认识一元一次方程1北师大版

合集下载

认识一元一次方程教学设计 北师大版(优秀教案)

认识一元一次方程教学设计 北师大版(优秀教案)

第五章一元一次方程.认识一元一次方程(一)山西省实验中学武雅琴一、学生起点分析学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了分析简单数量的关系,并根据数量关系列出方程、求解方程、检验结果的过程。

对方程已有初步认识,但并没有学习“一元一次方程”准确的理性的概念。

二、学习任务分析本节从有趣的“猜年龄”游戏入手,通过对五个熟悉的实际问题的分析,学生结合已有知识,能得出一元一次方程。

在此过程中,学生逐渐体会方程是刻画现实世界、解决实际问题的有效数学模型.本节的重点:学生在实际问题中分析、找到等量关系,准确列出方程,并总结所列方程的共同特点,归纳出一元一次方程的概念。

本节的难点:由特殊的几个方程的共同特点归纳一元一次方程的概念。

三、教学目标、在对实际问题情境的分析过程中感受方程模型的意义;、借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法;、使学生在分析实际问题情境的活动中体会数学与现实的密切联系。

四、教学过程设计环节一:阅读章前图内容:请一位同学阅读章前图中关于“丟番图”的故事。

(大约分钟)丢番图()是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途.——出自《希腊诗文选》()第题目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。

效果:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年龄是多少呢?教师借机也提出问题:用什么方法可以求解丟番图的年龄呢?紧接着呈现内容。

北师大版数学七年级上册《一元一次方程的认识》教学设计1

北师大版数学七年级上册《一元一次方程的认识》教学设计1

北师大版数学七年级上册《一元一次方程的认识》教学设计1一. 教材分析《一元一次方程的认识》是北师大版数学七年级上册的教学内容。

本节课的主要内容是一元一次方程的定义、性质和解法。

教材通过实例引入一元一次方程,使学生了解一元一次方程在实际生活中的应用,培养学生解决实际问题的能力。

教材还介绍了方程的解法,帮助学生掌握解一元一次方程的方法。

二. 学情分析学生在七年级上册之前已经学习了代数基础知识,对代数式、未知数等概念有一定的了解。

但他们对一元一次方程的认识尚浅,需要通过实例和练习来进一步理解。

学生应具备的数学素养包括逻辑思维能力、运算能力、问题解决能力等。

三. 教学目标1.了解一元一次方程的定义和性质。

2.掌握解一元一次方程的方法。

3.能够运用一元一次方程解决实际问题。

4.培养学生的逻辑思维能力和问题解决能力。

四. 教学重难点1.一元一次方程的定义和性质。

2.解一元一次方程的方法。

3.一元一次方程在实际问题中的应用。

五. 教学方法1.讲授法:讲解一元一次方程的定义、性质和解法。

2.案例分析法:分析实际问题,引导学生运用一元一次方程解决。

3.练习法:通过课堂练习和课后作业,巩固所学知识。

4.小组讨论法:分组讨论,培养学生的合作能力和沟通能力。

六. 教学准备1.教学PPT:制作包含实例、练习和拓展题的PPT。

2.教案:编写详细的教学过程和教学方法。

3.练习题:准备适量的课堂练习和课后作业。

4.小组讨论材料:准备相关资料,便于学生分组讨论。

七. 教学过程1.导入(5分钟)利用PPT展示实际问题,引导学生思考如何用数学方法解决。

例如,某商场举行打折活动,原价100元的商品现价80元,求打几折?2.呈现(10分钟)讲解一元一次方程的定义、性质和解法。

通过PPT展示实例,使学生了解一元一次方程在实际生活中的应用。

3.操练(10分钟)课堂练习:让学生独立完成PPT上的练习题。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)小组讨论:学生分组讨论PPT上的拓展题。

北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计

北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计

《认识一元一次方程》教学设计(义务教育课程标准北师大版七年级上册第五章第1节第1课时)一、教材分析《认识一元一次方程》是义务教育课程标准北师大版七年级(上)第五章《认识一元一次方程》第1节,本节内容安排了两个课时,学生在小学认识方程和本册第3章字母表示数的基础上,进一步研究一元一次方程,本节课属于第一课时,研究一元一次方程概念.二、学情分析1.认知基础:在小学阶段学习过简易方程,不过与初中的要求相比,对知识的理解比较表层,大部分学生还没有真正体会到方程在解决实际问题时的优越性和重要性.2.活动经验基础:教材为学生提供了许多生动有趣的现实情境,七年级学生的思维活跃,喜欢参与探索活动,只要激发起兴趣,本课要贯彻的数学思想就能较好的实施.三、教学目标1.能根据给出的现实情境,找出其中的等量关系列出方程.2.通过观察,归纳出一元一次方程的概念.3.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力.四、教学重点与难点教学重点:1.一元一次方程的概念.2.通过现实情境建立方程模型的思想.教学难点:1.对一元一次方程的概念、特征的理解.2.从现实情境中提炼等量关系.五、教法、学法1.教学方法:引导探究法2.学习方法:自主探究,合作交流3.教具准备:多媒体课件,配套学案【习得】建立方程数学模型知识点二:一元一次方程定义探究问题2:由上面得到的式子:40+5x=100; (1+147.30%)x=8930; 2[x+(2x-5=21; 2x-5=19.这些方程有什么共同点?【知识整理】定义:在一个方程中,只含有一个未知数代数式都是整式,未知数的指数都是1,这种方程叫做一元一次方程.。

北师大版七年级上数学5.1认识一元一次方程课件(1) (共24张PPT)

北师大版七年级上数学5.1认识一元一次方程课件(1) (共24张PPT)

x 9 4.5 5 5.5 6 2
66..55 7
7.5
----尝试检验的方法
检验下列各数是否为方程x-3=2x-8的解:
(1) X=5 ;
(2) X=-2 .
解: (1) 把x=5代入方程左右两边,
左边=5-3=2, 右边=2×5-8=2, 左边=右边. 所以x=5是方程x-3=2x-8的解.
8 x 1 x 4.5 _________2__________
丢番图:
古希腊亚历山大学后期的 重要学者和数学家;
代数学的创始人之一,对 算数理论有深入的研究;
他完全脱离了几何形式, 在希腊数学界独树一帜。
希腊数学家丢番图的墓碑上记载着: “他生命 的六分之一是幸福的童年;再活了他生命的十二 分之一,两颊长起了细细的胡须;他结了婚,又 度过了一生的七分之一;再过五年,他有了儿子, 感到很幸福;可是,儿子只活了他父亲全部生命 的一半;儿子死后,他又在极度的悲伤中度过了 四年,也与世长辞了.”
解:如果设x周后树苗长高到1 米, 那么可以得到方程:
40 5x 100
鸡兔同笼,有20个头, 54条腿,鸡兔各有几只?
鸡的腿数+兔的腿数=总的腿数
解:设鸡有 x 只,则兔有 (20 x) 只。
可列方程为 2x 4(20 x) 54 。
( x 25)米
x米
某长方形操场的是 5 850平方米,长和宽之 差为 25 m,这个操场的长与宽分别是多少米?
2 .下列方程中,解为-2的是( C )
A 3x 2 2x
B 4x 1 2x 3
C 3x 1 2x 1 D 5x 3 6x 2
3.小颖的爸爸今年44岁,是小颖年龄的3倍还 大2岁,设小颖今年x岁,则可列方程 ___3_x+_2_=_4_4______

