目标1.理解正比例函数的定义,掌握正比例函数的性质。
2.能够根据正比例函数的性质,解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.正比例函数的定义和性质。
2.如何运用正比例函数解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正比例函数的定义和性质。
2.利用多媒体辅助教学,展示正比例函数的图像,帮助学生直观地理解正比例函数的性质。
3.通过实例分析,让学生学会如何运用正比例函数解决实际问题。
4.小组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.多媒体教学设备。
2.正比例函数的相关教学素材,如PPT、例题、练习题等。
3.学生分组合作的准备。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的实例,如速度与时间的关系,引导学生思考这些实例背后的数学规律。
2.呈现(10分钟)介绍正比例函数的定义,引导学生通过观察实例,总结正比例函数的性质。
3.操练(10分钟)分组讨论,让学生通过合作解决问题,进一步理解和掌握正比例函数的性质。
4.巩固(10分钟)针对学生掌握的情况,进行针对性讲解,巩固学生对正比例函数性质的理解。
5.拓展(10分钟)利用正比例函数的性质,解决实际问题。
新人教版初中数学八年级下册19.2.1正比例函数公开课优质课导学案
19.2 一次函数19.2.1 正比例函数教学目标:1.理解正比例函数的解析式,熟练地求正比例函数的解析式。
2.会画正比例函数的图象,理解正比例函数的性质。
重难点1、正确理解正比例函数的概念,正比例函数的图象和性质。
2、根据已知条件写出正比例函数解析式。
学习过程一、复习:函数的定义:一般地,在一个变化过程中,有个变量x和y,对于变量x的每一个值,变量y都有的值和它对应,我们就把x称为,y是x的。
如果当x=a时y=b, 那么b 叫做当自变量的值为a时的。
二、探究新知阅读课本内容回答下列问题:1、问题:问题1、2011年开始运营的京沪高速铁路全长1318km,设列车的平均速度为300km/h. (1)列车从始发站北京南站到终点站上海虹桥站,约需小时,(结果保留一位小数)(2)列车的行程y(单位:km)是与运行时间t(单位:h)的函数吗?它们之间的数量关系是:。
(注意:实际问题要给出自变量的范围)(3)由(2)中的关系式求出当t=2.5时,y= ;当y=1200时,t= .(4)列车从北京南站出发2.5h后,是否已经过了距始发站1100km的南京南站?问题2、下列问题中,变量之间的对应关系是函数关系吗?如果是,写出函数解析式:(1)圆的周长L随半径r的变化而变化。
(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化。
(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化。
(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度T(单位:℃)随时间t(单位:min )的变化而变化。
2、以上问题中的函数都是常数与自变量的 的形式。
定义 :形如的函数叫做正比例函数,其中k 叫做,k 必须满足的条件是,变量x 的指数是。
3、在下图中分别画出下面四个正比例函数的图象 (1)x y 2=(2)13y x =(注意恰当选择自变量的值)观察:(1)(2)这两个函数的图象都是经过 和第 的一条直线,从左向右上升(3) 1.5y x =-(4)4y x =-观察(3)、(4),函数的图象都是经过 和第 的一条直线,从左向右 比较上面四个图象,填写你发现的规律: (1) 四个图象都是经过 的 __________, (2) 函数x y 2=和13y x =的图象经过第_______象限,从左到右_______,即y 随x 的增大而________;(3)函数 1.5y x =-和4y x =-的图象经过第_______象限,从左到右_______,即y 随x 的增大而________;64、归纳:正比例函数的解析式为______,其图象是一条直线,性质如下:y=kx (k ≠0)0>k 0<k图象大致形状图象所在象限 相同点 增减性在y=kx(k 是不为0的常数)中,当x=0时,y=0;当x=1时,y= 。
19.2正比例函数图像和性质导学案
19.2.1正比例函数的图象和性质导学案【学习目标】1、理解正比例函数的概念及其图象的特征2、能够画出正比例函数的图象3、能够利用正比例函数解决简单的数学问题【重点】正比例函数的图象和性质【难点】正比例函数的图象及性质【学习过程】一、我回顾,我自信(忆一忆)1、什么叫正比例函数? ________________。
2、还记得描点法画函数图象的一般步骤吗?①_____________ _,②________________ ③_______________ 。
3、下列式子中,哪些是正比例函数,哪些不是,为什么?(2)(3)(5)二、我操作、我发现画出下列正比例函数的图像:(1)、,(2),三、我归纳,我反思1、观察上题画函数,完成下列问题:(1)正比例函数是一条,它一定经过。
(2)当k > 0时,直线经过象限,随的增大而当k〈0时,直线经过象限,随的减小而2、既然正比例函数的图像是一条直线,那么最少几个点就可以画出这条直线?怎样画最简单?因为过点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,通常是(,)和(,)四、我应用,我掌握1、画一画:用最简单的方法画出下列函数的图像(1) y=3x (2)= y=-2x解:(1)列表(2)描点、连线2、练一练:(1)正比例函数y=(m-1)x的图象经过一、三象限,则m的取值范是( )A. m =1B. m>1C. m<1D. m≥1(2)正比例函数y=(3-k) x,如果随着x的增大y反而减小,则k的取值范围是 ______. (3)函数y=-3x的图象在第象限内,经过点(0, )与点(1, ),y随x的增大而3、想一想:已知正比例函数y=(1-2a)x ,若函数的图像经过第一、三象限,试求a的取值范围;四、我努力,我快乐1、关于函数,下列结论中,正确的是()A、函数图像经过点(1,3)B、函数图像经过二、四象限C、y随x的增大而增大D、不论x为何值,总有y>02、已知正比例函数的图像过第二、四象限,则()A、y随x的增大而增大B、y随x的增大而减小C、当时,y随x的增大而增大;当时,y随x的增大而减少;D、不论x如何变化,y不变。
