三年高考(2016-2018)数学(理)真题分项版解析——专题07 导数的应用(原卷版)
三年高考(2016-2018)数学(理)真题分类解析:专题08-导数与不等式、函数零点
专题08 导数与不等式、函数零点相结合2018年高考全景展示1.【2018年全国卷Ⅲ理】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点,综上,.点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大。
2.【2018年理数全国卷II】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【答案】(1)见解析(2)【解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式,(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.3.【2018年江苏卷】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.2017年高考全景展示1.【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数的零点满足()2112x x x x a e e --+-=-+,设()11x x g x ee--+=+,则()()211111111x x x x x x eg x eeee e ---+----'=-=-=,当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减, 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,设()22h x x x =- ,当1x =时,函数取得最小值1- ,若0a ->,函数()h x 与函数()ag x 没有交点,当0a -<时,()()11ag h -=时,此时函数()h x 和()ag x 有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】 函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用. 2.【2017课标1,理21】已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,在对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)题,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈有2个零点,设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3l n (1)l n a a->-,因此()f x 在(ln ,)a -+∞有一个零点.所以a 的取值范围为(0,1).(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点. 设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围.【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证有最小值两边存在大于0的点.3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
三年高考(2016-2018)数学(理)真题分类解析:专题08-导数与不等式、函数零点
专题08 导数与不等式、函数零点相结合2018年高考全景展示1.【2018年全国卷Ⅲ理】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点,综上,.点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大。
2.【2018年理数全国卷II】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【答案】(1)见解析(2)【解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式,(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.3.【2018年江苏卷】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10.令∠GOK =θ0,则sin θ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是[,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[,1).令,得θ=,当θ∈(θ0,)时,,所以f (θ)为增函数;当θ∈(,)时,,所以f (θ)为减函数,因此,当θ=时,f (θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.2017年高考全景展示1.【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数的零点满足()2112x x x x a e e --+-=-+,设()11x x g x ee--+=+,则()()211111111x x x x x x e g x eeee e ---+----'=-=-=,当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减, 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,设()22h x x x =- ,当1x =时,函数取得最小值1- ,若0a ->,函数()h x 与函数()ag x 没有交点,当0a -<时,()()11ag h -=时,此时函数()h x 和()ag x 有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】 函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用. 2.【2017课标1,理21】已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,在对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)题,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈有2个零点,设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3l n (1)l na a->-,因此()f x 在(ln ,)a -+∞有一个零点.所以a 的取值范围为(0,1).(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围.【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证有最小值两边存在大于0的点.3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
高考(2016-2018)数学(理)真题分项版解析——专题07导数的应用(解析版)
专题07导数的应用考纲解读明方向考点内容解读要求常考题型预测热度1.导数与函数的单调性了解函数单调性和导数的关系能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)理解选择题解答题★★★2.导数与函数的极(最)值了解函数在某点取得极值的必要条件和充分条件会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次)会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)掌握解答题★★★3.生活中的优化问题会利用导数解决某些实际问题掌握选择题★☆☆分析解读1.会利用导数研究函数的单调性,掌握求函数单调区间的方法.2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最高等实际生产、生活中的优化问题.3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.命题探究练扩展2018年高考全景展示1.2018年理数天津卷已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.答案(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.详解:(I)由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:x0极小值所以函数的单调递减区间,单调递增区间为.(III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.2.2018年理北京卷设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.答案(1) a的值为1 (2) a的取值范围是(,∞)解析分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围.详解:解:(Ⅰ)因为=[],所以f ′(x)=[2ax–(4a1)]e x[ax2–(4a1)x4a3]e x(x∈R)=[ax2–(2a1)x2]e x.f′(1)=(1–a)e.由题设知f′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.3.2018年江苏卷记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.答案(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,∞)内存在“S点”.解析分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=xx2,则f′(x)=1,g′(x)=2x2.由f(x)=g(x)且f′(x)= g′(x得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0得,即,(*)得,即,则.当时,满足方程组(*即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x得,即(**)此时,满足方程组(**即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.4.2018年理新课标I卷已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.答案(1)当时,在单调递减.,当时,在单调递减,在单调递增.(2)证明见解析.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.2017年高考全景展示1.2017课标II ,理11若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 答案A 解析试题分析:由题可得12121()(2)(1)[(2)1]x x x f x x a e x ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e -'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减 所以()f x 极小值为()111(111)1f e -=--=-,故选A 。
