抛物线及其性质知识点大全
抛物线知识点

抛物线知识点抛物线是数学中的一种曲线形式,由于其独特的形状和性质,被广泛应用于物理、工程和计算机图形学等领域。
本文将介绍抛物线的定义、性质和应用,并对其相关概念进行阐述。
一、抛物线的定义抛物线是平面解析几何中的一种曲线,可以由以下方程表示:y = ax^2 + bx + c其中,a、b、c为常数,a不等于0。
抛物线的图像呈现出对称、开口向上或向下的特征。
二、抛物线的性质1. 对称性:抛物线关于其顶点对称,即任意一点P在抛物线上,其关于顶点的对称点P'也在抛物线上。
2. 最值点:抛物线的最值点为其顶点,当抛物线开口向上时,顶点为最小值点;当抛物线开口向下时,顶点为最大值点。
3. 切线性质:抛物线上任意一点处的切线与该点处的斜率有关,斜率等于该点的横坐标对应的导数。
4. 焦点与准线:抛物线的焦点是与抛物线上任意一点的距离相等的点,而准线是与抛物线上任意一点的距离相等的直线。
5. 弧长:抛物线的弧长可以通过定积分来计算。
三、抛物线的应用1. 物理学:抛物线的运动规律被广泛应用于物理学中的抛体运动和弹道问题,例如抛物线运动的轨迹、抛射物的飞行轨迹等。
2. 工程学:抛物线的形状在工程学中经常被用于设计桥梁、天桥、水利工程等,以保证结构的稳定性和均衡性。
3. 计算机图形学:抛物线的数学模型被广泛应用于计算机图形学中的曲线绘制、三维建模等领域,用于实现平滑曲线的绘制和物体的形状设计。
4. 照明学:抛物面反射器是一种常见的照明设备,其形状为抛物线,可以将光线聚焦到特定的区域,提高照明效果。
5. 天文学:抛物线的轨迹在天文学中被用于描述彗星或行星等天体的运动轨迹。
抛物线作为一种特殊的数学曲线,具有对称性、最值点、切线性质等特点,广泛应用于物理、工程和计算机图形学等领域。
深入理解和掌握抛物线的定义、性质和应用,有助于我们更好地应用数学知识解决实际问题,并推动科学技术的发展。
抛物线总结知识点

抛物线总结知识点一、抛物线的定义1、几何定义抛物线实际上是一个平面上的曲线,其特点是所有点到焦点的距离与直线上的点到焦点的距离相等。
在几何上,抛物线可以用一定的数学方法来绘制,比如几何学中的反射法则,就是一个通过抛物线的特性进行绘制的方法。
2、代数定义抛物线也可以用数学式子来表示,通常来说,一个一般形式的抛物线方程可以表示为:y=ax^2+bx+c。
其中a、b、c为常数,且a≠0。
这个方程就是抛物线的代数表示方法。
二、抛物线的性质1、对称性抛物线具有对称性,即其焦点与直线的对称轴关于抛物线是对称的。
也就是说,如果你在抛物线上选取一个点,并且在该点的正上方或是正下方做等距的另外一个点,那么这两个点与抛物线的焦点的距离是一样的。
2、焦点抛物线的焦点是抛物线中的一个重要点,所有在抛物线上的点到焦点的距离,是和这根线上的点到焦点的距离是相等的。
这也是抛物线对称性的基础。
3、直线抛物线的对称轴是一条直线,这条直线被称为抛物线的直线。
直线与抛物线的焦点以及对称轴是彼此有特殊的关系的,这样的直线通常是抛物线的对称轴。
4、距离性质抛物线上的任意一点到焦点的距离与该点到抛物线的对称轴的距离之间的关系。
通常,这个距离关系就是抛物线的形成依据之一。
三、抛物线的方程1、标准形式标准形式的抛物线通常以y=ax^2+bx+c的数学形式表示。
这种数学形式可以清楚的展现抛物线的双曲性。
2、顶点形式抛物线的顶点形式方程也是一种比较通用的表示方法。
顶点形式的抛物线方程是一种通过抛物线的顶点来表示其位置的方法。
其数学表达式通常为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。
3、焦点形式焦点形式的抛物线方程则是基于抛物线的焦点和直线来展现其形状和位置的。
该类型的方程通常为x^2=4py,其中p为焦点的距离。
四、抛物线的几何意义1、抛物线的几何意义作为一条特殊的曲线,抛物线在实际中有着丰富的几何意义。
通过抛物线的特性和性质,我们可以从几何角度来认识抛物线。
抛物线和性质知识点大全

抛物线和性质知识点大全抛物线是一种二次函数图像,具有以下性质:1. 抛物线的对称轴与其开口方向垂直,对称轴方程可以通过将抛物线标准式中的$x$ 替换为 $-c$ 求出,其中 $c$ 是抛物线的横坐标的中心值。
