八年级数学全等三角形(培优、数学竞赛)

合集下载

八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,ZABC=120° , AB=10cm,点P是这个菱形内部或边上的一点.若以P,B f C为顶点的三角形是等腰三角形,则P, A(P, A两点不重合)两点间的最短距离为____________ c m .【答案】1OJJ-1O【解析】解:连接3D,在菱形A3CD中,T Z ABC=120° , AB=BC=AD=CD=10 , :. Z A=Z C=60° ,二△ ABD , △ BCD都是等边三角形,分三种情况讨论:①若以边8C为底,则3C垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了"直线外一点与直线上所有点连线的线段中垂线段最短",即当点P与点D重合时,必最小,最小值^4=10 ;②若以边P3为底,ZPCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧3D (除点8外)上的所有点都满足APBC是等腰三角形,当点P在AC上时,AP 最小,最小值为lOjJ-10 ;③若以边PC为底,ZPBC为顶角,以点3为圆心,BC为半径作圆,则弧AC上的点&与点D均满足APBC为等腰三角形,当点P与点A重合时,必最小,显然不满足题意,故此种情况不存在;综上所述,必的最小值为10>/3-10 (cm).故答案为:10x/I—10 .点睹:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在等腰△遊中,肋丄肚交直线%于点以若妙丄万G则△磁的顶角的度数为【答案】30。

或150。

或90°【解析】试题分析:分两种情况:①3C为腰,②BC为底,根据直角三角形30。

角所对的直角边等于斜边的一半判断岀ZACD=3O°,然后分AD在^ABC内部和外部两种情况求解即可.解:①BC为腰,VAD丄 BC 于点D t AD= - BC f2:.ZACD二30。