三年高考2016_2018高考数学试题分项版解析专题06导数的几何意义理含解析51
专题06 导数的几何意义纲解读明方向),y=x,y=的导数能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2018年高考全景展示1.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【2018年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】分析:求导,利用导数的几何意义计算即可。
详解:,则,所以,故答案为-3.点睛:本题主要考查导数的计算和导数的几何意义,属于基础题。
3.【2018年理数全国卷II】曲线在点处的切线方程为__________.【答案】【解析】分析:先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.详解:点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.4.【2018年理数天津卷】已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.【解析】分析:(I)由题意可得.令,解得x=0.据此可得函数的单调递减区间,单调递增区间为.(II)曲线在点处的切线斜率为.曲线在点处的切线斜率为.原问题等价于.两边取对数可得.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.详解:(I)由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:所以函数的单调递减区间,单调递增区间为.(II)由,可得曲线在点处的切线斜率为.由,可得曲线在点处的切线斜率为.因为这两条切线平行,故有,即.两边取以a为底的对数,得,所以. (III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.5.【2018年理北京卷】设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1) a的值为1 (2) a的取值范围是(,+∞)(Ⅱ)由(Ⅰ)得f ′(x )=[ax 2–(2a +1)x +2]e x =(ax –1)(x –2)e x.若a >,则当x ∈(,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.所以f (x )<0在x =2处取得极小值.若a ≤,则当x ∈(0,2)时,x –2<0,ax –1≤x –1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.2017年高考全景展示1.【2017山东,理20】已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)222y x ππ=--.(Ⅱ)综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.试题解析:(Ⅰ)由题意()22f ππ=-又()22sin f x x x '=-,所以()2f ππ'=,因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x πππ--=-,即 222y x ππ=--.(Ⅱ)由题意得 2()(cos sin 22)(2cos )x h x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin x x h x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =-则()1cos 0m x x '=-≥所以()m x 在R 上单调递增.因为(0)0,m =所以 当0x >时,()0,m x >当0x <时,()0m x <(1)当0a ≤时,x e a -0>当0x <时,()0h x '<,()h x 单调递减,当0x >时,()0h x '>,()h x 单调递增,所以 当0x =时()h x 取得极小值,极小值是 ()021h a =--;(2)当0a >时,()()()ln 2sin x ah x e e x x '=--由 ()0h x '=得 1ln xa =,2=0x①当01a <<时,ln 0a <,当(),ln x a ∈-∞时,()ln 0,0x a e e h x '-<>,()h x 单调递增;当()ln ,0x a ∈时,()ln 0,0x a e e h x '-><,()h x 单调递减;当()0,x ∈+∞时,()ln 0,0x a e e h x '->>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--;②当1a =时,ln 0a =,所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值;③当1a >时,ln 0a >所以 当(),0x ∈-∞时,ln 0x a e e -<,()()0,h x h x '>单调递增;当()0,ln x a ∈时,ln 0x a e e -<,()()0,h x h x '<单调递减;当()ln ,x a ∈+∞时,ln 0x a e e ->,()()0,h x h x '>单调递增;所以 当0x =时()h x 取得极大值,极大值是()021h a =--;当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【考点】1.导数的几何意义.2.应用导数研究函数的单调性、极值.3.分类讨论思想.【名师点睛】1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y −y 0=f ′(x 0)(x −x 0).注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同.2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.2.【2017北京,理19】已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-. 【解析】(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x xh x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【考点】1.导数的几何意义;2.利用导数求函数的最值.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为()f x '不能判断函数的单调性,所以需要再求一次导数,设()()h x f x '= ,再求()h x ',一般这时就可求得函数()h x '的零点,或是()h x '恒成立,这样就能知道函数()h x 的单调性,根据单调性求最值,从而判断()y f x =的单调性,求得最值.2016年高考全景展示1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x =(C )e x y =(D )3y x =【答案】A 【解析】试题分析:由函数的图象在两点处的切线互相垂直可知,存在两点处的切线斜率的积,即导函数值的乘积为负一.当sin y x =时,cos y x '=,有cos0cos1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,xy x y e y x ===的导数值均非负,不符合题意,故选A. 考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等. 2. 【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为2111221121,ln 11x x P x x x ⎛⎫-+ ⎪++⎝⎭,11x >,21122112111211PABA B P x x S y y x x x ∆+∴=-⋅=<=++,01PAB S ∆∴<<.故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.3.【2016高考新课标3理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x = 在点(1,3)-处的切线方程是_______________.【答案】21y x =--考点:1、函数的奇偶性与解析式;2、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.4.【2016年高考北京理数】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.【解析】试题分析:(1)根据题意求出()f x ',根据(2)22f e =+,(2)1f e '=-,求a ,b 的值;(2)由题意知判断)(x f ',即判断11)(-+-=x e x x g 的单调性,知()0g x >,即()0f x '>,由此求得()f x 的单调区间.所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减;当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增.故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值,从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞.考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.。
2018-2016三年高考真题理科数学分类汇编:导数的应用(解析版附后)
三年真题专题07:导数的应用(解析版附后)考纲解读明方向分析解读1.会利用导数研究函数的单调性,掌握求函数单调区间的方法.2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最高等实际生产、生活中的优化问题.3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.命题探究练扩展2018年高考全景展示1.【2018a>1.(I(II处的切线与曲线在点处的切线平行,证明(III l,使l.2.【2018(Ⅰ)若曲线y= f(x)在点(1a;x=2处取得极小值,求a的取值范围.3.【2018的导函数.若存在S 点”.(1S 点”;(2S 点”,求实数a 的值;(3S 点”,并说明理由.4.【2018年理新课标I(1(22017年高考全景展示1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.12.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<。
4.【2017课标3,理21】已知函数()1ln f x x a x =-- . (1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n 2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.5.【2017浙江,20】(本题满分15分)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;(Ⅱ)求f (x )在区间1[+)2∞,上的取值范围. 6.【2017江苏,20】 已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.2016年高考全景展示1.【2016高考江苏卷】(本小题满分16分)已知函数()(0,0,1,1)x xf x a b a b a b =+>>≠≠.设12,2a b ==. (1)求方程()2f x =的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。