初中数学北师大版七年级上册《第五章第二课时1认识一元一次方程》课件

初中数学北师大版七年级上册《第五章第二课时1认识一元一次方程》课件
分析:第一判断该方程利用哪条等式的性质,如何 变化,最终才可以化为“x=a”的情势.
解:(1)两边加 2,得 x-2+2=3+2.化简,得 x=5. (2)两边减 1,得-12x+1-1=-1-1.化简,得-12x= -2.两边同除以-12,得-12x÷(-12)=-2÷(-12).化简, 得 x=4.
5.1
认识一元一 次方程
第一课时
数学北师大版 七年级上
自 主预 习
掌握等式的两个基本性质,能够运用等式的基本性 质解简单的一元一次方程.(重、难点)
1.等式两边同时加上(或减去)同一个_代_数__式__,所
得的结果仍是等式.用字母表示为:如果a=b,那 么a+c=_b_+__c_,a-c=b_-__c__.
(3)等式的对称性和传递性 ①对称性:如果a=b,那么b=a.即等式的左右两边 交换位置,所得的结果仍然是等式. ②传递性:如果a=b,且b=c,那么a=c.这一性质 也叫做等量代换. 导学2 利用等式的性质解一元一次方程
利用等式的性质解一元一次方程. (1)x-2=3; (2)-12x+1=-1.
用适当的数或整式填空,并说明是根据等式的 哪一条基本性质得到的.
(1)如果y+4=8,那么y=________; (2)如果2x-y=3y+9,那么2x-4y=________; (3)如果-5x=25,那么x=________;
(4)如果a4=8,那么 a=________.
分析:先视察第二个等式的左边,并与第一个等式 的左边比较,判断出是需要加减还是乘除同一个数或式 子(除数不为0).
利用等式的性质解下列方程: (1)x-3=-6; (2)0.6-0.2x=45.
答案:(1)x=-3 (2)x=-1
1.已知x=y,下列结论错误的是( )

北师大版七年级数学上册第五章一元一次方程认识方程课件

北师大版七年级数学上册第五章一元一次方程认识方程课件
C项,把x=1代入方程,得左边=1-4=-3,右边=5-2=3,左边≠右 边,即x=1不是此方程的解.
D项,把x=1代入方程,得左边=1 1 =1,右边=1-2=-1,左边≠右
2
边,即x=1不是此方程的解. 故选B.
知识点4 根据实际问题列方程
4.(教材变式·P137T1(1))(2021吉林中考)古埃及人的“纸草
x+ 1 =1,③ 1 x= 1 ,④x2-3=0,其中是一元一次方程的个数为( A )
x
22
A.1
B.2
C.3
D.4
解析 ①x-y=0中含有两个未知数,不是一元一次方程;
②x+ 1 =1不是整式方程,不是一元一次方程;
x
③ 1 x= 1 是一元一次方程;
22
④x2-3=0中未知数的次数是2,不是一元一次方程.
3 72
解析 由题意可得 2 x+ 1 x+ 1 x+x=33.故选C.
327
5.根据所给问题,设未知数,列出方程. 从60 cm的木条上截去2段同样长的木条,还剩下10 cm长的 短木条,截去的每段长为多少?
解析 设截去的每段长为x cm, 根据题意可列方程为60-2x=10.
能力提升全练
6.(2024辽宁沈阳辽中期末,7,★★☆)下列各方程:①x-y=0,②
书”中记载了一个数学问题:一个数,它的三分之二,它的一
半,它的七分之一,它的全部,加起来总共是33.若设这个数
是x,则所列方程为 ( C )
A. 2 x+ 1 x+x=33
37
B. 2 x+ 1 x+ 1 x=33
327
C. 2 x+ 1 x+ 1 x+x=33

北师大版七年级一元一次方程

北师大版七年级一元一次方程

北师大版七年级一元一次方程一元一次方程是数学中的基本概念,也是解决各种实际问题的有力工具。

在北师大版的七年级数学教材中,一元一次方程被作为一个重要的主题进行讲解。

本文将探讨一元一次方程的概念、一元一次方程的应用以及如何求解一元一次方程。

一、一元一次方程的概念一元一次方程是一个包含未知数和常数的等式,未知数的次数为1。

例如,x + 5 = 7,这是一个简单的一元一次方程,其中x是未知数,5和7是常数。

二、一元一次方程的应用一元一次方程在日常生活和科学研究中有着广泛的应用。

例如,在购物时,我们可能需要计算找零或支付金额;在行程问题中,我们可能需要计算速度或时间;在科学研究中,我们可能需要测量或计算各种物理量。

这些问题都可以通过建立一元一次方程来解决。

三、如何求解一元一次方程求解一元一次方程通常需要遵循以下步骤:1、识别方程:首先需要识别方程的类型,确定未知数的次数和系数。

2、移项:将方程中的项移到等式的两边,使未知数单独出现在等式的左边。

3、合并同类项:将方程中的同类项合并,使未知数的系数更为明显。

4、化简:通过等式的性质,化简方程的左右两边,使未知数成为一个简单的系数。

5、求解:通过代数运算,求解未知数的值。

例如,对于方程 x + 5 = 7,我们可以先移项得到 x = 7 - 5,然后化简得到 x = 2。

因此,未知数 x的值为2。

四、总结一元一次方程是数学中的基本概念,也是解决各种实际问题的有力工具。

通过学习北师大版的七年级数学教材,我们可以更好地理解一元一次方程的概念和应用,掌握求解一元一次方程的方法。

这将有助于我们在日常生活和科学研究中解决各种问题。

在建筑工程经济学中,下列哪一项不是建筑成本的重要组成部分?在进行建筑工程经济学分析时,下列哪一项因素不应考虑?在进行建筑工程经济学分析时,下列哪一项指标是衡量工程经济性的重要指标?下列哪一项因素最可能影响建筑工程的经济性?在进行建筑工程经济学分析时,下列哪一项因素不应考虑?在进行建筑工程经济学分析时,下列哪一项指标是衡量工程经济效益的重要指标?下列哪一项措施可以有效地提高建筑工程的经济效益?A.提高建筑工人的工资水平以增加他们的积极性D.对建筑工程进行全面的经济学分析以优化资源利用下列哪一项措施可以有效地降低建筑成本?A、通过招标方式选择低价的建筑材料供应商B、加强对建筑工人的技能培训以提高他们的劳动生产率C、优化建筑工程的设计方案以减少不必要的浪费D、提高建筑材料的库存管理效率以减少材料的浪费判断题(每题2分,共20分)在建筑工程经济学中,“机会成本”是一个重要的概念。