对称轴上的任何一点都是抛物线的最高点或最低点。
2. 抛物线的焦点是一个特殊的点,它与抛物线的开口方向和大小有关。
焦点是抛物线上所有的反射光线汇聚成的点。
计算焦点可以利用以下公式:$F=\left(\frac{1}{4a},\frac{c}{4a}\right)$,其中 $a$ 是抛物线开口处的系数,$c$ 是对称轴的水平位置。
3. 抛物线上的任何一点到对称轴的距离都等于该点到焦点的距离,这是由于抛物线的定义所决定的。
这个性质可以用来找到抛物线上的点到对称轴的距离,以及在给定焦点和直线上的点的情况下,找到抛物线方程。
5. 抛物线的 $x$ 与 $y$ 轴的交点称为抛物线的零点。
因为抛物线是一个二次函数,所以它最多有两个零点。
6. 抛物线在对称轴两侧的图像是对称的,图像的形状类似于 "U"。
7. 抛物线的开口方向可以使用其系数的正负来确定。
如果系数为正,则抛物线向上开口;如果系数为负,则抛物线向下开口。
8. 当 $a>0$ 时,抛物线开口向上,最低点(即顶点)为全局最小值,并且当 $x$ 的值趋近于正无穷大或负无穷大时,函数值也趋近于正无穷大。
当 $a<0$ 时,抛物线开口向下,最高点(即顶点)为全局最大值,并且当 $x$ 的值趋近于正无穷大或负无穷大时,函数值也趋近于负无穷大。
9. 抛物线的导数是一个一次函数,其斜率在顶点处为零。
10. 任意两个点之间的抛物线弧长可以通过积分抛物线导数的平方再开平方根的方法求出。
抛物线及其性质知识点大全

抛物线及其性质知识点大全1.抛物线的定义:抛物线是平面上各点到定点(焦点)的距离与各点到定直线(准线)的距离相等的点的轨迹。
2.抛物线的一般方程:抛物线的一般方程为 y = ax^2 + bx + c,其中a ≠ 0。
3.抛物线的焦点和准线:-抛物线的焦点是定点F,在焦点F上可以发射经由抛物线反射的平行光线,称为焦光束。
-抛物线的准线是直线L,通过焦点F,且与抛物线没有交点。
4.抛物线的焦距:-抛物线的焦距是焦点F到准线的垂直距离,记为2p。
5.抛物线的顶点:-抛物线的顶点是抛物线的最高点或最低点,坐标记为(h,k)。
-抛物线的顶点坐标可以通过顶点公式h=-b/2a和k=c-b^2/4a计算得到。
6.抛物线的对称轴:-抛物线的对称轴是抛物线的对称线,过顶点,并且与抛物线垂直。
7.抛物线的开口方向:-当a>0时,抛物线开口向上。
-当a<0时,抛物线开口向下。
8.抛物线的图像特点:-抛物线关于对称轴对称。
-抛物线与准线相交于顶点。
-抛物线在焦点处达到最大值或最小值。
-抛物线两侧的点到焦点的距离相等。
9.抛物线的焦点坐标计算:-焦点坐标可以通过焦距公式p=1/4a和焦点公式F(h,k+p)计算得到。
10.抛物线的拟合直线:-抛物线的切线方程和抛物线在焦点处的切线方向一致。
11.抛物线的截距:-抛物线与x轴的交点称为x轴截距,可以通过方程y=0解得。
-抛物线与y轴的交点称为y轴截距,可以直接读出抛物线方程中的常数项。
12.抛物线的平移:-抛物线的平移是通过改变顶点的坐标来实现的,顶点的新坐标为(h+a,k)。
13.抛物线的标准方程:- 当抛物线顶点为原点时,可以将抛物线的方程化为标准方程 y^2 = 4ax,其中焦点坐标为 (a, 0)。
14.抛物线的求导函数:- 抛物线的导数函数为 f'(x) = 2ax + b。
15.抛物线的面积计算:- 抛物线的面积可以通过定积分来计算,公式为 S =∫[x1,x2](ax^2 + bx + c)dx。
抛物线性质和知识点总结

抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
抛物线知识点总结

抛物线知识点总结
抛物线是一种常见的二次函数图像,其形状像一个开口朝下的弧形。
在物理学、数学、工程学等领域中都有广泛的应用。
本文将从定义、性质、公式、应用等方面对抛物线进行总结。
一、定义
抛物线是平面内到定点F的距离等于到定直线l的距离的点的轨迹。
其中,定点F称为焦点,定直线l称为准线。
