高一数学12月考试卷
高一数学12月月考试卷 新人教版-新人教版高一全册数学试题
2015-2016学年度巴楚二中学校12月高一月考卷(数学)问卷考试时间:120分钟第I 卷(选择题一、选择题1.已知集合}0)3)(1(|{<--=x x x A ,}42|{<<=x x B ,则=B A (A )}32|{<<x x (B )}31|{<<x x(C )}43|{<<x x (D )}41|{<<x x2.若函数()y f x =的定义域是[0,2],则函数)12(-=x f y 的定义域是() A .[0,1] B .[0,2] C .⎥⎦⎤⎢⎣⎡2321, D .[]3,1- 3.下列函数定义域是R 且在区间()0,1是递增函数的()A .|1|y x =+B .y =.1y x=D .24y x =-+ 4.已知函数⎩⎨⎧≤>=0,20,log )(3x x x x f x,则))91((f f =(). A .12 B .14C .16D .185.已知幂函数()y f x =的图像经过点)41,2(,则它的单调增区间为A .),0(+∞B .[)+∞,0C .)0,(-∞D .),(+∞-∞ 6.函数()2xf x e x =+-的零点所在的一个区间是() (A )()-2,-1(B )()-1,0(C )()0,1(D )()1,2 7.将分针拨快10分钟,则分针转过的弧度数是() A .3πB .3π-C .6πD .6π- 8.角α的终边过点(1,2)P -,则sin α等于()A .5 B .5 C .5-.5- 9.若sin =α-135,且α的第四象限角,则tan α=() A .512 B .-512 C .125 D .-12510.函数()lg(1)3f x x x =-+-的定义域是() A .(1,3) B .[1,3] C .(1,3] D .[1,3) 11.计算sin 77cos 47sin13cos 43-的值等于()A .12B .33C .22D .32(二班选作)为了得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只需把函数sin 2y x =的图象() A .向左平移3π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向右平移6π个单位长度12.sin 3cos 1212ππ-的值为()A .0B .2-C .2D .2(二班选作)函数f (x )=2sin (ωx +φ)(ω>0,-<φ<)的部分图象如图所示,则这个函数的周期和初相分别是() A .2,- B .2,- C .,-D .,-第II 卷(非选择题)二、填空题13.已知2(1)f x x -=,则()f x =. 14.方程21124x -=的解x =.则函数y =f(x)在区间[1,6]上的零点至少有________个. 16.(二班选作)将函数()2sin 2f x x =的图象上每一点向右平移6π个单位,得函数()y g x =的图象,则()g x =.若3sin()25πα+=,则cos2α=. 三、解答题写出必要的文字说明或解题过程,否则不予给分 17.(本小题满分10分)角α的终边上有一点P (m ,5),且cos α=m13(m ≠0),求sin α+cos α的值. 18.(本题共12分)(1)计算323log 39)641(5932log 4log 55---+-(2)解方程:3)96(log 3=-x19.(12分)已知32121=+-a a .求下列各式的值(1)1a a+(2)22a a -+221.(12分)已知)(x f 是定义在),0(+∞上的增函数,且满足)()()(y f x f xy f +=,1)2(=f 。
北京市2023-2024学年高一上学期12月月考试题 数学含解析
2023-2024学年度第一学期北京高一数学12月月考试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分1.已知集合{}2,A x x k k ==∈Z ,{}33B x x =-<<,那么A B = ()A.{}1,1- B.{}2,0-C.{}2,0,2- D.{}2,1,0,1--2.方程组22205x y x y +=⎧⎨+=⎩的解集是()A.()(){}1,2,1,2--B.()(){}1,2,1,2--C.()(){}2,1,2,1-- D.()(){}2,1,2,1--3.命题“x ∃∈R ,2230x x --<”的否定形式是()A.x ∃∈R ,2230x x -->B.x ∃∈R ,2230x x --≥C.x ∀∈R ,2230x x --< D.x ∀∈R ,2230x x --≥4.下列函数中,既是奇函数又在定义域上是增函数的是()A.ln y x =B.2x y =C.3y x = D.1y x=-5.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.140D.1206.设lg2a =,12log 3b =,0.22c =,则()A.a b c <<B.a c b<< C.b a c<< D.<<b c a7.若122log log 2a b +=,则有A.2a b= B.2b a= C.4a b= D.4b a=8.若()f x 是偶函数,且当[)0,x ∈+∞时,()1f x x =-,则()10f x -<的解集是()A.{}10x x -<<B.{0x x <或}12x <<C.{}02x x << D.{}12x x <<9.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)A.6年B.7年C.8年D.9年二、填空题(本大题共5小题,每小题5分,共25分.)11.函数()1lg(1)2f x x x =-+-的定义域为___________.12.已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=______;12x x -=______.13.设函数()f x 同时满足以下条件:①定义域为R ;②()01f =;③1x ∀,2R x ∈,当12x x ≠时,()()21210f x f x x x -<-;试写出一个函数解析式()f x =______.14.设函数()3log ,x af x x x a ≤≤=>⎪⎩,其中0a >.①若5a =,则()81f f ⎡⎤⎣⎦______;②若函数()3y f x =-有两个零点,则a 的取值范围是______.15.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____.三、解答题(本大题共6小题,共85分.)16.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.17.已知函数()211f x x =-.(1)证明:()f x 为偶函数;(2)用定义证明:()f x 是()1,+∞上的减函数;(3)直接写出()f x 在()1,+∞的值域.18.甲和乙分别记录了从初中一年级(2017年)到高中三年级(2022年)每年的视力值,如下表所示2017年2018年2019年2020年2021年2022年甲4.944.904.954.824.80 4.79乙 4.86 4.904.864.844.744.72(1)计算乙从2017年到2022年这6年的视力平均值;(2)从2017年到2022年这6年中随机选取2年,求这两年甲的视力值都比乙高0.05以上的概率;(3)甲和乙的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)19.某厂将“冰墩墩”的运动造型徽章纪念品定价为50元一个,该厂租用生产这种纪念品的厂房,租金为每年20万元,该纪念品年产量为x 万个()020x <≤,每年需投入的其它成本为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩(单位:万元),且该纪念品每年都能买光.(1)求年利润()f x (单位:万元)关于x 的函数关系式;(2)当年产量x 为何值时,该厂的年利润最大?求出此时的年利润.20.已知函数()()12log 21xf x mx =+-,m ∈R .(1)求()0f ;(2)若函数()f x 是偶函数,求m 的值;(3)当1m =-时,当函数()y f x =的图象在直线=2y -的上方时,求x 的取值范围.21.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.2023-2024学年度第一学期北京高一数学12月月考试卷一、选择题(本大题共10小题,每小题4分,共40分1.已知集合{}2,A x x k k ==∈Z ,{}33B x x =-<<,那么A B = ()A.{}1,1- B.{}2,0-C.{}2,0,2- D.{}2,1,0,1--【答案】C 【解析】【分析】解不等式()323k k Z -<<∈,求得整数k 的取值,由此可求得A B ⋂.【详解】解不等式323k -<<,得3322k -<<,k Z ∈ ,所以,整数k 的可能取值有1-、0、1,因此,{}2,0,2A B =- .故选:C.【点睛】本题考查交集的计算,考查计算能力,属于基础题.2.方程组22205x y x y +=⎧⎨+=⎩的解集是()A.()(){}1,2,1,2--B.()(){}1,2,1,2--C.()(){}2,1,2,1-- D.()(){}2,1,2,1--【答案】A 【解析】【分析】利用代入消元法,求解方程组的解集即可.【详解】因为22205x y x y +=⎧⎨+=⎩,所以2y x =-代入225x y +=,即()2225x x +-=,解得1x =±.当=1x -时,()212y =-⨯-=;当1x =时,212y =-⨯=-.故22205x y x y +=⎧⎨+=⎩的解集是()(){}1,2,1,2--.故选:A.3.命题“x ∃∈R ,2230x x --<”的否定形式是()A.x ∃∈R ,2230x x -->B.x ∃∈R ,2230x x --≥C.x ∀∈R ,2230x x --<D.x ∀∈R ,2230x x --≥【答案】D 【解析】【分析】直接根据特称命题的否定是全称命题来得答案.【详解】根据特称命题的否定是全称命题可得命题“x ∃∈R ,2230x x --<”的否定形式是x ∀∈R ,2230x x --≥.故选:D.4.下列函数中,既是奇函数又在定义域上是增函数的是()A.ln y x =B.2x y =C.3y x =D.1y x=-【答案】C 【解析】【分析】由函数的奇偶性和单调性的定义对选项一一判断即可得出答案.【详解】对于A ,ln y x =的定义域为{}0x x >,不关于原点对称,所以ln y x =是非奇非偶函数,故A 不正确;对于B ,2x y =的定义域为R ,关于原点对称,而()()122xx f x f x --==≠-,所以2x y =不是奇函数,故B 不正确;对于C ,3y x =的定义域为R ,关于原点对称,而()()()33f x x x f x -=-=-=-,所以3y x =是奇函数且在R 上是增函数,故C 正确;对于D ,1y x=-定义域为{}0x x ≠,关于原点对称,()()1f x f x x -==-,所以1y x=-是奇函数,1y x=-在(),0∞-和()0,∞+上单调递增,不能说成在定义域上单调递增,因为不满足增函数的定义,故D 不正确.故选:C .5.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.140D.120【答案】C 【解析】【详解】试题分析:由题意得,自习时间不少于22.5小时的频率为(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的人数为0.7200140⨯=,故选C.考点:频率分布直方图及其应用.6.设lg2a =,12log 3b =,0.22c =,则()A.a b c <<B.a c b<< C.b a c<< D.<<b c a【答案】C 【解析】【分析】借助中间量0,1可确定大小.【详解】对于lg2a =,由lg2lg1=0,lg2lg10=1><得01a <<,对于12log 3b =,由1122log 3log 10<=得0b <,对于0.22c =,由0.20221>=得1c >,所以b a c <<.故选:C.7.若122log log 2a b +=,则有A.2a b = B.2b a= C.4a b= D.4b a=【答案】C 【解析】【分析】由对数的运算可得212log log a b +=2log 2ab=,再求解即可.【详解】解:因为212log log a b +=222log log log 2a b ab-==,所以224a b==,即4a b =,故选:C.【点睛】本题考查了对数的运算,属基础题.8.若()f x 是偶函数,且当[)0,x ∈+∞时,()1f x x =-,则()10f x -<的解集是()A.{}10x x -<<B.{0x x <或}12x <<C.{}02x x << D.{}12x x <<【答案】C 【解析】【分析】根据()f x 是偶函数,先得到()0f x <的解集,再由()10f x -<,将1x -代入求解.【详解】因为[)0,x ∈+∞时,()1f x x =-,所以由()0f x <,解得01x ≤<,又因为()f x 是偶函数,所以()0f x <的解集是11x -<<,所以()10f x -<,得111x -<-<,解得02x <<所以()10f x -<的解集是{}02x x <<,故选:C9.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由()f x 是R 上的增函数得()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之若对任意0a >,()()f x a f x +<,满足()()y f x a f x =+-无零点,但不满足()f x 是R 上的增函数,不满足必要性,即可判断.【详解】若()f x 是R 上的增函数,则对任意0a >,显然x a x +>,故()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之,若对任意0a >,()()f x a f x +<,即()()0f x a f x +<-,满足()()y f x a f x =+-无零点,但()f x 是R 上的减函数,不满足必要性,故“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的充分而不必要条件.故选:A.10.某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)A.6年 B.7年 C.8年 D.9年【答案】B 【解析】【分析】依题求出经过x 年后,A 产品和B 产品的年产量分别为310(2x,640()5x,根据题意列出不等式,求出x 的范围即可得到答案.【详解】依题经过x 年后,A 产品的年产量为1310(110()22xx+=)B 产品的年产量为1640(140()55x x +=,依题意若A 产品的年产量会超过B 产品的年产量,则3610()40(25xx>化简得154x x +>,即lg 5(1)lg 4x x >+,所以2lg 213lg 2x >-,又20.3010lg =,则2lg 26.206213lg 2≈-所以至少经过7年A 产品的年产量会超过B 产品的年产量.故选:B【点睛】本题主要考查指数函数模型,解指数型不等式,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分.)11.