北师大版数学七年级上册5.1《认识一元一次方程》教学设计2

北师大版数学七年级上册5.1《认识一元一次方程》教学设计2

北师大版数学七年级上册5.1《认识一元一次方程》教学设计2一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。

本节课的主要任务是让学生了解一元一次方程的概念、性质和解法,培养学生解决实际问题的能力。

教材通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生逐步认识一元一次方程,并在解决实际问题的过程中体验到方程思想的重要性和应用价值。

二. 学情分析七年级的学生已经掌握了代数的基础知识,具备一定的逻辑思维能力。

但对于一元一次方程这一概念,学生可能较为陌生。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握一元一次方程的相关知识。

同时,学生对于实际问题的解决方法还不够成熟,需要教师在教学中给予引导和培养。

三. 教学目标1.了解一元一次方程的概念、性质和解法。

2.培养学生解决实际问题的能力。

3.培养学生的合作交流能力和创新思维。

四. 教学重难点1.重难点:一元一次方程的概念、性质和解法。

2.难点:如何将实际问题转化为方程,并运用方程思想解决问题。

五. 教学方法1.情境教学法:通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。

2.启发式教学法:教师引导学生从实际问题中发现规律,培养学生独立思考和解决问题的能力。

3.合作学习法:学生分组讨论,共同解决问题,提高学生的合作交流能力。

4.实践操作法:教师引导学生动手操作,加深对一元一次方程的理解。

六. 教学准备1.教学课件:制作课件,展示一元一次方程的相关知识点。

2.教学素材:准备一些实际问题,作为课堂练习和拓展的内容。

3.的黑板:提前准备好黑板,以便于教师在课堂上进行板书。

七. 教学过程1.导入(5分钟)教师通过一个简单的问题情境,引导学生发现实际问题中存在等量关系,从而引出一元一次方程的概念。

2.呈现(15分钟)教师讲解一元一次方程的定义、性质和解法,让学生初步认识一元一次方程。

3.操练(15分钟)教师给出一些实际问题,让学生尝试用一元一次方程解决。

北师大版七年级数学上册第五章《一元一次方程》教案

北师大版七年级数学上册第五章《一元一次方程》教案

第五章一元一次方程1 认识一元一次方程第1课时认识一元一次方程1.理解一元一次方程,方程的解等概念.2.会根据具体问题列一元一次方程.3.通过实际问题建立方程模型,归纳一元一次方程的概念,培养学生的认知能力和归纳概括能力.4.结合本课教学特点,向学生进行理想主义教育和热爱学习教育,激发学生学习的兴趣.【教学重点】建立一元一次方程的概念,会根据具体问题列出一元一次方程.【教学难点】根据具体问题中的等量关系,列出一元一次方程.一、情境导入,初步认识教材第130页最上方的彩图如果设小彬的年龄为x岁,那么“乘2再减5”就是_________,因此可以得到方程:__________________.【教学说明】学生根据两人的对话找出相等关系,列出方程,初步体会根据实际问题建立方程模型的思想.二、思考探究,获取新知1.列方程问题1 (1)小颖种了一株树苗,开始时树苗高为40cm,栽种后每周树苗长高约5cm.大约几周后树苗长高到1m?如果设周后树苗长高到1m,那么可以得到方程:__________________.(2)甲、乙两地相距22km,张叔叔从甲地出发到乙地,每小时比原计划多行走1km,因此提前12min到达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走x km ,可以得到方程:__________________.(3)根据第六次全国人口普查统计表数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000年第五次全国人口普查时每10万人中约有x 人具有大学文化程度,那么可以得到方程:__________________.(4)某长方形操场上的面积是5850m 2,长和宽之差为25m,这个操场的长与宽分别是多少米?如果设这个操场的宽为x m ,那么长为(x +25)m ,由此可以得到方程__________________.【教学说明】 学生根据题意,找出相等关系列出方程,进一步体会方程建模思想.【归纳结论】 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种常用方法.2.一元一次方程及方程的解问题2 (1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?(2)方程2x -5=21,40+5x =100,x (1+147.30%)=8930有什么共同点?【教学说明】 学生通过观察,与同伴进行交流,找出这些方程的共同点,归纳一元一次方程的概念.【归纳结论】 在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解.三、运用新知,深化理解1.下列各式中,是一元一次方程的有________(填序号) .(1)833x =+;(2)8x -;(3)1=2x +2;(4)5x 2=20;(5)x +y =8. 2.如果3x n –1=2是关于x 的一元一次方程,那么n =________.3.x =2________方程4x –1=3的解.(填“是”或“不是”)4.小刚准备用自己节省零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他有260元.设x 个月后小刚有260元,则可列出计算月数的方程为( )A.30x+50=260B.30x– 50=260C.x – 50=260D.x+50=260【教学说明】学生自主完成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)(3) 2. 23.不是4.A四、师生互动,课堂小结1.师生共同回顾一元一次方程,方程的解的概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教学引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.1”中选取.2.完成练习册中本课时的相应作业.本节课学生从实际问题中找出相等关系,列出方程,要了解一元一次的概念,运用等式的性质解一元一次方程培养学生动手、动脑习惯,激发学生学习的兴趣.第2课时等式的基本性质1.掌握等式的基本性质,能利用等式的基本性质解一元一次方程.2.通过实际问题情境培养学生思考的能力,体会数学与现实的密切联系,掌握等式的基本性质.3.通过观察、操作、归纳等数学活动,使学生感受数学思考过程的条理性和数学结论的严密性.【教学重点】理解等式的基本性质,掌握利用等式的性质解方程.【教学难点】利用等式的基本性质对方程进行变形.一、情境导入,初步认识上节课我们将几个实际问题转化成了数学模型即一元一次方程,只列出了方程,并没有求出方程的解.其实,在小学,我们利用逆运算能够求形如ax+b=c的方程,例如:5x=3x+4.对于这样的方程223146x x=+-+,比较复杂,怎样解呢?要想求出这些复杂的一元一次方程的解,我们必须先来研究一下等式的性质.【教学说明】让学生感受到原有知识无法解决问题,激发学生的求知欲,引入等式的基本性质.二、思考探究,获取新知1.等式的基本性质问题1 还记得小华和小彬猜年龄的问题吗? 你能帮小彬解开那个年龄谜吗? 你能解方程5x=3x+4吗?【教学说明】学生通过观察教材132页天平平衡图,感知等式的基本性质.【归纳结论】等式两边同时加上(或减去)同一个代数式,所得结果仍是等式,等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.2.利用等式的基本性质解一元一次方程问题2 解下列方程:(1)x +2=5(2)3=x – 5(3)– 3x =15(4)2103n =--. 【教学说明】 学生通过计算,掌握运用等式的基本性质解一元一次方程的方法.三、运用新知,深化理解1.根据题意列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及草纸书中,记载着一些数学问题,其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于19.” 你能求出问题中的“它”吗?(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了12分.甲队胜了多少场? 平了多少场?2.x =2是下列方程的解吗?(1)3x+(10 – x )=20;(2)2x 2+6=7x .3.解下列方程:(1)x – 9=8;(2)5 – y = – 16;(3)3x+4= – 13;(4)2153x =-. 