抛物线的形状是一个开口朝下的弧形,其对称轴与准线重合。
二、性质
1. 抛物线的对称轴与准线重合,且垂直于准线。
2. 抛物线的焦点到顶点的距离等于顶点到准线的距离。
3. 抛物线的顶点是其最高点,也是其对称轴与准线的交点。
4. 抛物线的两个分支是无限延伸的,但是它们的开口方向相反。
5. 抛物线的标准方程为y=ax²+bx+c,其中a≠0。
三、公式
1. 抛物线的标准方程为y=ax²+bx+c,其中a≠0。
2. 抛物线的顶点坐标为(-b/2a,c-b²/4a)。
3. 抛物线的焦距为1/4a。
4. 抛物线的准线方程为y=k,其中k为抛物线的顶点纵坐标。
四、应用
1. 物理学中,抛物线可以用来描述自由落体运动、抛体运动等。
2. 工程学中,抛物线可以用来设计拱形桥、抛物线反射器等。
3. 数学中,抛物线是二次函数的一种特殊情况,可以用来研究二次函数的性质。
4. 生活中,抛物线可以用来设计滑道、滑雪道等娱乐设施。
抛物线是一种常见的二次函数图像,具有广泛的应用价值。
通过对抛物线的定义、性质、公式、应用等方面的总结,可以更好地理解和应用抛物线。
抛物线及其性质知识点大全新

抛物线及其性质知识点大全新抛物线是一个非常重要的数学曲线,具有很多有趣的性质和应用。
本文将介绍抛物线的基本定义、性质和常见应用,希望能对大家的学习和理解有所帮助。
一、基本定义1.抛物线的定义:抛物线是一种平面曲线,它的定义方式有多种,其中一种常见的定义是:一个平面上的点到一个定点与一个定直线的距离的平方相等,这个距离等于点到这个定直线的垂直距离的两倍。
这个定点叫做抛物线的焦点,定直线叫做抛物线的准线。
2. 抛物线的一般方程:抛物线的一般方程可以写成 y=ax^2+bx+c 的形式,其中 a、b 和 c 是实数,且 a 不等于零。
这个方程描述了抛物线的形状、位置和方向。
二、性质1.对称性:抛物线具有关于焦点的对称性,即抛物线上任意一点到焦点的距离等于该点在抛物线准线上的垂直距离到准线的距离。
2.焦距和准线:焦点与抛物线上的任意点之间的距离叫做焦距,准线与抛物线上的任意点之间的距离叫做准线距离。
抛物线的焦距等于准线距离的两倍。
3.定点和定直线:焦点和准线是抛物线的两个重要的定点和定直线。
4.对称轴:抛物线的对称轴是与准线垂直,并与焦点和抛物线上的顶点连线重合的直线。
5.顶点:抛物线的顶点处于焦点和抛物线的准线的中点。
6.开口方向:当a大于零时,抛物线向上开口;当a小于零时,抛物线向下开口。
7.过顶点的切线:过抛物线的顶点的切线与抛物线的对称轴重合。
8.拐点:抛物线与x轴的交点叫做拐点。
9.单调性:当a大于零时,抛物线在对称轴的左侧是单调递增的,在对称轴的右侧是单调递减的;当a小于零时,则相反。
三、常见应用1.物理学中的自由落体:自由落体运动中,物体的运动轨迹是抛物线。
2.焦点反射性质:如果从抛物线的焦点处发射的光线照射到抛物线上的任意一点,并且与抛物线的切线垂直,那么光线将会从该点发生反射,并经过抛物线的焦点。
3.抛物天线:抛物天线具有聚焦信号的特点,常被用于卫星通信和微波通信。
4.汽车大灯设计:汽车大灯的设计中,经常使用抛物面反射器,目的是将光线聚焦到需要照亮的地方。
抛物线及其性质知识点大全推荐文档

抛物线及其性质知识点大全推荐文档1. 抛物线的定义:抛物线是一个平面曲线,其定义式为y = ax^2 + bx + c,其中a、b、c为常数,a不等于0。
2.抛物线的图像:抛物线的图像呈现出对称性,它的开口方向由抛物线的系数a的正负决定。
当a大于0时,抛物线向上开口;当a小于0时,抛物线向下开口。
3.抛物线的顶点:抛物线的顶点为曲线上的最低点(向上开口)或最高点(向下开口)。
顶点的横坐标为x=-b/(2a),纵坐标为y=f(-b/(2a)),其中f(x)为抛物线的函数。
4. 抛物线的焦点:抛物线的焦点是曲线上与直线y = mx + n相交的点的轨迹,其中m、n为常数。
焦点的横坐标为x = -b/(2a),纵坐标为y = c - (b^2 - 1)/(4a)。
5.抛物线的对称轴:抛物线的对称轴是通过顶点和焦点的垂直平分线。
对称轴的方程为x=-b/(2a)。