全等三角形问题培优

全等三角形问题培优

全等三角形问题培优在初中数学学习中,全等三角形是一个很重要的概念。

全等三角形指的是具有相等边长和相等内角的两个三角形。

在解决问题时,我们常常要运用全等三角形的性质。

本文将从这一角度出发,介绍全等三角形问题的培优方法。

一、全等三角形的定义和性质全等三角形是指具有相等边长和相等内角的两个三角形。

在解决问题时,我们可以利用全等三角形的性质来简化计算过程和证明过程。

1. 边边边(SSS)全等条件:如果两个三角形的三边分别相等,则这两个三角形全等。

2. 边角边(SAS)全等条件:如果两个三角形的一个边和其夹角分别相等,并且另一边也相等,则这两个三角形全等。

3. 角边角(ASA)全等条件:如果两个三角形的两个角和夹在两个角之间的边分别相等,则这两个三角形全等。

利用这些全等条件,我们可以在解决问题过程中找到相应的全等三角形,从而得出答案。

二、全等三角形的应用1. 边长和角度比较在问题中,经常会出现两个或多个三角形的边长或内角需要进行比较的情况。

利用全等三角形的性质,我们不需要逐一计算每个边长或者每个内角的数值,只需要通过观察边长和角度的关系,找到全等三角形,就可以简化计算过程。

例如,已知三角形ABC和三角形DEF的三个内角分别相等,我们可以得出这两个三角形全等。

如果已知三角形ABC的一条边的长度为a,而三角形DEF的相应边的长度为b,那么我们就可以直接得出三角形DEF的边长与a的比较结果。

2. 证明问题在几何证明中,全等三角形是常常被用到的工具。

通过找到一个或多个全等三角形,我们可以得到所求证的结论。

例如,我们需要证明两条线段相等,可以通过构造两个全等三角形,使得所求线段等于全等三角形中的某条边。

然后,利用全等三角形的性质,我们可以得到所求线段等于另一条边,从而得到所需要证明的结论。

3. 问题求解在解决具体问题时,全等三角形也是一个很有用的工具。

通过观察问题中的几何关系,我们可以找到并利用全等三角形来简化问题的求解过程。

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

《全等三角形》培优专题训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等. 经典例题如图所示,ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =.求DFE ∠的度数与EC 的长.解题策略在ABC ∆中,+180A B ACB ∠∠+∠=︒ (三角形内角和为180°).因为30A ∠=︒,50B ∠=︒(已知),所以1803050100ACB ∠=︒-︒-︒=︒ 因为ABC DEF ∆≅∆ (已知),所以ACB DFE ∠=∠(全等三角形对应角相等) BC EF =(全等三角形对应边相等), 因此100DFE ∠=︒,所以2EC EF FC BC FC BF =-=-== 画龙点睛1. 在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2. 在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1. 如图,若ABC ADE ∆≅∆,则这对全等三角形的对应边是 ;对应角是 .2. 如图,若ABD ACD ∆≅∆,试说明AD 与BC 的位置关系.3. 如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4. 如图,ABE ∆和ACD ∆是ABC ∆分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是 .2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ∆≅∆;(2) BOE COD ∆≅∆.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ∆≅∆ ( ASA).(2)由AOE AOD ∆≅∆,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=︒-∠,180CDO ADO ∠=︒-∠,所以B E O C D O ∠=∠.在AOE ∆和AOD ∆中,因为B E O C D O ∠=∠,OE OD =,BOE COD ∠=∠,所以B O E C O D ∆≅∆(ASA). 画龙点睛1. 判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了. 2. 要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是( ).(A) CB CD = (B)BAC DAC ∠=∠ (C)BCA DCA ∠=∠ (D)90B D ∠=∠=︒2. 如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3. 如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4. 如图所示,已知BD 、CE 分别是ABC ∆的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。

初中八年级数学竞赛培优讲义全套专题15 全等三角形

初中八年级数学竞赛培优讲义全套专题15 全等三角形

初中八年级数学竞赛培优讲义全套专题15 全等三角形专题15:全等三角形全等是指两个几何图形之间的一种关系,其中最基本的关系是点的对应关系,以及对应边之间、对应角之间的相等关系。

全等三角形是研究三角形、四边形等图形性质的主要工具,是解决有关线段、角等问题的一个出发点。

证明线段相等、线段和差相等、角相等、两直线位置关系等问题总要直接或间接用到全等三角形,我们把这种应用全等三角形来解决问题的方法称为全等三角形法。

我们实际遇到的图形,两个全等三角形并不重合在一起,而是处于各种不同的位置,但其中一个是由另一个经过平移、翻折、旋转等变换而成的。

了解全等变换的这几种形式,有助于发现全等三角形、确定对应元素。

善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,应熟悉涉及有关共边、公共角的以下两类基本图形:1.三角形2.四边形例题与求解例1】考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上高)对应相等的两个三角形全等。

其中正确命题的个数有()解题思路:真命题给出证明,假命题举出一个反例。

例2】如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB。

求证:(1)AP=AQ;(2)AP⊥AQ。

解题思路:(1)证明对应的两个三角形全等;(2)证明∠PAQ=90°。

例3】如图,已知AD为△ABC的中线,求证:AD<(AB AC)。

解题思路:三角形三边关系定理是证明线段不等关系的基本工具,关键是设法将AB,AC,AD集中到同一个三角形中,从构造2AD入手。

例4】如图,已知AC∥BD,EA、EB分别平分∠CAB、∠DBA,CD过点E。

求证:AB=AC+BD。

解题思路:本例是线段和差问题的证明,截长法(或补短法)是证明这类问题的基本方法,即在AB上截取AF,使AF=AC,以下只要证明FB=BD即可,于是将问题转化为证明两线段相等。

全等三角形培优竞赛题精选

全等三角形培优竞赛题精选

全等三角形证明1、已知:∠1=∠2,CD=DE ,EF知:AB知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。

10.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 11.如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。

求证:(1)AM=AN ;(2)AM ⊥AN 。

12.如图所示,△ABC ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。

13.如图,AD 是△ABC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别是E,F ,连接EF,交AD 于G,AD 与EF 垂直吗?证明你的结论。

FAEDC BP DACBDCBAFEBA CDF2 1 EA14.如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E,DF ⊥AC 于F, △ABC 的面积是28cm 2,AB=20cm,AC=8cm,求DE 的长。

15.如图,在R t △ABC 中,∠ACB=450,∠BAC=900,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE.16、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)直接写出线段EG 与CG 的数量关系;(2)将图1中△BEF 绕B 点逆时针旋转45º,如图2所示,取DF 中点G ,连接EG ,CG . 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?17、已知Rt ABC △中,90AC BC C D ==︒,∠,AB 边的中点,90EDF ∠=, EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.18、在中,将绕点顺时针旋转角得交于点,分别交于两点.(1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论;B DCF AE GAEFBDCA DE G图1F A DE G图2 FAE 图3 D AE CFBD图1图3AD FECBA DBCE 图2F(2)如图2,当时,试判断四边形的形状,并说明理由; (3)在(2)的情况下,求的长.19、如图9,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(4分)(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.(6分)20、如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE . (1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG..求证:CD 垂直平分EG . (3)延长BE 交CD 于点P .求证:P 是CD 的中点.21、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴ 求证:△AMB≌△ENB;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM22、如图,△ABC 中,D 是BC 的中点,过D 点的直线行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF.求证:EG=EF;请你判断BE+CF 与EF 23、如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .求证∠CDA =∠EDB .24、在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AE =BG .AD BECFD BECFADGECB图9 图10 图11E A DB C C25、如图,已知∠BAC=90º,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,说明FM=FD 的理由26、用两个全等的等边三角形△ABC 和△ACD 拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB 、AC 重合.将三角尺绕点A 按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC 、CD 相交于点E 、F 时(如图所示),通过观察或测量BE 、CF 的长度,你能得出什么结论?并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC 、CD 的延长线相交于点E 、F 时(如图所示),你在(1)中得到的结论还成立吗?说明理由。