(人教版)数学下八年级导学案:19.2.1正比例函数
课型 新授课 课题 19.2.1正比例函数学习目标1、理解正比例函数的概念,会用描点法画正比例函数图象,2、掌握正比例函数的性质.3、会应用正比例函数的概念和性质解决问题,初步形成数学建模的思想 重点难点教学重点:理解正比例函数意义及解析式特点.掌握正比例函数图象的性质特点.能根据要求完成转化,解决问题. 教学难点:正比例函数图象性质特点的掌握.【学习范围】86页至89页【知识回顾】1、函数的三种表示方法______ _;_____ _;______ _. 2、描点法画函数图象的一般步骤____ __;____ ___;______ __.3、用描点法画出函数(1) y=x ;y=2x ;y=12x (2) y=-x ; y=-2x ; y=-12x 的图象。
(同桌的同学各选一组)【探究新知】<探究1>阅读教材86页,“思考”将答案写在下面: 探究意图:什么形式的函数叫做正比例函数!1、____________________2、_________________________3、____________________4、_________________________ 分析:它们的共同点是:都有几个变量_________;都没有___________项。
归纳:归纳:一般地,形如y=_____(___________)的函数,叫做正比例函数,其中___叫做________ _【例1】指出下列函数是否是正比例函数?比例系数是多少? (1)x y 3= (2) 2x y =(3)xy 3= (4)2r S π=<探究2>在下面平面直角坐标系中作出下列函数图像。
探究意图:正比例函数的图像性质! 第一组:(当K___________0)设计意图1、y=x ;2、y=2x ;3、y=12x 分析图像的共同点:1、它们的图像是:__________________;2、它们的图像都经过______________点;3、经过__________________象限4、图像的增减性_____________________5、当K=1时,它的图像是:_____________ 第二组:(当K___________0) 1、y=-x ;2、y=-2x 3、y=-12x 分析图像的共同点:1、它们的图像是:__________________;2、它们的图像都经过______________点;3、经过__________________象限4、图像的增减性_____________________5、当K=-1时,它的图像是:_____________综合分析:__________________决定了图像的增减性,当k_________时,y 随x 的增大而增大;当k_________时,y 随x 的增大而减小。
人教版八年级下册数学导学案:19.2.1正比例函数(无答案)
2. 回答下列问题: (1)若 y=(m-1)x 是正比例函数,m 取值范围是
; 1/4
(2)当 n (3)当 k
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
时,y=2xn 是正比例函数; 时,y=3x+k 是正比例函数.
例 1: 已知函数 y=(m-1) xm2 是正比例函数,求 m 的值.
(2)若 y=2x2,则 y 是 x 的正比3;2,则 y 是 x 的正比例函数( )
(4)若 y=(2+k2)x,则 y 是 x 的正比例函数(
)
3.填空
3/4
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
(1)如果 y=(k-1)x,是 y 关于 x 的正比例函数,则 k 满足_______. (2)如果 y=kxk-1,是 y 关于 x 的正比例函数,则 k=____. (3)如果 y=3x+k-4,是 y 关于 x 的正比例函数,则 k=_____.
方法总结:正比例函数满足的条件:(1)自变量的指数为 1;(2)比例系数为常数,且不等于 0.
初用新知 小试牛刀
(1)若 y = (m - 2)x |m|- 1是正比例函数,则 m=
;
(2)若 y = (m -1)x + m 2 -1是正比例函数,则 m=
;
探究点 2:正比例函数的简单应用 例 2:2011 年开始运营的京沪高速铁路全长 1318 千米. 设列车的平均速度为 300 千米每小时.考虑以下问题: (1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)? (2)京沪高铁的行程 y(单位:千米)与时间 t(单位:时)之间有何数量关系? (3)从北京南站出发 2.5 小时后,是否已过了距始发站 1100 千米的南京南站?
【优选】最新八年级下册19.2.1正比例函数第1课时正比例函数的概念导学案新人教版
第十九章 函数
.
成 比 V (单位:cm 3
)的h (单位:cm )随T (单位:℃)随冷冻. k 叫做
π ;(6).
y x y ==
函数关系式,并指出y 是x 的什么函数;
(2)计算该汽车行驶220 km 所需油费是多少?
(2)若y=(m-1)x+m 2
-1是正比例函数,则m=. A.圆的面积S 与它的半径r
B.行驶速度不变时,行驶路程s 与时间t
C.正方形的面积S 与边长a
D.工作总量(看作“1” )一定,工作效率w 与工作时间t 2. 下列说法正确的打“√”,错误的打“×”. (1)若y=kx ,则y 是x 的正比例函数( )
(2)若y=2x 2
,则y 是x 的正比例函数( )
(3)若y=2(x-1)+2,则y 是x 的正比例函数( )
(4)若y=(2+k 2
)x ,则y 是x 的正比例函数( ) 3.填空
(1)如果y=(k-1)x ,是y 关于x 的正比例函数,则k 满足_______.
(2)如果y=kx k-1
,是y 关于x 的正比例函数,则k=____. (3)如果y=3x+k-4,是y 关于x 的正比例函数,则k=_____.
(4)若23
(2)m y m x -=-是关于x 的正比例函数,m=_____.
4.已知y-3与x 成正比例,并且x=4时,y=7,求y 与x 之间的函数关系式.