6. 抛物线的判别式:抛物线的判别式为Δ = b^2 - 4ac,其中Δ的值决定了抛物线的性质。
若Δ大于0,则抛物线与x轴有两个交点,即开口向上或向下的抛物线。
若Δ等于0,则抛物线与x轴有一个交点,即开口向上或向下的抛物线。
若Δ小于0,则抛物线与x轴没有交点,即开口向上或向下的抛物线。
7.抛物线的焦距:焦点到抛物线上任意一点的距离等于该点到对称轴的距离,即焦距等于对称轴到顶点的距离。
8.抛物线的切线:抛物线上任意一点处的切线与该点的切线斜率相等,切线方程为y-y0=f'(x0)(x-x0),其中f'(x)为抛物线函数的导数。
9.抛物线的性质:抛物线是一条连续曲线,它具有对称性、单调性(a的符号决定)、可导性(除去顶点的地方都可导)、增减性(导数的符号决定)、可微性(除去顶点的地方都可微)、凸凹性(a的符号决定)等性质。
10.抛物线的应用:抛物线在物理学中常用于描述自由落体、抛体运动等;在工程学中常用于设计桥梁、铁轨等;在经济学中常用于描述成本、收益等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点(,0)2pF (1) 若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
(2) 若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(3) 已知直线AB 是过抛物线22(0)y px p =>焦点F ,112AF BF AB AF BF AF BF AF BF p++===∙∙ (4) 焦点弦中通径最短长为2p 。
通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.(5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则AB =||11||1212212y y k x x k -+=-+=6.直线与抛物线的位置关系 直线,抛物线,,消y 得:(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。
(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)7.关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线,)0( p① 联立方程法:⎩⎨⎧=+=pxy bkx y 22⇒0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ∆,以及2121,x x x x +,还可进一步求出b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++=在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长2122122124)(11x x x x k x x k AB -++=-+=ak ∆+=21 或 2122122124)(1111y y y y k y y k AB -++=-+=ak ∆+=21 b. 中点),(00y x M , 2210x x x +=, 2210y y y += ② 点差法:设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得1212px y = 2222px y =将两式相减,可得)(2))((212121x x p y y y y -=+- 2121212y y px x y y +=--a. 在涉及斜率问题时,212y y pk AB +=b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M ,021*******y py p y y p x x y y ==+=--, 即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有px p x p x x k AB 0021222==+=(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)【经典例题】(1)抛物线——二次曲线的和谐线椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章.