4.小红编了一道题:我是4月出生的,我的年龄的,2倍加上8,正好是我出生那一月的总天数.你猜我有几岁? 请你求出小红的年龄.【教学说明】 学生自主完成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)设“它”为x,则1197x+x=,1338x=.(2)设甲队胜x场,则3x+(10 –x)=22. x=6,10 – 6 =4所以甲队胜了6场,平了4场2.(1)将x=2代入方程,左边=3×2+(10-2)=14≠右边,故x=2不是原方程的解.(2)将x=2代入方程,左边=2×22+6=14=右边,故x=2是原方程的解.3.(1)x=17 (2)y=21 (3)173x= (4)x=94. 设小红有x岁,则2x+8=30,解得x=11,故小红有11岁.四、师生互动,课堂小结1.师生共同回顾等式的基本性质.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教学引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.2”中选取.2.完成练习册中本课时的相应作业.本节课学生从实际问题中找出相等关系,列出方程,要了解一元一次的概念,运用等式的性质解一元一次方程培养学生动手、动脑习惯,激发学生学习的兴趣.2 求解一元一次方程第1课时利用移项的方法解一元一次方程1.通过具体例子,归纳移项法则.2.利用移项解一元一次方程.3.通过具体例子,归纳移项法则,会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解方程过程中蕴涵的化归思想.4.结合本课教学特点,教育学生热爱学习,热爱生活,培养学生观察,发现数学问题的能力,激发学生学习兴趣.【教学重点】会用移项法则解一元一次方程.【教学难点】移项一定要改变符号.一、情境导入,初步认识对于方程5x-2=8,你会解吗?怎样解呢?【教学说明】学生很容易想到利用等式的基本性质求解,进一步巩固所学知识.二、思考探究,获取新知1.移项法则问题1 解方程5x-2=8,除了利用等式的基本性质来解,还有其他的解法吗?【教学说明】通过提出问题,激发学生的探求欲望.解方程:5x-2=8,方程两边都加上2,得5x-2+2=8+2也就是5x=8+2比较这个方程与原方程,可以发现,这个变形相当于【归纳结论】把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫移项.注意:移项一定要改变符号.2.利用移项解一元一次方程问题2 解下列方程:(1)2x+6=1;(2)3x+3=2x+7.【教学说明】学生通过解答,初步掌握利用移项解一元一次方程.【归纳结论】移项是解方程的重要变形,它是根据需要把方程的项由等号的一边移到另一边.一般把含有未知数的项移到等号的左边,而把常数项移到等号的右边,为防止漏项,先写不需要移动的项.问题3 解方程1/4x=-1/2x+3.【教学说明】学生通过解答进一步掌握利用移项解一元一次方程的步骤.【归纳结论】利用移项解一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.3.一元一次方程的应用问题4 若1/3a2n+1b m+1与-5b-2m+7a3n-2是同类项,求(-n)m的值.【教学说明】学生通过思考、分析,与同伴交流,尝试完成,提高综合运用知识的能力.【归纳结论】根据同类项的概念可知,2n+1=3n-2,m+1=-2m+7,然后解方程求出m、n的值,再计算(-n)m的值.问题5聪聪到希望书店帮同学们买书,销货员主动告诉他,如果用20元钱办会员卡,将来享受八折优惠,请问在这次买书中,聪聪在什么情况下,办会员卡与不办会员卡费用一样?【教学说明】学生设未知数,根据题意找出相等关系,列出方程求解.初步体会一元一次方程的应用.【归纳结论】列方程解应用题先合理地设出未知数,用含有未知数的式子表示出各未知量,再找出相等关系,列出方程进行解答.三、运用新知,深化理解1.下列变形中,属于移项的是().A.由3x=-2,得x=-2/3B.由x/2=3,得x=6C.由5x-7=0,得5x=7D.由-5x+2=0,得2-5x=02.下列方程中,移项正确的是( ).A.方程3-x=5变形为-x=5+3B.方程2x=3x+1变形为2x-3x=1C.方程3x=4x+5变形为3x-4x=-5D.方程3-2x=-x+7变形为-x+2x=7+33.当x=______时,代数式5x-10与18-3x的值相等.4.解下列方程(1)10x-3=9;(2)5x-2=7x+8;(3)x=3/2x+16;(4)1-3/2x=3x+5/2.5.当m=3时,求方程2x-m=m2-x的解.6.用若干千克化肥给一块麦地追肥,每亩用6千克,还差17千克;如果每亩用5千克,还剩3千克,问这块麦地有多少亩?化肥多少千克?【教学说明】学生自主完成,检测对移项法则及利用移项解一元一次方程等知识的掌握情况,加深对新学知识的理解,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C 2.B 3.7/24.(1)x=1.2 (2)x=-5 (3)x=-32 (4)x=-1/35.把m=3代入原方程得2x-3=9-x,移项得2x+x=9+3.合并同类项得3x=12,系数化为1得x=4,所以得m=3时,原方程的解为x=4.6.设这块麦地有x亩,由题意得:5x+3=6x-17,解得x=20.所以这块麦地有20亩,化肥103千克.四、师生互动,课堂小结1.师生共同回顾移项法则和利用移项解一元一次方程等知识点.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】老师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材问题“5.3”中选取.2.完成练习册中本课时的相应作业.本节课从学习探索移项法则,到利用移项解一元一次方程,培养学生动手、动脑习惯.加深对所学知识的认识,并运用所学知识解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.第2课时解带括号的一元一次方程1.通过分析具体问题中的数量关系,了解到解方程是运用方程解决实际问题的需要.2.正确理解和运用乘法分配律和去括号法则解方程.3.通过实际问题,体会方程建模思想,掌握运用去括号法则解方程的方法,提高解决问题的能力.4.培养学生热爱数学,独立思考与合作交流的能力,领悟数学来源于实践,服务于实践,激发学生学习兴趣.【教学重点】正确理解和运用乘法分配律和去括号法则解方程.【教学难点】运用乘法分配律和去括号法则解方程.一、情境导入,初步认识教材第137页最上方的彩图及相关问题.【教学说明】学生通过思考、分析,设未知数列出方程,感受数学与生活的紧密联系.二、思考探究,获取新知1.去括号解一元一次方程问题1 如果设1听果奶饮料x元,那么可列出方程4(x+0.5)+x=10-3.(1)上面这个方程列得对吗?为什么?你还能列出不同的方程吗?(2)怎样解所列的方程?【教学说明】学生通过思考、分析,很容易得出这个方程列的是正确的,再列出不同的方程,最后解所得的方程,进一步体会数学与生活的紧密联系.问题2 解方程:4(x+0.5)+x=7.【教学说明】学生通过解答,掌握去括号解方程的一般步骤.【归纳结论】去括号解方程的步骤:①去括号;②移项;③合并同类项;④系数化为1.问题3 解方程:-2(x-1)=4.【教学说明】学生通过观察、分析,尝试不同的解题方法,进一步掌握去括号解方程的步骤和方法.【归纳结论】去括号时,一是要看清括号前面的符号;二是括号前的系数要与括号里的每一项相乘.问题4 观察问题3两种解方程的方法,它们有什么区别?【教学说明】学生通过观察,很容易找出它们的区别.明确去括号解方程的步骤是可以灵活处理的.2.一元一次方程的应用问题5在“五一”期间,小明、小亮等同学随家长共12人一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.【教学说明】学生通过思考、分析,与同伴进行交流,进一步体会一元一次方程的应用.三、运用新知,深化理解1.解方程2-3(x-1)=0,去括号正确的是().A.2-3x-1=0B.2-3x+1=0C.2+3x-3=0D.2-3x+3=02.方程2(x-1)=x+2的解是x=_______.3.解下列方程(1)5(x-1)=1;(2)2-(1-x)=-2;(3)11x+1=5(2x+1);(4)4x-3(20-x)=3;(5)5(x+8)-5=0;(6)2(3-x)=9;(7)-3(x+3)=24;(8)-2(x-2)=12.4.当x为何值时,代数式4x-7与代数式5(x+2/5)的值相等?5.某市按以下规定收取每月的煤气费:用煤气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户10月份的煤气费平均每立方米0.88元,则10月份该用户应交煤气费多少元?