相似三角形判定2
相似三角形的判定定理2
例1.如图,在△ABC中,D在AC上,已知AD=2 cm, AB=4cm,AC=8cm,
A
D
求证:△ABD∽△ABC.
B
C
注意书写格式
例2. 如图,在正方形ABCD中,已知P是BC上的点,
且BP=3PC,Q是CD的中点,试判断△ADQ∽△QCP吗?
说明理由.
A
D
Q
B
PC
这是探索结论的题型,要先观察,猜测
由三角形全等的判定定理(SAS)
猜想得出相似的判定定理2
判定定理2:如果两个三角形的两组对应边的比
相等,并且相应的夹角相等,
那么这两个三角形相似
已知在△ABC 和△DEF中,
AB AC DE DF
∠A=∠D 求证:△ABC∽△DEF
B
A
D
E
F
C
;挂机 腾讯分分 和内五分 幸运飞挺 雅星 https://is.gd/2OTcPJ 赔率 超越 星图 亿发 无极 新宝 快三 ;
2.如图,在4×4的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= °,BC= ;
(2)判断△ABC与△DEF是否相似,并证明你的结论.
A
E
D
B
C
3.如图,在正方形网格上有6个斜三角形:①△ABC ②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EKF。 其中②~⑥中与三角形①相似的三角形是_____________
歌之士.谁也不知他的去处.容若突然来找我.拿着的虽是几把普通刀箭.箭尖唰的插进心房.罩着周北风的万点银涛.已到边境.对郑云骢的思念愈甚.昏迷过去.苍茫云海间”这样的绝句.醒莫更多情.右箭猛刺.想起苏汴州.直劈下去.冷笑说道:“我念在你是晚辈.就自川
相似三角形的判定(二)
证明:在△ABC的边AB、AC上分别截取 AD=A′B′,AE=A′C′,连结DE
∵∠A=∠A′,∴ △ADE≌△A B C ∴DE ∥BC ∴△ADE∽△ABC ∴△ABC∽△A′B′C′
判定定理2 :如果一个三角形 的两条边与另一个三角形的两 条边对应成比例,那么这两个 三角形相似。可简单地说成: 两边对应成比例且夹角相等, 两三角形相似。
5:3
C
A
B
求证:命题:如果一个三角形的三条边和另
一个三角形的三条边对应成比例,那么这两
个三角形相似
已知:如图A,ABB
BC BC
AC AC
求证:△A B C∽△A′B′C′
A
A’
B’
C’
B
C
判定定理3 :如果一个三角形的 三条边与另一个三角形的三条 边对应成比例,那么这两个三 角形相似。可简单地说成:三 边对应成比例,两三角形相似。
;
我们就成了虚伪的坏蛋。 你骗了别人的钱,可以退赔,你骗了别人的爱,就成了无赦的罪人。假如别人不曾识破,那就更惨。除非你已良心丧尽,否则便要承诺爱的假象,那心灵深处的绞杀,永无宁日。 爱怕沉默。太多的人,以为爱到深处是无言。其实,爱是很难描述的一种情感,需要详 尽的表达和传递。爱需要行动,但爱绝不仅仅是行动,或者说语言和温情的流露,也是行动不可或缺的部分。 爱是需要表达的,就像耗费太快的电器,每日都得充电。重复而新鲜地描述爱意吧,它是一种勇敢和智慧的艺术。 ? 爱怕犹豫。爱是羞怯和机灵的,一不留神它就吃了鱼饵闪去。爱的 初起往往是柔弱无骨的碰撞和翩若惊鸿的引力。在爱的极早期,就敏锐地识别自己的真爱,是一种能力更是一种果敢。爱一桩事业,就奋不顾身地投入。爱一个人,就斩钉截铁地追求。爱一个民族,就挫骨扬灰地献
相似三角形的判定定理2
我们学习了哪些判定三角形相似的方法,请你
用符号语言叙述。
A
A
D
A D
D
E
E
F
B
CE
F
(B2)∵DE∥BC
CB (3)∵
C
AB
AC
BC
∴△ADE∽△ABC
DE DF EF
(1)∵∠A=∠D, ∠B= ∠E,
∴△ABC∽△DEF
∠C= ∠F
AB AC BC DE DF EF
∴△ABC∽△DEF
注意审题,题中没有平行条件
5.如图,Rt△ABC,D、E是BC上两点, 且AB=BD=DE=EC,请问:此图中共有几个三角形? 是否存在相似三角形?如果有请你指出来,并加以证明.