函数()1lg(1)2f x x x =-+-的定义域为___________.【答案】()()1,22,⋃+∞【解析】【分析】根据函数的解析式,列出函数有意义时满足的不等式,求得答案.【详解】函数()()1lg 12f x x x =-+-需满足1020x x ->⎧⎨-≠⎩,解得1x >且2x ≠,故函数()()1lg 12f x x x =-+-的定义域为()()1,22,⋃+∞,故答案为:()()1,22,⋃+∞12.已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=______;12x x -=______.【答案】①.14②.【解析】【分析】利用韦达定理可得2212x x +、12x x -的值.【详解】因为方程2410x x -+=的两根为1x 和2x ,由韦达定理可得124x x +=,121=x x ,所以,()2221222121242114x x x x x x =+-=-=+⨯,12x x -===.故答案为:14;.13.设函数()f x 同时满足以下条件:①定义域为R ;②()01f =;③1x ∀,2R x ∈,当12x x ≠时,()()21210f x f x x x -<-;试写出一个函数解析式()f x =______.【答案】1x -+(答案不唯一)【解析】【分析】由题意首先由③得到函数的单调性,再结合函数定义域,特殊点的函数值,容易联想到一次函数,由此即可得解.【详解】由③,不妨设12x x ∀<,即210x x ->,都有()()21210f x f x x x -<-,即()()210f x f x -<,即()()21f x f x <,所以由题意可知()f x 是定义域为R 的减函数且满足()01f =,不妨设一次函数y x b =-+满足题意,则10b =-+,即1b =.故答案为:1x -+.14.设函数()3log ,x a f x x x a ≤≤=>⎪⎩,其中0a >.①若5a =,则()81f f ⎡⎤⎣⎦______;②若函数()3y f x =-有两个零点,则a 的取值范围是______.【答案】①.2②.[)9,27【解析】【分析】①代值计算即可;②分别画出()y f x =与3y =的图象,函数有两个零点,结合图象可得答案.【详解】①当5a =时,()35log ,5x f x x x ≤≤=>⎪⎩因为815>,所以()43381log 81log 345f ===<,所以()()8142f f f ⎡⎤===⎣⎦.②因为函数()3y f x =-有两个零点,所以()3f x =,即()y f x =与3y =的图象有两个交点.3=得9x =,3log 3x =得27x =.结合图象可得927a ≤<,即[)9,27a ∈.所以a 的取值范围是[)9,27.故答案为:①2;②[)9,27.15.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____.【答案】①③【解析】【分析】A 即为函数的定义域,B 即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【详解】对①,A =(﹣∞,0)∪(0,+∞),B =(﹣∞,0)∪(0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B =(0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ;对③,A =(0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;故答案为:①③.【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.三、解答题(本大题共6小题,共85分.)16.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.【答案】(Ⅰ)男生3人,女生2人;(Ⅱ)35【解析】【分析】(Ⅰ)利用分层抽样按比例计算出这5人中男生人数和女生人数.(Ⅱ)记这5人中的3名男生为B 1,B 2,B 3,2名女生为G 1,G 2,利用列举法能求出抽取的2人中恰有1名女生的概率.【详解】(Ⅰ)这5人中男生人数为19253320⨯=,女生人数为12852320⨯=.(Ⅱ)记这5人中的3名男生为B 1,B 2,B 3,2名女生为G 1,G 2,则样本空间为:Ω={(B 1,B 2),(B 1,B 3),(B 1,G 1),(B 1,G 2),(B 2,B 3),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2),(G 1,G 2)},样本空间中,共包含10个样本点.设事件A 为“抽取的2人中恰有1名女生”,则A ={(B 1,G 1),(B 1,G 2),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2)},事件A 共包含6个样本点.从而()63105P A ==所以抽取的2人中恰有1名女生的概率为35.【点睛】本题考查古典概型概率,考查分层抽样、列举法等基础知识,考查运算求解能力,是基础题.17.已知函数()211f x x =-.(1)证明:()f x 为偶函数;(2)用定义证明:()f x 是()1,+∞上的减函数;(3)直接写出()f x 在()1,+∞的值域.【答案】(1)证明见解析(2)证明见解析(3)()0,∞+【解析】【分析】(1)根据奇偶性的定义证明即可;(2)利用单调性定义证明即可;(3)根据单调性直接求得即可.【小问1详解】由函数()211f x x =-可知210x -¹,即1x ≠±,所以函数()f x 的定义域为{}1D x x =≠±,所以x D ∀∈,()()()221111f x f x x x -===---,故()f x 为偶函数.【小问2详解】假设()12,1,x x ∀∈+∞且12x x <,则()()()()()()()()()()()222221212121122222222212121212111111111111x x x x x x x x f x f x x x x x x x x x ----+--=-===--------,由()12,1,x x ∀∈+∞,12x x <知()()222121120,0,110x x x x x x ->+>++>,从而()()120f x f x ->,即()()12f x f x >.所以()f x 是()1,+∞上的减函数.【小问3详解】因为()f x 在()1,+∞上减函数,所以()f x 在()1,+∞的值域为()0,∞+.18.甲和乙分别记录了从初中一年级(2017年)到高中三年级(2022年)每年的视力值,如下表所示2017年2018年2019年2020年2021年2022年甲 4.94 4.90 4.95 4.82 4.80 4.79乙4.864.904.864.844.744.72(1)计算乙从2017年到2022年这6年的视力平均值;(2)从2017年到2022年这6年中随机选取2年,求这两年甲的视力值都比乙高0.05以上的概率;(3)甲和乙的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)【答案】(1)4.82(2)25(3)甲的视力平均值从2020开始连续三年的方差最小,乙的视力平均值从2017开始连续三年的方差最小.【解析】【分析】(1)利用平均数公式计算即可;(2)列表分析,利用古典概型概率公式计算即可(3)由表中数据分析波动性即可得结论.【小问1详解】乙从2017年到2022年这6年的视力平均值为:4.86 4.90 4.86 4.84 4.74 4.724.826+++++=.【小问2详解】列表:2017年2018年2019年2020年2021年2022年甲 4.94 4.90 4.95 4.82 4.80 4.79乙 4.864.904.864.844.744.72甲与乙视力值的差0.0800.090.02-0.060.07由表格可知:2017年到2022年这6年中随机选取2年,这两年甲的视力值都比乙高0.05上的年份由有4年,故所求概率为:2426C 62C 155P ===【小问3详解】从表格数据分析可得:甲的视力平均值从2020开始连续三年的方差最小,乙的视力平均值从2017开始连续三年的方差最小.19.某厂将“冰墩墩”的运动造型徽章纪念品定价为50元一个,该厂租用生产这种纪念品的厂房,租金为每年20万元,该纪念品年产量为x 万个()020x <≤,每年需投入的其它成本为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩(单位:万元),且该纪念品每年都能买光.(1)求年利润()f x (单位:万元)关于x 的函数关系式;(2)当年产量x 为何值时,该厂的年利润最大?求出此时的年利润.【答案】(1)()214520,0102256010736,1020x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-++<≤ ⎪⎪⎝⎭⎩(2)当年产量x 为16万个时,该厂的年利润最大,为416万元【解析】【分析】(1)根据利润等于销售总额减去总成本即可得出答案.(2)求出分段函数每一段的最大值,进行比较即可得出答案.【小问1详解】由题意得:()()5020f x x C x =--,()020x <≤.因为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩所以()2150205,01022560502060756,1020x x x x f x x x x x ⎧⎛⎫--+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪--+-<≤ ⎪⎪⎝⎭⎩,即()214520,0102256010736,1020x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-++<≤ ⎪⎪⎝⎭⎩.【小问2详解】当010x <≤时,函数()2145202f x x x =-+-在(]0,10单调递增,此时()()2max 110104510203802f x f ==-⨯+⨯-=.当1020x <≤时,函数()256010736f x x x ⎛⎫=-++ ⎪⎝⎭在()10,16上单调递增,在()16,20上单调递减,此时()()max 256016101673641638016f x f ⎛⎫==-⨯++=> ⎪⎝⎭.综上可得:当年产量x 为16万个时,该厂的年利润最大,为416万元.20.已知函数()()12log 21x f x mx =+-,m ∈R .(1)求()0f ;(2)若函数()f x 是偶函数,求m 的值;(3)当1m =-时,当函数()y f x =的图象在直线=2y -的上方时,求x 的取值范围.【答案】(1)1-(2)12m =-(3)21log 3x >【解析】【分析】(1)直接将0x =代入计算;(2)通过计算()()0f x f x --=恒成立可得m 的值;(3)解不等式()12log 212xx ++>-即可.【小问1详解】由已知得()()12log 2110f =+=-;【小问2详解】函数()f x 是偶函数,()()()()11122221log 21log 21log 212x xxx mxf x f x mx mx --⎡⎤+∴--=+--++⎢+⎣-=⎥⎦()1222210log 2x mx x mx x m =-=--=-+=,又()210x m -+=要恒成立,故210m +=,解得12m =-;【小问3详解】当1m =-时,()()12log 21x f x x =++,当函数()y f x =的图象在直线=2y -的上方时有()12log 212xx ++>-,()2211222112422l 2og 212log 21x xxxx x x --+--⎛⎫⎛⎫⇒==⨯ ⎪⎪⎝⎭⎝+>--=+<⎭21log 31321223xx⇒⨯>⇒>=解得21log 3x >.21.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【答案】(1){}6,10,15B =(2)7(3)不存在,理由见解析【解析】【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)不存在,理由反证法说明.【小问1详解】{}2,3,5A =Q ,{}6,10,15B ∴=【小问2详解】设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数等于7个,所以生成集B 中元素个数的最小值为7.【小问3详解】不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。
四川省成都市2023-2024学年高一上学期12月月考数学试题含答案
成都2023-2024学年度上期12月月考高一数学试卷(答案在最后)注意事项:1.本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.2.本堂考试120分钟,满分150分;3.答题前,考生务必先将自己的姓名、学号填写在答题卡上,并使用2B 铅笔填涂.4.考试结束后,将答题卡交回.第I 卷选择题部分,共60分一、单选题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}012M =,,,{}1,2,3N =,则M N ⋃=().A.{}1,2 B.{}0 C.{}0,1,2,3 D.{}0,1【答案】C 【解析】【分析】结合集合的并集运算即可.【详解】结合题意:{}{}{}0,1,21,2,30,1,2,3M N == ,故选:C.2.“=1x ”是“()()120x x --=”的()条件A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】先解一元二次方程,再根据充分必要条件的推理得出结果.【详解】根据题意,显然当=1x ,可得()()120x x --=成立,所以充分性满足;当()()120x x --=时,可得1x =或2x =,所以必要性不满足;即“=1x ”是“()()120x x --=”的充分不必要条件.故选:A.3.函数()2xf x x =+的零点所在区间是()A.()2,1-- B.()1,0- C.()0,1 D.()1,2【答案】B 【解析】【分析】分析函数()f x 的单调性,结合零点存在定理可得出结论.【详解】因为函数y x =、2x y =均为R 上的增函数,故函数()2xf x x =+为R 上的增函数,因为()1021112f --+=--=<,()010f =>,由零点存在定理可知,函数()2xf x x =+的零点所在区间是()1,0-.故选:B.4.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,()f x 的图象如图,则不等式()0f x <的解集是()A.(]2,5 B.[)(]5,22,5-⋃ C.()(]2,02,5- D.[)(]5,02,5- 【答案】C 【解析】【分析】结合函数的图像及奇偶性即可解不等式.【详解】根据图像,当0x >时,()0f x <的解为25x <≤,因为函数()f x 为奇函数,所以当0x <时,若()0f x <,即()0f x --<,则()0f x ->所以02x <-<,解得20x -<<,综合得不等式()0f x <的解集是()(]2,02,5- .故选:C.5.设函数()31,11,1xx x f x a x -≤⎧=⎨->⎩(0a >且1a ≠),若()()18f f =,则=a ()A.3B.3± C. D.