八年级数学《全等三角形》能力培优

八年级数学《全等三角形》能力培优

八年级数学《全等三角形》能力培优一.解答题(共8小题)1.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.2.已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1)当点B坐标为(0,1)时,求点C的坐标;(2)如图2,以OB为直角边作等腰直角△OBD,点D在第一象限,连接CD交y 轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.3.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;4.如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.5.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.6.在△ABC中,AD是△ABC的角平分线.(1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF⊥AD;(2)如图2,M为BC的中点,过M作MN∥AD交AC于点N,若AB=4,AC=7,求NC的长.7.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.8.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.八年级数学《全等三角形》能力培优参考答案与试题解析一.解答题(共8小题)1.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【分析】(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E ∥DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.2.已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1)当点B坐标为(0,1)时,求点C的坐标;(2)如图2,以OB为直角边作等腰直角△OBD,点D在第一象限,连接CD交y 轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.【分析】(1)过C作CM⊥y轴于M,通过判定△BCM≌△ABO(AAS),得出CM=BO=1,BM=AO=4,进而得到OM=3,据此可得C(﹣1,﹣3);(2)过C作CM⊥y轴于M,根据△BCM≌△ABO,可得CM=BO,BM=OA=4,再判定△DBE≌△CME(AAS),可得BE=EM,进而得到BE=BM=2.【解答】解:(1)如图1,过C作CM⊥y轴于M.∵CM⊥y轴,∴∠BMC=∠AOB=90°,∴∠ABO+∠BAO=90°∵∠ABC=90°,∴∠CBM+∠ABO=90°,∴∠CBM=∠BAO,在△BCM与△ABO中,,∴△BCM≌△ABO(AAS),∴CM=BO=1,BM=AO=4,∴OM=3,∴C(﹣1,﹣3);(2)在B点运动过程中,BE长保持不变,BE的长为2,理由:如图2,过C作CM⊥y轴于M,由(1)可知:△BCM≌△ABO,∴CM=BO,BM=OA=4.∵△BDO是等腰直角三角形,∴BO=BD,∠DBO=90°,∴CM=BD,∠DBE=∠CME=90°,在△DBE与△CME中,,∴△DBE≌△CME(AAS),∴BE=EM,∴BE=BM=2.【点评】本题考查了全等三角形的判定以及全等三角形对应边、对应角相等的性质,熟练掌握三角形全等的判定方法,判定△DBE≌△CME是解第(2)题的关键.3.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;=3,BG=6,求AC的(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG长.【分析】(1)根据ASA证明△BCG≌△CAF,则CF=BG;(2)先证明△ACG≌△BCG,得∠CAG=∠CBE,再证明∠PCG=∠PGC,即可得出结论;(3)作△AEG的高线EM,根据角的大小关系得出∠CAG=30°,根据面积求出EM的长,利用30°角的三角函数值依次求AE、EG、BE的长,所以CE=3+,根据线段的和得出AC的长.【解答】证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)如图3,过E作EM⊥AG,交AG于M,=AG•EM=3,∵S△AEG由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.【点评】本题考查了全等三角形的性质和判定及等腰直角三角形的性质,证明两线段相等时,一般都是证明两线段所在的三角形全等,因此第一问只需要证明△BCG≌△CAF即可;第3问,如何得出30°角和作辅助线,利用到S△AEG=3列式是突破口.4.如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.【分析】(1)证明三角形ACD和CAB全等.根据全等三角形判定中的SSS可得出两三角形全等,那么就能证出AD∥BC,也就得出∠1=∠2了.(2)(3)和(1)的证法完全一样.【解答】解:∠1与∠2相等.证明:在△ADC与△CBA中,,∴△ADC≌△CBA.(SSS)∴∠DAC=∠BCA.∴DA∥BC.∴∠1=∠2.②③图形同理可证,△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,∠1=∠2.【点评】本题主要考查了全等三角形的判定和平行线的判定,根据全等三角形得出角相等是解题的关键.5.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.【分析】(1)根据折叠就可写出一对全等三角形,根据折叠,则重合的顶点是对应点,重合的角是对应角;(2)根据全等三角形的对应角相等,以及平角的定义进行表示;(3)根据(2)中的表示方法,可以求得∠1+∠2,再找到∠A和x、y之间的关系,就可建立它们之间的联系.【解答】解:(1)△EAD≌△EA’D,其中∠EAD=∠EA’D,∠AED=∠A'ED,∠ADE=∠A’DE;(2)∠1=180°﹣2x,∠2=180°﹣2y;(3)∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A.规律为:∠1+∠2=2∠A.【点评】在研究折叠问题时,有全等形出现,要充分利用全等的性质.6.在△ABC中,AD是△ABC的角平分线.(1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF⊥AD;(2)如图2,M为BC的中点,过M作MN∥AD交AC于点N,若AB=4,AC=7,求NC的长.【分析】(1)推出∠3=∠E,推出AC=AE,根据等腰三角形性质得出AF⊥CE,根据平行线性质推出即可;(2)延长BA与MN延长线于点E,过B作BF∥AC交NM延长线于点F,求出BF=CN,AE=AN,BE=BF.设CN=x,则BF=x,AE=AN=AC﹣CN=7﹣x,BE=AB+AE=4+7﹣x.得出方程4+7﹣x=x.求出即可.【解答】(1证明:∵AD为△ABC的角平分线,∴∠1=∠2.∵CE∥AD,∴∠1=∠E,∠2=∠3.∴∠E=∠3.∴AC=AE.∵F为EC的中点,∴AF⊥EC,∵AD∥EC,∴∠AFE=∠FAD=90°.∴AF⊥AD.(2)解:延长BA与MN延长线于点E,过B作BF∥AC交NM延长线于点F,∴∠3=∠C,∠F=∠4∵M为BC的中点∴BM=CM.在△BFM和△CNM中,∴△BFM≌△CNM(AAS),∴BF=CN,∵MN∥AD,∴∠1=∠E,∠2=∠4=∠5.∴∠E=∠5=∠F.∴AE=AN,BE=BF.设CN=x,则BF=x,AE=AN=AC﹣CN=7﹣x,BE=AB+AE=4+7﹣x.∴4+7﹣x=x.解得x=5。