【教学说明】学生自主完成,加深对新学知识的理解.检测对去括号解方程的掌握情况,对学生的疑惑教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.D2.43.(1)x=6/5 (2)x=-3(3)x=4 (4)x=9(5)x=-7 (6)x=-3/2(7)x=-11 (8)x=-44.由题意得4x-7=5(x+2/5).去括号,得4x-7=5x+2.移项,合并得-x=9.系数化为1得x=-9.所以当x=-9时,这两个代数式的值相等.5.设10月份该用户使用煤气xm3,由题意得60×0.8+1.2(x-60)=0.88x,解得x=75,则应交煤气费为:0.88×75=66(元).四、师生互动,课堂小结1.师生共同回顾去括号解一元一次方程的步骤.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与应用.【板书设计】1.布置作业:从教材“习题5.4”中选取.2.完成练习册中本课时的相应作业.本节课从学生探索运用分配和去括号法则解方程,到运用方程解决实际问题.培养学生动手、动脑习惯,提高学生综合运用所用知识的能力.第3课时解含分母的一元一次方程1.理解并掌握去分母解方程的方法,归纳解一元一次方程的一般步骤.2.通过去分母解方程的过程,体会把“复杂”转化为“简单”,把“新知识”转化为“旧知识”的转化思想方法.3.结合本课教学特点,培养学生热爱数学,独立思考与合作交流的能力,激发学生学习兴趣.【教学重点】去分母解一元一次方程.【教学难点】解含有分母的一元一次方程.一、情境导入,初步认识前面我们已学习到了哪些一元一次方程的方法?【教学说明】学生很容易想到移项,去括号等方法,进一步巩固前面所学知识.二、思考探究,获取新知1.去分母解一元一次方程问题1 解方程:1/7(x+14)=1/4(x+20).【教学说明】学生通过思考、分析,确定先做什么,后做什么,尝试不同的解法.解法一:去括号,得1/7x+2=1/4x+5移项,合并同类项,得-3=3/28x.系数化为1,得-28=x.即x=-28.解法二:去分母,得4(x+14)=7(x+20).去括号,得4x+56=7x+140.移项,合并同类项,得-3x=84.系数化为1,得x=-28.问题2 问题1中的两种解法哪一种简便些?从中你能得出解一元一次方程有哪些步骤?【教学说明】学生很容易得出第二种解法简便些,再通过观察、交流,归纳解一元一次方程的步骤.【归纳结论】解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.解含有分母的一元一次方程问题3 解方程1/5(x+15)=1/2x-1/3(x-7).【教学说明】学生按解一元一次方程的一般步骤来做,进一步掌握解一元一次方程的一般步骤.【归纳结论】当方程中含有分母时,方程两边同乘以所有分母的最小公倍数,即可去掉分母.注意:去分母时,方程两边的每一项都要乘以这个最小公倍数,不要漏乘分母为1的项;当分子是多项式,去分母时,分子要添加括号.3.一元一次方程的应用问题4 为了参加2013年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【教学说明】学生通过设未知数,根据题意找出相等关系,列出方程求解.进一步体会一元一次方程的应用,熟练掌握解一元一次方程的步骤和方法. 三、运用新知,深化理解1.解方程2113424x x-+-=,去分母后得到的方程是( ).A.2(2x-1)-(1+3x)=-4B.2(2x-1)-(1+3x)=16C.2(2x-1)-1+3x=-16D.2(2x-1)-[1-(-3x)]=-42.方程311126x x+--=的解是().A.x=-1/8B.x=1/2C.x=1/4D.x=-3/83.当x=_______时,代数式1/3(1-2x)与代数式2/7(3x+1)的值相等.4.解下列方程.5.小华同学在解方程21236x x a-+=-去分母时,方程的右边-2没有乘6,因而求得方程的解为x=2,试求a的值,并正确地解方程.6.某工厂购进了一批煤,原计划每天烧煤5吨,实际每天少烧2吨,这批煤多烧了20天.求这批煤有多少吨?【教学说明】学生自主完成,加深对新学知识的理解,检测对去分母解一元一次方程的掌握情况,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.C3.1/324.(1)x=1/5 (2)x=-16 (3)x=8(4)x=7 (5)x=-2/5 (6)x=35.由题意可知:x=2是2(2x-1)=x+a-2的解,解得a=6.则原方程为212 36x x a-+=-,解得x=-4/3.6.设这批煤有x 吨,由题意得:20.552x x +=- 解得:x=150.所以这批煤有150吨.四、师生互动,课堂小结1.师生共同回顾解一元一次方程的一般步骤.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】 教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材问题“5.5”中选取.2.完成练习册中本课时的相应作业.本节课从学生解含有分母的一元一次方程,到归纳解一元一次方程的一般步骤,培养学生动手,动脑习惯,加深对所学知识的认识,熟练运用所学知识解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.3 应用一元一次方程——水箱变高了1.通过分析图形问题中的数量关系,建立方程解决问题.2.经历由实际问题抽象为方程模型的过程,进一步体会用方程解实际问题的一般思路和步骤.3.结合本课教学特点,教育学生热爱学习,热爱生活,激发学生学习的兴趣.【教学重点】分析图形问题中的数量关系,熟练地列方程解应用题.【教学难点】从实际问题中抽象出数学模型教学过程.一、情境导入,初步认识用同一根铁丝围成不同的图形,如三角形长方形、正方形、梯形、平行四边形等在这些图形中,什么发生了变化?什么不发生变化?【教学说明】学生很容易得出这些图形的变化,初步感受图形问题中的数量关系.二、思考探究,获取新知1.运用一元一次方程解决等体积变形问题问题1 教材第141页例题以上的内容.【教学说明】学生通过思考、分析,与同伴进行交流,完成表格,列出方程解决问题.体会列表法的重要作用.【归纳结论】列方程解应用题关键是找出问题中的等量关系.2.运用一元一次方程解决等周长变形问题问题2 教材第141页下方的例题.【教学说明】学生通过思考、分析与同伴进行交流,列出方程求解.【归纳结论】在问题2中,长方形的周长始终是不变的,即长与宽的和为:10×1/2=5(m).所以在解决问题的过程中,要紧紧抓住这个等量关系.3.运用一元一次方程解决等面积变形问题.问题3 已知一梯形的高为8cm,上底长为14cm,下底长比上底长的2倍少6cm,若把这个梯形改成与其面积相等的长方形,且长方形的长为24cm,求长方形的宽.【教学说明】学生思考、分析,与同伴交流,设未知数列出方程求解.【归纳结论】运用一元一次方程解决实际问题的一般步骤(1)设未知数,(2)找等量关系式,(3)列方程,(4)解方程,(5)检验,(6)写出答案.三、运用新知,深化理解1.已知内径为120mm的圆柱玻璃杯和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为().A.150mmB.200mmC.250mmD.300mm2.一根绳子刚好可以围成一个边长为6cm的正方形,如果用这根绳子围成一个长8cm的长方形,这个长方形的宽为_______cm,面积是_______cm2.3.如图所示,将一个底面直径为10cm,高为36cm的“瘦长”形圆柱锻压成底面直径为20cm的“矮胖”形圆柱.假设在锻压过程中圆柱的体积保持不变,那么高变成了多少?第3题图第4题图4.墙上钉着一根彩绳围成的梯形形状的饰物,如右图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示,小颖所钉长方形的长、宽各为多少厘米?【教学说明】学生自主完成,加深对新学知识的理解,检测对运用一元一次方程解决等积变形问题的掌握情况?对学生的疑惑教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.4 323.设高度为xcm,由题意得:π×52×36=π×102x解得x=9所以高变成了9cm.4.设长方形的长为xcm,由题意得:2(x+10)=10×4+6×2解得x=16所以长方形的长为16cm,宽为10cm.四、师生互动,课堂小结1.师生共同回顾运用一元一次方程解决等体积、等周长、等面积问题.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.6”中选取.2.完成练习册中本课时的相应作业.本节课从学生运用一元一次方程解决等体积,等周长\等面积问题,到掌握运用一元一次方程解决实际问题的一般步骤,培养学生动手\动脑习惯,提高学生。