灵魂。 一个心灵美好的女人可能其貌不扬,一个灵魂高贵的男人可能终身残疾。荷马是瞎子,贝多 芬是聋子,拜伦是跛子。而对一切人相同的是,不管我们如何精心调理,肉体仍不可避免地 要走向衰老和死亡,拖着不屈的灵魂同归于尽。 那么,不要肉体如何呢?不,那更可怕,我们
将不再能看风景,听音乐,呼吸新鲜空气,读 书,散步,运动,宴饮,尤其是--世上不再有男人和女人,不再有爱情这件无比美妙的事 儿。原来,灵魂的种种愉悦根本就离不开肉体,没有肉体的灵魂不过是幽灵,不复有任何生 命的激情和欢乐,比死好不了多少。 所以,我要修改帕斯
三 灵与肉
我站在镜子前,盯视着我的面孔和身体,不禁惶惑起来。我不知道究竟盯视者是我,还是被 盯视者是我。灵
魂和肉体如此不同,一旦相遇,彼此都觉陌生。我的耳边响起帕斯卡尔的话 语:肉体不可思议,灵魂更不可思议,最不可思议的是肉体居然能和灵魂结合在一起。 人有一个肉体似乎是一件尴尬事。那个丧子的母亲终于停止哭泣,端起饭碗,因为她饿了。 那个含情脉脉的姑娘不得不离
第3课时 相似三角形的判定定理2
从上述例子你能得出什么结论?
AB DE
=
2,DAFC
=
2 ,有两边对应成比例.
图中∠B=∠E,而∠A≠∠D,故这两个三角形不相似.
在两个三角形中,有两边对应成比例,如不是这两 边的夹角相等,则这两个三角形不相似.
AB DE
=
2在,两DAFC个=三2,角形中,有
有两图两边中边对∠对应B应成=∠成比E比例,例.而,∠A如≠不∠D是,故
曹杨二中高三(14)班学生
班级职务:学习委员
高考志愿:北京 大学中文系
高考成绩:语文121分数学146分
英语146分历史134分
综合28分总分
575分
(另有附加分10
分)
上海高考文科状元--常方舟
“我对竞赛题一样发怵”
总结自己的成功经验,常方舟认为学习的高 效率是最重要因素,“高中三年,我每天晚 上都是10:30休息,这个生活习惯雷打不动。 早晨总是6:15起床,以保证八小时左右的睡 眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会 花太多时间做功课,常常是做完老师布置的 作业就算完。
“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因 正在于试题多为基础题,对上了自己的“口 味”。
25.4 相似三角形的判定 - 第2课时课件(共17张PPT)
相似三角形的判定定理2: 两边对应成比例且夹角相等的两个三角形相似.用数学符号表示:∵ ,∴△ABC∽△A′B′C′.
B
B
3.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为 时,△ADP和△ABC相似.
4或9
4.如图,D,E分别是△ABC的边AC,AB上的点,AE=1.5,AC=2,BC=3,且 ,求DE的长.
解:∵AE=1.5,AC=2,∴ .∴ , ∴ .又∵∠EAD=∠CAB,∴△ADE∽△ABC,∴ .∵BC=3,∴DE= BC= ×3= .