初中八年级数学竞赛培优讲义全套专题15 全等三角形[精品]

初中八年级数学竞赛培优讲义全套专题15 全等三角形[精品]

专题15 全等三角形阅读与思考两个几何图形的全等是指两个图形之间的一种关系,其中最基本的关系是两个图形的点的对应关系,以及对应边之间、对应角之间的相等关系.全等三角形是研究三角形、四边形等图形性质的主要工具,是解决有关线段、角等问题的一个出发点,证明线段相等、线段和差相等、角相等、两直线位置关系等问题总要直接或间接用到全等三角形,我们把这种应用全等三角形来解决问题的方法称为全等三角形法.我们实际遇到的图形,两个全等三角形并不重合在一起,而是处于各种不同的位置,但其中一个是由另一个经过平移、翻折、旋转等变换而成的.了解全等变换的这几种形式,有助于发现全等三角形、确定对应元素.善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,应熟悉涉及有关会共边、公共角的以下两类基本图形:例题与求解【例1】考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上高)对应相等的两个三角形全等.其中正确命题的个数有()A.4个B.3个C.2个D.1个(山东省竞赛试题)解题思路:真命题给出证明,假命题举出一个反例.【例2】如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.(第十六届江苏省竞赛试题)解题思路:(1)证明对应的两个三角形全等;(2)证明∠PAQ =90°.【例3】如图,已知为AD 为△ABC 的中线,求证:AD <1()2AB AC .(陕西省中考试题)解题思路:三角形三边关系定理是证明线段不等关系的基本工具,关键是设法将AB ,AC ,AD 集中到同一个三角形中,从构造2AD 入手.【例4】如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E . 求证:AB =AC +BD .(“希望杯”邀请赛试题)解题思路:本例是线段和差问题的证明,截长法(或补短法)是证明这类问题的基本方法,即在AB 上截取AF ,使AF =AC ,以下只要证明FB =BD 即可,于是将问题转化为证明两线段相等.【例5】如图1,CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E ,F 分别是直线CD 上两点,且∠BECQABC DEOPABCDA BCDE=∠CFA =∠α.(1)若直线CD 经过∠BCA 内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图2,若∠BCA =90°,∠α=90°,则BE ____CF ,EF ____BE AF -(填“>”、“<”或“=”);②如图3,若0°<∠BCA <180°,请添加一个关于∠α与∠BCA 关系的条件____,使①中的两个结论仍然成立,并证明这两个结论;(2)如图4,若直线CD 经过∠BCA 的外部,∠α=∠BCA ,请提出EF ,BE 、AF 三条线段数量关系的合理猜想(不要求证明).(台州市中考试题)解题思路:对于②,可用①进行逆推,寻找△BCE ≌△CAF 应满足的条件.对于(2)可用归纳类比方法提出猜想.【例6】如图,在四边形ABCD 中,∠ACB =∠BAD =105°,∠ABC =∠ADC =45°. 求证:CD =AB .(天津市竞赛试题)解题思路:由已知易得∠CAB =30°,∠GAC =75°,∠DCA =60°,∠ACB +∠DAC =180°,由特殊度数可联想到特殊三角形、共线点等.BCDEFαα图1ABCDEF 图2 ABCE F图3D ABCDEF图4AB CD能力训练A 级1.如图,在△ABC 中,∠C =90°,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ︰DB =3︰5,则点D 到AB 的距离是____.2.如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,分别过B ,C 作经过点A 的直线的垂线BD ,CE ,若BD =3cm ,CE =4cm ,则DE =____.3.如图,△ABE 和△ACF 分别是以△ABC 的边AB 、AC 为边的形外的等腰直角三角形,CE 和BF 相交于O ,则∠EOB =____.4.如图,四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,且AB =AE ,AC =AD .有如下四个结论:①AC ⊥BD ;②BC =DE ;③∠DBC =12∠DAB ;④△ABE 是等边三角形.请写出正确结论的序号____.(把你认为正确结论的序号都填上)(天津市中考试题)5.如图,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AC =AE ,则( ) A .△ABD ≌△AFD B .△AFE ≌△ADC C .△AFE ≌△DFCD .△ABC ≌△ADE6.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E .若AB =6cm ,则△DEB 的周长为( )A .5cmB .6cmC .7cmD .8cm7.如图,从下列四个条件:①BC =B 'C ;②AC =A ′C ;③∠A ′CA =∠B ′CB ;④AB =A ′B ′中,任取三个为题设,余下的一个为结论,则最多可以构成的正确命题的个数是( )A .1个B .2个C .3个D .4个(北京市东城区中考试题)ABCD 第1题ADE第2题 ABC EFO第3题ABCDE第4题第5题ABCDE F321ABCD第6题ABCB 'A '第7题8.