【例1】P 为抛物线px y 22=上任一点,F 为焦点,则以PF 为直径的圆与y 轴( ).A 相交 .B 相切 .C 相离 .D 位置由P 确定【解析】如图,抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,准线是 :2pl x =-.作PH ⊥l 于H ,交y 轴于Q ,那么PF PH =, 且2pQH OF ==.作MN ⊥y 轴于N 则MN 是梯形PQOF 的中位线,()111222MN OF PQ PH PF =+==.故以PF 为直径的圆与y 轴相切,选B.【评注】相似的问题对于椭圆和双曲线来说,其结论则 分别是相离或相交的.(2)焦点弦——常考常新的亮点弦有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的.【例2】 过抛物线()022p px y =的焦点F 作直线交抛物线于()()1122,,,A x y B x y 两点,求证:(1)12AB x x p =++ (2)pBF AF 211=+ 【证明】(1)如图设抛物线的准线为l ,作1AA l ⊥11111,2p A BB l B AA x ⊥==+于,则AF , 122pBF BB x ==+.两式相加即得:12AB x x p =++(2)当AB ⊥x 轴时,有AF BF p ==,112AF BF p∴+=成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.l XY FA(x,y)11B(x,y)22A 1B 1l()122111212121111112224x x p p pp p AF BF AA BB x x x x x x +++=+=+=+++++ ()()121222121222424x x p x x p p p p pp x x p x x ++++===+++++. 故不论弦AB 与x 轴是否垂直,恒有pBF AF 211=+成立. (3)切线——抛物线与函数有缘有关抛物线的许多试题,又与它的切线有关.理解并掌握抛物线的切线方程,是解题者不可或缺的基本功.【例3】证明:过抛物线22y px =上一点M (x 0,y 0)的切线方程是:y 0y=p (x+x 0)【证明】对方程22y px =两边取导数:22.py y p y y''⋅=∴=,切线的斜率 00x x p k y y ='==.由点斜式方程:()()20000001p y y x x y y px px y y -=-⇒=-+20021y px =,代入()即得: y 0y=p (x+x 0)(4)定点与定值——抛物线埋在深处的宝藏抛物线中存在许多不不易发现,却容易为人疏忽的定点和定值.掌握它们,在解题中常会有意想不到的收获.例如:1.一动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必过定点 ( )()()()().4,0.2,0.0,2.0,2A B C D -显然.本题是例1的翻版,该圆必过抛物线的焦点,选B. 2.抛物线22y px =的通径长为2p ;3.设抛物线22y px =过焦点的弦两端分别为()()1122,,,A x y B x y ,那么:212y y p =-以下再举一例【例4】设抛物线22y px =的焦点弦AB 在其准线上的射影是A 1B 1,证明:以A 1B 1为直径的圆必过一定点【分析】假定这条焦点弦就是抛物线的通径,那么A 1B 1=AB=2p ,而A 1B 1与AB 的距离为p ,可知该圆必过抛物线的焦点.由此我们猜想:一切这样的圆都过抛物线的焦点.以下我们对AB 的一般情形给于证明.【证明】如图设焦点两端分别为()()1122,,,A x y B x y ,那么:22121112.y y p CA CB y y p =-⇒⋅==设抛物线的准线交x 轴于C ,那么.CF p =2111111.90A FB CF CA CB A FB ∴∆=⋅∠=︒中故.