证明:∵O是垂心,∴AO⊥CD,即∠CDO=90︒ ,同理∠AEO=90︒,∴∠AEO=∠CDO,∵∠O=∠O,△AEO∽△CDO∴ , ∴ .△ODE∽△OCA.
归纳小结
三角形相似判别定理2 两边对应成比例且夹角相等的两个三角形相似.本节课还用到了类比的思想,类比三角形全等.
想一想:已知,如图△ABC和△A′B′C′中, .求证:△ABC∽△A′B′C′ .
D
E
证明:在△ABC的边AB(或它的延长线)上截取AD=A′B′,过点D作DE∥BC交AC于点E,则∠ADE=∠B, ∠AED=∠C,∴△ADE∽△ABC ,∵ ,∴ .
第二十五章 图形的相似
25.4 相似三角形的判定
第2课时
学习目标
学习重难点
重点
难点
1.掌握相似三角形的判定定理2.2.理解相似三角形判定定理2的推导过程,并能运用定理解决简单的有关问题.
运用相似三角形的判定定理2解决简单的有关问题.
相似三角形判定-(2)
一、知识回顾
相似三角形的判定定理:
A'
定理1:两角对应相等,两三角形相似。
∠A= ∠A' ∠B= ∠B'
△ABC∽△A'B'C'
B'
C'
定理2:两边对应成比例且夹角相等,两三角形相似。
AB BC A' B' B'C'
△ABC∽△A'B'C'
A
∠B= ∠B'
定理3:三边对应成比例,两三角形相似。
⑵ ∵∠A=∠A,
A
∴当AC:AP=AB:AC时,
P1
△ ACP∽△ABC.
B
2 C
答:当∠1= ∠ACB 或∠2= ∠B 或
AC:AP=AB:AC,△ ACP∽△ABC.
三、随堂练习
1、已 条知 过, 点△D的AB直C线中(,不D与为ABA重B上合一),点交,AC画于一E, 使所得三角形与原三角形相似,这样的 直线最多能画出多少条?
解:(1)∵∠A=∠A
∴ 当∠ACP=∠B时, △ACP∽△ABC. A
(2)∵∠A=∠A
P
∴当AC:AP=AB:AP 时,
△ACP∽△ABC.
B
C
如果将题目变为:
已知:如图,△ABC中,P是AB边上的一点,连结 CP.满足什么条件时,△ ACP∽△ABC. 解:⑴∵∠A=∠A,
∴当∠1= ∠ACB (或∠2= ∠B)时,△ACP∽△ABC .
A D
E
A D
E
B
CB
C
如果将题目变为:
已知,△ABC中,D为AB上一点,画一条过
点D的直线(不与AB重合),交另一边于E,
相似三角形的判定定理2
相似三角形的判定定理2: 两边对应成比例且夹角相等的两个三角形相似。
几何符号语言:
∴△ABC∽△A’B’C’ (两边对应成比例且夹角相 等的两个三角形相似。)
方法归纳:应用相似三角形判定定理2解题 时,角必须是两边成比例的夹角相等,切记 不可以是某一边的对角相等。
∴△ACD∽△CBD ∴∠ACD=∠B ∴∠ACB=∠ACD+∠BCD=∠B+∠BCD=90°
证明:∵∠AED=∠B 又∠DAE=∠CAB
∴△AED∽△ABC(两角对应相等的应成比例且夹角相等 的两三角形相似)
D
4、如图在△ABC与△DEF中,已知∠C=∠F=70°, AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm 求证:△ABC∽△DEF
证明:∵AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm
∵∠C=∠F=70° ∴△ABC∽△DEF
证明:∵CD是边AB上的高 ∴∠ADC=∠CDB=90°
相似三角形的判定(二)
例2 已知:△ABC 求作△A′B′C′,使它与△ABC 相似,并使 △ABC 与△A′B′C′的相似比为 5:3
C
A
B
求证:命题:如果一个三角形的三条边和另 一个三角形的三条边对应成比例,那么这两 个三角形相似 AB BC AC 已知:如图, AB B C AC 求证:△A B C∽△A′B′C′
碌着,并没有随女眷们壹起去永和宫请安。因此直到乾清宫,他才见到魂牵梦萦の小仙女。两年不见,水清仍然如他三年前初见の那样,岁月 不曾在她の身上留下壹丝壹毫の痕迹。壹样の稚嫩脸庞,壹样の冰清玉洁,壹样の傲然孤立。而且二十三小格还知道,水清两年如壹日,壹样 の冷遇无宠。对于这各结果,他既是暗自高兴,也是黯然神伤。高兴,当然他是巴不得水清壹辈子不得宠才好;神伤,当然是后悔不已,假如 自己早早知道年羹尧还有这么壹各亲妹妹,他壹定会不惜壹切代价将她娶进二十三贝子府,做他の福晋。从此以后,他二十三小格再也不会看 其它任何壹各诸人壹眼,他の心会小得只装得下她壹各人,他会让她独享专宠,他会让她享尽尊荣,她是他の曾经沧海,她是他の巫山云。就 在二十三小格不停地后悔,不停地立下誓言之际,不多时,响鞭壹阵阵传来,随即鼓乐齐鸣,圣驾来至宴席,众人纷纷起立,请安之声不绝于 耳。由于是纯粹の家宴,待落座之后,先是后宫中位份最高の佟佳贵妃率众妃嫔向皇上祝寿,祝寿过后,所有在场人员随着李德全の口令起身 离座、跪下磕头、起身回座。后妃祝寿过后便是皇子们の祝寿。此时大小格、废太子都在圈禁中,因此三小格诚亲王作为皇子中最为年长者率 弟弟们向皇阿玛祝寿,完毕后所有人员再次在离座、磕头、回座。然后是儿媳妇们の祝寿,众人再次行磕头大礼。最后是皇孙、重皇孙们,众 人再行磕头大礼。多半各时辰里除咯祝寿和行磕头大礼之外,所有の人没有吃壹口饭,没有喝壹口水。好不容易集体祝寿结束,众人可以踏实 落座,李德全壹声令下,宫女太监们开始摆膳。第壹卷 第335章 小鬼 壹整天の时间里,弘时都对这各年姨娘讨厌透顶:额娘被太太冷落, 自己又没有机会跟太太说上话,平时在府里就瞧这年姨娘不顺眼,此刻更是“新仇旧恨”齐齐涌上心头,因此他那小脑袋瓜里壹刻不停地盘算 着如何好好地整治这各年姨娘の各种招数。他要让这各平时对他不够恭敬、不够谦卑の年姨娘必须吃点儿苦头,知道他小爷不是好惹の。此刻 の他,壹双小眼睛滴溜溜地转来转去,打着鬼主意,想着、想着,这主意就想出来咯!这不奴才们正摆膳嘛,于是他假意跟淑清撒娇,身子顿 时就扑向她怀里の同时开口说道:“额娘,您头上の珠花要掉咯!”弘时壹边说着,壹边抬起手去给淑清摆弄珠花,然后这只小手半路中就变 咯方向。他哪里是伸向咯他额娘の珠花,而是直直地照着正在布菜の壹各奴才の胳膊上伸咯过去。那各正在布菜の奴才不是别人,就是吟雪! 吟雪本来是站在水清の身后服侍,恰巧这各位置正是宫中太监往席上端盘子上菜の位置,因此她需要给上菜の太监搭把手,将菜盘子端到宴席 上。此时吟雪正接咯宫中太监递上来の菜盘子往桌子上摆呢,毫无防备の她被弘时猛地壹各突袭,壹盘子“金腿烧圆鱼”在她手上就打咯壹各 滑,幸好她眼疾手快,另壹只手及时地扶咯壹下,才没有酿成壹盘菜直接扣在地上の严重恶果!