5.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割. (1)求收割的面积y (单位:公顷)与收割时间x (单位:时)之间的函数关系式; (2)求收割完这块麦田需用的时间.。
人教版数学八年级下册19.2.1《正比例函数教案
人教版数学八年级下册19.2.1《正比例函数教案一. 教材分析人教版数学八年级下册19.2.1节讲述了正比例函数的概念、性质及其在实际问题中的应用。
本节内容是学生学习函数的基础,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
教材通过具体的例子引入正比例函数,使学生能够直观地理解概念,并通过大量的练习题让学生熟练掌握正比例函数的性质和运用。
二. 学情分析学生在八年级上学期已经学习了代数基础知识,对变量、常量、方程等概念有了一定的理解。
但正比例函数作为一种特殊的函数,学生可能对其概念和性质认识不足,需要通过本节课的学习来进一步掌握。
此外,学生可能对于实际问题中如何运用正比例函数解决有一定困难,需要通过实例分析和练习来提高。
三. 教学目标1.了解正比例函数的概念,掌握正比例函数的性质。
2.能够运用正比例函数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.正比例函数的概念和性质。
2.正比例函数在实际问题中的应用。
五. 教学方法采用讲授法、案例分析法、练习法、小组讨论法等教学方法。
通过具体的例子引入正比例函数,让学生在实际问题中感受正比例函数的应用,通过练习题让学生巩固所学知识,通过小组讨论培养学生的团队协作能力和逻辑思维能力。
六. 教学准备1.准备相关的例子和练习题,用于课堂讲解和练习。
2.准备多媒体教学设备,用于展示例子和讲解。
七. 教学过程1.导入(5分钟)通过一个实际问题引入正比例函数的概念,如“一辆汽车以60公里/小时的速度行驶,行驶1小时后,行驶的路程是多少?”让学生思考并回答,引出正比例函数的概念。
2.呈现(10分钟)讲解正比例函数的定义和性质,通过多媒体展示相关的图片和实例,让学生直观地理解正比例函数的概念。
同时,给出正比例函数的一般形式y=kx(k为常数,k≠0),并讲解其性质。
3.操练(10分钟)让学生进行一些有关正比例函数的练习题,巩固所学知识。
人教版八年级下册19.2.1正比例函数的图像和性质(教案)
二、核心素养目标
1.培养学生的数学抽象能力:通过正比例函数的学习,使学生能够从具体问题中抽象出数学关系,形成数学模型。
2.提升学生的逻辑推理能力:引导学生通过观察和分析正比例函数的图像,推理出其性质,并理解性质背后的逻辑关系。
五、教学反思
在今天的教学中,我发现学生们对于正比例函数的概念和图像性质的理解程度各有不同。在讲解正比例函数的图像时,我尽量用生动的语言和具体的例子来帮助学生形象地理解,比如通过实际的速度与时间的关系来说明斜率k的含义。这样的教学方法似乎对学生们的理解有所帮助,他们能够更直观地感受到函数图像的变化。
我还注意到,在教学难点和重点部分,需要更加细致地进行解释。尤其是斜率k的正负及其对应的图像特征,这一点对于学生来说是理解上的一个挑战。在未来的教学中,我可能会考虑引入更多的互动环节,比如让学生自己动手绘制不同斜率的正比例函数图像,通过亲身体验来加深理解。
在总结回顾环节,我觉得可以更加注重学生的反馈。了解他们在学习过程中的困惑和疑问,有助于我及时调整教学方法,更好地满足学生的学习需求。
1.教学重点
-函数解析式的理解:使学生掌握正比例函数y=kx的定义,理解k代表的是函数图像的斜率。
-图像的绘制:培养学生能够根据给定的正比例函数解析式,正确绘制出对应的图像。
-性质的掌握:让学生理解并记住正比例函数的性质,如当k>0时函数图像斜率为正,函数随x增大而增大;当k<0时,图像斜率为负,函数随x增大而减小。
3.增强学生的直观想象能力:借助图像的绘制和观察,让学生对正比例函数的几何特征形成直观的认识。
4.培养学生的数学运算能力:使学生掌握正比例函数解析式的求解和运用,提高解决实际问题的运算技能。
八年级数学下册19.2.1正比例函数第2课时导学案新版新人教版2
19.2.1正比例函数(第二课时)学习目标:1、我会画正比例函数的图像。
2、我能根据图像说出正比例函数的性质,渗透数形结合思想。
学习重难点:正比例函数的图像和性质;正比例函数的性质与数形结合思想。
学习过程:一、 创设问题情境:1、下列式子中,哪些是正比例函数,哪些不是,为什么?8)1(-=y (2)28x y = (3)xy 4-= x y 3)4(-=(5)14-=x y2、画函数图像的步骤有哪些? 。
二、自主学习:(阅读课本P87-P89的内容解答下列问题)1、 在同一坐标系中画出下列正比例函数的图像: (1)、x y 2=,x y 31=(2)x y 5.1-=,x y 4-=2、观察上题所画函数图像,完成下列问题: (1)函数x y 2=与x y 31=的图像经过第 象限,从左到右 ,即y 随x 的增大而 ; (2)函数x y 5.1-=与x y 4-=的图像经过第 象限,从左到右 ,即y 随x 的增大而 ;(3)正比例函数是一条 ,它一定经过 ; 三、合作交流与展示:1.正比例函数的解析式为 ,其图像是一条 ,性质如下:y=kx(k ≠0)k>0K<0图像的大致形状图像所在象限 相同点 增减性在y=kx(k ≠0)中,当x=0时,y=0;当x =1时,y= .故,直线y=kx 的图像经过点(0,0)和(1, )。
因此,以后画正比例函数y=kx 的图像只需确定两点,原因是经过两点有且只有一条直线。
为了简便,通常过原点与(1, )两点画直线。
2.用最简单的方法在同一坐标系中画出下列函数的图像。
y=-3x y=2x y=32x四、当堂检测:(1、2、3、4、5题是必做题,6题是选做题)1、 函数y=kx(k ≠0)的图像过P (-3,7),则k= ,图像过 象限。
2、当k<0时,正比例函数y=kx 的大致图像是( )ACBxy xy xy xyo o o o D3、已知正比例函数y=kx(k ≠0)的图像过第二、四象限,则( ) A .y 随x 的增大而增大 B. y 随x 的增大而减小C .当k>0时, y 随x 的增大而增大; 当k <0时,y 随x 的增大而减小 D.不论x 如何变化,y 不变。
人教版数学八年级下册《19.2.1 正比例函数》教学设计
人教版数学八年级下册《19.2.1 正比例函数》教学设计一. 教材分析人教版数学八年级下册《19.2.1 正比例函数》是学生在学习了初中数学基础知识后,进一步深入研究函数的性质和应用。
本节内容主要包括正比例函数的定义、图象和性质,以及正比例函数在实际生活中的应用。
通过本节的学习,使学生能够理解正比例函数的概念,掌握正比例函数的图象和性质,并能运用正比例函数解决实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了初中数学的基本知识,对函数有一定的了解。
但学生对正比例函数的概念和性质的认识还不够深入,需要通过本节课的学习来进一步理解和掌握。