这就说明:以A 1B 1为直径的圆必过该抛物线的焦点.● 通法 特法 妙法(1)解析法——为对称问题解困排难解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等).【例5】(10.四川文科卷.10题)已知抛物线 y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于( )A.3B.4C.32D.42【分析】直线AB 必与直线x+y=0垂直,且线段 AB 的中点必在直线x+y=0上,因得解法如下.【解析】∵点A 、B 关于直线x+y=0对称,∴设直线AB 的方程为:y x m =+. 由()223013y x mx x m y x =+⎧⇒++-=⎨=-+⎩设方程(1)之两根为x 1,x 2,则121x x +=-. 设AB 的中点为M (x 0,y 0),则120122x x x +==-.代入x+y=0:y 0=12.故有11,22M ⎛⎫- ⎪⎝⎭. 从而1m y x =-=.直线AB 的方程为:1y x =+.方程(1)成为:220x x +-=.解得: 2,1x =-,从而1,2y =-,故得:A (-2,-1),B (1,2).AB ∴=,选C.(2)几何法——为解析法添彩扬威虽然解析法使几何学得到长足的发展,但伴之而来的却是难以避免的繁杂计算,这又使得许多考生对解析几何习题望而生畏.针对这种现状,人们研究出多种使计算量大幅度减少的优秀方法,其中最有成效的就是几何法.【例6】(11.全国1卷.11题)抛物线24y x =的焦点为F ,准线为l ,经过F抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则A K F △的面积( )A .4 B. C. D .8【解析】如图直线AF AFX=60°. △AFK 为正三角形.设准线l 交x 轴于M ,则2,FM p ==XYABFA 1B 11MC XOYABMl x y +=ÿXY O F(1,0)AK60°Y2=2px L:x=-1M且∠KFM=60°,∴24,4AKF KF S ∆===选C. 【评注】(1)平面几何知识:边长为a 的正三角形的面积用公式24S ∆=计算. (2)本题如果用解析法,需先列方程组求点A 的坐标,,再计算正三角形的边长和面积.虽不是很难,但决没有如上的几何法简单.(3)定义法——追本求真的简单一着许多解析几何习题咋看起来很难.但如果返朴归真,用最原始的定义去做,反而特别简单. 【例7】(07.湖北卷.7题)双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .12【分析】 这道题如果用解析法去做,计算会特别繁杂,而平面几何知识又一时用不上,那么就从最原始的定义方面去寻找出路吧.如图,我们先做必要的准备工作:设双曲线的半 焦距c ,离心率为e ,作 MH l H ⊥于,令1122,MF r MF r ==.∵点M 在抛物线上,1112222,MF MF r MH MF r e MH MF r ∴=====故,这就是说:12||||MF MF 的实质是离心率e.其次,121||||F F MF 与离心率e 有什么关系?注意到: ()1212111122111F F e r r c e a e e MF r r r e +⋅⎛⎫====-=- ⎪⎝⎭. 这样,最后的答案就自然浮出水面了:由于()12112||||11||||F F MF e e MF MF -=-+=-.∴选 A..(4)三角法——本身也是一种解析三角学蕴藏着丰富的解题资源.利用三角手段,可以比较容易地将异名异角的三角函数转化为同名同角的三角函数,然后根据各种三角关系实施“九九归一”——达到解题目的.因此,在解析几何解题中,恰当地引入三角资源,常可以摆脱困境,简化计算.【例8】(09.重庆文科.21题)如图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。