如图1,在锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE交于F,且BF=AC.(1)求证:ED平分∠FEC;(2)如图2,若△ABC中,∠C为钝角,其他条件不变,(1)中结论是否仍然成立?若不成立,请说明理由;若成立,请给予证明.9.在等腰Rt△AOB和等腰Rt△DOC中,∠AOB=∠DOC=90°,连AD,M为AD中点,连OM.(1)如图1,请写出OM与BC的关系,并说明理由;(2)将图1中的△COD旋转至图2的位置,其他条件不变,(1)中结论是否成立?请说明理由.10.如图,已知∠1=∠2,EF⊥AD于P,交BC延长线于M.求证:∠M=1()2ACB B∠-∠.(天津市竞赛试题)AB CDEF图1AB DEC图2A BCDMO图1A BCDMO图2ABCDEFMP2111.如图,已知△ABC 中,∠A =60°,BE ,CD 分别平分∠ABC ,∠ACB ,P 为BE ,CD 的交点. 求证:BD +CE =BC .12.如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .(1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC =DM ,求证:ME =BD .(日照市中考试题)B 级1.在△ABC 中,高AD 和BE 交于H 点,且BH =AC ,则∠ABC =____.(武汉市竞赛试题)2.在△ABC 中,AD 为BC 边上的中线,若AB =5,AC =3,则AD 的取值范围是____.(“希望杯”竞赛试题)3.如图,在△ABC 中,AB >AC ,AD 是角平分线,P 是AD 上任意一点,在AB -AC 与BP -PC 两式中,较大的一个是____.4.如图,已知AB ∥CD ,AC ∥DB ,AD 与BC 交于O ,AE ⊥BC 于E ,DF ⊥BC 于F ,那么图中全等的三角A BC DE PA BC 第2题DA BC PD第3题A BCD EFO 第4题第5题A BCDEF A形有( )A .5对B .6对C .7对D .8对5.如图,AD 是△ABC 的中线,E ,F 分别在AB ,AC 上,且DE ⊥DF ,则( ) A .BE +CF >EF B .BE +CF =EFC .BE +CF <EFD .BE +CF 与的大小关系不确定(第十五届江苏省竞赛试题)6.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角( )A .相等B .不相等C .互余D.互补或相等(北京市竞赛试题)7.如图,在△ABE 和△ACD 中,给出以下四个论断:①AB =AC ;②AD =AE ;③AM =AN ;④AD ⊥DC ,AE ⊥BE .以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程.已知:___________________. 求证:___________________.(荆州市中考试题)8.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE =1()2AB AD ,求∠ABC+∠ADC 的度数. (上海市竞赛试题)9.在四边形ABCD 中,已知AB =a ,AD =6,且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画出图形并证明你的结论.(河北省竞赛试题)ABC DEM NABCDE10.如图,在△ABC 中,∠ABC =60°,AD ,CE :分别平分∠BAC ,∠ACB .求证:AC =AE +CD .(武汉市选拔赛试题)11.如图,在Rt △ABC 中,∠B =90°,AP ,CQ 分别平分∠BAC ,∠BCA .AP 交CQ 于I ,连PQ . 求证:IAC ACPQS S ∆四边形为定值.12.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD 丄MN 于O ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证:DE =AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问:DE ,AD ,BE 有怎样的等量关系?请写出这个等 量关系,并加以证明. (海口市中考试题)ABCDEMN图1ABCM N图3DEAB CMN图2DEQAB CIPA BCDEO13.CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E ,F 分别是直线CD 上两点,且∠BEC =∠CFA =∠α.(1)若直线CD 经过∠BCA 内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图1,若∠BCA =90°,∠α=90°,则BE ____CF ,EF ____BE AF -(填“>”、“<”或“=”);②如图2,若0°<∠BCA <180°,请添加一个关于∠α与∠BCA 关系的条件____,使①中的两个结论仍然成立,并证明这两个结论;(2)如图3,若直线CD 经过∠BCA 的外部,∠α=∠BCA ,请提出EF ,BE 、AF 三条线段数量关系的合理猜想(不要求证明).(台州市中考试题)A BCDE F 图1ABCE F图2DABCDEF图3。