±【答案】A 【解析】【分析】根据分段函数解析式计算可得.【详解】因为()31,11,1x x x f x a x -≤⎧=⎨->⎩(0a >且1a ≠),所以()1312f =-=,所以()()()21218ff f a==-=,解得3a =或3a =-(舍去).故选:A6.已知0.10.644,2,log 0.6a b c ===,则,,a b c 的大小关系为()A.c<a<bB.c b a <<C.a b c <<D.b a c<<【答案】A 【解析】【分析】化简a ,通过讨论函数()2xf x =和()4log g x x =的单调性和取值范围即可得出,,a b c 的大小关系.【详解】解:由题意,0.10.242a ==,在()2xf x =中,函数单调递增,且()0f x >,∴0.20.6022b a <<==,在()4log g x x =中,函数单调递增,且当01x <<时,()0g x <,∴4log 0.60c =<,∴c<a<b ,故选:A.7.在我们的日常生活中,经常会发现一个有趣的现象:以数字1开头的数字在各个领域中出现的频率似乎要高于其他数字.这就是著名的本福特定律,也被称为“第一位数定律”或者“首位数现象”,意指在一堆从实际生活中得到的十进制数据中,一个数的首位数字是d (1d =,2,L ,9)的概率为1lg 1d ⎛⎫+ ⎪⎝⎭.以此判断,一个数的首位数字是1的概率与首位数字是5的概率之比约为()(参考数据:lg20.301≈,lg30.477≈)A.2.9 B.3.2C.3.8D.3.9【答案】C 【解析】【分析】根据所给定义及对数的运算性质计算可得.【详解】依题意一个数的首位数字是1的概率为lg 2,一个数的首位数字是5的概率为16lg 1lg 55⎛⎫+= ⎪⎝⎭,所求的比为()lg 2lg 2lg 26lg 6lg 5lg 2lg 3lg10lg 2lg5==-+--lg 20.3013.82lg 2lg 3120.3010.4771=≈≈+-⨯+-.故选:C8.已知函数()f x 定义域为[]1,2a a -,且()1y f x =-的图象关于1x =对称,当[]0,2x a ∈时,()f x 单调递减,则关于x 的不等式()()123f x f x a ->-的解集是()A.25,36⎛⎤⎥⎝⎦B.15,66⎡⎤⎢⎥⎣⎦C.12,33⎛⎤ ⎥⎝⎦D.20,3⎛⎫ ⎪⎝⎭【答案】A 【解析】【分析】分析可知函数()f x 为偶函数,根据偶函数的定义域关于原点对称可求出实数a 的值,根据函数()f x 的单调性、偶函数的性质,结合()()123f x f x a ->-可得出关于实数x 的不等式组,由此可解得x的取值范围.【详解】因为函数()1y f x =-的图象关于1x =对称,令()()1g x f x =-,则()()2g x g x -=,即()()211f x f x --=-,即()()11f x f x -=-,所以,()()f x f x -=,故函数()f x 是定义在[]1,2a a -上的偶函数,则120a a -+=,解得13a =,所以,函数()f x 是定义在22,33⎡⎤-⎢⎥⎣⎦上的偶函数,由题意可知,函数()f x 在20,3⎡⎤⎢⎥⎣⎦上单调递减,由()()121f x f x ->-可得()()121fx f x ->-,所以,12122133222133x x x x ⎧⎪-<-⎪⎪-≤-≤⎨⎪⎪-≤-≤⎪⎩,解得2536x <≤.因此,不等式()()123f x f x a ->-的解集为25,36⎛⎤⎥⎝⎦.故选:A.二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知实数a b c d ,,,,则下列说法正确的有()A.若0a b <<,则11a b> B.若0a b >>,0c d >>,则ac bd >C.若,a b c d >>,则a d b c ->- D.若a b >,则22a b >【答案】ABC 【解析】【分析】利用不等式性质及特殊值逐项分析即可.【详解】选项A :因为0b a >>,所以110a b>>,故A 正确;选项B :因为0a b >>,0c d >>,所以0ac bd >>,故B 正确;选项C :因为,a b c d >>,所以d c ->-,所以a d b c ->-,故C 正确;选项D :a b >,取222,2a b a b ==-⇒=,故D 错误;故选:ABC.10.下列说法正确的有()A.命题“R x ∀∈,210x x ++>”的否定为“R x ∃∈,210x x ++≤”B.若a b >,c d >,则ac bd>C.若幂函数()22231mm y m m x--=--在区间()0,∞+上是减函数,则2m =或1-D.方程()230x a x a +-+=有一个正实根,一个负实根,则a<0.【答案】AD 【解析】【分析】根据全称命题与存在性命题的关系可判定A ;举反例可判定B ;根据幂函数定义和性质可判定C ;根据一元二次方程的性质可判定D.【详解】对于A 选项,根据全称量词命题的否定的知识可知,命题“R x ∀∈,210x x ++>”的否定为“R x ∃∈,210x x ++≤”,A 选项正确;对于B 选项,若a b >,c d >,如1a =,0b =,1c =-,2d =-,则ac bd <,B 选项错误;对于C 选项,函数()22231m m y m m x --=--是幂函数,所以2211230m m m m ⎧--=⎨--<⎩,解得2m =,所以C 选项错误;对于D 选项,设()()23f x x a x a =+-+,则()f x 有两个零点,且两个零点一正一负,则()00f a =<,所以D 选项正确.故选:AD.11.已知定义在R 上的函数()f x 的图象是连续不断的,且满足以下条件:①R x ∀∈,()()f x f x -=;②1x ∀,()20,x ∈+∞,当12x x ≠时,()()21210f x f x x x ->-;③()10f -=.则下列选项成立的是()A.()()34f f >B.若()()12f m f -<,则()1,3m ∈-C.若()0f x x>,则()()1,00,x ∈-⋃+∞ D.R x ∀∈,R m ∃∈,使得()f x m≥【答案】BD 【解析】【分析】根据给定条件探求出函数()f x 的奇偶性和在()0,∞+的单调性,再逐一分析各选项的条件,计算判断作答.【详解】由R x ∀∈,()()f x f x -=得:函数()f x 是R 上的偶函数,由12,(0,)x x ∀∈+∞,12x x ≠,()()21210f x f x x x ->-得:()f x 在()0,∞+上单调递增,对于A ,根据函数()f x 在()0,∞+上单调递增,可得()()34f f <,故A 错误;对于B ,根据函数()f x 是R 上的偶函数,且()f x 在()0,∞+上单调递增,在(),0∞-上单调递减,则()()()()12|1|2f m f f m f -<⇔-<,又函数()f x 的图象是连续不断的,则有|1|2m -<,解得13m -<<,故B 正确;对于C ,由()0f x x>,则()00f x x >⎧⎨>⎩或()00f x x <⎧⎨<⎩,又()()110f f -==,解得1x >或10x -<<,即()()1,01,x ∈-⋃+∞,故C 错误;对于D ,因R 上的偶函数()f x 的图象连续不断,且()f x 在()0,∞+上单调递增,因此,R x ∀∈,()(0)f x f ≥,取实数m ,使得(0)m f ≤,则R x ∀∈,()f x m ≥,故D 正确.故选:BD.12.直线y m =与函数()223,02ln ,0x x x f x x x ⎧--+≤⎪=⎨->⎪⎩的图象相交于四个不同的点,若从小到大交点横坐标依次记为a ,b ,c ,d ,则下列结论正确的是()A.[]3,4m ∈B.)40,eabcd ⎡∈⎣C.211,e e c ⎛⎤∈⎥⎝⎦D.56211e 2,e 2e e a b c d ⎡⎫+++∈+-+-⎪⎢⎣⎭【答案】BCD 【解析】【分析】画出函数的图象,利用数形结合思想,结合二次函数和对数函数的性质进行求解即可.【详解】函数的图象如下图所示:当0x ≤时,()2223(1)4f x x x x =--+=-++4≤,此时()30f x x =⇒=或2x =-;当20e x <≤时()2ln f x x =-,此时函数单调递减,当2e x >时()ln 2f x x =-,此时函数单调递增,此时()53e f x x =⇒=或1ex =,()64e f x x =⇒=或21e x =,直线y m =与函数()223,02ln ,0x x x f x x x ⎧--+≤⎪=⎨->⎪⎩有四个不同的点,必有34m ≤<,此时256211210e e e e ea b c d -≤<-<≤<<≤<<≤<,其中2(1)2a b +=⨯-=-,且2223232ln ln 2a a b b c d m --+=--+=-=-=,因此有3ab m =-,42ln ln 2ln 4e c d cd cd -=-⇒=⇒=,显然[0,1)ab ∈,因此)40,eabcd ⎡∈⎣,所以选项A 不正确,选项B 、C 正确;因为2a b +=-,211e e c <≤56e e d <≤<,结合图象知:56211e 2e 2e ea b c d +-≤+++<+-,因此选项D 正确,故选:BCD【点睛】关键点睛:利用数形结合思想,得到a ,b ,c ,d 的取值范围是解题的关键.第II 卷非选择题部分,共90分三、填空题:本题共4小题,每小题5分,共20分.13.若函数()()log 21a f x x =++(0a >且1a ≠),则函数()f x 恒过定点_____.【答案】()1,1-【解析】【分析】根据对数函数的知识求得定点坐标.【详解】由于()1log 111a f -=+=,所以函数()f x 恒过定点()1,1-.故选:()1,1-14.函数()212log 45y x x =--的递减区间为____________.【答案】()5,+∞【解析】【分析】由复合函数的单调性只需求出245u x x =--的单调递增区间,且要满足2450u x x =-->,从而求出答案.【详解】因为12log y u =在()0,∞+上单调递减,由复合函数的单调性可知,()212log 45y x x =--的递减区间为245u x x =--的单调递增区间,且要满足2450u x x =-->,解得5x >或1x <-,其中()224529u x x x =--=--在()5,+∞上单调递增,故()212log 45y x x =--的递减区间为()5,+∞.故答案为:()5,+∞15.如果关于x 的不等式22630x ax a -+-≥的解集为[]12,x x ,其中常数0a >,则12123ax x x x ++的最小值是______.【答案】【解析】【分析】根据不等式与对应方程的关系,利用根与系数的关系和基本不等式即可求解.【详解】不等式22630x ax a -+-≥的解集为[]12,x x ,其中常数0a >,所以12,x x 是方程22630x ax a -+=的实数根,0a >时,()222064324a a a ∆==-⨯>-,所以1221263x x a x x a +=⎧⎨=⎩,所以1212316a x x a x x a ++=+≥,当且仅当16a a =,即66a =时取等号,故12123ax x x x ++的最小值是故答案为:16.定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[][]124,2,2,1x x ∀∈--∃∈-,使得()()21g x f x =,则实数a 的取值范围为__________.【答案】55,,816⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】求出()f x 在[]2,4上的值域,利用()()22f x f x +=得到()f x 在[]2,0-上的值域,再求出()g x 在[]2,1-上的值域,根据题意得到两值域的包含关系,从而求出a 的取值范围.【详解】当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,由于224(2)4y x x x =-+=--+为对称轴为2x =开口向下的二次函数,222x y x x x+==+,由对勾函数的性质可知,函数在(]3,4上单调递增,可得()f x 在[]2,3上单调递减,在(]3,4上单调递增,()()()924,33,42f f f ===,()f x \在[]2,3上的值域为[]3,4,在(]3,4上的值域为119,32⎛⎤⎥⎝⎦,()f x \在[]2,4上的值域为93,2⎡⎤⎢⎥⎣⎦,()()()()()()11122,246248f x f x f x f x f x f x +=∴=+=+=+ ,故当[][]4,2,62,4x x ∈--+∈,()f x \在[]4,2--上的值域为39,816⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()1g x ax =+在[]2,1-上的值域为[]21,1a a -++,31289116a a ⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得516a ≥,故a 的范围是516a ≥;当0<a 时,()g x 为单调递减函数,()1g x ax =+在[]2,1-上的值域为[]1,21a a +-+,31891216a a ⎧≥+⎪⎪⎨⎪≤-⎪⎩,解得5;8a ≤-故a 的范围是58a -≤,综上可知故a 的范围是55,,816⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.四、解答题:本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合{}2230A x x x =-->,{}40B x x a =-≤.(1)当1a =时,求A B ⋂;(2)若A B = R ,求实数a 的取值范围.【答案】(1)()(]134∞--⋃,,(2)34⎡⎫+∞⎪⎢⎣⎭,【解析】【分析】(1)代入1a =,求解集合A ,B ,按照交集的定义直接求解即可;(2)求解集合B ,由并集为全集得出集合B 的范围,从而求出a 的范围.【小问1详解】解:由2230x x -->得1x <-或3x >.所以()()13A ∞∞=--⋃+,,.当1a =时,(]4B ∞=-,.所以()(]134A B ∞⋂=--⋃,,.【小问2详解】由题意知(4B a ∞=-,].又()()13A ∞∞=--⋃+,,,因为A B = R ,所以43a ≥.所以34a ≥.所以实数a 的取值范围是34⎡⎫+∞⎪⎢⎣⎭.18.计算(1)2ln3325(0.125)e -+++(24,=求11122a a a a --+-【答案】(1)(2)3±【解析】【分析】(1)直接利用指数幂的运算和对数的运算化简求值;(2)先求出114a a-+=,再求出1122a a --=±即得解.【小问1详解】解:原式=2333421--++()=741++-.【小问2详解】解:4,=∴224,=1216a a -∴++=.114a a -∴+=.又112122()214212a a a a ---=+-=-=11-22a a ∴-=±.111223a a a a --+∴==±-.19.已知函数()()()lg 2lg 2f x x x =+--.(1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明;(3)求不等式()1f x >的解集.