北师大版七年级数学上册《一元一次方程——认识一元一次方程》教学PPT课件(4篇)

北师大版七年级数学上册《一元一次方程——认识一元一次方程》教学PPT课件(4篇)
元一次方程,求a的值.
解:由题意可知:|a|-2=1, 所以|a|=3,则a=±3. 又因为a+3≠0,所以a≠-3,所以a=3.
易错警示:一元一次方程中未知数的系数不能为0, 这一点要特别注意.
6.列方程: (1)把一些图书分给某班同学,如果每人4本,则剩余12本,如果 每人5本,则还缺30本,则该班有多少名学生 (设该班有x名学生)? (2)一本书的封面的周长为50 cm,长比宽多5 cm,则这本书的 封面的长和宽分别是多少(设这本书的封面的宽为x cm)?
认识一元一次方程
第1课时
情境导入
小游戏:猜老师的年龄
老师的年龄乘以3再减去17刚好为73,那现在你能 知道老师的年龄吗?你是怎么猜?
情景1: 你5猜得小你的出数敏今年你是,年龄年多我1乘3龄少能岁2.减?
不21信
她怎么知道 我的年龄是13
岁的呢?
小敏
如果设小敏的年龄为x岁,那么“乘2再减5”就
是 2x-5 ,因此可以得到方程: 2x-5=21 .
解:(1)根据题意可得4x+12=5x-30. (2)根据题意得x+x+5=50÷2.
古代故事: 隔墙听得客分银, 不知人数不知银. 七两分之多四两, 九两分之少半斤.
(注:在古代1斤是16两,半斤就是8两)
古诗文意思: 有几个客人在房间内分银子,每人分七两,最后多 四两,每人分九两,最后还差八两,问有几个人? 有几两银子?
只含有一个未知数,未知数的系数不等于0 4. (k 2)x2 kx 21 0 是一元一次方程,则k =_-2__
获取新知
使方程左、右两边的值相等的未知数的值, 叫做方程的解.
在“猜年龄”游戏中,当被告知计算的结果是21时,我们 所列的方程为2x-5=21,从而求出年龄是13.由于13能使 方程的两边相等,我们就把13叫做方程2x-5=21的解.

北师大版七年级数学上册《认识一元一次方程》第1课时示范课教学设计

北师大版七年级数学上册《认识一元一次方程》第1课时示范课教学设计

第五章一元一次方程1 认识一元一次方程第1课时一、教学目标1.通过对多种实际问题中数量关系的分析,感受方程作为刻画现实世界有效模型的意义.2.理解方程及一元一次方程的概念,会检验一个数是不是方程的解.3.根据实际问题列一元一次方程.4.通过列方程的过程,体会数学的方程模型思想.二、教学重难点重点:理解方程及一元一次方程的概念,会检验一个数是不是方程的解.难点:根据实际问题列一元一次方程.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【思考】小华和小彬在做游戏.提问:小华是怎么知道的呢?等量关系:小彬的年龄×2-5=21如果设小彬今年x岁.预设答案:x×2-5=21 → 2x-5=21小颖种了一株树苗,开始时树苗高为40cm,栽种后每周树苗长高约5cm,大约几周后树苗长高到1m?等量关系:开始的高度+长高的高度=1m提示:1m=100cm预设答案:设x周后树苗长高到1m.列出方程:40+5x=100人中约有x 人具有大学文化程度.列出方程: (1+147.30%) x =8930, 或8930x=1+147.30%.某长方形操场的面积是5850m 2,长和宽之差为25m.这个操场的长与宽分别是多少米? 预设答案:设这个操场的宽为x m ,那么长为(x +25) m. 列出方程:x (x +25)=5850 小结:不同的数量关系都可以用方程模型来表达:【议一议】从上面的这些问题中,你得到了哪些方程呢? 预设答案:2x -5=21,40+5x =100,22x -22x +1=15(1+147.30%) x =8930,x (x +25)=5850 追问1:哪些是你熟悉的方程? 预设答案:2x -5=21,40+5x =100, (1+147.30%) x =8930 追问2:它们有哪些共同特点? 【小组合作】1.这几个方程中,各含有几个未知数?2.每个方程中,未知数的次数是多少?3.等式的两边有什么共同点? 预设答案:1.这几个方程中,各含有1个未知数;2.每个方程中,未知数的次数是1;思维导图的形式呈现本节课的主要内容:。