三年高考(2016-2018)数学(理)真题分类解析:专题08-导数与不等式、函数零点含答案
专题08 导数与不等式、函数零点相结合式★数学计算际问题.2018年高考全景展示1.【2018年全国卷Ⅲ理】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点,综上,.点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大。
2.【2018年理数全国卷II】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【答案】(1)见解析(2)【解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式,(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.3.【2018年江苏卷】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f (θ)为减函数,因此,当θ=时,f (θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.2017年高考全景展示1.【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数的零点满足()2112x x x x a e e --+-=-+,设()11x x g x ee--+=+,则()()211111111x x x x x x e g x eeee e ---+----'=-=-=,当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减, 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,设()22h x x x =- ,当1x =时,函数取得最小值1- ,若0a ->,函数()h x 与函数()ag x 没有交点,当0a -<时,()()11ag h -=时,此时函数()h x 和()ag x 有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】 函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用. 2.【2017课标1,理21】已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,在对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)题,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈有2个零点,设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a ->-,因此()f x 在(ln ,)a -+∞有一个零点.所以a 的取值范围为(0,1).(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(l n )1l n f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围.【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证有最小值两边存在大于0的点.3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
三年高考(2016-2018)数学(理)真题分类解析:导数与不等式、函数零点
导数与不等式、函数零点相结合2018年高考全景展示1.【2018年全国卷Ⅲ理】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点,综上,.点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大。
2.【2018年理数全国卷II】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【答案】(1)见解析(2)【解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式,(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.3.【2018年江苏卷】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10.令∠GOK =θ0,则sin θ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是[,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[,1).令,得θ=,当θ∈(θ0,)时,,所以f (θ)为增函数;当θ∈(,)时,,所以f (θ)为减函数,因此,当θ=时,f (θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.2017年高考全景展示1.【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数的零点满足()2112x x x x a e e --+-=-+,设()11x x g x ee --+=+,则()()211111111x x x x x x e g x e e e e e ---+----'=-=-=,当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减, 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,设()22h x x x =- ,当1x =时,函数取得最小值1- ,若0a ->,函数()h x 与函数()ag x 没有交点,当0a -<时,()()11ag h -=时,此时函数()h x 和()ag x 有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】 函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用. 2.【2017课标1,理21】已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,在对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)题,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈有2个零点,设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3l n (1)l na a ->-,因此()f x 在(ln ,)a -+∞有一个零点.所以a 的取值范围为(0,1).(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围.【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证有最小值两边存在大于0的点.3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
高考(2016-2018)数学(理)真题分项版解析——专题06导数的几何意义(原卷版)
专题06 导数的几何意义考纲解读明方向考点内容解读要求常考题型预测热度1.导数的概念与几何意义1.了解导数概念的实际背景2.理解导数的几何意义Ⅱ选择题、填空题★★★2.导数的运算1.能根据导数定义求函数y=C(C为常数),y=x, y=,y=x2,y=x3,y=的导数2.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数Ⅲ选择题、解答题.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2018年高考全景展示1.2018年理新课标I卷设函数,若为奇函数,则曲线在点处的切线方程为()A. B. C. D.2.2018年全国卷Ⅲ理曲线在点处的切线的斜率为,则________.3.2018年理数全国卷II曲线在点处的切线方程为__________.4.2018年理数天津卷已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.5.2018年理北京卷设函数= [].(Ⅰ)若曲线y= f (x )在点(1,)处的切线与轴平行,求a ; (Ⅱ)若在x =2处取得极小值,求a 的取值范围.2017年高考全景展示1.2017,理20已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程; (Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.2.2017北京,理19已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.2016年高考全景展示1. 2016高考理数若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =2. 2016年高考四川理数设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,∞) (D )(1,∞)3.2016高考新课标3理数已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x = 在点(1,3)-处的切线方程是_______________.4.2016年高考北京理数设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.。
三年高考2016_2018高考地理试题分项版解析专题07城市含解析
专题7 城市【2018年高考题】(2018·新课标Ⅱ卷)澳门丰岛以低矮的丘陵为主,现在的部分土地是历年填海而成的。
图2示意澳门丰岛山丘分布、街道格局及部分街道名称,据此完成4~5题。
4.由于填海造地,海岸线向海推移距离最长的地方位于澳门半岛的A.东北部B.西北部C.东南部D.西南部5.澳门老城区少见自行车,原因可能是老城区街道A.狭窄B.曲折C.坡大D.路面凹凸【答案】4.C 5.C【解析】精准分析:5.该题考查考生生活中的地理及推理的能力,考生可知澳门老城区的大致界线,结合澳门以低矮的丘陵(图中有高程)为主的地形特点、图中较大的比例尺可知老城区街道的坡度较大,当地骑自行车上街比较费力气,C选项正确。
狭窄的地区骑自行车反而更加方便,A项错误;曲折的街道对骑乘自行车影响不大,B项错误;澳门基础设施比较完善,路面凹凸不平的可能性小,D项错误。
考点定位:该题组考查区域地图的判读以及地形对人类活动的影响。
【试题点评】举一反三:判断填海造陆主要方向的关键有两个。
第一,确定以“海”命名的道路距海远近的差异及其影响因素。
第二,结合澳门半岛丘陵为主的地形,澳门半岛原始的丘陵地形,地势起伏较大,受其影响,街道的布局不规则;而新填海造陆的地形,地势平坦,街道布局比较规则,据此也可以判断出哪些地方填海造陆比较多。