【答案】(1)()2,2-(2)奇函数,证明见解析(3)18,211⎛⎫ ⎪⎝⎭【解析】【分析】(1)根据对数函数的性质进行求解即可;(2)根据函数奇偶性的定义进行判断和证明;(3)根据对数函数的单调性进行求解.【小问1详解】要使函数()f x 有意义,则2020x x +>⎧⎨->⎩,解得22x -<<,故所求函数()f x 的定义域为()2,2-;【小问2详解】证明:由(1)知()f x 的定义域为()2,2-,设()2,2x ∀∈-,则()2,2x -∈-,且()()()()lg 2lg 2-=-+-+=-f x x x f x ,故()f x 为奇函数;【小问3详解】因为()1f x >,所以()2lg12+=>-x f x x ,即2lg >lg102x x +-可得2102x x +>-,解得1811x >,又22x -<<,所以18211x <<,所以不等式()1f x >的解集是18,211⎛⎫ ⎪⎝⎭.20.科学实验中,实验员将某种染料倒入装有水的透明水桶,想测试染料的扩散效果,染料在水桶中扩散的速度是先快后慢,1秒后染料扩散的体积是31cm ,2秒后染料扩散的体积是33cm ,染料扩散的体积y 与时间x (单位:秒)的关系有两种函数模型可供选择:①3x y m =,②3log y m x b =+,其中m ,b 均为常数.(1)试判断哪个函数模型更合适,并求出该模型的解析式;(2)若染料扩散的体积达到35cm ,至少需要多少秒.【答案】(1)选3log y m x b =+,22log 1y x =+(2)至少需4秒【解析】【分析】(1)根据两种函数模型的特点和题中染料实际扩散的速度选择模型,代入数据即可求出模型的解析式;(2)根据题干条件,列出不等式,解之即可求解.【小问1详解】因为函数3x y m =中,y 随x 的增长而增长,且增长的速度也越来越快,二函数3log y m x b =+中,y 随x 的增长而增长,且增长的速度也越来越慢,根据染料扩散的速度是先快后慢,所以选第二个模型更合适,即3log y m x b =+,由题意可得:33log 11log 23m b m b +=⎧⎨+=⎩,解得:212log 3b m =⎧⎨=⎩,所以该模型的解析式为:2322log 3log 12log 1y x x =+=+,【小问2详解】由(1)知:22log 1y x =+,由题意知:5y ≥,也即22log 15x +≥,则有22log 4x ≥,∴2log 2x ≥,∴4x ≥,∴至少需要4秒.21.已知函数()f x 的定义域为(0,)+∞,且对一切0,0x y >>都有()()()x f f x f y y=-,当1x >时,有()0f x >;(1)求(1)f 的值;(2)判断()f x 的单调性并证明;(3)若(6)1f =,解不等式1(5)(2f x f x+-<;【答案】(1)f (1)=0;(2)()f x 在(0,+∞)上是增函数,证明见详解;(3)()0,4【解析】【分析】(1)利用赋值法即可求(1)f 的值;(2)任取12,x x ∈(0,+∞),且12x x <,利用条件可得()()210f x f x ->,进而可得单调性;(3)结合函数单调性将不等式进行转化即可得到结论.【详解】解:令x =y >0,则f (1)=f (x )−f (x )=0,所以f (1)=0;(2)任取12,x x ∈(0,+∞),且12x x <,则()()2211x f x f x f x ⎛⎫-= ⎪⎝⎭,因为210x x >>,所以211x x >,则210x f x ⎛⎫> ⎪⎝⎭,所以()()210f x f x ->即()()21f x f x >,所以()f x 在(0,+∞)上是增函数;(3)因为(6)1f =,所以36()(36)(6)6f f f =-,所以(36)2(6)2f f ==,由1(5)()2f x f x+-<,得[](5)(36)f x x f +<,所以5010(5)36x x x x +>⎧⎪⎪>⎨⎪+<⎪⎩,解得04x <<所以原不等式的解为()0,4.【点睛】本题主要考查抽象函数的应用,利用赋值法是解决抽象函数的关键,是中档题.22.已知函数()ln()()f x x a a R =+∈的图象过点()1,0,2()()2f x g x x e =-.(1)求函数()f x 的解析式;(2)若函数()ln(2)y f x x k =+-在区间()1,2上有零点,求整数k 的值;(3)设0m >,若对于任意1,x m m ⎡⎤∈⎢⎥⎣⎦,都有()ln(1)g x m <--,求m 的取值范围.【答案】(1)()ln f x x =;(2)k 的取值为2或3;(3)()1,2.【解析】【分析】(1)根据题意,得到ln(1)0a +=,求得a 的值,即可求解;(2)由(1)可得()2ln 2y x kx =-,得到2210x kx --=,设2()21h x x kx =--,根据题意转化为函数()y h x =在()1,2上有零点,列出不等式组,即可求解;(3)求得()g x 的最大值()g m ,得出max ()ln(1)g x m <--,得到22ln(1)m m m -<--,设2()2ln(1)(1)h m m m m m =-+->,结合()h m 单调性和最值,即可求解.【详解】(1)函数()ln()()f x x a a R =+∈的图像过点()1,0,所以ln(1)0a +=,解得0a =,所以函数()f x 的解析式为()ln f x x =.(2)由(1)可知()2ln ln(2)ln 2y x x k x kx =+-=-,(1,2)x ∈,令()2ln 20x kx -=,得2210x kx --=,设2()21h x x kx =--,则函数()ln(2)y f x x k =+-在区间()1,2上有零点,等价于函数()y h x =在()1,2上有零点,所以(1)10(2)720h k h k =-<⎧⎨=->⎩,解得712k <<,因为Z k ∈,所以k 的取值为2或3.(3)因为0m >且1m m>,所以1m >且101m <<,因为2()22()22(1)1f x g x x e x x x =-=-=--,所以()g x 的最大值可能是()g m 或1g m ⎛⎫ ⎪⎝⎭,因为22112()2g m g m m m m m ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭22122m m m m ⎛⎫=--- ⎪⎝⎭112m m m m ⎛⎫⎛⎫=-+- ⎪⎪⎝⎭⎝⎭21(1)0m m m m -⎛⎫=-⋅> ⎪⎝⎭所以2max ()()2g x g m m m ==-,只需max ()ln(1)g x m <--,即22ln(1)m m m -<--,设2()2ln(1)(1)h m m m m m =-+->,()h m 在(1,)+∞上单调递增,又(2)0h =,∴22ln(1)0m m m -+-<,即()(2)h m h <,所以12m <<,1,2.所以m的取值范围是()【点睛】已知函数的零点个数求解参数的取值范围问题的常用方法:f x中分1、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;。
2022-2023学年上海市浦东新区名校高一年级上册学期12月月考数学试题【含答案】
浦东新区名校2022-2023学年高一上学期12月月考 数学试卷(时间90分钟,满分100分)一、填空题(本题满分36分,共有12题,每小题3分) 1.设集合{}1,2,3,4,5,6U =,{}2,3,6A =,{}1,3,4B =,则A B =______.2.函数()21log 21y x =-的定义域为______.3.设α:14x ≤<,β:x m ≤,若α是β的充分条件,则实数m 的取值范围是______. 4.已知函数()5f x x a x a =-++-,若存在0x ∈R ,使得()204f x m m <+,则实数m 的取值范围为______. 5.已知函数331()5f x ax bx x=+--,且(2)2f -=,那么(2)f =______. 6.已知幂函数()122()2n f x n n x-=-在()0,+∞上为严格增函数,则n =______.7.若函数()f x =[)0,+∞,则实数m 的取值范围为______. 8.已知曲线lg y x =上的相异两点A ,B 到直线1x =的距离相等,则点A ,B 的纵坐标之和的取值范围是______.9.设函数2,1()11,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若(1)f 是函数()f x 的最大值,则实数a 的取值范围为______.10.设平行于x 轴的直线l 分别与函数2xy =和12x y +=的图像相交于点A ,B ,若在函数2x y =的图像上存在点C ,使得ABC △为等边三角形,则C 点的纵坐标为______.11.若关于x 的不等式222x x a x x a +++--≥的解集为R ,则实数a 的范围是______. 12.已知函数()()(2)f x m x m x m =-++和()33xg x =-同时满足以下两个条件:①对任意实数x 都有()0f x <或()0g x <②总存在()0,2x ∈-∞-,使得()()000f x g x <成立,则m 的取值范围是______.二、选择题(本题满分16分,共有4题,每小题4分)13.若函数222,0,()log ,0,x x x f x x x ⎧-≤=⎨>⎩则()2f f ⎡⎤-=⎣⎦( ) A .2- B .2 C .3-D .314.函数3()6x f x x =+的大致图象为( )A .B .C .D .15.已知定义域为R 的函数()f x 为偶函数,且()f x 在[)0,+∞是严格减函数,记23a f ⎛⎫=- ⎪⎝⎭,12b f ⎛⎫= ⎪⎝⎭,()21c f t t =-+-,则a ,b ,c 的大小关系为( )A .a b c <<B .c a b <<C .c b a <<D .b a c <<16.若关于x 的方程24x kx x =-有四个不同的实数解,则实数k 的取值范围为( )A .11,44⎛⎫-⎪⎝⎭B .()0,1C .1,4⎛⎫+∞⎪⎝⎭D .1,4⎛⎫-∞-⎪⎝⎭三、解答题(本题满分48分,共有5小题) 17.(本题满分6分)证明:函数()lg 12y x =-在其定义域上是严格减函数. 18.(本题满分8分)设a R ∈,函数2()21x x a f x +=+;(1)求a 的值,使得()f x 奇函数;(2)若3()2a f x +<对任意a R ∈成立,求a 的取值范围. 19.(本题满分10分)本题共有2个小题,第1小题满分5分,第2小题满分5分 为了加强“疫情防控”,并能更高效地处理校园内的疫情突发情况,某校决定在学校门口右侧搭建一间高为3米,底面面积为20平方米的长方体形状的临时隔离室,设临时隔离室的左右两侧的地面长度均为x 米(15x ≤≤).现就该项目对外进行公开招标,其中甲公司给出的报价细目为:临时隔离室的左右两侧墙面报价为每平方米200元,前后两侧墙面报价为每平方米250元,屋顶总报价为3400元;而乙公司则直接给出了工程的整体报价t 关于x的函数关系为23024014900t x x =-++.(1)设公司甲整体报价为y 元,试求y 关于x 的函数解析式; (2)若采用最低价中标规则,哪家公司能竞标成功?请说明理由.20.(本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分4分,第3小题满分4分已知函数()()2()11f x m x mx m m R =+-+-∈.(1)若不等式()0f x <的解集是空集,求m 的取值范围; (2)当2m >-时,解不等式()f x m ≥;(3)若不等式()0f x ≥的解集为D ,若[]1,1D -⊆,求m 的取值范围.21.(本题满分12分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分4分对于在某个区间[),a +∞上有意义的函数()f x ,如果存在一次函数()g x kx b =+使得对于任意的[),x a ∈+∞,有()()1f x g x -≤恒成立,则称函数()g x 是函数()f x 在区间[),a +∞上的弱渐近函数.(1)判断()g x x =是否是函数()f x =[)1,+∞上的弱渐近函数,并说明理由.(2)若函数()31g x x =+是函数()3mf x x x=+在区间[)4,+∞上的弱渐近函数,求实数m 的取值范围;(3)是否存在函数()g x kx =,使得()g x 是函数()f x =[)1,+∞上的弱渐近函数?若存在,求出实数k 的取值范围;若不存在,说明理由.浦东新区名校2022-2023学年高一上学期12月月考 数学试卷答案一、填空题(本题满分36分,共有12题,每小题3分) 1.【答案】{}2,6 2.【答案】()1,11,2⎛⎫+∞⎪⎝⎭3.【答案】[)4,+∞ 4.【答案】()(),51,-∞-+∞5.【答案】12- 6.【答案】17.【答案】[)1,+∞ 8.【答案】(),0-∞ 9.【答案】[]1,210. 11.【答案】2a ≥ 12.【答案】()3,2m ∈--二、选择题(本题满分16分,共有4题,每小题4分)13.【答案】D 14.【答案】D 15.【答案】B 16.【答案】D三、解答题(本题满分48分,共有5小题) 17.(本题满分6分)【答案】证:设1x 、2x 是定义域1,2⎛⎫-∞ ⎪⎝⎭上任意给定的两个实数,且12x x <, 则1212120x x ->->,()()2112112x x ->- ()()()()()()21221112lg 12lg 12lg12x f x f x x x x --=---=-, 由对数函数的性质,可知()()2112lg012x x ->-所以,()()120f x f x ->因此,函数()lg 12y x =-在其定义域上是严格减函数18.(本题满分8分) 【答案】(1)因为()f x 为奇函数,所以(0)0f =,可得1a =-因为2112()()2121x xxx f x f x -----===-++, 所以1a =-时()f x 为奇函数,所以1a =-(2)3()3(1)22x a f x a a +<⇔-<+ 当1a >-时,321x a a -<+恒成立,∵20x >,∴301a a -≤+,∴13a -<≤当1a =-时,40-<恒成立,所以1a =-当1a <-时,321x a a ->+恒成立,()Q20,x ∈+∞,显然不满足题意.综上所述,13a -≤≤ 19.(本题满分10分)本题共有2个小题,第1小题满分5分,第2小题满分5分 【答案】(1)解:因临时隔离室的左右两侧的长度均为x 米,则隔离室前后面的地面长度为20x米, 于是得20252003225032340012003400y x x x x ⎛⎫=⨯⨯+⨯⨯⨯+=++ ⎪⎝⎭,15x ≤≤,所以y 关于x 的函数解析式是()251200340015y x x x ⎛⎫=++≤≤ ⎪⎝⎭.(2)解:由(1)知,对于公司甲,25120034001200340015400x x ⎛⎫++≥⨯= ⎪⎝⎭,当且仅当25x x=,即5x =时取“=”,则当左右两侧墙的长度为5米时,公司甲的最低报价为15400元,对于公司乙,函数23024014900t x x =-++在[]1,4上单调递增,在[]4,5上单调递减,即乙公司最高报价为15380元,因1538015400<,因此,无论x 取何值,公司甲的报价都比公司乙的高,所以公司乙能竞标成功.20.