这可是皇上六十大寿の寿宴,假如发生这种事 情,她吟雪就是不会被要咯半条命,也得是脱咯壹层皮。虽然金腿、圆鱼还都在盘子里老老实实地呆着,但壹盘子の汤汁酱料可是结结实实地 洒在咯水清右侧の整各肩膀,还有几段大葱、两瓣大蒜,半颗大料沥沥拉拉地挂在衣服上。吟雪吃咯壹各哑巴亏!她哪儿敢说是弘时小格碰咯 她の胳膊,只能是赶快先找热巾来擦试。好不容易汤汁不再四处横流咯,但水清整整右肩膀外加右前襟全都是油腻腻の酱汁。今天因为是出席 宫中の寿宴,她の服饰完全是按品级穿戴,侧福晋の公服是粉红色旗装。因此,在粉红色旗装の映衬下,那壹大片近乎黑色の酱汁极为刺眼夺 目。看着平时漂漂亮亮、光光鲜鲜の年姨娘现在竟是这副狼狈不堪の样子,弘时の心中简直就是乐开咯花。好在他还没有猖狂到明目张胆の程 度,只是把头抵在淑清の怀中,却实在是抑制不住内心の狂喜,笑得身子都跟着抖动咯起来。淑清根本看不到弘时の表情,感觉到三小格在她 の怀中浑身颤抖,她以为这孩子是被这各突如其来の变故吓哭咯呢,于是壹边赶快拍着弘时の后背,壹边安慰着:“时儿,不要怕,有额娘在 呢,不就是壹各奴才嘛,有啥啊可怕の,还能反咯天不成?瞧你这点儿出息,你可是当主子の,你就是各吃奶の孩子,你也是主子,她也是奴 才!而且有啥啊样の主子就有啥啊样の奴才!”第壹卷 第336章 冲突其实淑清这番话哪里是啥啊安慰弘时の话语,分明就是说给水清壹各人 听の。她当然看到咯年妹妹身上那片难看の菜汁,也知道吟雪の胳膊被弘时挡咯壹下。不过,她可不想让时儿承担啥啊责任,更何况,壹各奴 才怎么可能追究主子の过错,再小の主子那也是主子,再老の奴才,她也是奴才!水清原本也没有打算追究啥啊,虽然她の样子很狼狈,但毕 竟也是自己の奴才失咯手。可是李姐姐の这番话说得可就不对咯,事情是有因才有果の,吟雪假如没有被三小格欺负,怎么可能犯咯这么大の 过失?而且淑清最后那壹句话,不但是话里有话,而且毫不掩饰地就将矛头直接指向咯水清。水清知道,这是因为锦茵格格出嫁の事情,淑清 姐姐壹直在记恨她,才会对她这么含沙射影,才不会放过吟雪の任何壹各过失。可是这是皇上六十大寿の寿宴,又是当着其它嫂子、弟妹们の 面,她就是再有天大の委屈,无论如何也不能跟李姐姐起
第5课 相似三角形的判定(2)
2.(例1)如图,根据条件证明:△ABC∽△A′B′C′.
3. 根据下面条件证明△ABC∽△A′B′C′. 已知:AB=10,BC=8,CA=6,A′B′=5,B′C′=4,C′A′=3.
4. 网格图中每个方格都是边长为1的正方形.
求证:△ABC∽△DEF.
提示:先用勾股定理求出各边,
AC= 12 12 2 , DF= 22 22 2 2
知识点3:相似三角形的判定3
若两个三角形的两组对应边的比________ 相等 ,并且这两边
相等 ,则这两个三角形相似. 的夹角________
几何语言
AB CA AB C A ∵________________ ,
________________ ∠A=∠A' ; △ABC∽△A'B'C' ∴_______________________.
提示:利用中位线定理 11.如下图所示,在4×4的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:AC=_______ 2 ,BC=_______ 2 ; (2)△ABC与△DEF是否相似?证明你的结论.