(2018·新课标Ⅲ卷)大别山区某国家级贫国县农民可分为跨村种田大户农民、种植自家承包地农民、本地务工务农兼业农民和常年外出务工农民等类型,该县以当地优势资源为基础的加工企业在县城活力较弱,但在中心集镇活力较强,图1示意该县居民点的等级结构,据此完成3~5题。
图13.与县城相比,中心集镇以当地优势资源为基础的加工企业活力较强的主要原因是A.基础设施较完善B.更接近消费市场C.资金供应较充裕D.更易招募劳动力4.面向某类型农民的需求,有专家建议在该县推进“村—中心集镇双栖”居住模式,这种模式旨在方便该类型农民A.从事商业活动B.留守子女上学C.兼顾务工务农D.扩大种田规模5.为了实施乡村振兴战略,带领农民脱贫致富,该国家级贫困县可采取的有效措施是①推广大规模机械化种植②鼓励外出务工农民回乡创业③引导传统农民多种经营④推进中心集镇房地产开发A.①②B.②③C.③④D.①④【答案】3.D 4.C 5.B【解析】精准分析:4.从材料里可以看出该国家级贫困县的农民大多以种田或务工为主,并没有提到经商,A不符合;根据材料可知该地中心集镇加工企业活力较强,从业人员为附近的农民,而推行的居住模式也是便于农民在村和中心集镇都能得到休息,所以应该是便于该类农民兼顾务工务农,C符合;双栖居住的模式是中心集镇与农村都有住房,可能会占用一部分土地,不利于扩大种田规模,再者扩大种田规模也没有必要到集镇上去住呢,D不符合;留守子女是指因父母或家人外出务工等而不在家里,因为生活及学习而留在老家的孩子,留守子女上学一般是在校内住宿或回家住宿,没有必要村——中心集镇双栖,B不符合。
三年高考(2016-2018)高考数学试题分项版解析 专题06 导数的几何意义 理(含解析)
专题06 导数的几何意义纲解读明方向),y=x,y=的导数能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2018年高考全景展示1.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【2018年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】分析:求导,利用导数的几何意义计算即可。
详解:,则,所以,故答案为-3.点睛:本题主要考查导数的计算和导数的几何意义,属于基础题。
3.【2018年理数全国卷II】曲线在点处的切线方程为__________.【答案】【解析】分析:先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.详解:点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.4.【2018年理数天津卷】已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.【解析】分析:(I)由题意可得.令,解得x=0.据此可得函数的单调递减区间,单调递增区间为.(II)曲线在点处的切线斜率为.曲线在点处的切线斜率为.原问题等价于.两边取对数可得.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.详解:(I)由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:所以函数的单调递减区间,单调递增区间为.(II)由,可得曲线在点处的切线斜率为.由,可得曲线在点处的切线斜率为.因为这两条切线平行,故有,即.两边取以a为底的对数,得,所以. (III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.5.【2018年理北京卷】设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1) a的值为1 (2) a的取值范围是(,+∞)(Ⅱ)由(Ⅰ)得f ′(x )=[ax 2–(2a +1)x +2]e x =(ax –1)(x –2)e x.若a >,则当x ∈(,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.所以f (x )<0在x =2处取得极小值.若a ≤,则当x ∈(0,2)时,x –2<0,ax –1≤x –1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.2017年高考全景展示1.【2017山东,理20】已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)222y x ππ=--.(Ⅱ)综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.试题解析:(Ⅰ)由题意()22f ππ=-又()22sin f x x x '=-,所以()2f ππ'=,因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x πππ--=-,即 222y x ππ=--.(Ⅱ)由题意得 2()(cos sin 22)(2cos )x h x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin x x h x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =-则()1cos 0m x x '=-≥所以()m x 在R 上单调递增.因为(0)0,m =所以 当0x >时,()0,m x >当0x <时,()0m x <(1)当0a ≤时,x e a -0>当0x <时,()0h x '<,()h x 单调递减,当0x >时,()0h x '>,()h x 单调递增,所以 当0x =时()h x 取得极小值,极小值是 ()021h a =--;(2)当0a >时,()()()ln 2sin x ah x e e x x '=--由 ()0h x '=得 1ln xa =,2=0x①当01a <<时,ln 0a <,当(),ln x a ∈-∞时,()ln 0,0x a e e h x '-<>,()h x 单调递增;当()ln ,0x a ∈时,()ln 0,0x a e e h x '-><,()h x 单调递减;当()0,x ∈+∞时,()ln 0,0x a e e h x '->>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--;②当1a =时,ln 0a =,所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值;③当1a >时,ln 0a >所以 当(),0x ∈-∞时,ln 0x a e e -<,()()0,h x h x '>单调递增;当()0,ln x a ∈时,ln 0x a e e -<,()()0,h x h x '<单调递减;当()ln ,x a ∈+∞时,ln 0x a e e ->,()()0,h x h x '>单调递增;所以 当0x =时()h x 取得极大值,极大值是()021h a =--;当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【考点】1.导数的几何意义.2.应用导数研究函数的单调性、极值.3.分类讨论思想.【名师点睛】1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y −y 0=f ′(x 0)(x −x 0).注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同.2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.2.【2017北京,理19】已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-.【解析】(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【考点】1.导数的几何意义;2.利用导数求函数的最值.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为()f x '不能判断函数的单调性,所以需要再求一次导数,设()()h x f x '= ,再求()h x ',一般这时就可求得函数()h x '的零点,或是()h x '恒成立,这样就能知道函数()h x 的单调性,根据单调性求最值,从而判断()y f x =的单调性,求得最值.2016年高考全景展示1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x =(C )e x y =(D )3y x =【答案】A 【解析】试题分析:由函数的图象在两点处的切线互相垂直可知,存在两点处的切线斜率的积,即导函数值的乘积为负一.当sin y x =时,cos y x '=,有cos0cos 1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,x y x y e y x ===的导数值均非负,不符合题意,故选A. 考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等. 2. 【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为2111221121,ln 11x x P x x x ⎛⎫-+ ⎪++⎝⎭,11x >,21122112111211PABA B P x x S y y x x x ∆+∴=-⋅=<=++,01PAB S ∆∴<<.故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.3.【2016高考新课标3理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x = 在点(1,3)-处的切线方程是_______________.【答案】21y x =--考点:1、函数的奇偶性与解析式;2、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.4.【2016年高考北京理数】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.【解析】试题分析:(1)根据题意求出()f x ',根据(2)22f e =+,(2)1f e '=-,求a ,b 的值;(2)由题意知判断)(x f ',即判断11)(-+-=x e x x g 的单调性,知()0g x >,即()0f x '>,由此求得()f x 的单调区间.所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减;当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增.故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值,从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞.考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.。
三年高考(2016-2018)高考数学试题分项版解析-专题06-导数的几何意义-理(含解析)