(本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分4分,第3小题满分4分【答案】(1)当10m +=时,即1m =-,则由()20f x x =-<,得2x <,不合题意, 当10m +≠,即1m ≠-时,由不等式()0f x <的解集为∅得()()210Δ4110m m m m +>⎧⎨=-+-≤⎩,解得3m ≥,所以m 的取值范围为⎫+∞⎪⎪⎣⎭; (2)因为()f x m ≥,所以()2110m x mx +--≥,即()()1110m x x ⎡⎤++-≥⎣⎦, 当10m +=,即1m =-时,解得1x ≥,所以不等式的解集为[)1,+∞, 当10m +>,即1m >-时,()1101x x m ⎛⎫+-≥ ⎪+⎝⎭, 因为101m -<+,所以不等式的解集为[)1,1,1m ⎛⎤-∞-+∞ ⎥+⎝⎦,当10m +<,即21m -<<-时,()1101x x m ⎛⎫+-≤ ⎪+⎝⎭, 因为21m -<<-,所以110m -<+<,所以111m ->+, 所以不等式的解集为11,1m ⎡⎤-⎢⎥+⎣⎦, 综上,当1m =-,不等式的解集为[)1,+∞,当1m >-时,不等式的解集为[)1,1,1m ⎛⎤-∞-+∞ ⎥+⎝⎦,当21m -<<-时,不等式的解集为11,1m ⎡⎤-⎢⎥+⎣⎦; (3)因为不等式()0f x ≥的解集为D ,且[]1,1D -⊆,所以对任意的[]1,1x ∈-,不等式()2110m x mx m +-+-≥恒成立,即()2211m x x x -+≥-+,因为22131024x x x ⎛⎫-+=-+> ⎪⎝⎭所以22212111x x m x x x x -+-≥=-+-+-+恒成立,令2t x =-,则[]1,3t ∈,2x t =-, 所以2222131(2)(2)1333x t t x x t t t t t t-===-+---+-++-,由基本不等式可得3y t t =+≥=3t t=,即t =时取等号,所以当2x =221x x x --+取最大值,最大值为1-+=, 所以m的取值范围为,3⎡⎫+∞⎪⎢⎪⎣⎭. 21.(本题满分12分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分4分 【答案】解: (1)[)()()()1,f x g x x x x -===∈+∞在区间[)1,+∞上单调递减,且(]()()0,1f x g x -∈,得证. (2)因为函数()31g x x =+是函数()3mf x x x=+在区间[)4,+∞上的弱渐近函数, 所以()()11mf xg x x-=-≤,在区间[)4,+∞上恒成立,即08m ≤≤. (3)不存在。
河北省2022-2023学年高一上学期月考(12月)数学试卷含解析
河北省2022-2023学年高一上学期月考(12月)数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题(本大题共10小题,共50.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={x|x2−x−2>0},则∁R A=( )A. {x|−1<x<2}B. {x|−1≤x≤2}C. {x|x<−1}∪{x|x>2}D. {x|x≤−1}∪{x|x≥2}2. 设a=3x2−x+1,b=2x2+x,则( )A. a>bB. a<bC. a≥bD. a≤b3. 下列函数f(x)中,满足“对任意的x1,x2∈(0,+∞)时,均有(x1−x2)[f(x1)−f(x2)]>0”的是( )B. f(x)=x2−4x+4A. f(x)=12(x)C. f(x)=2xD. f(x)=log124. 函数y=ln(2x−x2)的单调递增区间是( )A. (0,1)B. (1,2)C. (−∞,1)D. (1,+∞)5. 对于某个与正整数n有关的命题P,若n=k(k∈N∗)时命题P成立可以推得n=k+1时命题P成立,则下列命题中必为真命题的是( )A. 若n=m+2(m∈N∗)时命题P不成立,则n=2m时命题P不成立B. 若n=2m(m∈N∗)时命题P不成立,则n=m+2时命题P不成立C. 若n =2m (m ∈N ∗)时命题P 不成立,则n =2m 时命题P 不成立D. 若n =2m(m ∈N ∗)时命题P 不成立,则n =2m 时命题P 不成立 6. 若方程2x +ln 1x−1=0的解为x 0,则x 0所在的大致区间是( ) A. (1,2)B. (2,3)C. (3,4)D. (5,6)7. 计算(log 32+log 23)2−log 32log 23−log 23log 32的值为( ) A. log 26B. log 36C. 2D. 18. 已知f(x)是定义域为(−1,1)的奇函数,而且f(x)是减函数,如果f(m −2)+f(2m −3)>0,那么实数m 的取值范围是( )A. (1,53)B. (−∞,53)C. (1,3)D. (53,+∞)9. 已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A. f(x)=2xln|x|B. f(x)=2|x|ln|x|C. f(x)=1x 2−1D. f(x)=1|x|−1|x|10. 如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t(0≤t ≤a)经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y(图中阴影部分),若函数y =f(t)的大致图象如图,那么平面图形的形状不可能是( )A. B. C. D.二、多选题(本大题共2小题,共10.0分。
2023-2024学年上海建平中学高一上学期数学月考试卷及答案(2023.12)
1建平中学2026届第一学期高一年级12月数学月考2023.12一、填空题(本大题共有12题,满分54分,第题每题4分,第7-12题每题5分)1.已知集合{}{}21,0,1,2,1,,A B x x x =−=−,且B A ⊆,则x =______. 2.已知一个扇形的圆心角大小为3π,弧长为23π,则其面积为______. 3.已知幂函数()()212222m m f x mm x+=−−在[)0,+∞上是增函数,则m =______.4.已知角α的终边经过点()1,0P −,则角α的余弦值为______. 5.设全集{}0,1,2,3,4,5U =,集合{}{}22320,A x xx Bx xx =−+===,则A B = ______. 6.若函数()f x =+为偶函数且非奇函数,则实数a 的取值范围为______.7.定义在()1,2−上的函数()y lg x a =+不存在反函数,则实数a 的取值范围是______. 8.若"23""2"x x a −<<−<<是的充分不必要条件,则a 的取值范围是______. 9.如果关于x 的一元三次方程3232100a x a x a x a +++=(,0,1,2,3i a R i ∈=且30a ≠)有三个实数根123,,x x x ,则12233112x x x x x x x x +++=______(用0123,,,a a a a 表示)10.已知定义在R 上的函数()2224x x x f a x e ae −−=,其中0a >,如果函数()f x 与函数()()f f x 的值域相同,则a 的取值范围是______.11.已知函数()21,02,0x a x x f x x ax x ++−>= −+≤的最小值为1a +,则实数a 的取值范围为______. 12.已知函数()()2,f x x g x ax x ==−,其中0a >,若对任意的[]11,3x ∈,总存在[]21,4x ∈,使得()()()()1212f x f x g x g x =成立,则实数a 的取值范围是______. 二、选择题(本大题共有4题,满分20分,每题5分)13.用反证法证明命题“设,a b N ∈,如果ab 能被5整除,那么,a b 中至少有一个能被5整2除”,假设应该是( ) A .,a b 都能被5整除 B .,a b 至多有一个能被5整除 C .a 或b 不能被5整除D .,a b 都不能被5整除14.在平面直角坐标系中,给出下列命题:①小于2π的角一定是锐角,②钝角一定是第二象限的角,③第一象限的角一定不是负角,④第二象限角一定大于第一象限角,其中假命题的个数是( ) A .1个 B .2个C .3个D .4个15.已知函数()2,,x x f x x x =为无理数为有理数,有下列两个命题: ①()f x 的值域为R ;②对任意正有理数a ,函数()()g x f x a =−存在奇数个零点;则下列判断正确的是( ) A .①②均为真命题B .①②均为假命题C .①为真命题②为假命题D .①为假命题②为真命题16.已知函数()2f x x ax b =++,若不等式()2f x ≤在[]1,5x ∈上恒成立,则满足要求的有序数对(),a b 有( ) A .0个B .1个C .2个D .无数个三、解答题(共5道大题,其中17题14分,18题14分,19题14分,20题16分,21题18分,共计76分)17.(8分)求下列关于x 的方程的解集. (1)()31lgx lg x ++=;(2)()()2295134x x log log +=++.318.(10分)已知函数()f x 是定义在R 上的奇函数,且当(),0x ∈−∞时,()x f x e −=. (1)求证:()f x 在定义域内是严格减函数:(2)若()()2610f tx f tx +−−≥对[]1,4x ∈恒成立,求实数t 的取值范围.19.(10分)近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格()P x (单位:元)与时间x (单位:天)的函数关系近似满足()110P x x =+,日销售量....()Q x (单位:件)与时间x (单位:天)的部分数据如下表所示: x10 15 20 25 30 ()Q x5055605550(1)给出以下四个函数模型:①()Q x ax b =+;②()Q x a x m b =−+;③()Q x a bx =−;④()b Q x a log x =⋅.请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量()Q x 与时间x 的变化关系,并求出该函数的解析式及定义域...; (2)设该工艺品的日销售收入为()f x (单位:元),求()f x 的最小值.420.(12分)已知函数()(](),,123,1,22x x x f x x x ∈−∞= +∈−(1)写出()f x 的单调区间以及在每个单调区间上的单调性(无需证明): (2)解不等式()20ff x +<;(3)若()12,,2x x ∈−∞满足()()12f x f x =,且12x x ≠,求证:122x x +<.521.(12分)设函数()f x 定义域为D ,如果存在常数K 满足:任取12,x x D ∈,都有()()1212f x f x K x x −≤−,则称()f x 是L 型函数,K 是这个L 型函数的L 常数.(1)判断函数()[]2,1,2f x x x =∈−是不是L 型函数,并说明理由;如果是,给出一个L 常数; (2)设函数()y f x =是定义在区间[],m n 上的L 型函数,a 是一个常数,求证:函数()yf x a =+也是L 型函数;(3)设函数()f x 是定义在[]0,1上的L 型函数,其L 常数(]0,1K ∈,且()f x 的值域也是[]0,1,求()f x 的解析式.6参考答案一、填空题 1.1−; 2.23π; 3. 1−; 4. 1−; 5.{}1; 6.1a >; 7. 12a −<<; 8.()3,+∞; 9.103a a a −; 10.1,2 +∞;11. {[]211,−−∪−; 12.;5443,11. 已知函数()21,02,0x a x x f x x ax x ++−>= −+≤ 的最小值为1a +,则实数a 的取值范围为______.{[]211,−−∪−(1)若0…a −,即0…a 时,()21,0121,1,2,0……a x f x x a x x ax x +< =+−> −+()f x ∴在(]0,−∞上单调递减,最小值为()02f =,在()0,+∞上最小值为1a +,故只需21…a +即可,解得01剟a ;(2)若01…a <−,即10…a −<时,则()221,01,121,12,0………x a x aa a x f x x a x x ax x −−+<− +−<<=+− −+ ()f x ∴在(]0,−∞上先减后增,最小值为2224a a f=−,在()0,+∞上最小值为1a +, 故只需2214…a a −+即可,解得22a −−−+又10,10剟a a −<∴−<, (3)若1a −>,即1a <−时,()221,011,1,21,2,0………x a x a x a f x x a x a x ax x −−+< −−<<−= +−− −+()f x ∴在(]0,−∞上先减后增,最小值为2224a a f=−,()f x 在()0,+∞上的最小值为10a −−>7而()f x 的最小值为10a +<,故只需令2214a a −=+即可,解得2a =−−2a =−+舍),综上,a的取值范围是{[]211,−−∪−.故答案为:{[]211,−−∪−.12. 已知函数()()2,f x x g x ax x ==−,其中0a >,若对任意的[]11,3x ∈,总存在[]21,4x ∈,使得()()()()1212f x f x g x g x =成立,则实数a 的取值范围是______.5443,依题意,()()()()1212f x f x g x g x =,可等价于()()()()1212f x g x g x f x =,令()()221,11x ax xh x m x ax ax x ax x −====−−−则问题等价于对任意的[]113x ,∈,总存在[]214x ,∈,使得()()1h x m x =成立,其中0a >, 所以()h x 的值域是()m x 的值域的子集,又当[]0,1,3a x >∈时,()[]()110131311h x ,a ,a a a ∈∉−− −−当[]0,1,4a x >∈时,()[]141m x a ,a ∈−−,所以11311411a a a a ≥− − ≤− −(1),依题意可知,1a −与31a −同号,当1a >时,解(1)式可得,5443a ,∈;当103a <<时,此时(1)式无解.综上,5443a , ∈ ;故答案为:5443,.二、选择题13.D ; 14.A ; 15. D ; 16. B 15. 已知函数()2,,x x f x x x = 为无理数为有理数,有下列两个命题:8①()f x 的值域为R ;②对任意正有理数a ,函数()()g x f x a =−存在奇数个零点;则下列判断正确的是( ) A .①②均为真命题B .①②均为假命题C .①为真命题②为假命题D .①为假命题②为真命题D由于()f x 的值域为R ,故(1)为假命题;当0…a 时,()()0g x f x a =−=,即()f x a =,此时方程无解,所以()g x 没有零点;当0a >时,()()0g x f x a =−=,即()f x a =,此时方程有2个解,即()g x 有2个零点,故(2)为假命题.16. 已知函数()2f x x ax b =++,若不等式()2f x ≤在[]1,5x ∈上恒成立,则满足要求的有序数对(),a b 有( )A .0个B .1个C .2个D .