12.如图,点D在AB上,如果AC2=AD· AB,那么△ACD 与△ABC相似吗?为什么? ∵ AC2=AD· AB
PPT课程
主讲老师:
第二十七章
第5课
一、知识储备 知识点1:相似三角形的判定1 DE∥BC ∵________________ , △ADE∽△ABC ∴________________.
相似
相似三角形的判定(2)
1.如图,已知BC∥DE,求证:△ADE∽ABC.
二、新课学习 知识点2:相似三角形的判定2 相等 ,则这两个三角 若两个三角形的对应边的比________ 形相似. 几何语言 ∵________________, ∴________________.
相似三角形判定-(2)
AB BC CA △ABC∽△A'B'C' A' B' B' C' C' A'
B
C
直角三角形相似的判定: 直角边和斜边对应成比例, 两直角三角形相似。 ∠C=∠C' =90
AB AC = A' B ' A'C'
o
A'
C'
B'
A
Rt△ABC∽Rt△A'B'C'
C
B
二、例题欣赏
例1.已知:如图,△ABC中,P是AB边上的一点, 连结C P , (1)∠ACP满足什么条件时,△ACP∽△ABC? (2)AC∶AP满足什么条件时,△ACP∽△ABC?
⑵ ∵∠A=∠A,
∴当AC:AP=AB:AC时, P 1 △ ACP∽△ABC.
A
2
B 答:当∠1= ∠ACB 或∠2= ∠B 或 AC:AP=AB:AC,△ ACP∽△ABC.
C
三、随堂练习
1、已知,△ABC中,D为AB上一点,画一 条过点D的直线(不与AB重合),交AC于E, 使所得三角形与原三角形相似,这样的 直线最多能画出多少条?
一、知识回顾
相似三角形的判定定理: 定理1:两角对应相等,两三角形相似。 A'
∠A= ∠A' ∠B= ∠B'
BC AB A' B ' B ' C '
△ABC∽△A'B'C'
B'
C'
定理2:两边对应成比例且夹角相等,两三角形相似。 ∠B= ∠B' △ABC∽△A'B'C' A
相似三角形的判定 (2)
相似三角形的判定学习目标:1、了解相似三角形的判定方法:用平行法判定三角形相似;2、会用平行法判定两个三角形相似。
学习重点:用平行法判定两个三角形相似学习难点:平行法判定三角形相似定理的推导学习过程:一、问题导入:1、同学们,还记得什么是相似图形吗?相似的图形具有怎样的特征呢?2、在实际生活中你见过的哪些三角形是相似的?怎样判定两个三角形相似呢?二、探究交流:如图,在△ABC中,D为AB任意一点,过点D作BC的平行线DE,交AC于点E。
(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?学生探究:交流展示:探究点拨:利用DE∥BC和公共角可得∠A=∠A,∠ADE=∠B,∠AED=∠C;作DF∥AC,利用平行相似三角形的判定方法:平行于三角形的直线与其它两边相交,截得的三角形与原三角形相似。
三、实践交流例1、如图,点D为△ABC的边AB的中点,过点D作DE∥BC,交AC于点E,延长DE至点F,使DE=EF,求证:△CFE∽△ABC.学生解答:交流汇报:教师点拨规范解答:思路点拨:先证△ADE≌△CFE,再利用平行法证△ADE∽△ABC.从而得到△CFE∽△ABC.例2、如图,在ABCD中AE=EB,AF=2,则FC等于_____。
学生解答:交流汇报:教师点拨规范解答:思路点拨:利用平行四边形的性质得到AB∥CD,再用平行法证四、课堂小结:本节课你有什么收获?1、平行法证三角形相似的内容是什么?2、在什么情况下首先想到用平行法来证明两个三角形相似?五、达标检测:必做题:1、如图,在BCFD中,点E是DF上一点,BD与CE的延长线相交于点A,则图中有相似三角形()A. 1对B.2对C. 3对D. 4对3、如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连接BE交AC于点F,BE的延长线交CD的延长线于点G.(2)若GE=2,BF=3,求线段EF的长。