辽宁省辽阳市第九中学北师大版七年级数学上册教案:5.1认识一元一次方程

辽宁省辽阳市第九中学北师大版七年级数学上册教案:5.1认识一元一次方程
3.一元一次方程的解:让学生了解方程的解是使等式成立的未知数的值,掌握求一元一次方程解的方法。
4.方程的解与方程的关系:通过实例让学生明白方程的解与方程是相互对应的,一个方程可能有多个解或无解。
本节课将结合实际例子,让学生在实际问题中感知方程的意义,培养他们运用数学知识解决实际问题的能力。
二、核心素养目标
实践活动和小组讨论的环节,学生们表现出了很高的热情。他们通过讨论和实验操作,对一元一次方程有了更深的理解。但是,我也观察到有些小组在讨论时,个别成员参与度不高,可能需要我进一步引导他们如何更好地进行团队合作。
在学生小组讨论的成果分享中,我发现有些学生能够很好地将所学知识应用到实际问题中,但也有一些学生对如何将现实问题转化为数学方程感到困惑。针对这一点,我计划在接下来的课程中,设计更多的实际问题案例,帮助学生建立起实际问题与数学模型之间的联系。
4.培养学生的合作交流意识:在小组讨论和互动中,让学生学会倾听他人意见,表达自己的观点,培养合作交流的能力。
5.激发学生的创新意识:鼓励学生在解决方程问题时,尝试多种方法,勇于创新,培养探索精神和创新意识。
三、教学难点与重点
1.教学重点
-方程的概念及其与等式的区别:重点讲解方程的含义,强调方程中的未知数和等式两边的平衡,通过具体例题使学生理解方程与等式的区别。
举例解释:
-例如,在讲解方程的概念时,可以给出如下例子:3x + 5 = 14,让学生观察等式两边的结构,理解方程中的未知数x是要求解的对象。
2.教学难点
-识别方程中的未知数和系数:对于一些复杂的问题,学生可能难以快速识别方程中的未知数和系数,需要通过具体的例子和练习来加强这一点。
-理解求解方程的过程:学生可能会对移项、合并同类项的操作感到困惑,不理解每一步的意义和目的。

认识一元一次方程课件北师大版初中数学七年级上册(1)

认识一元一次方程课件北师大版初中数学七年级上册(1)

拓展延伸————数学文化
你会利用方程求出数学家丢番图去世时的年龄吗? 设丢番图去世时的年龄为x岁,得:
反馈作业
1.小颖种了一棵树苗,开始时树苗高为 40 厘米,栽 种后每周树苗长高约 15 厘米,大约几周后树苗长 高到 1 米?
2.把一些图书分给某班学生阅读,每人分3本,则剩 余20个,每人分4本,则还缺25本,问这个班有多少 名学生?
问题:1.本题的等量关系式是什么?
去年双十一小区 收到的包裹数
+
=
2.如果设去年双十一小区收到的 包裹数为x个,那么可
以得到程:
.
情境4:
某快递托运公司储存包裹的场地是一个长方形,它的面 积为5850平方米,长和宽之差为25米,这个长方形的长与 宽分别是多少米? 问题:1.本题的等量关系式是什么?4

πx=12.
判断一个方程是一元一次方程,化简后必须满足三个
条件: ①含有一个未知数; ②未知数的指数是1; ③方程两边的代数式都是整式.
练一练
1. xk1 21 0 是一元一次方程,则k=______.
变式: x|k| 21 0 是 一元一次方程,则k=______.
2. (k 1)x|k| 21 0 是一元一次方程,k=_____.
课堂小结
一元一次方程的定义
认识一元 方程的解 一次方程
列一元一次方程
实际问题
抓关键词,列表等分析找等量关系 一元一次方程
设未知数列方程
第五章 一元一次方程 5.1 认识一元一次方程
导入新课
小游戏:猜老师收到的包裹个数
双十一期间,老师收到的包裹数乘以 2 再减去 5 刚好为 15, 那现在你能知道老师收到的包裹数量吗?你是怎么猜的?

北师大版数学七年级上册5.1认识一元一次方程(1)

北师大版数学七年级上册5.1认识一元一次方程(1)

使方程左右两边相等的未知数的值叫方程的解
判断下列各式是不是方程,是的打“√”,不是的打 “x”。
(1) -2+5=3 ( ) (2) 3χ-1=0 ( )
(3) y=3
(5) 2χ2-5χ+1=0
(
(
)
(4) χ+y=2
) (6) χy-1=0 (
(
)
)
(7) 2m -n 判断方程
①有未知数
(
)
(8) S=πr 2
情境 3
第五次全国人口普查统计数据(2001年3月28 日新华社公布)截至2000年11月1日0时,全国每10 万人中具有大学文化程度的人数为3611人,比1990 年7月1日0时增长了153.94%.
等量关系:
原有人数+增长人数=3611 或:(1+增长率) ×原有人数=3611
1990年6月 底每10万人中 约有多少人具 有大学文化程 度?
1 解:(1)设某数为x,列方程为: x+1=3 2 (2)设某数为a,列方程:4a=3a-7 (3)设某数为y,列方程:(1+20%)x-80%x=5. 1 (4)设某数为x,列方程: (x+2)- 1 (2x-3)=1.
4
1 大1. 6
以上四个方程都为一元一次方程.
(X+25)米 X 米
某长方形足球场的周长为310米,长和宽之差 为25米,这个足球场的长与宽分别是多少米? 如果设这个足球场的宽为X米,那么长为(X+25)米。
2[χ 由此可以得到方程:_____+(χ+25)]=310 _____。
如果设这个足球场的长为Y米,那么宽为(Y-25)米。 2[Y+(Y-25)]=310 由此可以得到方程:_____ _____。

北师大版数学七年级上册5.1《认识一元一次方程》(第1课时)教学设计

北师大版数学七年级上册5.1《认识一元一次方程》(第1课时)教学设计

北师大版数学七年级上册5.1《认识一元一次方程》(第1课时)教学设计一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。

本节内容通过实际问题引入方程的概念,使学生了解一元一次方程的定义、组成及解法。

通过本节课的学习,培养学生解决实际问题的能力,为后续学习一元一次方程的解法及应用打下基础。

二. 学情分析学生在小学阶段已经接触过简易的方程,对用字母表示数有一定的了解。

但他们对一元一次方程的定义、组成及解法还不够明确。

因此,在教学过程中,需要关注学生的认知基础,通过实例让学生感受方程的实际意义,引导学生掌握一元一次方程的知识。

三. 教学目标1.知识与技能:使学生了解一元一次方程的概念,理解一元一次方程的组成及解法。

2.过程与方法:培养学生解决实际问题的能力,提高学生分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:一元一次方程的概念、组成及解法。

2.难点:一元一次方程的实际应用。

五. 教学方法1.情境教学法:通过实际问题引入方程的概念,让学生感受方程的实际意义。

2.案例教学法:分析具体案例,使学生掌握一元一次方程的解法。

3.小组讨论法:引导学生分组讨论,培养学生的团队合作精神。

4.引导发现法:教师引导学生发现一元一次方程的规律,提高学生的分析问题、解决问题的能力。

六. 教学准备1.课件:制作课件,展示实际问题及解题过程。

2.练习题:准备适量的一元一次方程练习题,巩固所学知识。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用课件展示实际问题,引导学生思考如何用数学方法解决问题。

例如,甲、乙两地相距120千米,一辆汽车从甲地出发,以60千米/小时的速度前往乙地,问多少小时后汽车到达乙地?2.呈现(10分钟)介绍一元一次方程的概念,讲解一元一次方程的组成及解法。