同时,学生对于正比例函数在实际生活中的应用还不够熟悉,需要通过实例来引导学生理解和运用。
三. 教学目标1.理解正比例函数的概念,掌握正比例函数的图象和性质。
2.能够运用正比例函数解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.正比例函数的概念和性质。
2.正比例函数在实际生活中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究正比例函数的性质和应用。
2.利用数形结合法,通过图象来直观展示正比例函数的性质。
3.采用实例教学法,让学生通过实际问题来理解和运用正比例函数。
六. 教学准备1.教学PPT,包括正比例函数的定义、图象和性质等内容。
2.实例题库,用于巩固和拓展学生的知识。
3.板书设计,包括正比例函数的定义、图象和性质等重要内容。
七. 教学过程1.导入(5分钟)通过一个实际问题引入正比例函数的概念,例如:一辆汽车以每小时60公里的速度行驶,行驶3小时后,行驶的路程是多少?引导学生思考速度、时间和路程之间的关系,从而引出正比例函数的概念。
2.呈现(10分钟)利用PPT呈现正比例函数的定义、图象和性质。
引导学生通过观察图象来理解正比例函数的性质,如过原点、斜率为正等。
同时,给出正比例函数的数学表达式y=kx(k为常数,k≠0)。
八年级数学下册19.2.1正比例函数第1课时导学案新版新人教版2
19.2.1正比例函数(第一课时)学习目标:1、我能理解正比例函数的概念与解析式。
2、我会根据已知条件写出正比例函数的解析式。
学习重点:正比例函数的概念学习难点:根据已知条件写出正比例函数的解析式。
一、自主学习:1.函数的定义是。
2.成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商),这两种量就叫做成正比例的量,它们的关系叫做成正比例的关系。
3、问题:2011年开始运营的京沪高速铁路全长1318km,设列车的平均速度为300hkm/。
考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需小时?(结果保留小数点后一位)(2)京沪高铁列车的行程y(单位:km)是运行时间t(单位:h)的函数吗?它们之间的数量关系是。
(注意:实际问题要给出自变量的取值范围)(3)由(2)中的关系式求出当t=2.5时,y= ;当y=1200时,t= .(4)京沪高铁列车从北京南站出发2.5小时后,是否已经超过了始发站1100km的南京南站?4、完成书本86--87页思考:观察“思考”中所得的四个函数;(1)观察这些函数关系式,这些函数都是常数与自变量的形式,(2)一般地,形如()函数,叫做正比例函数,其中k叫做。
思考:为什么强调k是常数,k≠0 ?(3)、列举日常生活中正比例函数的模型,你知道多少?二、合作探究:(1)、下列函数哪些是正比例函数?① y=x3② y=3x③ y=-12x+1 ④ y=2x ⑤y=x2+1 ⑥ y=(a2+1)x+2(2)、若y=5x3m-2是正比例函数,则m= .(3)、若y=(m-2)x m-3是正比例函数,则m= .(4) 、如y=5x m2-3+m-2是正比例函数,则m= 。
(5)、已知y 与2+x 成正比例,且61-==y x 时。
(1)求y 与 x 之间的函数关系式;(2)若点(a ,2)在函数图像上,求a 的值。
人教版八年级数学下册19.2.1《正比例函数》教案
-函数图像的理解:理解正比例函数图像是一条直线,且为何必须通过原点,对于图像的直观感知需要加强。
五、教学反思
在今天的课堂上,我们探讨了正比例函数的概念和应用。回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于导入新课的部分,我发现通过提出与生活相关的问题,确实能激发学生的兴趣和好奇心。但是,我意识到在提问时,应该更具体地引导学生思考,以便他们能更快地进入学习状态。例如,我可以这样问:“你们在生活中有没有观察到两个量是成正比关系的?比如,当你购物时,商品的总价和数量之间的关系是怎样的?”这样的问题更具针对性,有助于学生快速抓住正比例函数的核心。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正比例函数的基本概念。正比例函数是指一个变量与另一个变量的比值保持不变,形如y=kx(k为常数,k≠0)。它在生活中有着广泛的应用,如速度与时间、单价与总价等关系。
2.案例分析:接下来,我们来看一个具体的案例。以速度与时间为例,讲解正比例函数在实际中的应用,以及如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《正比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个量随着彼此改变的情况?”(如走楼梯上楼,楼层与步数的关系)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正比例函数的奥秘。
-斜率k的理解:斜率k的意义及其对图像走势的影响,如何从数学角度理解正比例关系中的“比例”。
人教版八下数学19.2.1 课时1正比例函数的概念教案+学案
人教版八年级下册数学第19章一次函数19.2一次函数19.2.1正比例函数课时1正比例函数的概念教案【教学目标】知识与技能目标认识正比例函数的意义,掌握正比例函数解析式特点.过程与方法目标能利用正比例函数知识解决相关实际问题.情感、态度与价值观目标通过对实际问题的解决,亲身感受数学来源于生活,体会在学习中与同学合作交流获得成功的喜悦,增强学习的自信心.【教学重点】理解正比例函数意义及解析式特点.【教学难点】掌握正比例函数的解析式的求法.【教学过程设计】一、情境导入导入一:2011年开始运营的京沪高速铁路全长1318 km.设列车平均速度为300 km/h.考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站海虹桥站,约需多少小时(结果保留小数点后一位)?(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了距始发站1100 km的南京南站?学生先独立思考上面提出的问题,再以小组为单位进行交流.教师解析:(1)1318÷300≈4.4(h).(2)y=300t.(3)y=300×2.5=750(km), 故列车尚未到达距始发站1100 km的南京南站.y=300t中,变量和常量分别是什么?其对应关系是函数关系吗?谁是自变量,谁是函数?自变量与常量按什么运算符号连接起来的?由此引出今天学习的课题:正比例函数.[设计意图]通过这一环节,让学生体会到正比例函数来源于生活实际,通过实例引入,激发学生学习数学的兴趣.导入二:一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到1千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?学生在练习本上独立完成,有困难的小组讨论、交流.