无数个B若不等式()2…f x 在[]1,5x ∈上恒成立,则必须满足()()()()()()212212,1232,2932,2,25222552,3f a b f a b f a b −≤≤−≤++≤−≤≤−≤++≤−≤≤−≤++≤ 即由()()212,12932,2a b a b −≤−−−≤ −≤++≤ ,两式相加,得482462,剟剟a a −+⇒−−(4), 再由()()5232932,2252,a b a b −≤−−−≤ −≤++≤ 两式相加,得41624106剟剟a a −+⇒−−(5), 结合(4),(5)两式可知,6a =−,代入不等式得()()()252,292,25213,2b b b −≤−+≤−≤−+≤−≤−+≤ 解得7b =,经检验,当6,7a b =−=时,()()226732f x x x x −+−−,9则()()()()()152,32max min f x f f f x f =====−满足()2…f x 在[]15x ,∈上恒成立,综上,满足要求的有序数对()a,b 为()67,−,共一个. 故选:B . 三、解答题17.(1)2x = (2)1x =18.(1)证明略 (2)13t ≥19.(1)()2060Q x x =−−+ (2)441 20. 已知函数()(](),,123,1,22x x x f x x x ∈−∞= +∈−(1)写出()f x 的单调区间以及在每个单调区间上的单调性(无需证明): (2)解不等式()20ff x +<;(3)若()12,,2x x ∈−∞满足()()12f x f x =,且12x x ≠,求证:122x x +<.见解析(1)递增区间(],1−∞;递减区间[)1,2和[)2,+∞;(2) 由题意210,11厔?x x −−, ①[]10x ,∈−,不等式()20f f x +<,即22120x x −−<,解得x <x >,所以1x , ∈−− ; ②(]01x ,∈,不等式()20ff x +<,即22120x x −+<,解得x ∈∅;综上,1x , ∈−− ;10(3)证明:函数()(](),123,122x x x ,f x x ,x ∈−∞= +∈ −的大致图象如图, 当(]1x ,∈−∞时,函数单调递增,当()12x ,∈时,函数单调递减,所以若()12,2x x ,∈−∞满足()()12f x f x =,则1212x x <<<,由图象知, ①若10…x ,则显然122x x +<;②若10x >,要证明122x x +<,则要证212x x <−,注意到21,21x x −>,且()f x 在()12,递减,则可证明()()212f x f x >−, 因为()()12f x f x =,则可证明()()112f x f x >−, 构造函数()()()2F x f x f x −−,()01x ,∈,则()223F x x x=−−,任取12,x x ,使1201x x <<<,则 ()()()()()()()2112121212121212121222222,2x x F x F x x x x x x x x x x x x x x x x x −−=+−−=+−+=−+−1201x x <<<因为所以12120,02x x x x −<<+<()121212222,0x x x x x x >+−< 所以()()12121220,x x x x x x−+−<即()()()()12120,F x F x F x F x −<<所以()F x 在()0,1上单调递减,又因为()()()1110,F f f =−=所以当()01x ,∈时,()()10F x F >=, 即()()2f x f x >−,所以()()212f x f x >−,从而122x x +<,得证.21.(12分)设函数()f x 定义域为D ,如果存在常数K 满足:任取12,x x D ∈,都有()()1212f x f x K x x −≤−,则称()f x 是L 型函数,K 是这个L型函数的L 常数.11 (1)判断函数()[]2,1,2f x x x =∈−是不是L 型函数,并说明理由;如果是,给出一个L 常数;(2)设函数()y f x =是定义在区间[],m n 上的L 型函数,a 是一个常数,求证:函数()y f x a =+也是L 型函数;(3)设函数()f x 是定义在[]0,1上的L 型函数,其L 常数(]0,1K ∈,且()f x 的值域也是[]0,1,求()f x 的解析式.(1)是,4K ≥;(2)见解析;(3)(),01f x x x =≤≤或()1,01f x x x =−≤≤;(1)定义域内任取12,x x ,221212x x K x x −≤−。
辽宁省实验中学2023-2024学年高一上学期12月月考数学试题及答案
辽宁省实验中学2023—2024学年度上学期12月阶段测试高一数学试卷一.选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是考试时间:120分钟试题满分:150分符合题目要求的。
1.已知集合(){}2{14,},,,A x x x B x y y x x A =<<∈==∈Z ,则A B = ( )A .{}2B .{}2,3C .{}4,9D .∅2.已知函数()()2231mm f x m m x −−=+−是幂函数,且()0,x ∈+∞时,()f x 单调递增,则m 的值为( )A .1B .1−C .2−D .2−或13.若,a b 是方程230x x +−=的两个实数根,则22a a b ++=( ) A .1B .2C .3D .44.一种药在病人血液中的量保持在500mg 以上时才有疗效,而低于100mg 时病人就有危险.现给某病人的静脉注射了这种药2500mg ,如果药在血液中以每小时20%的比例衰减,以保证疗效,那么下次给病人注射这种药的时间最迟大约是(参考数据:lg20.3010≈)( ) A .5小时后B .7小时后C .9小时后D .11小时后5.已知31log 2833log 3,log 4,3a b c−===,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .a c b >>D .c b a >>6.设函数()y f x =存在反函数()1y f x −=,且函数()2y x f x =−的图象过点()2,3,则函数()1yf x −=−的图象一定过点( )A .()1,1−B .()3,2C .()1,0D .()2,17.函数()f x 和()g x 的定义域均为R ,已知()13yf x =+为偶函数,()11yg x =++为奇函数,对于x ∀∈R ,均有()()23f x g x x +=+,则()()44f g =( ) A .66B .70C .124D .1448.已知函数()24,0e 1,0xx x x f x x − −+≥= −< ,若关于x 的不等式()()22[]0f x mf x n −−<恰有两个整数解,则实数m 的最小值是( )A .21−B .14−C .7−D .6−二.选择题:本题共4小题,每小题5分,共20分。
高一数学上学期12月月考试卷(含解析)-人教版高一全册数学试题
某某省某某市智林学校2014-2015学年高一上学期12月月考数学试卷一、单项选择题(12x5=60)1.(5分)设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x)>0的x的取值X围是()A.(﹣1,0)B.(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣1,+∞)2.(5分)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0 B.1 C.2 D.33.(5分)若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|﹣1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.∅4.(5分)集合{1,2,3}的真子集的个数为()A.5 B.6 C.7 D.85.(5分)设函数f(x)=,则满足f(x)≤2的x的取值X围是()A.B.C.时n≤f(x)≤m恒成立,则m﹣n的最小值是()A.B.C.1 D.9.(5分)已知集合A={x|x2﹣2x+a>0},且1∉A,则实数a的取值X围是()A.(﹣∞,1)B.(﹣∞,1] C.二、填空题(4x5=20)13.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.14.(4分)狄利克莱函数D(x)=则D(D(x))=.15.(4分)设x∈(0,1),幂函数y=xα的图象在直线y=x的上方,则α的取值X围是.16.(4分)若函数f(x)=x2+(a﹣1)x+a为偶函数,则a=.17.(4分)定义:如果函数y=f(x)在定义域内给定区间上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是上的“平均值函数”,x0是它的一个均值点.例如y=|x|是上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是上的“平均值函数”,则实数m的取值X围是.三、解答题18.设函数f(x)=(1)当时,求函数f(x)的值域;(2)若函数f(x)是(﹣∞,+∞)上的减函数,某某数a的取值X围.19.已知函数f(x)=2sinxcosx,x∈R.(1)求函数f(x)的最小正周期;(2)判断函数y=f(x)的奇偶性,并说明理由.20.已知幂函数为偶函数,且在区间(0,+∞)上是单调递减函数.(1)求函数f(x)的解析式;(2)讨论的奇偶性.21.已知函数f(x)=ax﹣3,g(x)=bx﹣1+cx﹣2(a,b∈R)且g(﹣)﹣g(1)=f(0)(1)试求b,c所满足的关系式;(2)若b=0,方程f(x)=g(x)在(0,+∞)有唯一解,求a的取值X围.22.已知函数f(x)=log a(3﹣ax).(1)当时,函数f(x)恒有意义,某某数a的取值X围;(2)是否存在这样的实数a,使得函数f(x)在区间上为增函数,并且f(x)的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.23.已知两条直线l1:y=m和l2:y=(m>0),l1与函数y=|log2x|的图象从左至右相交于点A、B,l2与函数y=|log2x|的图象从左至右相交于点C、D.记线段AC和BD在x轴上的投影长度分别为a、b.当m变化时,求的最小值.某某省某某市智林学校2014-2015学年高一上学期12月月考数学试卷参考答案与试题解析一、单项选择题(12x5=60)1.(5分)设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x)>0的x的取值X围是()A.(﹣1,0)B.(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣1,+∞)考点:对数函数的单调性与特殊点.专题:综合题;数形结合;数形结合法.分析:由题设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,可得在(0,1)上函数值小于0,在(1,+∞)函数值大于0,再由奇函数的性质判断出(﹣∞,0)上的函数值为正的部分即可.解答:解:由题意及对数函数的性质得函数在(0,1)上函数值小于0,在(1,+∞)函数值大于0,又函数f(x)是定义在R上的奇函数,∴函数f(x)在(﹣1,0)函数值大于0∴满足f(x)>0的x的取值X围是(﹣1,0)∪(1,+∞)故选C点评:本题考查对数函数的单调性与特殊点,以及函数的奇函数的性质,求解本题的关键是熟练对数函数的图象以及奇函数的对称性.2.(5分)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0 B.1 C.2 D.3考点:函数的零点;对数函数的单调性与特殊点.专题:函数的性质及应用.分析:先求出函数的定义域,再把函数转化为对应的方程,在坐标系中画出两个函数y1=|x ﹣2|,y2=lnx(x>0)的图象求出方程的根的个数,即为函数零点的个数.解答:解:由题意,函数f(x)的定义域为(0,+∞);由函数零点的定义,f(x)在(0,+∞)内的零点即是方程|x﹣2|﹣lnx=0的根.令y1=|x﹣2|,y2=lnx(x>0),在一个坐标系中画出两个函数的图象:由图得,两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点.故选C.点评:本题考查了函数零点、对应方程的根和函数图象之间的关系,通过转化和作图求出函数零点的个数.3.(5分)若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|﹣1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.∅考点:交集及其运算.分析:考查集合的性质与交集以及绝对值不等式运算.常见的解法为计算出集合A、B的最简单形式再运算.解答:解:由题得:A={x|﹣1≤x≤1},B={y|y≥0},∴A∩B={x|0≤x≤1}.故选C.点评:在应试中可采用特值检验完成.4.(5分)集合{1,2,3}的真子集的个数为()A.5 B.6 C.7 D.8考点:子集与真子集.专题:计算题.分析:集合{1,2,3}的真子集是指属于集合的部分组成的集合,包括空集.解答:解:集合的真子集为{1},{2},{3},{1,2},{1,3},{2,3},∅.共有7个.故选C.点评:本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个.5.(5分)设函数f(x)=,则满足f(x)≤2的x的取值X围是()A.B.C.考点:命题的真假判断与应用;集合的确定性、互异性、无序性.专题:阅读型.分析:根据N表示自然数集,包括0和正整数,判断①②③的正确性;根据集合中元素的互异性判定④是否正确.解答:解:∵集合N中含0,∴①×;∵N表示自然数集,﹣0.5∉N,0.5∉N,∴②×;∵0∈N,1∈N,∴③×;根据列举法表示集合中元素的互异性,④×;故选A点评:本题借助考查命题的真假判断,考查了自然数集的表示及集合中元素的性质,集合中元素性质:无序性、确定性、互异性.7.(5分)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)考点:交、并、补集的混合运算.专题:集合.分析:由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规则解出A∩(∁R B)即可得出正确选项解答:解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x>3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B点评:本题考查交、并、补的混合运算,属于集合中的基本计算题,熟练掌握运算规则是解解题的关键8.(5分)已知y=f(x)是偶函数,当x>0时,f(x)=x+,且x∈时n≤f(x)≤m恒成立,则m﹣n的最小值是()A.B.C.1 D.考点:函数恒成立问题.专题:计算题;函数的性质及应用.分析:根据函数是偶函数,转化为对称区间,研究函数的值域问题,从而可解.解答:解:由题意,∵y=f(x)是偶函数,x∈,所以考虑对称区间,f(x)=x+,f(x)=4,当且仅当x=2时,取得最小值4,而f(1)=5,f(3)=.所以f(x)在上的值域为,由于x∈时n≤f(x)≤m恒成立,则n≤4,且m≥5,所以最小值为m﹣n=5﹣4=1,故选C.点评:本题以偶函数为依托,考查函数的对称性,考查利用基本不等式求函数的最值,有一定的综合性.9.(5分)已知集合A={x|x2﹣2x+a>0},且1∉A,则实数a的取值X围是()A.(﹣∞,1) B.(﹣∞,1] C.分析:利用导数考查函数f(x)=x2+(a∈R)的单调性,可对A、B选项进行判断;考查函数f(x)=x2+(a∈R)的奇偶性,可对C、D选项的对错进行判断.