专题06 导数的几何意义纲解读明方向),y=x,y=的导数能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2018年高考全景展示1.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【2018年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】分析:求导,利用导数的几何意义计算即可。
详解:,则,所以,故答案为-3.点睛:本题主要考查导数的计算和导数的几何意义,属于基础题。
3.【2018年理数全国卷II】曲线在点处的切线方程为__________.【答案】【解析】分析:先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.详解:点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.4.【2018年理数天津卷】已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.【解析】分析:(I)由题意可得.令,解得x=0.据此可得函数的单调递减区间,单调递增区间为.(II)曲线在点处的切线斜率为.曲线在点处的切线斜率为.原问题等价于.两边取对数可得.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.详解:(I)由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:所以函数的单调递减区间,单调递增区间为.(II)由,可得曲线在点处的切线斜率为.由,可得曲线在点处的切线斜率为.因为这两条切线平行,故有,即.两边取以a为底的对数,得,所以.(III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.5.【2018年理北京卷】设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1) a的值为1 (2) a的取值范围是(,+∞)(Ⅱ)由(Ⅰ)得f ′(x )=[ax 2–(2a +1)x +2]e x =(ax –1)(x –2)e x.若a >,则当x ∈(,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.所以f (x )<0在x =2处取得极小值.若a ≤,则当x ∈(0,2)时,x –2<0,ax –1≤x –1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.2017年高考全景展示1.【2017山东,理20】已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)222y x ππ=--.(Ⅱ)综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.试题解析:(Ⅰ)由题意()22f ππ=-又()22sin f x x x '=-,所以()2f ππ'=,因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x πππ--=-,即 222y x ππ=--.(Ⅱ)由题意得 2()(cos sin 22)(2cos )x h x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin x x h x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =-则()1cos 0m x x '=-≥所以()m x 在R 上单调递增.因为(0)0,m =所以 当0x >时,()0,m x >当0x <时,()0m x <(1)当0a ≤时,x e a -0>当0x <时,()0h x '<,()h x 单调递减,当0x >时,()0h x '>,()h x 单调递增,所以 当0x =时()h x 取得极小值,极小值是 ()021h a =--;(2)当0a >时,()()()ln 2sin x ah x e e x x '=--由 ()0h x '=得 1ln xa =,2=0x①当01a <<时,ln 0a <,当(),ln x a ∈-∞时,()ln 0,0x a e e h x '-<>,()h x 单调递增;当()ln ,0x a ∈时,()ln 0,0x a e e h x '-><,()h x 单调递减;当()0,x ∈+∞时,()ln 0,0x a e e h x '->>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--;②当1a =时,ln 0a =,所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值;③当1a >时,ln 0a >所以 当(),0x ∈-∞时,ln 0x a e e -<,()()0,h x h x '>单调递增;当()0,ln x a ∈时,ln 0x a e e -<,()()0,h x h x '<单调递减;当()ln ,x a ∈+∞时,ln 0x a e e ->,()()0,h x h x '>单调递增;所以 当0x =时()h x 取得极大值,极大值是()021h a =--;当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【考点】1.导数的几何意义.2.应用导数研究函数的单调性、极值.3.分类讨论思想.【名师点睛】1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y −y 0=f ′(x 0)(x −x 0).注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同.2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.2.【2017北京,理19】已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-. 【解析】(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x xh x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【考点】1.导数的几何意义;2.利用导数求函数的最值.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为()f x '不能判断函数的单调性,所以需要再求一次导数,设()()h x f x '= ,再求()h x ',一般这时就可求得函数()h x '的零点,或是()h x '恒成立,这样就能知道函数()h x 的单调性,根据单调性求最值,从而判断()y f x =的单调性,求得最值.2016年高考全景展示1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =【答案】A【解析】试题分析:由函数的图象在两点处的切线互相垂直可知,存在两点处的切线斜率的积,即导函数值的乘积为负一.当sin y x =时,cos y x '=,有cos0cos1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,xy x y e y x ===的导数值均非负,不符合题意,故选A. 考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.2. 【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为2111221121,ln 11x x P x x x ⎛⎫-+ ⎪++⎝⎭,11x >,21122112111211PABA B P x x S y y x x x ∆+∴=-⋅=<=++,01PAB S ∆∴<<.故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.3.【2016高考新课标3理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x = 在点(1,3)-处的切线方程是_______________.【答案】21y x =--考点:1、函数的奇偶性与解析式;2、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.4.【2016年高考北京理数】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.【解析】试题分析:(1)根据题意求出()f x ',根据(2)22f e =+,(2)1f e '=-,求a ,b 的值;(2)由题意知判断)(x f ',即判断11)(-+-=x e x x g 的单调性,知()0g x >,即()0f x '>,由此求得()f x 的单调区间.所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减;当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增.故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值,从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞.考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.。
精品三年高考2016_2018高考数学试题分项版解析专题07导数的应用理含解析53
专题07导数的应用
分析解读
1.会利用导数研究函数的单调性,掌握求函数单调区间的方法.
2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最高等实际生产、生活中的优化问题.
3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.
命题探究练扩展
2018年高考全景展示
1.【2018年理数天津卷】已知函数,,其中a>1.
(I)求函数的单调区间;
(II)若曲线在点处的切线与曲线在点处的切线平行,证明
;
(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.
【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.
(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.
详解:(I)由已知,,有.
令,解得x=0.
由a>1,可知当x变化时,,的变化情况如下表:。
三年高考(2016-2018)数学(文)真题分项版解析专题06导数的几何意义(原卷版)
专业文档珍贵文档考纲解读明方向考点内容解读要求常考题型预测热度1.导数的概念与几何意义1.了解导数概念的实际背景2.理解导数的几何意义Ⅱ选择题、填空题★★2.导数的运算1.能根据导数定义求函数y=C(C 为常数),y=x,y=,y=x 2,y=x 3,y=的导数2.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数Ⅲ]选择题、解答题本部分主要是对导数概念及其运算的考查,以导数的运算公式和运算法则为基础,以导数的几何意义为重点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2018年高考全景展示1.【2018年新课标I 卷文】设函数.若为奇函数,则曲线在点处的切线方程为A.B.C.D.2.【2018年天津卷文】已知函数f(x)=e xln x ,为f (x)的导函数,则的值为__________.3.【2018年全国卷II 文】曲线在点处的切线方程为__________.4.【2018年天津卷文】设函数,其中,且是公差为的等差数列.(I )若求曲线在点处的切线方程;(II )若,求的极值;(III )若曲线与直线有三个互异的公共点,求d 的取值范围.。