教师总结,全班讲评.一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈202(千米).若设这只燕鸥每天飞行的路程为202千米,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为y=202x(0≤x≤127).这只燕鸥飞行1个半月的行程,大约是x=45时函数y=202x的值.即:y=202×45=9090(千米).以上我们用y=202x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=202x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?今天学习的课题:正比例函数.[设计意图]通过这一环节,使学生认识到数学总是与现实问题密不可分的,人们的需要产生数学.二、新知构建1.正比例函数概念思路一下列问题中的变量对应规律可用怎样的函数表示?(1)圆的周长l随半径r的大小变化而变化;(2)铁的密度为7.8 g/cm3,铁块的质量m(单位:g)随它的体积V(单位: cm3)的大小变化而变化;(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数 n 的变化而变化;(4)冷冻一个0 ℃物体,使它每分下降2 ℃,物体的温度T (单位: ℃)随冷冻时间t (单位:分)的变化而变化.学生先独立思考上面提出的问题,再以小组为单位进行交流.教师解析: (1)l =2πr ;(2)m = 7.8V ;(3)h =0.5 n ;(4)T =-2t.引导学生认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数.函数解析式常数 自变量 函数 (1)l =2πr2π r l (2)m =7.8V7.8 V m (3)h =0.5n0.5 n h (4)T =-2t -2 t T提问:这些函数有什么共同点?学生观察这些函数关系式,发现这些函数都是常数与自变量乘积的形式,和y =300t ,y =200x 的形式一样.教师归纳:一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.[设计意图] 由实际问题入手,设置情境问题,激发学生的兴趣,体会数学来源于生活,又应用于生活,让学生初步感受正比例函数在实际生活中的应用.思路二前面我们学习了函数的概念,学会了用描点法来画函数的图象,观察下列函数的解析式,发现它们有什么特点?(1)y =3x ; (2)y =-6x ; (3)y =x ; (4)y =-x.师生共同分析:上述这些函数都是常数与自变量乘积的形式,我们把形如这样的函数叫做正比例函数.一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数. 教师强调:(1)常量:k ,变量:x ,y ,自变量取值范围:全体实数;(2)正比例函数的函数y 与自变量x 之间就是正比例关系的量.[设计意图] 通过观察所给函数的结构特点,让学生寻找这些函数具有的规律,让学生体会由特殊到一般来解决问题的方法.2.例题讲解例1 (补充)下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.① y =31x ;② y =x32;③ y =﹣x 6;④ y =2x ;⑤y =x 2+1;⑥ y =5x +2. 〔解析〕 观察所给的函数表达式,看是否满足正比例函数y =kx 的形式来求解.解:① y =31x 是正比例函数,正比例系数k =31. ④ y =2x 是正比例函数,正比例系数k =2.②,③,⑤,⑥ 都不是正比例函数.[设计意图] 通过设计一组函数,让学生利用正比例函数的定义进行判断求解,帮助学生及时复习所学的概念.例2 (补充)①若y =(k -1)x 是正比例函数,则 ;②若y =2x m 是正比例函数,则m = .③在函数y =(k -2)中,当k = 时,为正比例函数.〔解析〕 根据正比例函数定义,利用比例系数k ≠0,或者x 的指数为1列不等式或方程进行求解.①∵y =(k -1)x 是正比例函数,∴k -1≠0,∴k ≠1.②∵y =2x m 是正比例函数,∴m =1.③∵函数y =(k -2)为正比例函数,∴∴k =-2.答案:①k ≠1 ②1 ③-2[设计意图] 通过设计一组填空题,让学生根据正比例函数的比例系数和未知数的指数来列不等式或方程来求字母的取值.例3(补充)若y 与x -2成正比例关系,且x =4时,y =5.求y 关于x 的函数关系式. 〔解析〕 先根据y 与x -2成正比例关系可设y =k (x -2),再把x =4时,y =5代入求出k 的值即可.解:设y =k (x -2),则有k (4-2)=5,解得k =25. 所以y 关于x 的函数关系式为y =25x -5. [设计意图] 通过设计代数式之间成正比例关系,利用方程的思想进行求解,让学生更深刻理解正比例函数的定义.三、教学小结本节课学习了正比例函数的概念:形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数;会用正比例函数定义来判断函数是否为正比例函数;并且会用正比例函数定义来求一些字母的取值;解题时注意:判定一个函数是否为正比例函数,要化简后再判断.【板书设计】19.2 一次函数 19.2.1 正比例函数课时1正比例函数的概念1.正比例函数概念2.例题讲解例1 例2 例3【课堂检测】1.下面四个小题中两个变量成正比例的是( )A.儿童的身高和年龄B.等腰梯形的上底固定时,下底和面积C.圆柱的高和体积D.长方体的底面是边长为定值a 的正方形,它的体积和高解析:儿童的身高与年龄不成正比例关系;由等腰梯形的面积公式、圆柱的体积公式可知B,C 不正确;由题意知长方体的体积=a 2×高,且a 为定值,所以它的体积和高是成正比例的.故选D .2.若y =5x 3m -2是正比例函数,则m = .解析:根据正比例函数定义,得3m -2=1,解得m =1.故填1.3.y =(k -2)x 2+5x 是正比例函数,则k 的值为 .解析:根据正比例函数定义,得k -2=0,解得k =2.故填2.4.下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.(1)y =-0.1x ; (2)y =53x ; (3)y =2x 2; (4)y 2=4x ;(5)y =-4x +3; (6)y =2(x -2x 2)+2x 2.解:(1) 表示y 是x 的正比例函数;正比例系数k =-0.1.(2) 表示y 是x 的正比例函数;正比例系数k =53.(3),(4),(5),(6)都不是正比例函数. 5.如果y =kx (k ≠0),当x =4时,y =2;那么x =-3时,y 的值是多少?解:∵y =kx ,当x =4时,y =2,∴4k =2,∴k =21,∴y =21x ,∴当x =-3时,y =23.