解答:解析:∵f′(x)=2x﹣,故只有当a≤0时,f(x)在(0,+∞)上才是增函数,因此A、B不对,当a=0时,f(x)=x2是偶函数,因此C对,D不对.答案:C点评:本题主要考查了利用导数进行函数奇偶性的判断以及函数单调性的判断,属于基础题.12.(5分)函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)考点:函数的零点与方程根的关系.专题:计算题.分析:函数f(x)=ln(x+1)﹣的零点所在区间需满足的条件是函数在区间端点的函数值符号相反.解答:解:∵f(1)=ln(1+1)﹣2=ln2﹣2<0,而f(2)=ln3﹣1>lne﹣1=0,∴函数f(x)=ln(x+1)﹣的零点所在区间是(1,2),故选B.点评:本题考查函数的零点的判定定理,连续函数在某个区间存在零点的条件是函数在区间端点处的函数值异号.二、填空题(4x5=20)13.(4分)已知互异的复数a,b满足a b≠0,集合{a,b}={a2,b2},则a+b=﹣1.考点:集合的相等.专题:集合.分析:根据集合相等的条件,得到元素关系,即可得到结论.解答:解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.点评:本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.14.(4分)狄利克莱函数D(x)=则D(D(x))=1.考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用分段函数在不同区间上的解析式不同即可得出.解答:解:因为函数D(x)=,所以:当x为有理数时,D(x)=1,故D(D(x))=D(1)=1;当x为无理数时,D(x)=0,故D(D(x))=D(0)=1;综上,D(D(x))=1;故答案为:1.点评:本题主要考查对函数概念的理解,正确理解分段函数的意义是解题的关键.15.(4分)设x∈(0,1),幂函数y=xα的图象在直线y=x的上方,则α的取值X围是(﹣∞,1).考点:幂函数的单调性、奇偶性及其应用.专题:探究型.分析:可对幂函数的指数的情况进行讨论,分为指数为负数,指数大于1,指数小于1大于0进行讨论,找出符合条件的α的取值X围解答:解:由幂函数的性质知:当α<0时,幂函数y=xα的图象是下降的,故在x∈(0,1),幂函数y=xα的图象在直线y=x 的上方符合题意当α=0时,幂函数y=xα的图象在x∈(0,1)上是一个与y轴平行的线段,是直线y=1的一部分,故其图象在y=x的上方,符合题意当α∈(0,1)时,由底数x∈(0,1),幂函数y=xα的图象在y=x的上方,符合题意当α>1时,由底数x∈(0,1),幂函数y=xα的图象在y=x的下方,不符合题意符合题意综上,符合条件的α的取值X围是(﹣∞,1)故答案为(﹣∞,1)点评:本题考查幂函数的单调性、奇偶性及其应用,解题的关键是对幂函数的图象变化趋势即幂函数的单调性与幂指数的取值X围的关系比较熟悉,本题考查了分类讨论的思想,解题时遇到了不确定的情况往往要分类别进行讨论,变不确定为确定.16.(4分)若函数f(x)=x2+(a﹣1)x+a为偶函数,则a=1.考点:函数奇偶性的性质.分析:依据f(x)=f(﹣x)求出a的值.解答:解:∵f(x)=x2+(a﹣1)x+a为偶函数∴f(x)=f(﹣x),即x2+(a﹣1)x+a=x2﹣(a﹣1)x+a得a=1故答案为:1点评:本题主要考查函数的奇偶性的运用.属基础题.17.(4分)定义:如果函数y=f(x)在定义域内给定区间上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是上的“平均值函数”,x0是它的一个均值点.例如y=|x|是上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是上的“平均值函数”,则实数m的取值X围是(0,2).考点:函数的概念及其构成要素.专题:函数的性质及应用.分析:函数f(x)=x2﹣mx﹣1是区间上的平均值函数,故有x2﹣mx﹣1=在(﹣1,1)内有实数根,求出方程的根,让其在(﹣1,1)内,即可求出实数m的取值X 围.解答:解:∵函数f(x)=x2﹣mx﹣1是区间上的平均值函数,∴关于x的方程x2﹣mx﹣1=在(﹣1,1)内有实数根.即x2﹣mx﹣1=﹣m在(﹣1,1)内有实数根.即x2﹣mx+m﹣1=0,解得x=m﹣1,x=1.又1∉(﹣1,1)∴x=m﹣1必为均值点,即﹣1<m﹣1<1⇒0<m<2.∴所某某数m的取值X围是(0,2).故答案为:(0,2)点评:本题主要是在新定义下考查二次方程根的问题.在做关于新定义的题目时,一定要先认真的研究定义理解定义,再按定义做题.三、解答题18.设函数f(x)=(1)当时,求函数f(x)的值域;(2)若函数f(x)是(﹣∞,+∞)上的减函数,某某数a的取值X围.考点:二次函数的性质;函数单调性的性质;函数的值.专题:计算题.分析:(1)a=时,f(x)=,当x<1时,f(x)=x2﹣3x是减函数,可求此时函数f(x)的值域;同理可求得当x≥1时,减函数f(x)=的值域;(2)函数f(x)是(﹣∞,+∞)上的减函数,三个条件需同时成立,①≥1,②0<a<1,③12﹣(4a+1)•1﹣8a+4≥0,从而可解得实数a的取值X围.解答:解:(1)a=时,f(x)=,当x<1时,f(x)=x2﹣3x是减函数,所以f(x)>f(1)=﹣2,即x<1时,f(x)的值域是(﹣2,+∞).(3分)当x≥1时,f(x)=是减函数,所以f(x)≤f(1)=0,即x≥1时,f(x)的值域是(﹣∞,0].(5分)于是函数f(x)的值域是(﹣∞,0]∪(﹣2,+∞)=R.(6分)(Ⅱ)若函数f(x)是(﹣∞,+∞)上的减函数,则下列①②③三个条件同时成立:①当x<1,f(x)=x2﹣(4a+1)x﹣8a+4是减函数,于是≥1,则a≥.(8分)②x≥1时,f(x)=是减函数,则0<a<1.(10分)③12﹣(4a+1)•1﹣8a+4≥0,则a≤.于是实数a的取值X围是.(12分)点评:本题考查二次函数的性质,考查函数单调性的性质,着重考查分类讨论思想在求函数值域与确定参数a的取值X围中的应用,属于中档题.19.已知函数f(x)=2sinxcosx,x∈R.(1)求函数f(x)的最小正周期;(2)判断函数y=f(x)的奇偶性,并说明理由.考点:二倍角的余弦;三角函数的周期性及其求法;正弦函数的奇偶性.专题:三角函数的图像与性质.分析:(1)利用二倍角的正弦公式化简f(x)=six2x,再用周期公式计算即可;(2)利用函数奇偶性的定义和诱导公式,判断出f(﹣x)与f(x)的关系.解答:解:(1)因f(x)=2sinxcosx=sin2x,所以最小正周期为=π,(2)因f(﹣x)=sin(﹣2x)=﹣sin2x=﹣f(x),且x∈R,所以y=f(x)是奇函数.点评:本题考查二倍角的正弦公式,三角函数周期的求法,以及定义法判断函数奇偶性,难度不大.20.已知幂函数为偶函数,且在区间(0,+∞)上是单调递减函数.(1)求函数f(x)的解析式;(2)讨论的奇偶性.考点:奇偶性与单调性的综合;幂函数的性质.专题:综合题.分析:(1)由幂函数f(x)为(0,+∞)上递减,推知m2﹣2m﹣3<0,解得﹣1<m<3因为m为整数故m=0,1或2,又通过函数为偶函数,推知m2﹣2m﹣3为偶数,进而推知m2﹣2m 为奇数,进而推知m只能是1,把m代入函数,即可得到f(x)的解析式.(2)把f(x)的解析式代入F(x),得到F(x)的解析式.然后分别讨论a≠0且b≠0时,a=0且b≠0时,a≠0且b=0时,a=b=0时,函数的奇偶性.解答:解:(1),由题意知m(m﹣2)为奇数又m∈z且f(x)在(0,+∞)上递减,∴m=1,f(x)=x﹣4(2)∵y=x﹣2是偶函数,y=x3是奇函数①a≠0且b≠0时,F(x)为非奇非偶函数;②a=0且b≠0时,F(x)为奇函数;③a≠0且b=0时,F(x)为偶函数;④a=b=0时,F(x)为奇且偶函数点评:本题主要考查了函数单调性和奇偶性的综合应用.要理解好函数单调性和奇偶性的定义并能灵活利用.21.已知函数f(x)=ax﹣3,g(x)=bx﹣1+cx﹣2(a,b∈R)且g(﹣)﹣g(1)=f(0)(1)试求b,c所满足的关系式;(2)若b=0,方程f(x)=g(x)在(0,+∞)有唯一解,求a的取值X围.考点:利用导数研究函数的极值;函数的值;函数的零点.专题:函数的性质及应用.分析:(1)根据题意将自变量函数的解析式和所给的式子,化简求出b,c所满足的关系式即可;(2)由b=0代入(1)得到的式子可得c=﹣1,再把方程f(x)=g(x)化简并分离出a,令x ﹣1=t,将原条件转化为a=3t﹣t3在(0,+∞)上有唯一解,构造h(t)=3t﹣t3(t>0),求出导数和临界点,并求出函数的单调区间,求出得到函数的极大值,可得到a的取值X围.解答:解:(1)由得,(2b+4c)﹣(b+c)=﹣3,∴b,c所满足的关系式为b﹣c﹣1=0.(2)由b=0,b﹣c﹣1=0,可得c=﹣1,因为方程f(x)=g(x),即ax﹣3=﹣x﹣2,可化为a=3x﹣1﹣x﹣3,令x﹣1=t,由题意可得,a=3t﹣t3在(0,+∞)上有唯一解.令h(t)=3t﹣t3(t>0),由h′(t)=3﹣3t2=0,可得t=1,当0<t<1时,由h′(t)>0,可知h(t)是增函数;当t>1时,由h′(t)<0,可知h(t)是减函数,故当t=1时,h(t)取极大值2;故当a=2或a≤0时,方程f(x)=g(x)有且仅有一个正实数解.则所求a的取值X围为{a|a=2或a≤0}.点评:本题考查了函数与方程的综合应用,利用换元法转化成二次方程进行求解,导数与函数单调性的应用,熟练掌握利用导数研究函数的单调性、极值与最值、把问题等价转化等是解题的关键.22.已知函数f(x)=log a(3﹣ax).(1)当时,函数f(x)恒有意义,某某数a的取值X围;(2)是否存在这样的实数a,使得函数f(x)在区间上为增函数,并且f(x)的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.考点:函数恒成立问题;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)由题意,即要考虑到当时,3﹣ax>0恒成立,转化成恒成立问题,利用复合函数的单调性即可求出实数a的取值X围;(2)假设存在这样的实数,再根据f(x)是增函数,并且f(x)的最大值为1,即可求出a 的值.解答:解:(1)设t=3﹣ax,∵a>0,且a≠1,则t=3﹣ax为R上的减函数,∴时,t的最小值为,又∵当,f(x)恒有意义,即t>0对恒成立,∴t min>0,即,∴a<2,又a>0,且a≠1,∴实数a的取值X围为(0,1)∪(1,2).(2)令t=3﹣ax,则y=log a t,∵a>0,则函数t(x)为R上的减函数,又∵f(x)在区间上为增函数,∴y=log a t为减函数,∴0<a<1,∴当x∈时,t(x)最小值为3﹣3a,即此时f(x)最大值为log a(3﹣3a),由题意可知,f(x)的最大值为1,∴log a(3﹣3a)=1,∴,即,∴,故存在实数,使得函数f(x)在区间上为增函数,并且f(x)的最大值为1.点评:本题主要考查了对数函数的定义域、单调性的应用、函数单调性的性质、不等式的解法等基础知识,考查运算求解能力.对于是否存在问题,一般假设存在,推出结论.属于基础题.23.已知两条直线l1:y=m和l2:y=(m>0),l1与函数y=|log2x|的图象从左至右相交于点A、B,l2与函数y=|log2x|的图象从左至右相交于点C、D.记线段AC和BD在x轴上的投影长度分别为a、b.当m变化时,求的最小值.考点:基本不等式在最值问题中的应用.专题:计算题;不等式的解法及应用.分析:由题意写出x A=,x B=2m,x C=,x D=,从而得到a=|x A﹣x C|=|﹣|,b=|x B﹣x D|=|2m﹣|,化简=||=•2m=,转化为讨论+m的最值即可.解答:解:由题意得x A=,x B=2m,x C=,x D=,所以a=|x A﹣x C|=|﹣|,b=|x B﹣x D|=|2m﹣|,即=||=•2m=.因为+m=(2m+1)+﹣≥4﹣=,当且仅当(2m+1)=,即m=时取等号.所以,的最小值为=8.点评:本题考查了基本不等式在求最值中的应用,注意等号成立的条件,属于中档题.。
天津市2023-2024学年高一上学期12月月考数学试题含答案
天津2023年12月高一年级月考数学试卷(答案在最后)一、选择题(每题4分,共计48分)1.已知集合{1,3,5,7}A =,{4,5,6,7}B =,则A B = ()A.{5,7}B.{1,3,4}C.{1,3,4,6}D.{1,3,4,5,6,7}【答案】A 【解析】【分析】根据题意,利用交集的运算即可求出A B ⋂.【详解】解:由题可知,{1,3,5,7}A =,{4,5,6,7}B =,由交集的运算可得{}5,7A B = .故选:A.2.命题“0x ∀>,2210x x -+≥”的否定是()A.0x ∃>,2210x x -+<B.0x ∀>,2210x x -+<C.0x ∃≤,2210x x -+<D.0x ∀≤,2210x x -+<【答案】A 【解析】【分析】根据题意,全称命题的否定是存在命题,全称改存在,再否定结论.【详解】因为命题“0x ∀>,2210x x -+≥”是全称命题,全称命题的否定是存在命题,所以命题“0x ∀>,2210x x -+≥”的否定是“0x ∃>,2210x x -+<”故选:A3.设x R ∈,则“1x <”是“220x x +-<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解出两个不等式,利用集合的包含关系判断可得出结论.【详解】解不等式1x <,可得11x -<<;解不等式220x x +-<,可得2<<1x -.因为,()1,1-()2,1-,因此,“1x <”是“220x x +-<”的充分而不必要条件.故选:A.4.半径为1,圆心角为2π3的扇形的面积是()A.4π3 B.2π3C.πD.π3【答案】D 【解析】【分析】利用扇形的面积公式即可得解.【详解】因为扇形的半径为1,圆心角为2π3,所以扇形的面积为212ππ1233⨯⨯=.故选:D.5.已知函数()ln 4f x x x =+-,在下列区间中,包含()f x 零点的区间是()A.(0,1) B.(1,2)C.(2,3)D.(3,4)【答案】C 【解析】【分析】判断函数的单调性,以及f (2),f (3)函数值的符号,利用零点存在性定理判断即可.【详解】函数()ln 4f x x x =+-,是增函数且为连续函数,又f (2)ln 2240=+-<,f (3)ln3340=+->,可得()()230f f <所以函数()ln 4f x x x =+-包含零点的区间是(2,3).故选:C .【点睛】本题主要考查零点存在定理的应用,应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.6.已知角α的终边上有一点P 的坐标是()3,4a a ,其中0a <,则sin α=()A.4aB.45C.35D.45-【答案】D 【解析】【分析】利用三角函数的定义即可得解.【详解】因为0a <,所以a a =-,因为角α的终边上有一点P 的坐标是()3,4a a ,所以44sin 55a a α===-.故选:D.7.已知2log 5a =,3log 8b =,0.20.3c =,则a ,b ,c 的大小关系是()A.a b c >>B.c b a>> C.a c b>> D.b a c>>【答案】A 【解析】【分析】利用指数函数与对数函数的单调性即可得解.【详解】由题意,得22log 54log 2a ==>,3331log 3log 8log 92=<<=,即12b <<,0.2000.30.31c <=<=,所以a b c >>.