初中数学竞赛全等三角形(含答案)

初中数学竞赛全等三角形(含答案)

全等三角形你见过两片完全相同的树叶吗?你见过两个完全相同的事物吗?也许你从未意识到这世界上还有完全相同。

在这里我们将引导你的思路,给你解题技巧:完全相同--全等三角形。

三解形是平面几何中最重要的图形,它的有关知识是今后我们学习四边形、多边形乃至立体几何的重要基础。

三角形全等的判定和性质是证明有关三角形问题的基础,必须熟练掌握。

判定两个三角形全等的方法有:SAS,ASA,AAS,SSS。

全等三角形的性质:全等三角形的对应边、对应角及其它对应元素相等。

例1:如图2-7-1,△ABC和△DCE均是等边三角形,B、C、E三点共线,AE交CD于G,BD交AC于F。

求证:① AE=BD;② CF=CG.思路① 证明△ACE≌△BCD。

证明① ∵ △ABC和△DCE都是等边三角形,∴ CB=CA, CD=CE,∠BCA=∠ECD=,∴∠BCD=∠ACE=,∴△BCD≌△ACE,∴ AE=BD。

思路② 证明△FCD≌△GCE。

证明② 由△BCD≌△DCE都是等边三角形可知∴ CD=CE,∠BCA=∠ECD=∴∠ACD=-∠BCA-∠ECD=∴△FCD≌△GCE,∴ CF=CG说明:证明两条线段相等的重要方法之一就是证明它们所在的两个三角形全等。

例2:如图2-7-2,在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE。

求证:MD=MN。

思路:取AD的中点P,连结PM,证明△DMP≌△MNB。

证明:取AD的中点P,连结PM,则有DP=MB。

∵DM⊥MN,∴∠DMA+∠BMN=,又由正方形ABCD 知∠A=,∴∠DMA+∠MDA=,∴∠BMN=∠MDA又∵BN平分∠CBE,∴∠MBN=又由P、M分别为AD、AB的中点,ABCD是正方形,得△PAM是等腰直角三角形,故∠DPM=。

∴∠DPM=∠MBN,∴△DPM≌△MBN,∴ DM=MN。

说明:本题中DM和MN所在的三角形不全等,这时就要考虑作出它们所在的新三角形,证明这两个新三角形全等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京四中八年级培优班数学全等三角形复习题1.如图1,已知在等边△ABC 中,BD =CE ,AD 与BE 相交于P ,则∠APE 的度数是 。