【教学反思】成功之处:在本节课通过实际问题的引入,激发学生的学习兴趣,再通过设计一组问题,让学生观察、对比、归纳出正比例函数定义,通过例题来巩固新知识,利用一组由浅入深、由易到难的题,逐题递进,落实本节课的教学重点.在教学形式上采用学生口述、互评等多种方法,激发学生思维,营造良好的课堂气氛.不足之处:由于课堂的容量较大,学生思考问题的时间显得相对不足,学困生就显得很吃力.再教设计:教学设计时可以进行分层设计,一组基础题让学困生完成,另一组难的让基础好的学生完成..人教版八年级下册数学第19章平行四边形19.2一次函数19.2.1正比例函数课时1正比例函数的概念学案【学习目标】1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.【学习重点】正比例函数的概念及其简单应用.【学习难点】会求正比例函数的解析式.【自主学习】一、知识链接1.若香蕉的单价为5元/千克,则其销售额m(元)与销售量n(千克)成比例,其比例系数为.2.举例说明什么是函数及自变量.二、新知预习1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l随半径r的变化而变化.(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化.(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h (单位:cm )随练习本的本数n 的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体问题T (单位:℃)随冷冻时间t (单位:min )的变化而变化.(5)以上出现的四个函数解析式都是常数与自变量 的形式.2.自主归纳:一般地,形如 (k 是常数,k≠0)的函数,叫做正比例函数,其中k 叫做比例系数.三、自学自测1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?2(1)3;(2)21;(3);(4);(5)π ;(6).2x y x y x y y y x y x ==+=-===2. 回答下列问题:(1)若y=(m-1)x 是正比例函数,m 取值范围是 ;(2)当n 时,y=2x n 是正比例函数; (3)当k 时,y=3x+k 是正比例函数. 四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:正比例函数的概念问题1:正比例函数的定义是什么?需要注意哪些问题?【典例探究】例 1 已知函数 y=(m-1)2m x 是正比例函数,求m 的值.方法总结:正比例函数满足的条件:(1)自变量的指数为1;(2)比例系数为常数,且不等于0.知识点2:求正比例函数的解析式例2若正比例函数当自变量x等于-4时,函数y的值等于2.(1)求正比例函数的解析式;(2)求当x=6时函数y的值.方法总结:求正比例函数解析式的步骤:(1)设:设函数解析式为y=kx;(2)代:将已知条件带入函数解析式;(3)求:求出比例系数k;(4)写:写出解析式.知识点3:正比例函数的简单应用问题2:2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?例3已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y (元)与行程 x (km )之间的函数关系式,并指出y 是x 的什么函数;(2)计算该汽车行驶220 km 所需油费是多少?方法总结:判断是否为正比例函数的依据是函数解析式能否化为y=kx (k 是常数,k≠0)的形式.【跟踪练习】1.(1)若y=(m-2)x |m|-1是正比例函数,则m= ;(2)若y=(m-1)x+m 2-1是正比例函数,则m= . 2.已知y 与x 成正比例,当x 等于3时,y 等于-1.则当x=6时,y 的值为____________.【学习检测】1.下列说法正确的打“√”,错误的打“✕”(1)若y =kx ,则y 是x 的正比例函数. ( )(2)若y =26x 2,则y 是x 的正比例函数. ( ) (3)若y =2(x -1)+2,则y 是x 的正比例函数. ( )(4)若y =2(x -1),则y 是x -1的正比例函数. ( )(1)✕ (2)✕ (3)√ (4)√(解析:先把所给的代数式化成最简形式,再根据正比例函数定义进行判断求解.)2.下列函数关系中,属于正比例函数关系的是( )A.圆的面积S 与它的半径rB.行驶速度不变时,行驶路程s与时间tC.正方形的面积S与边长aD.工作总量(看作“1” )一定,工作效率w与工作时间t3.下列说法正确的打“√”,错误的打“×”.(1)若y=kx,则y是x的正比例函数()(2)若y=2x2,则y是x的正比例函数()(3)若y=2(x-1)+2,则y是x的正比例函数()(4)若y=(2+k2)x,则y是x的正比例函数()4.填空(1)如果y=(k-1)x,是y关于x的正比例函数,则k满足_______.(2)如果y=kx k-1,是y关于x的正比例函数,则k=____.(3)如果y=3x+k-4,是y关于x的正比例函数,则k=_____.(4)若23=-是关于x的正比例函数,m=_____.(2)my m x-5.汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为, y是x的函数.y=40x正比例(解析:根据路程=速度×时间和正比例函数的定义进行判断.) 6.填空(1)若函数y=(a-3)x+a2-9是正比例函数,则a =;(2)若y=(k+3)是y关于x的正比例函数,则k=;(3)若y与x-2成正比例,当x=3时,y=-4.试求出y与x的函数关系式.解析:由正比例函数解析式为y=kx,根据题意列方程或不等式进行求解.解:(1)∵函数y=(a-3)x+a2-9是正比例函数,∴a=-3.(2)∵y=(k+3)x|k|-2是y关于x的正比例函数,∴k=3.(3)∵y与x-2成正比例,∴设y=k(x-2),∵当x =3时,y =-4,∴k =-4,∴y 与x 的函数关系式为y =-4x +8.7.已知函数y =2x 2a +3+a +2b 是正比例函数,则a = ,b = .﹣1 21 8.若x ,y 是变量,且函数y =(k +1)是正比例函数,则k = .1(解析:由正比例函数定义,可知故k =1.)9.若y =kx +2k -3是y 关于x 的正比例函数,则k = .(解析:由正比例函数定义可知2k -3=0,且k ≠0,故k =23.) 10.已知y-3与x 成正比例,并且x=4时,y=7,求y 与x 之间的函数关系式.11.已知y -6与x +3成正比例,且x =1时,y =26,试写出y 与x 的函数关系式. 解:∵y -6与x +3成正比例,∴设y -6=k (x +3).又∵x =1时,y =26,∴4k =20,∴k =5,∴y -6=5(x +3),∴y 与x 的函数关系式为y =5x +21.12.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割.(1)求收割的面积y (单位:公顷)与收割时间x (单位:时)之间的函数关系式;(2)求收割完这块麦田需用的时间.13.汽车由天津驶往相距120千米的北京,s (千米)表示汽车离开天津的距离,t (小时)表示汽车行驶的时间,如图所示.(1)汽车用几小时可到达北京?速度是多少?(2)汽车行驶1小时,离开天津有多远?(3)当汽车距北京20千米时,汽车出发了多长时间?解:(1)由图象可知:s与t成正比例,设s=kt,当t=4时,s=120.即120=k×4,∴k=30.∴s=30t.∴汽车用4小时可到达北京,速度是30千米/时.(2)当t=1时,s=30×1=30(千米).∴汽车行驶1小时,离开天津30千米.(3)当s=100时,100=30t,t=(小时).∴当汽车距北京20千米时,汽车出发了小时.。