三年高考2016_2018高考数学试题分项版解析专题06导数的几何意义文含解析52
专题06 导数的几何意义 文考纲解读明方向),y=x,y=的导数能利用基本初等函数的导数公式和导数的本部分主要是对导数概念及其运算的考查,以导数的运算公式和运算法则为基础,以导数的几何意义为重点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2018年高考全景展示1.【2018年新课标I 卷文】设函数.若为奇函数,则曲线在点处的切线方程为 A.B.C.D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【2018年天津卷文】已知函数f(x)=e x ln x,为f(x)的导函数,则的值为__________.【答案】e【解析】分析:首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.详解:由函数的解析式可得:,则:.即的值为e.点睛:本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.3.【2018年全国卷II文】曲线在点处的切线方程为__________.【答案】y=2x–2点睛:求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理.4.【2018年天津卷文】设函数,其中,且是公差为的等差数列. (I)若求曲线在点处的切线方程;(II)若,求的极值;(III)若曲线与直线有三个互异的公共点,求d的取值范围.【答案】(Ⅰ)x+y=0;(Ⅱ)极大值为6;极小值为−6;(Ⅲ)【解析】分析:(Ⅰ)由题意可得f(x)=x3−x,=3x2−1,结合f(0)=0,=−1,可得切线方程为x+y=0. (Ⅱ)由已知可得:f(x)=x3−3t2x2+(3t22−9)x−t23+9t2.则= 3x2−6t2x+3t22−9.令=0,解得x= t2−,或x= t2+.据此可得函数f(x)的极大值为f(t2−)=6;函数极小值为f(t2+)=−6.(III)原问题等价于关于x的方程(x−t2+d) (x−t2) (x−t2−d)+ (x−t2)+ 6=0有三个互异的实数解,令u= x−t2,可得u3+(1−d2)u+6=0.设函数g(x)= x3+(1−d2)x+6,则y=g(x)有三个零点.利用导函数研究g(x)的性质可得的取值范围是详解:(Ⅰ)由已知,可得f(x)=x(x−1)(x+1)=x3−x,故=3x2−1,因此f(0)=0,=−1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y−f(0)=(x−0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x−t2+3)(x−t2)(x−t2−3)=(x−t2)3−9(x−t2)=x3−3t2x2+(3t22−9)x−t23+9t2.故=3x2−6t2x+3t22−9.令=0,解得x=t2−,或x=t2+.当x变化时,,f(x)的变化如下表:−) −−,) ,+∞)所以函数f(x)的极大值为f(t2−)=(−)3−9×(−)=6;函数f(x)的极小值为f(t2+)=()3−9×()=−6.若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意.所以,的取值范围是.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.5.【2018年文北京卷】设函数.(Ⅰ)若曲线在点处的切线斜率为0,求a;(Ⅱ)若在处取得极小值,求a的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)求导,构建等量关系,解方程可得参数的值;(2)对分及两种情况进行分类讨论,通过研究的变化情况可得取得极值的可能,进而可求参数的取值范围. 详解:(1)当a=0时,令得x=1.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.(2)当a>0时,令得.①当,即a=1时,,∴在上单调递增,∴无极值,不合题意.②当,即0<a<1时,随x的变化情况如下表:∴在x=1处取得极大值,不合题意.③当,即a>1时,随x的变化情况如下表:∴在x=1处取得极小值,即a>1满足题意.(3)当a<0时,令得.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.综上所述,a的取值范围为.点睛:导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数单调性或求单调区间问题;③利用导数求函数的极值最值问题;④关于不等式的恒成立问题.解题时需要注意的有以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值最值问题时常常会涉及到分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.2017年高考全景展示1.【2017课标1,文14】曲线21y x x=+在点(1,2)处的切线方程为______________. 【答案】1y x =+ 【解析】试题分析:设()y f x = 则21()2f x x x '=-,所以(1)211f '=-= 所以在(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+ 【考点】导数几何意义【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点),(00y x P 及斜率,其求法为:设),(00y x P 是曲线)(x f y =上的一点,则以P 的切点的切线方程为:))(('000x x x f y y -=-.若曲线)(x f y =在点))(,(00x f x P 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.2.【2017天津,文10】已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为 . 【答案】1 【解析】【考点】导数的几何意义【名师点睛】本题考查了导数的几何意义,属于基础题型,函数()f x 在点0x 处的导数()0f x '的几何意义是曲线()y f x =在点()00,P x y 处的切线的斜率.相应地,切线方程为()()000y y f x x x '-=-.注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同,谨记,有切点直接带入切点,没切点设切点,建立方程组求切点.3.【2017山东,文20】(本小题满分13分)已知函数()3211,32f x x ax a =-∈R ., (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(I)390x y --=,(2)(II)⑴0a =无极值;⑵0a <极大值为31sin 6a a --,极小值为a -; ⑶0a >极大值为a -,极小值为31sin 6a a --. 【解析】试题分析:(I)根据求出切线斜率,再用点斜式写出切线方程;(II)由()()(sin )g x x a x x '=--,通过讨论确定()g x 单调性,再由单调性确定极值. 试题解析:(I )由题意'2()f x x ax =-, 所以,当2a =时,(3)0f =,'2()2f x x x =-, 所以'(3)3f =,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(1)当0a <时,'()()(sin )g x x a x x =--,当(,)x a ∈-∞时,0x a -<,'()0g x >,()g x 单调递增; 当(,0)x a ∈时,0x a ->,'()0g x <,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,'()0g x >,()g x 单调递增. 所以,当x a =时,()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时,()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,'()(sin )g x x x x =-,当(,)x ∈-∞+∞时,'()0g x ≥,()g x 单调递增;所以,()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值.【考点】导数的几何意义及导数的应用4.【2017北京,文20】已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-. 【解析】试题分析:(Ⅰ)根据导数的几何意义,求斜率再代入切线方程公式()()()000y f f x '-=-;(Ⅱ)设()()h x f x '=,求()h x ',根据()0h x '<确定函数()h x 的单调性,根据单调减求函数的最大值()00h =,可以知道()()0h x f x '=≤恒成立,所以函数()f x 是单调递减函数,根据单调性求最值. 试题解析:(Ⅰ)因为()e cos xf x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.【考点】1.导数的几何意义;2.利用导数求函数的最值.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为()f x '不能判断函数的单调性,所以需要再求一次导数,设()()h x f x '= ,再求()h x ',一般这时就可求得函数()h x '的零点,或是()h x '恒成立,这样就能知道函数()h x 的单调性,根据单调性求最值,从而判断()y f x =的单调性,求得最值.2016年高考全景展示1.【2016高考四川文科】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A xB x -++又1l 与2l 的交点为221111112222111121121,ln .1,1,0111211PABA B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A. 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用. 2.[2016高考新课标Ⅲ文数]已知()f x 为偶函数,当0x ≤ 时,1()x f x e x --=-,则曲线()y f x =在(1,2)处的切线方程式_____________________________. 【答案】2y x = 【解析】考点:1、函数的奇偶性;2、解析式;3、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.3.【2016高考新课标2文数】已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;(Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.【答案】(Ⅰ)220x y +-=;(Ⅱ)(],2.-∞【解析】试题分析:(Ⅰ)先求函数的定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解.(i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;(ii )当2>a 时,令()0'=g x 得1211=-=-+x a x a , 由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()0<g x .综上,a 的取值范围是(],2.-∞考点: 导数的几何意义,函数的单调性.【名师点睛】求函数的单调区间的方法:(1)确定函数y =f (x )的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.。