故选:A.8.函数()2213x xf x -⎛⎫= ⎪⎝⎭的值域为()A.()0,1 B.()0,3 C.(]0,3 D.()3,∞+【答案】C 【解析】【分析】根据二次函数、指数函数性质求指数复合函数的值域.【详解】由222(1)1[1,)t x x x =-=--∈-+∞,则1()(0,3]3ty =∈,所以()2213x xf x -⎛⎫= ⎪⎝⎭的值域为(]0,3.故选:C9.若函数()f x 和()g x 都是R 上的奇函数,()()()2F x af x bg x =++,若()25F -=,则()2F =()A.1B.1- C.5- D.5【答案】B 【解析】【分析】利用奇函数的性质,即可求解()()22af bg +的值,即可求解()2F 的值.【详解】因为函数()f x 和()g x 都是R 上的奇函数,所以()()22f f -=-,()()22g g -=-,()()()()()22222225F af bg af bg -=-+-+=-++=⎡⎤⎣⎦,则()()223af bg +=-,()()()2222321F af bg =++=-+=-.故选:B10.化简()()48392log 3log 3log 2log 2++的值为()A.1B.2C.4D.6【答案】B 【解析】【分析】根据对数的性质可求代数式的值.【详解】原式2233111(2log 3log 3)(log 2log 2)232=⨯++2343log 3log 2232=⨯=,故选:B11.函数y =)A.[)1,+∞B.[)1,3C.()1,3 D.(),3-∞【答案】B 【解析】【分析】利用具体函数定义域的求法,结合对数函数的性质即可得解.【详解】因为y =所以()12log 31030x x ⎧-+≥⎪⎨⎪->⎩,解得13x ≤<.故选:B.12.已知函数()21,01ln ,0x x f x x x-⎧+≤⎪=⎨>⎪⎩,()()g x f x x a =--,若函数()g x 有2个零点,则实数a 的取值范围是()A.[)1,0- B.[)1,+∞ C.(],1-∞ D.[)2,+∞【答案】D 【解析】【分析】根据题意,转化为()y f x =和y x a =+有两个交点,画出两个函数的图形,结合函数的图象,即可求得实数a 的取值范围.【详解】由函数()21,01ln ,0x x f x x x-⎧+≤⎪=⎨>⎪⎩,因为()()g x f x x a =--,令()0g x =,即()f x x a =+,由函数()g x 有2个零点,即()y f x =和y x a =+有两个交点,在同一坐标系内画出两个函数的图形,如图所示,结合函数的图象,要使得函数()g x 有2个零点,则2a ≥,所以实数a 的取值范围为[2,)+∞.故选:D.二、填空题(每题4分,共计24分)13.cos120︒=__________.【答案】-12【解析】【详解】()1cos120cos 18060cos602=-=-=-oooo .故答案为12-.14.若幂函数()f x 的图象经过点()25,5,则()f x 的解析式为______.【答案】()12f x x =【解析】【分析】由幂函数所过的点求解析式即可.【详解】令幂函数()f x x α=,且过点()25,5,则12552αα=⇒=,所以()12f x x =.故答案为:()12f x x=15.已知102m =,103n =,则10m n -=________.【答案】23【解析】【分析】利用指数及指数幂的运算律求解.【详解】102m= ,103n=,10032110m m n n-∴==故答案为:23.16.已知,02x π⎛⎫∈- ⎪⎝⎭,4cos 5x =,则tan x =________.【答案】34-【解析】【分析】根据同角平方关系,先求出3sin 5x =-,再根据商数关系,求出tan x .【详解】由4cos 5x =,,02x π⎛⎫∈- ⎪⎝⎭,可得3sin 5x ==-,则根据商数关系得sin 3tan cos 4x x x ==-.故答案为:34-.17.函数12(01)1y x x x=+<<-的最小值为________.【答案】3+【解析】【分析】函数变形为12(1)1y x x x x ⎛⎫=++- ⎪-⎝⎭,利用基本不等式“1”求最小值.【详解】01x <<Q ,011x ∴<-<,121212(1)3332111x x y x x x x x x x x -⎛⎫∴=+=++-=++≥++ ⎪---⎝⎭,当且仅当121x xx x-=-,即1x =时,等号成立.所以函数12(01)1y x x x=+<<-的最小值为3+.故答案为:3+【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.若f (x )=(31)4,1,1a x a x ax x -+<⎧⎨-≥⎩是定义在R 上的减函数,则a 的取值范围是________.【答案】1183⎡⎫⎪⎢⎣⎭,【解析】【分析】根据分段函数的单调性可得310(31)140a a a a a -<⎧⎪-⨯+≥-⎨⎪>⎩,解不等式组即可求解.【详解】由题意知,310(31)140a a a a a -<⎧⎪-⨯+≥-⎨⎪>⎩,解得1380a a a ⎧<⎪⎪≥⎨⎪>⎪⎩,所以11,83a ⎡⎫∈⎪⎢⎣⎭.故答案为:11,83⎡⎫⎪⎢⎣⎭【点睛】本题考查了由分段函数的单调性求参数的取值范围,属于基础题.三、解答题(共计28分)19.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,(1)求a 的值;(2)求不等式22510ax x a -+->的解集.【答案】(1)2-(2)13,2⎛⎫- ⎪⎝⎭【解析】【分析】(1)由已知不等式的解集得到2520ax x +-=的两个实数根为12和2,利用韦达定理即可求出a 的值;(2)代入a 的值,由一元二次不等式的求解即可得解.【小问1详解】依题意可得:2520ax x +-=的两个实数根为12和2,由韦达定理得:15221222aa ⎧+=-⎪⎪⎨-⎪⨯=⎪⎩,解得:2a =-;【小问2详解】由(1)不等式22510ax x a -+->,即22530x x +-<,解得:132x -<<,故不等式的解集是1(3,2-.20.已知函数()()22log 43f x x ax =-+(1)当1a =时,求()f x 的定义域和单调递减区间;(2)若函数()f x 在()1,+∞上单调递增,求实数a 的取值范围.【答案】(1)() f x 的定义域为(,1)(3,)-∞+∞ ;单调递减区间为(,1)-∞(2)1,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)先由对数函数的性质求得()f x 的定义域,再利用复合函数的单调性,结合二次函数与对数函数的单调性即可得解;(2)利用复合函数单调性的性质,得到243u x ax =-+的性质,从而得到关于a 的不等式组,解之即可得解.【小问1详解】令243u x ax =-+,2log y u =.当1a =时,243u x x =-+,由0u >得2430x x -+>,解得3x >或1x <.故()f x 的定义域为(,1)(3,)-∞+∞ .因为函数2log y u =在定义域上单调递增,()224321u x x x =-+=--在(,1)-∞上单调递减,在(3,)+∞单调递增,所以()22()log 43f x x x =-+的单调递减区间为(,1)-∞.【小问2详解】因为()f x 在()1,+∞上单调递增,又2log y u =在定义域上单调递增,所以243u x ax =-+在()1,+∞上单调递增,且0u >恒成立,因为243u x ax =-+开口向上,对称轴为2x a =,所以2211430a a ≤⎧⎨-+≥⎩,解得12a ≤,故实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.21.已知函数()221x x af x +=-,且函数()f x 为奇函数(1)求函数的定义域;(2)求实数a 的值(3)用定义证明函数()f x 在()0,∞+上单调递减【答案】(1){|0}x x ≠;(2)1a =;(3)证明见解析.【解析】【分析】(1)由分式的性质,解指数方程求定义域;(2)由奇函数性质有()()f x f x -=-,得到(1)21x a a -⋅=-恒成立,即可求参数;(3)令120x x >>,应用作差法比较()()12,f x f x 大小即可证结论.【小问1详解】由题设210x -≠,即0x ≠,故函数的定义域为{|0}x x ≠.【小问2详解】由()212()2112x x x x a a f x f x --++⋅-===---,则1221221x x x x a a +⋅+=---,所以122x x a a +⋅=+,即(1)21x a a -⋅=-恒成立,故1a =.【小问3详解】令120x x >>,则()()1212211212122121(21)(21)(21)(21)2121(21)(21)x x x x x x x x x x f x f x +++--+--=-=----21122(22)(21)(21)x x x x -=--,由21220x x -<,1210x ->,2210x ->,故()()120f x f x -<,即()()12f x f x <,所以函数()f x 在()0,∞+上单调递减.。
洛阳市第一高级中学2020_2021学年高一数学12月月考试题
河南省洛阳市第一高级中学2020—2021学年高一数学12月月考试题一、选择题(本题共计12 小题,每小题5分,共计60分)1。
下列命题中正确的有①一个棱柱至少有个面;②正棱锥的侧面都是全等的等腰三角形;③有两个面平行且相似,其他各面都是梯形的多面体是棱台;④正方形的直观图是正方形;A。
个 B.个 C.个D。
个2. 如图,四棱柱ABCD﹣A1B1C1D1中,ABCD为平行四边形,E,F分别在线段DB,DD1上,且,G在CC1上且平面AEF∥平面BD1G,则A.B.C.D.3。
如图所示,已知正三棱柱的所有棱长均为,则四棱锥的体积为A.B。
C.D.4。
我国古代数学名著《九章算术》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量为(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)A.寸B。
寸 C.寸D。
寸5。
已知一圆锥的侧面展开图是一个中心角为直角的扇形,若该圆锥的侧面积为,则该圆锥的体积为A。
B。
C。
D。
6. 如图,在直三棱柱中,,,若半径为的球与三棱柱的底面和侧面都相切,则三棱柱的体积为A.B。
C。
D.7. 若某几何体的三视图如图所示,则该几何体的最长棱的长为A。
B。
C。
D。
8。
在正三棱柱中,若,则与所成的角的大小为A. B. C. D.9. 《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥为鳖臑,平面,,,且三棱锥的四个顶点都在一个正方体的顶点上,则该正方体的表面积为A. B.C。
D。
10.如图,在四面体中,已知,,,则四面体被截面分得的上下两部分的体积之比为A.B。
C。
D。
11. 如图所示,正方体的棱长为,,分别为,的中点,点是正方形内的动点包括边界,若平面,则动点的轨迹长度为A. B.C。
D.12. 如图,在正方体中,点,,分别是棱的中点,给出下列四个推断:①平面;②平面;③平面;④平面平面; ⑤平面平面。
江苏省扬州中学2022-2023学年高一上学期12月月考数学试卷及答案
扬州中学高一数学月考试卷2022.12一、 单项选择题:本大题共8小题,每小题5分,计40分.在每小题所给的A.B.C.D.四个选项中,只有一项是正确的,请在答题卡上将正确选项按填涂要求涂黑.1.已知集合 {}{},0,1,2,3,4A xx N B =∈=, 则 ,A B 间的关系是 ( ▲ ) A . A B=B .B A⊆C .A B∈D .A B⊆2.下列选项中与角1680α=︒终边相同的角是( ▲ ) A.120︒B.240−︒C.120−︒D.60︒3.命题“1x ∀>,210x −>”的否定形式是( ▲ ) A.1x ∀>,210x −≤ B.1x ∀≤,210x −≤C.1x ∃>,210x −≤ D.1x ∃≤,210x −≤4.已知 1.4 2.25log 0.6,3,0.9a b c ===,则a 、b 、c 的大小关系为( ▲ )A.a b c<< B.a c b<< C.c a b << D.b c a <<5.如果点(sin ,cos )P θθ位于第四象限,那么角θ所在的象限是( ▲)A .第一象限B .第二象限C .第三象限D .第四象限6.国棋起源于中国,春秋战国时期已有记载,隋唐时经朝鲜传入日本,后流传到欧美各国.围棋蕴含着中华文化的丰富内涵,它是中国文化与文明的体现.围棋使用方形格状棋盘及黑白二色圆形棋子进行对弈,棋盘上有纵横各19条线段形成361个交叉点,棋子走在交叉点上,双方交替行棋,落子后不能移动,以围地多者为胜.围棋状态空间的复杂度上限为3613P =,据资料显示字宙中可观测物质原子总数约为8010Q =,则下列数中最接近数值PQ的是( ▲ )(参考数据:lg30.477≈) A .8910B .9010C .9110D .21097.函数xx xx e e e e y −−−+=的图象大致为( ▲ )8.设0a >,0b >,且22a b +=,则22aa a b++ ( ▲ ) A .有最小值为4 B.有最小值为1 C .有最小值为143D .无最小值二、多项选择题:本大题共4小题,每小题5分,共计20分.在每小题所给的A.B.C.D.四个选项中,有多项是正确的,全部选对的得5分,部分选对的得2分,有选错的得0分.请在答题卡上将正确选项按填涂要求涂黑.9. 下列说法正确是( ▲ ) A. 42403π︒=B. 1弧度的角比1︒的角大C. 用弧度制量角时,角的大小与圆的半径有关D. 扇形的周长为6厘米,面积为2平方厘米,则扇形的圆心角的弧度数为410. 已知函数()ln f x x =,0a b <<,且()()f a f b =,下列结论正确的是( ▲ )A.1b a >B. 2a b +> C 23b a+>D. ()()22118a b +++>11. 已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪−<⎩下列说法正确的是( ▲ )A. 函数sgn()y x =图像的对称中心坐标是(0,0)B. 对任意1,sgn(ln )1x x >=C. 函数sgn()x y e x ⋅−=的值域为(,1)−∞D. 对任意的,sgn()x R x x x ∈⋅= 12. 给出下列四个结论,其中所有正确结论的序号是( ▲ ) A. “3x >”是“24x >”的充分不必要条件.B. 函数()log (1)1(0,1)a f x x a a =−+>≠过定点(2,1)C. 若函数()f x 满足(2)(14),f x f x −+=+则()f x 的图像关于直线8x =对称D. 函数()f x 的定义域为D ,若满足:(1)()f x 在D 内是单调函数;(2)存在,22m n D ⎡⎤⊆⎢⎥⎣⎦,使得()f x 在,22m n ⎡⎤⎢⎥⎣⎦上的值域为[,]m n ,那么就称函数()f x 为“梦想函数”.若函数()()log (0,1)x a f x a t a a =+>≠是“梦想函数”,则t 的取值范围是1,04⎡⎫−⎪⎢⎣⎭三、填空题:本大题共4小题,每小题5分,计20分.只要求写出最后结果,并将正确结果填写到答题卡相应位置.13. 若幂函数()y f x =的图像经过点49,316⎛⎫⎪⎝⎭,则()2f −= ▲ . 14. 求值:()1202129.6log 44⎛⎫−−− ⎪⎝⎭= ