人教版九年级数学下册课堂导练教学课件:26.2.2其他学科中的反比例函数

合集下载

新人教版九年级数学下册《26章 反比例函数 26.2 实际问题与反比例函数 反比函数在物理学中的应用》教案_2

新人教版九年级数学下册《26章 反比例函数 26.2 实际问题与反比例函数 反比函数在物理学中的应用》教案_2

“26.2.2反比例函数在物理学科中的应用”教学设计教学目标:1.利用函数探索古希腊科学家阿基米德发现的“杠杆原理”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣。

2.通过对物理学科问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念。

3.训练学生能把思考的结果用数学语言比较准确地表达出来,同时要让学生养成交流和合作的习惯。

教学重点:运用反比例函数的意义和性质解决实际问题。

教学难点:从实际问题中寻找变量之间的关系,建立反比例函数模型,能够从函数的观点来解决一些实际问题,渗透转化的数学思想。

教学过程:一、创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆原理”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.(让学生意识到我们的物理学科中也有反比例函数的影子,从而激起学生的学习兴趣)。

二、探索新知反比例函数在力学中的应用问题1:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为 1200 N 和 0.5 m.(1)动力F与动力臂l 有怎样的函数关系? 当动力臂为,1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F 不超过题 (1) 中所用力的一半,则动力臂l至少要加长多少?(分析实际问题中变量之间的关系,建立反比例函数模型解决问题,挖掘杠杆原理中蕴涵的道理,学生能够从函数的观点来解决一些实际问题,体会数学建模思想和学以致用的数学理念。

)想一想:在物理中,我们知道,在阻力和阻力臂一定的情况下,动力臂越长就越省力,你能用反比例函数的知识对其进行解释吗?(教师在学生回答的基础上进行追问,能由此题,利用反比例函数知识解释:为什么使用撬棍时,动力臂越长越省力?让学生明白“分析实际问题中变量之间的关系——建立反比例函数模型解决问题——挖掘杠杆原理中蕴涵的道理。

人教版数学九年级下册第26章《反比例函数》复习课件

人教版数学九年级下册第26章《反比例函数》复习课件
(2)找出满足反比例函数解析式的点P(a,b); (3)将P(a,b)代入解析式得 k=ab; (4)确定反比例函数解析式 y =
ab x
真题专练
(2015安徽21题12分)如图,已知反比例函数y
k1 与
x
一次函数y=k2x+b的图象交于A(1,8),B(-4,m).源自(1)求k1、k2、b的值;
(2)求△AOB的面积;
y= k
K>0
K<0
x
图 象
当k>0时,函数图象的两 当k<0时,函数图象的两
性 质
个分支分别在第一、三象 个分支分别在第二、四象
限,在每个象限内,y随x 限,在每个象限内,y随x
的增大而减小.
的增大而增大.
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
(1)求p与S之间的函数关系式;
用 (2)求当S=0.5m2时物体承受的压强p ;
(3)求当p=2500Pa时物体的受力面积S.
p(Pa)
4000 3000 2000
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
【及时归纳】 求反比例函数解析式的步骤
(1)设出反比例函数解析式 y = k ; x
反比例函数的图象及性质(常考)
函数的图象经过点
A(1,-2),则k的值为
()
A. 1
2
B. 1 C. 2
2
D. -2
反比例函数解析式的确定(常考)
点P(1,a)在反比例函数的图象上,它关于y 轴的对称点在一次函数y=2x+4的图象上,求
此反比例函数的解析式.

人教版初三数学9年级下册 第26章(反比例函数)26.1.1反比例函数 课件(共31张PPT)

人教版初三数学9年级下册 第26章(反比例函数)26.1.1反比例函数 课件(共31张PPT)
宽是5 cm,高是 y cm.
(1)写出用长表示高的函数解析式;
(2)写出自变量 x 的取值范围;
(3)当它的长是8 cm时,求长方体的高.
解: (1)由题意得5xy=100,所以 =
(2)自变量 x 的取值范围是 x>0.
(3)当 x=8时, =
20
8
20
.

= 2.5 ,
所以当长方体的长是8 cm 时,长方体的高是2.5 cm.
m=1
m+1≠0
−2
2 −2
2022 =1
解:因为 = + 1
是反比例函数,
所以 2 − 2 = −1,且 m+1≠0,解得 m=1.
当 m=1时, − 2 2022 = 1 − 2 2022 = −1 2022 = 1.
不要忽略比例系数不能为零
3.已知一个长方体的体积是100 cm3 ,它的长是 x cm,
200

,该函数是反比例函数.
2.下列函数:
①y =2x +3
② =
8


③y=x2 +7x-1
④ =
3
2
其中 y 是 x 的反比例函数的有
⑤y=x-1
⑥Байду номын сангаас=


缺少条
件m≠0
⑦xy= -1
②⑤⑦ . (填序号)
新知探究 知识点2 用待定系数法求反比例函数的解析式
例1 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.


在反比例函数 = (k 为常数,k≠0)中,只有一个待
定系数 k,因此只要给出一组 x,y 的对应值,就可以

人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

(3)若点(a,y)在该函数图象上,且a>-2,求y的取值范围.
7.【例 4】如图,在平面直角坐标系中,反比例函数 y=k(k>0)的
x
图象经过点 A(2,m),过点 A 作 AB⊥x 轴于点 B,且△AOB 的面积
为 5. (1)求k和m的值; (2)当x≥8时,求函数值y的取值范围.
解:(1)∵A(2,m),
第二十六章 反比例函数 与反比例函数有关的面积问题
k 的几何意义及应用
函数
图象形状 图象位置 增减性 延伸性 对称性
y
函数图象的 在每一支
双曲线既
k>0
两支分支分 曲线上,y 双曲线向 是轴对称
O x 别位于第一、都随x的增 四边无限 图形(对称
三象限
大而减小 延伸,与 轴:y=±x),
y 函数图象的 在每一支 坐标轴没 又是中心
自主归纳
y
P(m,n) B
oA
x
K与图形面积
S矩形OAPB OA• AP
m•n
k
反比例函数图像上任意一点向x轴和y轴作垂线,
得到矩形的面积为 S矩形OAPB k
如图:连接OP,则
SOAP
1 • OA • AP 2
y
1 m•n
2
P(m,n) B
oA
x
1 k 2
反比例函数图像上任意一点向x轴或y轴作垂线,
5.若D、E、F是此反比例函数在第三象限图像上的三个点,
过D、E、F分别作x轴的垂线,垂足分别为M,N、K,连接
OD、OE、OF,设△ ODM、△OEN、 △OFK 的面积分别
为S1、S2、S3,则下列结论成立的是( D )
y A(1,4)A S1﹤S2 Nhomakorabea﹤ S3

人教版九年级数学下册 26.2 实际问题与反比例函数【名校课件+集体备课】

人教版九年级数学下册   26.2 实际问题与反比例函数【名校课件+集体备课】

队施工时应该向下掘进多深?实际上是已知什么
条件,求什么?如何解答?
解: 把S=500代入
解得
d=20
s=
104 d
,得
500 =
104 d
如果把储存室的底面积定为500 ²,施工时应向
地下掘进20m深.
新课进行时
(3)求当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬
的岩石.为了节约建设资金,储存室的底面积应改为多少才能满
新课进行时
核心知识点二 用反比例函数解决工程问题
例2:码头工人以每天30吨的速度往 一艘轮船上装载货物,把轮船装载完 毕恰好用了8天时间. (1)轮船到达目的地后开始卸货,卸货 速度v(单位:吨/天)与卸货时间t(单位: 天)之间有怎样的函数关系? (2)由于遇到紧急情况,船上的货物必 须在不超过5日内卸载完毕,那么平均 每天至少要卸多少吨货物?
新课进行时
解:(1)根据电学知识,当 U=220 时,得 P 2202 R
即输出功率 P 是电阻 R 的反比例函数,函数解析式
为 P 2202

R
(2)根据反比例函数的性质可知,电阻越大,功率越
小.把电阻的最小值 R=110 代入 ① 式,得到功率的最大


P 2202 44(0 W);
110
解:(1)药物释放过程:y 2(t 0 t 2 ),
药物释放完毕后:y
2(t
2
3 ).
3
3t 3
随堂演练
(2)据测定,当空气中每立方米 的含药量降低到 0.25 毫克以下时, 学生方可进入教室,那么从药物 释放开始,至少需要经过多少小 时后,学生才能进入教室?
解:(2)当 y = 0.25 毫克时,由 y 2

《实际问题与反比例函数》反比例函数PPT优秀课件(第2课时)

《实际问题与反比例函数》反比例函数PPT优秀课件(第2课时)
人教版 数学 九年级 下册
26.2 实际问题与反比例函数 第2课时
导入新知
给我一个支点,我可以撬动地球!──阿基米德
1.你认为可能吗? 2.大家都知道开啤酒的开瓶器,它蕴含什么科学道理? 3.同样的一块大石头,力量不同的人都可以撬起来,
是真的吗?
学习目标
3. 体会数学建模思想,培养学生数学应用意识.
程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进 行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时 间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数, 在通风后又成反比例,如图所示.下面四个选项中错误的是( C )
A.经过5min集中喷洒药物,室内空气中的含药量最高达到 10mg/m3 B.室内空气中的含药量不低于8mg/m3的持续时间达到了11min C.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分 钟,才能有效杀灭某种传染病毒.此次消毒完全有效 D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的, 所以从室内空气中的含药量达到2mg/m3开始,需经过59min后, 学生才能进入室内
如图所示,重为8牛顿的物体G挂在杠杆的B端,O点为支点,且
OB=20cm.
(1)根据“杠杆定律”写出F与h之间的函数解析式;
(2)当h=80cm时,要使杠杆保持平衡,在A端需要施加多少牛
顿的力?
A
B
O
F
G
课堂检测
解:(1)F•h=8×20=160
所以 F 160
A
h
F
(2)当h=80cm时,
F 160 (2 牛顿) 80
至少要加长多少? 分析:对于函数 F 600 ,F 随 l 的增大而减小. 因此,只要求

人教版数学九年级下册26.1.2反比例函数图象和性质课件

人教版数学九年级下册26.1.2反比例函数图象和性质课件
自变量与因变量的关系
在反比例函数中,自变量 $x$ 和因变量 $y$ 之间存在一种倒数关系。 当 $x$ 增大时,$y$ 减小;当 $x$ 减小时,$y$ 增大。这种关系反映 了反比例函数的基本特性。
函数值域及变化规律
函数值域:反比例函 数的值域为所有非零 实数。当 $k > 0$ 时 ,函数图象位于第一 、三象限;当 $k < 0$ 时,函数图象位于 第二、四象限。
变化规律
1. 当 $k > 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐增大到正无穷大 (或从负无穷大逐渐 减小到零)。
2. 当 $k < 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐减小到负无穷大 (或从正无穷大逐渐 增大到零)。
不具备单调性。
与一次函数比较
关系
一次函数 $y = ax + b$ (a ≠ 0) 和反比例函数无直接关联。
图象
一次函数的图象是一条直线,而反比例函数的图象是两条曲线。
性质
一次函数在其定义域内是单调的,而反比例函数在其定义域内不具备单调性。此外,一次 函数的值域为全体实数,而反比例函数的值域为除去使分母为零的点外的全体实数。
3. 在每个象限内,随 着 $x$ 的绝对值增大 ,函数值 $y$ 的绝对 值逐渐减小。
02
反比例函数图象绘制方法
列表法绘制步骤
确定自变量的取值范围,并在此范围 内选取若干个自变量的值。
列出表格,将自变量和对应的函数值 分别填入表格中。
根据反比例函数的解析式,求出与每 个自变量值对应的函数值。
根据表格中的数据,在坐标系中描出 各点,并用平滑的曲线连接各点,即 可得到反比例函数的图象。

人教版2019-2020年九年级数学下册教案 26.2 第2课时 其他学科中的反比例函数

人教版2019-2020年九年级数学下册教案 26.2 第2课时 其他学科中的反比例函数

第2课时 其他学科中的反比例函数1.能够从物理等其他学科问题中建构反比例函数模型;(重点)2.从实际问题中寻找变量之间的关系,利用所学知识分析物理等其他学科的问题,建立函数模型解决实际问题.(难点)一、情境导入问题:某校科技小组进行野外考察,途中遇到一片十几米宽的湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成任务.问题思考:(1)请你解释他们这样做的道理;(2)当人和木板对湿地的压力一定时,随着木板面积S (m 2)的变化,人和木板对地面的压强p (Pa)将如何变化?二、合作探究探究点:反比例函数在其他学科中的应用【类型一】 反比例函数与电压、电流和电阻的综合已知某电路的电压U (V),电流I (A)和电阻R (Ω)三者之间有关系式为U =IR ,且电路的电压U 恒为6V.(1)求出电流I 关于电阻R 的函数表达式;(2)如果接入该电路的电阻为25Ω,则通过它的电流是多少?(3)如图,怎样调整电阻箱R 的阻值,可以使电路中的电流I 增大?若电流I =0.4A ,求电阻R 的值.解析:(1)根据电流I (A)是电阻R (Ω)的反比例函数,设出I =U R(R ≠0)后把U =6V 代入求得表达式即可;(2)将R =25Ω代入上题求得的函数关系式即可得电流的值;(3)根据两个变量成反比例函数关系确定答案,然后代入0.4A 求得R 的值即可.解:(1)∵某电路的电压U (V),电流I (A)和电阻R (Ω)三者之间有关系式U =IR ,∴I =U R,代入U =6V 得I =6R ,∴电流I 关于电阻R 的函数表达式是I =6R; (2)∵当R =25Ω时,I =625=0.24A ,∴电路的电阻为25Ω时,通过它的电流是0.24A ;(3)∵I =6R,∴电流与电阻成反比例函数关系,∴要使电路中的电流I 增大可以减小电阻.当I =0.4A 时,0.4=6R,解得R =15Ω. 方法总结:明确电压、电流和电阻的关系是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型二】 反比例函数与气体压强的综合某容器内充满了一定质量的气体,当温度不变时,容器内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.(1)求出这个函数的解析式;(2)当容器内的气体体积是0.6m 3时,此时容器内的气压是多少千帕?(3)当容器内的气压大于240kPa 时,容器将爆炸,为了安全起见,容器内气体体积应不小于多少m 3?解析:(1)设出反比例函数关系式,根据图象给出的点确定关系式;(2)把V =0.6m 3代入函数关系式,求出p 的值即可;(3)因为当容器内的气压大于240kPa 时,容器将爆炸,可列出不等式求解.解:(1)设这个函数的表达式为p =k V .根据图象可知其经过点(2,60),得60=k 2,解得k =120.则p =120V; (2)当V =0.6m 3时,p =1200.6=200(kPa); (3)当p ≤240kPa 时,得120V ≤240,解得V ≥12.所以为了安全起见,容器的体积应不小于12m 3. 方法总结:根据反比例函数图象确定函数关系式以及知道变量的值求函数值或知道函数值的范围求自变量的范围是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第5题【类型三】 反比例函数与杠杆知识的综合公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆原理”,小明利用此原理,要制作一个杠杆撬动一块大石头,已知阻力和阻力臂不变,分别为1200N 和0.5m.(1)动力F 与动力臂l 有怎样的函数关系?当动力臂为1.5m 时,撬动石头至少要多大的力?(2)若想使动力F 不超过(1)题中所用力的一半,则动力臂至少要加长多少?解析:(1)根据“动力×动力臂=阻力×阻力臂”,可得出F 与l 的函数关系式,将l =1.5m 代入可求出F ;(2)根据(1)的答案,可得F ≤200,解出l 的最小值,即可得出动力臂至少要加长多少.解:(1)Fl =1200×0.5=600N ·m ,则F =600l .当l =1.5m 时,F =6001.5=400N ; (2)由题意得,F =600l≤200,解得l ≥3m ,故至少要加长1.5m. 方法总结:明确“动力×动力臂=阻力×阻力臂”是解题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型四】 反比例函数与功率知识的综合某汽车的输出功率P 为一定值,汽车行驶时的速度v (m/s)与它所受的牵引力F (N)之间的函数关系如下图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为2400N 时,汽车的速度为多少?(3)如果限定汽车的速度不超过30m/s ,则F 在什么范围内?解析:(1)设v 与F 之间的函数关系式为v =P F,把(3000,20)代入即可;(2)当F =1200N 时,求出v 即可;(3)计算出v =30m/s 时的F 值,F 不小于这个值即可.解:(1)设v 与F 之间的函数关系式为v =P F ,把(3000,20)代入v =P F,得P =60000,∴这辆汽车的功率是60000W.这一函数的表达式为v =60000F; (2)将F =2400N 代入v =60000F ,得v =600002400=25(m/s),∴汽车的速度v =3600×25÷1000=90(km/h); (3)把v ≤30代入v =60000F,得F ≥2000(N),∴F ≥2000N. 方法总结:熟练掌握功率的计算公式是解决问题的关键.三、板书设计1.反比例函数与电压、电流和电阻的综合;2.反比例函数与气体压强的综合;3.反比例函数与杠杆知识的综合;4.反比例函数与功率知识的综合.本节是在上一节的基础上,进一步学习与反比例函数有关的涉及其他学科的知识.尽量选用学生熟悉的实例进行教学,使学生从身边事物入手,真正体会数学知识来源于生活.注意要让学生经历实践、思考、表达与交流的过程,给学生留下充足的活动时间,不断引导学生利用数学知识解决实际问题.。

部审人教版九年级数学下册课堂同步教学课件26.2 第2课时《 其他学科中的反比例函数》两套

部审人教版九年级数学下册课堂同步教学课件26.2 第2课时《 其他学科中的反比例函数》两套
(2)当I=0.5安培时,0.5= 10 ,解得R=20(欧姆). R
做一做
在公式 I U 中,当电压U一定时,电流I与电 R
阻R之间的函数关系可用图象大致表示为( D )
A.
B.
C.
D.
当堂练习
1.用一根杠杆撬一块重力为10000N的大石头,如果动力臂 为160cm,阻力臂为20cm,则至少要用__1_2_5_0_N__的力才 能把石头撬动.
A. 至少2m2
B. 至多2m2 C. 大于2m2 D. 小于2m2
p/(N/m2) 60 40
20
O 20 40 60 S/m2
二 反比例函数与电学的结合
例3 一个用电器的电阻是可调节的,其范围为 110~ 220 Ω. 已知电压为 220 V,这个用电器的电路图如 图所示. (1) 功率 P 与电阻 R 有怎样的函数关系?
练一练 假定地球重量的近似值为 6×1025 牛顿 (即阻力),
阿基米德有 500 牛顿的力量,阻力臂为 2000 千米,请 你帮助阿基米德设计,该用多长动力臂的杠杆才能把 地球撬动?
解: 2000 千米 = 2×106 米, 由已知得F×l=6×1025×2×106 =1.2×1032 , 变形得:F 1.21032 . l 当 F =500时,l =2.4×1029 米,
练一练 1. 在公式 I U 中,当电压 U 一定时,电流 I 与电
R 阻 R 之间的函数关系可用图象大致表示为 (D)
I
I
A.
R
B.
R
I
I
D.
C.
R
R
2. 在某一电路中,保持电压不变,电流 I (安培) 和电阻 R (欧姆) 成反比例,当电阻 R=5 欧姆时,电流 I=2 安培. (1) 求 I 与 R 之间的函数关系式; (2) 当电流 I=0.5 时,求电阻 R 的值.

人教版九年级数学下册26.2 第2课时 其他学科中的反比例函数 教案

人教版九年级数学下册26.2 第2课时 其他学科中的反比例函数 教案

第2课时 其他学科中的反比例函数1.能够从物理等其他学科问题中建构反比例函数模型;(重点)2.从实际问题中寻找变量之间的关系,利用所学知识分析物理等其他学科的问题,建立函数模型解决实际问题.(难点)一、情境导入问题:某校科技小组进行野外考察,途中遇到一片十几米宽的湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成任务.问题思考:(1)请你解释他们这样做的道理;(2)当人和木板对湿地的压力一定时,随着木板面积S (m 2)的变化,人和木板对地面的压强p (Pa)将如何变化?二、合作探究探究点:反比例函数在其他学科中的应用【类型一】 反比例函数与电压、电流和电阻的综合已知某电路的电压U (V),电流I (A)和电阻R (Ω)三者之间有关系式为U =IR ,且电路的电压U 恒为6V.(1)求出电流I 关于电阻R 的函数表达式;(2)如果接入该电路的电阻为25Ω,则通过它的电流是多少?(3)如图,怎样调整电阻箱R 的阻值,可以使电路中的电流I 增大?若电流I =0.4A ,求电阻R 的值.解析:(1)根据电流I (A)是电阻R (Ω)的反比例函数,设出I =U R(R ≠0)后把U =6V 代入求得表达式即可;(2)将R =25Ω代入上题求得的函数关系式即可得电流的值;(3)根据两个变量成反比例函数关系确定答案,然后代入0.4A 求得R 的值即可.解:(1)∵某电路的电压U (V),电流I (A)和电阻R (Ω)三者之间有关系式U =IR ,∴I =U R,代入U =6V 得I =6R ,∴电流I 关于电阻R 的函数表达式是I =6R; (2)∵当R =25Ω时,I =625=0.24A ,∴电路的电阻为25Ω时,通过它的电流是0.24A ; (3)∵I =6R,∴电流与电阻成反比例函数关系,∴要使电路中的电流I 增大可以减小电阻.当I =0.4A 时,0.4=6R,解得R =15Ω. 方法总结:明确电压、电流和电阻的关系是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型二】 反比例函数与气体压强的综合某容器内充满了一定质量的气体,当温度不变时,容器内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.(1)求出这个函数的解析式;(2)当容器内的气体体积是0.6m 3时,此时容器内的气压是多少千帕?(3)当容器内的气压大于240kPa 时,容器将爆炸,为了安全起见,容器内气体体积应不小于多少m 3?解析:(1)设出反比例函数关系式,根据图象给出的点确定关系式;(2)把V =0.6m 3代入函数关系式,求出p 的值即可;(3)因为当容器内的气压大于240kPa 时,容器将爆炸,可列出不等式求解.解:(1)设这个函数的表达式为p =k V .根据图象可知其经过点(2,60),得60=k 2,解得k =120.则p =120V; (2)当V =0.6m 3时,p =1200.6=200(kPa); (3)当p ≤240kPa 时,得120V ≤240,解得V ≥12.所以为了安全起见,容器的体积应不小于12m 3. 方法总结:根据反比例函数图象确定函数关系式以及知道变量的值求函数值或知道函数值的范围求自变量的范围是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第5题【类型三】 反比例函数与杠杆知识的综合公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆原理”,小明利用此原理,要制作一个杠杆撬动一块大石头,已知阻力和阻力臂不变,分别为1200N 和0.5m.(1)动力F 与动力臂l 有怎样的函数关系?当动力臂为1.5m 时,撬动石头至少要多大的力?(2)若想使动力F 不超过(1)题中所用力的一半,则动力臂至少要加长多少?解析:(1)根据“动力×动力臂=阻力×阻力臂”,可得出F 与l 的函数关系式,将l =1.5m 代入可求出F ;(2)根据(1)的答案,可得F ≤200,解出l 的最小值,即可得出动力臂至少要加长多少.解:(1)Fl =1200×0.5=600N ·m ,则F =600l .当l =1.5m 时,F =6001.5=400N ; (2)由题意得,F =600l≤200,解得l ≥3m ,故至少要加长1.5m. 方法总结:明确“动力×动力臂=阻力×阻力臂”是解题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型四】 反比例函数与功率知识的综合某汽车的输出功率P 为一定值,汽车行驶时的速度v (m/s)与它所受的牵引力F (N)之间的函数关系如下图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为2400N 时,汽车的速度为多少?(3)如果限定汽车的速度不超过30m/s ,则F 在什么范围内?解析:(1)设v 与F 之间的函数关系式为v =P F,把(3000,20)代入即可;(2)当F =1200N 时,求出v 即可;(3)计算出v =30m/s 时的F 值,F 不小于这个值即可.解:(1)设v 与F 之间的函数关系式为v =P F ,把(3000,20)代入v =P F,得P =60000,∴这辆汽车的功率是60000W.这一函数的表达式为v =60000F; (2)将F =2400N 代入v =60000F ,得v =600002400=25(m/s),∴汽车的速度v =3600×25÷1000=90(km/h);(3)把v ≤30代入v =60000F,得F ≥2000(N),∴F ≥2000N. 方法总结:熟练掌握功率的计算公式是解决问题的关键.三、板书设计1.反比例函数与电压、电流和电阻的综合;2.反比例函数与气体压强的综合;3.反比例函数与杠杆知识的综合;4.反比例函数与功率知识的综合.本节是在上一节的基础上,进一步学习与反比例函数有关的涉及其他学科的知识.尽量选用学生熟悉的实例进行教学,使学生从身边事物入手,真正体会数学知识来源于生活.注意要让学生经历实践、思考、表达与交流的过程,给学生留下充足的活动时间,不断引导学生利用数学知识解决实际问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档