三年高考(2016-2018)数学(理)真题分项版解析——专题07 导数的应用(解析版)
专题07导数的应用分析解读1.会利用导数研究函数的单调性,掌握求函数单调区间的方法.2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最高等实际生产、生活中的优化问题.3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.命题探究练扩展2018年高考全景展示1.【2018年理数天津卷】已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.详解:(I)由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:x00+极小值所以函数的单调递减区间,单调递增区间为.(III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.2.【2018年理北京卷】设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1) a的值为1 (2) a的取值范围是(,+∞)【解析】分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围.详解:解:(Ⅰ)因为=[],所以f ′(x)=[2ax–(4a+1)]e x+[ax2–(4a+1)x+4a+3]e x(x∈R)=[ax2–(2a+1)x+2]e x.f′(1)=(1–a)e.由题设知f′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.3.【2018年江苏卷】记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.4.【2018年理新课标I卷】已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.【答案】(1)当时,在单调递减.,当时,在单调递减,在单调递增.(2)证明见解析.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.2017年高考全景展示1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 【答案】A 【解析】试题分析:由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e-'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减 所以()f x 极小值为()111(111)1f e-=--=-,故选A 。
三年高考2016_2018高考数学试题分项版解析专题06导数的几何意义文含解析52
专题06 导数的几何意义 文考纲解读明方向),y=x,y=的导数能利用基本初等函数的导数公式和导数的本部分主要是对导数概念及其运算的考查,以导数的运算公式和运算法则为基础,以导数的几何意义为重点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2018年高考全景展示1.【2018年新课标I 卷文】设函数.若为奇函数,则曲线在点处的切线方程为 A.B.C.D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【2018年天津卷文】已知函数f(x)=e x ln x,为f(x)的导函数,则的值为__________.【答案】e【解析】分析:首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.详解:由函数的解析式可得:,则:.即的值为e.点睛:本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.3.【2018年全国卷II文】曲线在点处的切线方程为__________.【答案】y=2x–2点睛:求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理.4.【2018年天津卷文】设函数,其中,且是公差为的等差数列. (I)若求曲线在点处的切线方程;(II)若,求的极值;(III)若曲线与直线有三个互异的公共点,求d的取值范围.【答案】(Ⅰ)x+y=0;(Ⅱ)极大值为6;极小值为−6;(Ⅲ)【解析】分析:(Ⅰ)由题意可得f(x)=x3−x,=3x2−1,结合f(0)=0,=−1,可得切线方程为x+y=0. (Ⅱ)由已知可得:f(x)=x3−3t2x2+(3t22−9)x−t23+9t2.则= 3x2−6t2x+3t22−9.令=0,解得x= t2−,或x= t2+.据此可得函数f(x)的极大值为f(t2−)=6;函数极小值为f(t2+)=−6.(III)原问题等价于关于x的方程(x−t2+d) (x−t2) (x−t2−d)+ (x−t2)+ 6=0有三个互异的实数解,令u= x−t2,可得u3+(1−d2)u+6=0.设函数g(x)= x3+(1−d2)x+6,则y=g(x)有三个零点.利用导函数研究g(x)的性质可得的取值范围是详解:(Ⅰ)由已知,可得f(x)=x(x−1)(x+1)=x3−x,故=3x2−1,因此f(0)=0,=−1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y−f(0)=(x−0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x−t2+3)(x−t2)(x−t2−3)=(x−t2)3−9(x−t2)=x3−3t2x2+(3t22−9)x−t23+9t2.故=3x2−6t2x+3t22−9.令=0,解得x=t2−,或x=t2+.当x变化时,,f(x)的变化如下表:−) −−,) ,+∞)所以函数f(x)的极大值为f(t2−)=(−)3−9×(−)=6;函数f(x)的极小值为f(t2+)=()3−9×()=−6.若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意.所以,的取值范围是.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.5.【2018年文北京卷】设函数.(Ⅰ)若曲线在点处的切线斜率为0,求a;(Ⅱ)若在处取得极小值,求a的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)求导,构建等量关系,解方程可得参数的值;(2)对分及两种情况进行分类讨论,通过研究的变化情况可得取得极值的可能,进而可求参数的取值范围. 详解:(1)当a=0时,令得x=1.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.(2)当a>0时,令得.①当,即a=1时,,∴在上单调递增,∴无极值,不合题意.②当,即0<a<1时,随x的变化情况如下表:∴在x=1处取得极大值,不合题意.③当,即a>1时,随x的变化情况如下表:∴在x=1处取得极小值,即a>1满足题意.(3)当a<0时,令得.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.综上所述,a的取值范围为.点睛:导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数单调性或求单调区间问题;③利用导数求函数的极值最值问题;④关于不等式的恒成立问题.解题时需要注意的有以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值最值问题时常常会涉及到分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.2017年高考全景展示1.【2017课标1,文14】曲线21y x x=+在点(1,2)处的切线方程为______________. 【答案】1y x =+ 【解析】试题分析:设()y f x = 则21()2f x x x '=-,所以(1)211f '=-= 所以在(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+ 【考点】导数几何意义【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点),(00y x P 及斜率,其求法为:设),(00y x P 是曲线)(x f y =上的一点,则以P 的切点的切线方程为:))(('000x x x f y y -=-.若曲线)(x f y =在点))(,(00x f x P 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.2.【2017天津,文10】已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为 . 【答案】1 【解析】【考点】导数的几何意义【名师点睛】本题考查了导数的几何意义,属于基础题型,函数()f x 在点0x 处的导数()0f x '的几何意义是曲线()y f x =在点()00,P x y 处的切线的斜率.相应地,切线方程为()()000y y f x x x '-=-.注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同,谨记,有切点直接带入切点,没切点设切点,建立方程组求切点.3.【2017山东,文20】(本小题满分13分)已知函数()3211,32f x x ax a =-∈R ., (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(I)390x y --=,(2)(II)⑴0a =无极值;⑵0a <极大值为31sin 6a a --,极小值为a -; ⑶0a >极大值为a -,极小值为31sin 6a a --. 【解析】试题分析:(I)根据求出切线斜率,再用点斜式写出切线方程;(II)由()()(sin )g x x a x x '=--,通过讨论确定()g x 单调性,再由单调性确定极值. 试题解析:(I )由题意'2()f x x ax =-, 所以,当2a =时,(3)0f =,'2()2f x x x =-, 所以'(3)3f =,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(1)当0a <时,'()()(sin )g x x a x x =--,当(,)x a ∈-∞时,0x a -<,'()0g x >,()g x 单调递增; 当(,0)x a ∈时,0x a ->,'()0g x <,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,'()0g x >,()g x 单调递增. 所以,当x a =时,()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时,()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,'()(sin )g x x x x =-,当(,)x ∈-∞+∞时,'()0g x ≥,()g x 单调递增;所以,()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值.【考点】导数的几何意义及导数的应用4.【2017北京,文20】已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-. 【解析】试题分析:(Ⅰ)根据导数的几何意义,求斜率再代入切线方程公式()()()000y f f x '-=-;(Ⅱ)设()()h x f x '=,求()h x ',根据()0h x '<确定函数()h x 的单调性,根据单调减求函数的最大值()00h =,可以知道()()0h x f x '=≤恒成立,所以函数()f x 是单调递减函数,根据单调性求最值. 试题解析:(Ⅰ)因为()e cos xf x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.【考点】1.导数的几何意义;2.利用导数求函数的最值.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为()f x '不能判断函数的单调性,所以需要再求一次导数,设()()h x f x '= ,再求()h x ',一般这时就可求得函数()h x '的零点,或是()h x '恒成立,这样就能知道函数()h x 的单调性,根据单调性求最值,从而判断()y f x =的单调性,求得最值.2016年高考全景展示1.【2016高考四川文科】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A xB x -++又1l 与2l 的交点为221111112222111121121,ln .1,1,0111211PABA B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A. 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用. 2.[2016高考新课标Ⅲ文数]已知()f x 为偶函数,当0x ≤ 时,1()x f x e x --=-,则曲线()y f x =在(1,2)处的切线方程式_____________________________. 【答案】2y x = 【解析】考点:1、函数的奇偶性;2、解析式;3、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.3.【2016高考新课标2文数】已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;(Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.【答案】(Ⅰ)220x y +-=;(Ⅱ)(],2.-∞【解析】试题分析:(Ⅰ)先求函数的定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解.(i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;(ii )当2>a 时,令()0'=g x 得1211=-=-+x a x a , 由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()0<g x .综上,a 的取值范围是(],2.-∞考点: 导数的几何意义,函数的单调性.【名师点睛】求函数的单调区间的方法:(1)确定函数y =f (x )的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.。
【三年高考】(2016-2018)数学(理科)真题分类解析:专题07-导数的应用(含答案)
专题07导数的应用函数一般不超过三次)分析解读1.会利用导数研究函数的单调性,掌握求函数单调区间的方法.2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最高等实际生产、生活中的优化问题.3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.命题探究练扩展2018年高考全景展示1.【2018年理数天津卷】已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.详解:(I)由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:所以函数的单调递减区间,单调递增区间为.(III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.2.【2018年理北京卷】设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1) a的值为1 (2) a的取值范围是(,+∞)【解析】分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围.详解:解:(Ⅰ)因为=[],所以f ′(x)=[2ax–(4a+1)]e x+[ax2–(4a+1)x+4a+3]e x(x∈R)=[ax2–(2a+1)x+2]e x.f′(1)=(1–a)e.由题设知f′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.3.【2018年江苏卷】记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S 点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g (x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 4.【2018年理新课标I卷】已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.【答案】(1)当时,在单调递减.,当时,在单调递减,在单调递增.(2)证明见解析.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.2017年高考全景展示1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 【答案】A 【解析】试题分析:由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e-'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减 所以()f x 极小值为()111(111)1f e-=--=-,故选A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题07导数的应用
分析解读
1.会利用导数研究函数的单调性,掌握求函数单调区间的方法.
2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最高等实际生产、生活中的优化问题.
3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.
命题探究练扩展
2018年高考全景展示
1.【2018a >1.
(I
(II 处的切线平行,证明
(III l ,使l 的切线,也是曲线
.
2.【2018年理北京卷】设函数
(Ⅰ)若曲线y= f (x )在点(1)处的切线与a ;
x =2处取得极小值,求a 的取值范围.
3.【2018的导函数.若存在
S 点”.
(1S 点”;
(2S 点”,求实数a 的值;
(3.对任意,判断是否存在
S 点”,并说明理由.
4.【2018年理新课标I
(1
(2,证明:
2017年高考全景展示
1.【2017课标II ,理11】若2x =-是函数2
1
()(1)x f x x ax e
-=+-的极值点,则()f x 的极小值为( )
A.1-
B.32e --
C.35e -
D.1 2.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是
3.【2017课标II ,理】已知函数()2
ln f x ax ax x x =--,且()0f x ≥。
(1)求a ;
(2)证明:()f x 存在唯一的极大值点0x ,且()2
202e
f x --<<。
4.【2017课标3,理21】已知函数()1ln f x x a x =-- . (1)若()0f x ≥ ,求a 的值;
(2)设m 为整数,且对于任意正整数n 2111111222n m ⎛⎫⎛⎫⎛⎫
+
++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭
,求m 的最小值. 5.【2017浙江,20】(本题满分15分)已知函数f (x )=(x 21x -e x -(1
2
x ≥). (Ⅰ)求f (x )的导函数;
(Ⅱ)求f (x )在区间1[+)2
∞,
上的取值范围. 6.【2017江苏,20】 已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;
(3)若()f x ,()f x '这两个函数的所有极值之和不小于7
2
-,求a 的取值范围.
2016年高考全景展示
1.【2016高考江苏卷】(本小题满分16分)
已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠. 设1
2,2
a b ==
.
(1)求方程()2f x =的根;
(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;
(3)若01,1a b <<>
,函数()()2g x f x =-有且只有1个零点,求ab 的值。
2.【2016高考天津理数】(本小题满分14分) 设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈, (I)求)(x f 的单调区间; (II) 若)(x f 存在极值点0x ,且
)()(01x f x f =,其中01x x ≠,求证:1023x x +=;
(Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...4
1
. 3.(本小题满分14分)设函数f (x )=(x -1)e x -kx 2(k ∈R ). (1)当k =1时,求函数f (x )的单调区间;
(2)当k ∈1,12⎛⎤
⎥⎝⎦
时,求函数f (x )在 [0,k ]上的最大值M .
4.【2016高考新课标3理数】设函数()cos 2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .
(Ⅰ)求()f x '; (Ⅱ)求A ;
(Ⅲ)证明|()|2f x A '≤.
5. 【2016高考浙江理数】已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax +4a −2}, 其中min{p ,q }=,>p p q q p q.≤⎧⎨⎩
,,
(I )求使得等式F (x )=x 2−2ax +4a −2成立的x 的取值范围; (II )(i )求F (x )的最小值m (a ); (ii )求F (x )在区间[0,6]上的最大值M (a ). 6.【2016年高考四川理数】(本小题满分14分) 设函数f (x )=ax 2-a -ln x ,其中a ∈R. (Ⅰ)讨论f (x )的单调性;
(Ⅱ)确定a 的所有可能取值,使得11()x
f x e x
->
-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底
数).。