图1B 图2BA图32.如图2,点E 在AB 上,AC =AD ,BC =BD ,图中有 对全等三角形。

3.如图3,OA =OB ,OC =OD ,∠O =60°,∠C =25°,则∠BED 等于 度。

4.如图4所示的2×2方格中,连接AB 、AC ,则∠1+∠2= 度。

图4B图5AB图6CB5.如图5,下面四个条件中,请你以其中两个为已知条件,第三个为结论,推出一个正确的命题。

( )①AE =AD ;②AB =AC ;③OB =OC ;④∠B =∠C 。

6.如图6,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =21AB ,点E 、F 分别为边BC 、AC 的中点。

(1)求证:DF =BE ;(2)过点A 作AG ∥BC ,交DF 于点G ,求证:AG =DG 。

7.如图7,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AD ,下列结论正确的是( )A. AB -AD >CB -CDB. AB -AD =CB -CDC. AB -AD <CB -CDD. AB -AD 与CB -CD 的大小关系不确定图7BD图8CB8.In Fig. 8, Let △ABC be an equilateral triangle, D and E be points on edges AB and AC respectively, F be intersection of segments BE and CD, and ∠BFC=120°, then the magnitude relation between AD and CE is ( )A. AD>CEB. AD<CEC. AD=CED. indefinite(英汉小词典:equilateral 等边的;intersection 交点;indefinite 不确定的;magnitude 大小,量) 9.如图9,在△ABC 中,AC =BC =5,∠ACB =80°,O 为△ABC 中一点,∠OAB =10°,∠OBA =30°,则线段AO 的长是 。

图9CAB图1010.如图10,已知BD 、CE 分别是△ABC 的边AC 和AB 上的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB 。

求证: (1)AP =AQ ; (2)AP ⊥AQ 。

11.如图11,在△ABC 中,∠C =60°,AC >BC ,又△ABC ´、△BCA ´、△CAB ´都是△ABC 形外的等边三角形,而点D 在AC 上,且BC =DC 。

a ac丙︒72︒50 乙︒50甲a︒507250︒︒︒58c aCBA(1)证明:△C ´BD ≌△B ´DC ; (2)证明:△AC ´D ≌△DB ´A ;12.如图12,在△ABC 中,D 、E 分别是AC 、BC 上的点,若△ADB ≌EDB ≌EDC ,则∠C 的度数为 。

图12CB13.如图13,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是 。

14.如图14,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于H 点,请你添加一个适当的条件: ,使△AEH ≌△CEB 。

图14图15图16C15.如图15,在△ABC 中,已知AB =AC ,要使AD =AE ,需要添加的一个条件是 。

16.有一腰长为5㎝,底边长为4㎝的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有 个不同的四边形。

17.如图16,△ABF 和△ADC 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为 。

18.如图17,已知CE ⊥AD 于E ,BF ⊥AD 于F ,你能说明△BDF 和△CDE 全等吗?若能,请你说明理由;若不能,在不用增加辅助线的情况下,请添加其中一个适当的条件,这个条件是 ,来说明这两个三角形全等,并写出证明过程。

19.如图19,在△ABC 中,AB =AC ,过点A 作GE ∥BC ,角平分线BD 、CF 相交于点H ,它们的延长线分别交GE 于点E 、G 。

试在图中找出3对全等三角形,并对其中一B C G E对全等三角形给出证明。

20.如图20,在△AFD 和△BEC 中,点A 、E 、F 、C 在同一直线上,有下面四个论断:①AD =CB ;②AE =CF ;③∠B =∠D ;④AD ∥BC 。

请用其中有一个作为条件,余下的一个作为结论,编一道数学问题,并写出解答过程。

21.如图21-①,小明剪了一个等腰梯形ABCD ,其中AD ∥BC ,AB =DC ;又剪了一个等边△EFG ,同桌的小华拿过来拼成如图②的形状,她发现AD与FG 恰好完全重合,于是她用透明胶带将梯形ABCD 与△EFG 粘在一起,并沿EB 、EC 剪下。