19.2 一次函数 导学案
第6课时 19.2.1 正比例函数 导学案(1)【学习目标】1.理解正比例函数的概念;2.经历用函数解析式表示函数关系的过程,进一步 发展符号意识; 3.会用待定系数法求正比函数的解析式。
【学习重点】正比例函数的概念、待定系数法 【学习难点】待定系数法求正比函数的解析式 一、学前准备1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;大约128天后,人们在2.56万千米外的澳大利亚发现了它.(1)这只百余克重的小鸟大约平均每天飞行多少千米?(2) 这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系? (3)这只燕鸥飞行一个半月(一个月按30天计算.)的行程大约是多少千米?二、探索思考探究(一)1、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式. (1)圆的周长 l 随半径 r 的变化而变化;(2)铁的密度为7.8 g/cm3,铁块的质量 m (单位:g )随它的体积 V (单位:cm3)的变化而变化;(3)每个练习本的厚度为0.5 cm ,练习本摞在一起的总厚度 h (单位:cm )随练习本的本数 n 变化而变化;(4)冷冻一个0 ℃ 的物体,使它每分下降2 ℃,物体的温度 T (单位:℃)随冷冻时间 t (单位:min )的变化而变化.认真观察得到四个函数解析式,这些函数有什么共同点.2、一般地,形如 (k 是常数,k ≠0)的函数,叫做 ,其中k 叫做 .练习1、下列函数中哪些是正比例函数? (填序号) (1)y =2x (2)y = x+2 (3)3xy =(4)x y 3= (5)y=x 2+1 (6)121+-=x y三、典例分析 例1、(1)若 y =5x 3m-2是正比例函数, 求 m 的值(2)若32)2(--=mx m y 是正比例函数, 求 m 的值(3)若)2(32-+=-m x y m 是正比例函数,求 m 的值例2、已知正比例函数当自变量x 等于-4时,函数y 的值等于2。
人教版八年级下册19.2.1正比例函数(教案)
在今天的课堂中,我发现学生们对正比例函数的概念和性质的理解整体上是积极的。他们能够通过实例快速抓住正比例函数的核心,这让我感到很欣慰。不过,我也注意到在图像绘制和实际应用方面,部分学生还存在一些困惑。
首先,正比例函数的图像绘制对于一些学生来说是个挑战。他们知道图像是一条直线,但具体如何根据函数表达式找到合适的点来绘制这条直线,这一点并不是所有人都能马上掌握。我意识到,在这里我需要提供更多的引导和练习,让学生通过实际操作来加深理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正比例函数的基本概念。正比例函数是形如y=kx(k为常数,k≠0)的函数。它在生活中有着广泛的应用,如速度与时间、单价与总价等关系。
2.案例分析:接下来,我们来看一个具体的案例。比如,小明骑自行车的速度是每小时10公里,他骑行了3小时,我们可以通过正比例函数来计算他骑行的总距离。
另一个难点在于如何将正比例函数应用到解决实际问题上。虽然学生们能够理解速度和时间的例子,但当问题变得更加复杂时,他们就显得有些力不从心。我考虑在未来的课程中,引入更多的生活场景,让学生在小组讨论和实验操作中,更直观地感受正比例函数的实际意义。
此外,小组讨论的环节让我看到了学生们的合作精神和解决问题的能力。他们能够在小组内部分工合作,共同探究正比例函数的应用,这非常好。但我也观察到,有些小组在讨论时可能会偏离主题,这在一定程度上影响了讨论的效率。我计划在下次讨论前,提供更明确的讨论指南,帮助学生聚焦关键问题。
-举例:当k=1/2时,如何找到图像上的点,并正确绘制出这条直线。
-正比例函数性质的深入理解:学生可能难以理解为什么k的正负会影响图像所在的象限。
-解释:通过具体例子(如k=2和k=-2时的图像对比),说明k的正负与图像在坐标平面上的位置关系。
人教版八年级下册第十九章19.2.1正比例函数(教案)
今天我们在课堂上学习了正比例函数,回顾整个教学过程,我觉得有几个地方值得思考和改进。
首先,我发现同学们在理解正比例函数的定义和图像性质方面还存在一些困难。尽管我在讲授时尽量用简单明了的语言解释,但仍有部分同学对斜率k的理解不够深入。在今后的教学中,我需要寻找更多直观的例子或教学方法,帮助学生更好地理解这一概念。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“正比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.在实践活动和小组讨论中,加强对学生的引导和监督,确保活动围绕主题展开。
3.增加课堂提问和练习,鼓励同学们积极参与,提高他们的自信心和知识掌握程度。
4.结合实际问题,让学生在实际情境中应用正比例函数,提高他们的数学建模和解决问题的能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正比例函数的基本概念。正比例函数是指当自变量x变化时,因变量y与x成正比关系,即y=kx(k≠0)。这个比例系数k非常重要,它决定了函数的图像和性质。正比例函数在现实世界中有着广泛的应用,如速度与时间、单价与总价等关系。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以恒定速度行驶,那么行驶的距离与时间成正比。通过这个案例,我们可以看到正比例函数在实际中的应用,以及它如何帮助我们解决问题。
2.教学难点
-理解比例系数k的物理意义:对于不同的实际问题,k值可能代表不同的物理量,学生需理解其内涵。
人教八年级下册19.2.1正比例函数(教案)
-正比例函数增减性的证明:对于k的正负值导致函数增减性的理解,学生需要通过具体例子进行验证,并理解其背后的数学原理。
举例:
a.图像难点:讲解正比例函数图像时,可通过绘制不同k值的图像,让学生观察并总结出k值与图像斜率的关系。
五、教学反思
在今天的教学过程中,我发现学生们对正比例函数的概念和图像特点掌握得相对较好。通过引入日常生活中的实例,他们能够较快地理解正比例函数的实际意义。但在讲解正比例函数增减性这一部分,感觉学生们有些吃力,需要我在这里多花一些时间进行解释和引导。