例如,方程60x = 120表示汽车行驶的时间x与速度60的关系,其中x为未知数,解这个方程可得到汽车到达乙地所需的时间。

认识一元一次方程北师大版教参

认识一元一次方程北师大版教参

认识一元一次方程北师大版教参一、教材分析《认识一元一次方程》是北师大版七年级(上册)第五章第一节的内容。

在这个阶段,学生已经学习了有理数的运算和代数式,而一元一次方程是中学阶段应用数学知识解决实际问题的开端。

此章节对于学生来说具有重要的意义,它不仅是今后学习一元二次方程和一次方程组的基础,还能帮助学生体会数学价值观,增强学习数学和应用数学的意识。

本课时内容以学生的切身体会为出发点,融入了数学结构模式思想、归纳、化归等数学思想方法,旨在培养学生解决实际问题的能力。

通过本课程的学习,学生将能够初步掌握一元一次方程的概念,并学会运用方程解决实际问题。

二、教学目标1.知识与技能目标(1)归纳出一元一次方程的概念。

(2)理解方程作为刻画现实世界有效模型的意义。

2.过程与方法(1)经历和体验运用方程解决实际问题的过程。

(2)初步认识运用方程解决实际问题的关键是建立相等关系,提高思维水平。

三、教学重点与难点1.教学重点:一元一次方程的概念及其应用。

2.教学难点:如何建立方程来解决实际问题,以及方程的解法。

四、教学方法1.情境教学法:通过设计贴近学生生活实际的问题情境,激发学生的学习兴趣和好奇心,引导学生主动探究一元一次方程的奥秘。

2.互动教学法:鼓励学生积极参与课堂讨论,培养学生提出问题、分析问题、解决问题的能力。

3.实践教学法:让学生动手操作,亲身体验方程的解法,从而加深对一元一次方程的理解。

五、教学过程1.引入新课:通过讲解实际生活中的例子,让学生感受一元一次方程的应用价值,激发学习兴趣。

2.讲解新知:引导学生通过观察、分析、归纳等方法,总结出一元一次方程的概念。

3.练习与讨论:设计一系列练习题,让学生运用一元一次方程的概念解题,教师进行点评和总结。

4.课堂小结:回顾本节课所学内容,强调一元一次方程的重要性和应用价值。

5.作业布置:让学生课后独立完成一些一元一次方程的习题,巩固所学知识。

通过以上教学设计和过程,让学生深入了解一元一次方程的概念,掌握解一元一次方程的方法,并学会运用一元一次方程解决实际问题。

北师大版数学七年级上册第五章一元一次方程认识一元一次方程课件(共18张)

北师大版数学七年级上册第五章一元一次方程认识一元一次方程课件(共18张)
判断方程的条件: ①有未知数; ②是等式;
选一选:判断下列各式是不是方程,是
的打“√”,不是的打“x”.
(1)-2+5=3 (x)
(2)3x-1=7 (√ )
(3)m=0 ( √ )
(4)x﹥3 (x)
(5)x+y=8 (√ )
(6)2a +b ( x)
(7)2x2-5x+1=0(√ )
a
竞答:判断下列各式是不是方程, 请说明判断的根据.
(1) -2+5=3 ( x) (2) 3x-1=7
( √)
(3) m=0
( √ ) (4) x﹥ 3
( x)
(5) x+y=8 ( √) (6) 2x2-5x+1=0 ( √ ) (7) 2a +b ( x)
我发现 方程是等式,等式不一定是方程. 了:
a (二)学习概念:什么叫方程的解?
使方程左、右两边的值相等的未知数的值 叫做方程的解.
只含有一个未知数的方程的解,也叫做根.

2是2x=4的解吗? 不是 3是2x+1=8的解吗? 求得方程的解的过程,叫解方程.
a
合作与交流
a
情境一
40cm
小颖种了一株树苗,开始时树苗
高为40厘米,栽种后每周树苗长
x周
高约15厘米,大约几周后树苗长
高到1米?
100cm
40
15x
100
树苗开始的高度+长高的高度=树苗将到达的高度
a
A:
1、判断下列各式中,哪些是等式,哪些是方程,哪 些是一元一次方程. ①-2+5=3 ②3x-1=7 ③m=0 ④x>3 ⑤x+y=8⑥2x2-5x+1=0 ⑦ 2a+b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(×)
(4)xy+5=1
(×)
(√)
(×)
分式方程
想一想
情境一中,x=13是2x-5=21的解吗?
情境二中,x=12是40+5x=100的解吗?
使方程左、右两边的值相等的未知数 的值,叫做方程的解。(在古代,把 解也叫做根。)
做一做
1、x=2是下列方程的解吗? (1)3x+(10-x)=20 (2)2x² +6=7x (3)5x-2=8 (4)8=7-2y
议一议
(1)以上问题中得到了以下三个方程有什么共同点?
2x-5=21
40+5x=100
2[x+(x+25)]=310
1、含有一个未知数 2、代数式为整式 3、未知数的指数为1(次数为1)
我们把这样的方程叫做一元一次方程
请判断下列哪些是一元一次方程
(1)3x-8
(×)
(2)4y+5=12
(√)
(3)x+y=5
40 5x 100 40cm
100cm
x周
树苗开始的高度+长高的高度=树苗将达到的高度 解:如果设x周后树苗长高到1 米 那么可以得到方程:
40+5X=100
情境三
(X+25)米
X米
某长方形足球场的周长为310米,长和宽之差为25米,这个 足球场的长与宽分别是多少米? 设:足球场的宽为X米,那么长为(X+25)米 由此可得方程 2[X +(X+25)]=310Fra bibliotek总结回顾
1、一元一次方程:在一个方程中,只含有一个未知数, 而且方程中的代数式都是整式,未知数的指数都为1,这 样的方程叫做一元一次方程。
2、列方程的步骤:设、找、列
3、方程的解:使方程左右两边的值相等的未知数的值, 叫做方程的解,也叫方程的根。
作业布置:p131随堂练习1,p132知识技能1
(1)、-2+5=3
(×) (√) (√)
(2)、3χ-1=7 (√ ) (4)、χ﹥3
(3)、 m=0
(5)、χ+y=8
(× ) (× )
(6)、 2a +b
(7)、 2×2-5χ+1=0 (√) 判断方程的条件: ①有未知数; ②是等式;
方程: 含有未知数的等式
小彬,我 能猜出你年 龄。
你的年龄 乘2减5得数 是多少?
21
他怎么知道 的我是年龄 是13岁的呢?
你今年13岁
小彬 他怎么知道的呢?
方法一: (21+5)÷2=13 方法二: 如果设小彬的年龄为x岁,那么“乘2再减5”就 是 2x-5 ,所以得到等式: 2x-5=21 。
1、设:求什么,设什么; 2、找:找相等关系(等量关系) 3、列:列方程
情境二
小颖种了一株树苗, 开始时树苗高为40厘米, 栽种后每周树苗长高约 5厘米,大约几周后树苗长 高到1米?
相关文档
最新文档