小华得到的△EBC 是什么三角形?请你作出判断并说明理由。

22.如图22,在△ABC 与△DEF 中,给出以下六个条件:①AB =DE ;②BC =EF ;③AC =DF ;④∠A =∠D ;⑤∠B =∠F ;⑥∠A =∠D ,以其中三个条件作为已知,不能判断△ABC 与△DEF 全等的是( ) A. ①⑤② B. ①②③ C. ④⑥① D. ②③④23.如图23(1),在△ABC 中,D 、E 分别是AB 、AC 的中点,将△ADE 沿线段DE 向下折叠,得到图23(2),下列关于图23(2)的四个结论中,不一定成立的是( )A. 点A 落在BC 边的中点B. ∠B +∠1+∠C =180°图20A C图21②①FD (G )A (F )图22F E B CC . △DBA 是等腰三角 D. DE ∥BC24.如图24,已知MB =ND ,∠MBA =∠NDC ,下列不能判定△ABM ≌△CDN 的条件是( ) A. ∠M =∠N B. AB =CD C. AM =CN D. AM ∥CN 25.如图25,在△ABC 中,点D 在AB 上,点E 在BC 上,BD =BE 。

(1)请你再添加一个条件,使得△BEA ≌△BDC ,并给出证明,你添加的条件是: 。

并给出证明。

(2)根据你添加的条件,再写出图中的一对全等三角形:(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)。

26.如图26,在△ABC 中,∠ABC =45°,AD ⊥BC 于D 点,E 在AD上,且DE =CD ,求证:BE =AC 。

27.已知:如图27,给出下列三个式子:①EC =BD;②∠BDA =∠CEA ;③AB =AC ;请将其中的两个式子作为题设,一个式子作为结论,构成一个真命题(收发室形式:如果……,那么……),并给出证明。

28.如图28,在四边形ABCD 中,对角线AC 、BD 相交于点O ,已知∠ADC =∠BCD ,AD =BC ,求证:AO =BO 。

图23(2)(1)BB图24DA图25B C 图26B 图27DC29.如图29,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下一个作为结论,写一个真命题,并加以证明。

①AB =DE ;②AC =DF ;③∠ABC =∠DEF ;④BE =CF 。

30.如图30,已知△ABC 为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且△DEF 也是等边三角形。

(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的; (2)你所证明相等的线段,可以通过怎样的变化想到得到?写出变化过程。

31.如图31,点B 在AE 上,∠CAB =∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: (写一个即可)。

图31AE32.如图32,AC 交BD 于点O ,请你从下面三项中选出两个作为条件,另一个为结论,写出一个真命题,并加以证明。

①OA =OC ;②OB =OD ;③AB ∥DC 。

图29FB 图30B CA33.如图33,要在湖的两岸A 、B 间建一座观赏桥,由于条件限制,无法直接度量A 、B 两点间的距离。

请你用学过的数学知识按以下要求设计一测量方案。

(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)设计AB 的距离(写出求解或推理过程,结果用字母表示)。

34.如图34,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,AE =CE ,AB 与CF 有什么位置关系?证明你的结论。

35.如图35,OP 是∠AOC 和∠BOD 的平分线,OA =OC ,OB =OD 。

求证:AB =CD 。

36.如图36,已知AB =AC , (1)若CE =BD ,求证:GE =GD ; (2)若DE =mBD (m 为正数),试猜想GE 与GD 有何关系。

(只写结论,不证明)图34B 图35C A B37.复习“全等三角形”知识时,都是布置了一道作业题: “如图37(1),已知在△ABC 中,AB =AC ,P 是△ABC内任意一点,将AP 绕点A 顺时针旋转至AQ ,使∠QAP =∠BAC ,连接BQ 、CP ,则BQ =CP 。

”小亮是个爱动脑筋的同学,他通过图(2)的分析,证明了△ABQ ≌△ACP ,从而证得BQ =CP ,之后,他将点P 移到等腰三角形ABC 之外,原题中其他条件不变,发现“BQ =CP ”仍然成立,请你就图(2)给出证明。

38.文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”“求证”(如图38),她们对各自所作的辅助线描述如下:文文:“过点A 作BC 的中垂线AD ,垂足为D ”; 彬彬:“作△ABC 的角平分线AD ”。

数学老师看了两位同学的辅助线作法后说:“彬彬的作法是正确的,而文文的作法需要订正。

”(1) 请你简要说明文文的辅助线作法错在哪里;(2) 根据彬彬的辅助线作法,完成证明过程。

39.将两块全等的含30°角的三角尺如图39(1)摆放在一起,它们的较短直角边长为3。

图37(2)(1)QBE图39(4)(3)(2)(1)ll(1)将△ECD 沿直线l 向左平移到图(2)的位置,使E 点落在AB 上,则CC ´= ;(2)将△ECD 绕点C 逆时针旋转到图(3)的位置,使点E 落在AB 上,则△ECD 绕点C 旋转的度数= ;(3)将△ECD 沿直线翻折到图(4)的位置,ED ´与AB 相交于F ,求证:AF =FD ´。

相关文档
最新文档