在讲授新课的时候,我尝试用生动的语言和形象的表达来阐述正比例函数的定义,尽量让抽象的数学概念变得具体易懂。同时,通过案例分析,让学生们看到正比例函数在解决实际问题中的应用,以提高他们的学习兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正比例函数的基本概念。正比例函数是形如kx(k≠0)的函数,其中k为常数。它在生活中有着广泛的应用,如速度与时间的关系、单价与总价的关系等。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以恒定速度行驶,我们可以通过正比例函数来描述行驶的距离与时间的关系。这个案例将展示正比例函数在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调正比例函数的定义和图像特点这两个重点。对于难点部分,如正比例函数的增减性,我会通过举例和图像分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正比例函数相关的实际问题,如商品价格与数量的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过改变变量k的值来观察正比例函数图像的变化,从而直观地理解k值与函数图像的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2.1 正比例函数
编制人:田超
学习目标:
1、理解正比例函数的概念,在用描点法画正比例函数图象过程中发现正比例函数图象性质
2、能用正比例函数图象的性质简便地画出正比例函数图像
3、能够利用正比例函数解决简单的数学问题
学习重点:画正比例函数图像及总结正比例函数的性质
学习难点:正比例函数图像的性质
思维导航:正比例函数中对比例系数K 是常数且K=0
结合图像归纳出正比例函数的增减性
学习过程:
(一) 、正比例函数的概念
1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式。
这些函数解析式有哪些共同特征?
(1)圆的周长l 随半径r 的变化而变化。
(2)铁的密度为7.8g/3cm ,铁块的质量m (单位:g )随它的体积V (单位:3cm )的变化而变化。
(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n 的变化而变化。
(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度T (单位:℃)随冷冻时间t (单位:min )的变化而变化。
2.观察“思考”所得的四个函数;
(1)观察这些函数关系式,这些函数都是常数与自变量 的形式;
(2)一般地,形如 ( )函数,叫做正比例函数,其中k 叫做 。
跟踪练习(一):
1、下列函数中,那些是正比例函数?______________
(1)x
y 4= (2)13+=x y (3)1=y (4)x y 8= (5)y=x 3 (6) y=x 2 2.已知一个正比例函数的比例系数是-5,则它的解析式为____________
3.关于x 的函数x m y )1(-=是正比例函数,则m__________
4.若y=5x
3m-2是正比例函数,则m=___________. 5. 若
(1)n y n x =-是正比例函数,则n = .
(二)正比例函数图像的画法与性质
知识链接:用描点法画函数图象的一般步骤:
①______________,②___________________③___________________
用描点法画出下列函数的图像
(1)y=2x
解:列表得:
观察所画图像,填写你发现的规律:
(1) 函数x y 2=的图像是经过原点的 __________,
(2) 函数x y 2=的图像经过第_______象限,从左到右_______,即y 随x 的增大而
________;
(3) 函数kx y =(0>k )的图像经过第_______象限,从左到右_______,即y 随x 的增
大而________;
(2) y=-2x
解:列表得:
观察所画图像,填写你发现的规律:
(4) 函数x y 2-=的图像是经过原点的 __________.
(5) 函数x y 2-=的图像经过第_______象限,从左到右呈_______趋势,即y 随x 的增
大而________;
(6) 函数kx y =(0<k )的图像经过第_______象限,从左到右呈_______趋势,即y 随
x 的增大而________;
总结:正比例函数的性质
正比例函数kx y =(k ≠0)是一条经过 .
当k > 0时,直线经过 象限,从左到右呈 趋势,即y 随x 的增大而
当k 〈0时,直线经过 象限,从左到右呈 趋势,即y 随x 的减小
而
跟踪练习(二):
1.已知正比例函数x k y ·)13(-=,若y 随x 的增大而增大,则k 的取值范围是( ) A.k<0 B.k>0 C.31<k D. 3
1>k 2.已知正比例函数)0(≠=k kx y 的图像过第二、四象限,则( )
A 、y 随x 的增大而增大
B 、y 随x 的增大而减小
C 、当0<x 时,y 随x 的增大而增大;当0>x 时,y 随x 的增大而减少;
D 、不论x 如何变化,y 不变。
3.当0<x 时,函数x y =的图像在第( )象限。
A 、一、三
B 、二、四
C 、二
D 、三
4.函数x y 5-=的图像在第_______象限,经过点(0,____)与点(1,____),y 随x 的增大而_________
(三)两点法画正比例函数的图像
1.因为 点确定一条直线,我们在画正比例函数图象时,只需确定两点即可,通常是( , )和( , )
2.试一试:用最简单的方法画出下列函数的图像
(1)、 y=-3x (2) y=
2
1x
(四)达标测评 1.y=3x , y=x 4
, y=3x+9, y=2x 2中,正比例函数是____________. 2.若x 、y 是变量,且函数y=(k+1)2k x 是正比例函数,则k=_________.
3.若函数(4)y m x =-是关于x 的正比例函数,则m
4.函数kx y =的图像经过点P (-1,3)则k 的值为( )
A 、3
B 、—3
C 、31
D 、3
1-
5.正比例函数y=kx (k 为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.
6.函数y=kx(k ≠0)的图象过P (-3,3),则k=____,图象过_____象限。
7.设函数2||)62(--=m x m y 是正比例函数,且图像过一、三象限,则m 的值为 。
8. 在函数y=2x 的自变量中任意取两个点x 1,x 2,若x 1<x 2,则对应的函数值y 1与y 2的大小关系是y 1___y 2.
9.已知y 与x 成正比例,且x=2时y=-6,则y=9时x 的值
10.已知点A(-2,3),B(5,m)在正比例函数的图象上,求m 的值。