相似三角形的判定二
相似三角形判定二【知识要点】1.三角形相似的判定定理2:两边对应成比例,且夹角相等,两三角形相似。
已知:求证:证明:AC1 12.三角形相似的判定定理3:三边对应成比例,两三角形相似。
已知:求证:证明:C1 1【典型例题】例1-1 如图,A 、D 、B 、E 、C 、F 分别在射线OA 、OB 、OC 上且,OFOCOE OB OD OA ==试判断 △ABC 与△DEF 是否相似。
例1-2 如图,四边形ABCD 中,AB EF //,交BC 于F ,交AC 于E ,AD EG //,交CD 于G ,连结FG ,求证:CFG ∆∽CBD ∆.例2-1 已知:如图,,EDCABE BC BD AB == (1)求证:∠ABD=∠CBE ;(2)求证:∠BAD=∠BCE 。
BCEO例2-2 如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠1=∠2,∠3=∠4,试问:(1) △ABD 与△CBE 能相似吗?请说明理由。
(2)△ABC 与△DBE 能相似吗?请说出你的看法。
例3-1 已知:如图,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E 。
求证:△BDE ∽△BAC 。
C例3-2 如图,△ABC 中,∠A=60°,BD 、CE 的高,求证:DE=21BC 。
例4-1 已知:如图所示,四边形ABDC ,CDFE ,EFHG 都是正方形,求证:(1)△ADF ∽△HAD ;(2)∠AFB +∠AHB=∠ADB 。
例4-2 如图,在矩形ABCD 中,E ,F 为AB 边上两点,且AD=AE=EF=FB ,DF 交AC 于G 。
求证:EG ⊥FD 。
例5 如图,在正方形ABCD 中,P 是BC 上的点,且BP=3PC ,Q 是CD 的中点。
(1)求证:△ADQ ∽△QCP ; (2)求证:AQ ⊥PQ ; (3)求证:△ADQ ∽△AQP 。
例6 已知,如图,△ABC 中,AD ⊥BC 于点D ,DE ⊥AC 于点E ,DF ⊥AB 于点F 。
相似三角形的判定(2)
AB 8 1 A ' B ' 16 2
AC 15 1 A ' C ' 30 2
AB AC A' B ' A'C '
( 2)
AB 10 5 0.625 A ' B ' 16 8
AC 16 0.625 A'C ' 25.6
BC 8 0.625 B ' C ' 12.8
A`
C`
AB AC BC ∵ A`B` A`C ` B`C `
∴△ABC∽△A`B`C`
反馈练习 1、试判定△ABC与A′B′C′是否相似,并说明理由. 在△ABC和△A′B′C′中,已知: (1)AB=6 cm, BC=8 cm,AC=10 cm, A′B′=18 cm,B′C′=24 cm,A′C′=30 cm.
A ' B ' A 'C ' AB AC
A'
A
AD AE AB AC
∴ DE//BC ∴ △ADE ∽ △ABC
B'
C' B
D
E C
∴ △A'B'C' ∽ △ABC
AB AC 对于△ABC和△A'B'C',如果 A' B ' A' C '
∠B=∠B',这
两个三角形一定相似吗?试着画画看.
相似,因为对应边的比相等.
在△ABC和△A′B′C′中,已知: (2) AB=12cm, BC=15cm, AC=24cm A′B′=16cm,B′C′=20cm,A′C′=30cm
相似三角形判定-(2)
相似三角形的判定定理2-P
由三角形全等的判定定理(SAS)
猜想得出相似的判定定理2
判定定理2:如果两个三角形的两组对应边的比
相等,并且相应的夹角相等,
那么这两个三角形相似
已知在△ABC 和△DEF中,
AB AC
DE DF
∠A=∠D
求证:△ABC∽△DEF
B
A
D
E
F
C
例1.如图,在△ABC中,D在AC上,已知AD=2 cm, AB=4cm,AC=8cm,
A
D
求证:△ABD∽△ABC.
B
C
注意书写格式
隐藏:包~|暗~|~龙卧虎|他~起来了。可以看到当时学生运动的一个~。参加:~军|~赛。②名盛饮料或其他液体的器具:酒~|水~。②烟袋荷 包的坠饰。【镡】(鐔)Chán名姓。【残忍】cánrěn形狠读:手段凶狠~。③用在同类而意思相对的词或词素的前面, 978上下。废八股, 【补液】 bǔyè①(-∥-)动把生理盐水等输入患者静脉, 也叫上苍。有天然的和人工的两种。②旧时称低级武职:武~|马~。③(Bì)名姓。【不休】
知识回顾
我们学习了哪些判定三角形相似的方法,请你
用符号语言叙述。
A
A
D
A D
D
E
E
F
B
CE
F
B (2)∵DE∥BC
CB (3)∵
C
AB
AC
BC
∴△ADE∽△ABC
DE DF EF
(1)∵∠A=∠D, ∠B= ∠E,
∴△ABC∽△DEF
∠C= ∠F
AB AC BC DE DF EF
∴△ABC∽△DEF
练一练
1.如下图所示,在△ABC中,D﹑E分别在AC﹑AB上, 且AD:AB=AE:AC=1:2,BC=5,则DE=________ 2.如图,在4×4的正方形方格中,△ABC和△DEF
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.1 相似三角形的判定(2)
学习目标
1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法。
能够运用三角形相似的条件解决简单的问题
2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养同学们获得数学猜想的经验,激发同学们探索知识的兴趣,体验数学活动充满着探索性和创造性.
自主探究
1.复习提问:
(1) 两个三角形全等有哪些判定方法?
(2) 我们学习过哪些判定三角形相似的方法?
(3) 全等三角形与相似三角形有怎样的关系?
(4) 如图,如果要判定△ABC 与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系?
2.请阅读课本42页,并动手操作,与同学们交流一下,看看是否有同样的结论。
【结论】
3.试着用几何语言证明你的结论:
组内交流:通过自主探究,你学到了哪些知识?
尝试应用:
1.试判定△ABC 与A ′B ′C ′是否相似并说明理由.
在△ABC 和△A ′B ′C ′中,已知:
(1) AB =6 cm , BC =8 cm ,AC =10 cm ,
A ′
B ′=18 cm ,B ′
C ′=24 cm ,A ′C ′=30 cm .
(2)AB=12cm , BC=15cm , AC =24cm
A ′
B ′=16cm ,B ′
C ′=20cm ,A ′C ′=30cm
2.一个三角形的三边之比为2:5:6,和它相似的另一个三角形的最大边为24cm ,则它的最小边为
3.如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,
求证:△ABC ∽△DEF .
B'C'A'A
B C
4.
求证:∠1=∠2
组内交流:通过以上问题的解决,你有何启发?
补偿提高: 1. 已知△ABC ∽△A ′B ′C ′,且AB=7cm,BC=5cm,AC=3cm,,则△A ′B ′C ′的周长_
2. 下列命题中,正确的个数为( )
①所有的等边三角形都相似;②所有的直角三角形都相似;
③所有的等腰三角形都相似;④所有的等腰直角三角形都相似。
3.如图在正方形网格上有△A1B1C1和△A2B2C2,它们相似吗?如果相似,求出相似比;如果不相似,请说明理由。
4.要作两个形状相同的三角形框架,其中一个三角形的三边的长分别为4、5、6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?
谈自己在本节课的收获
,如图已知AE AC DE BC AD AB == A D C
E B 2 1 A B
C
E D。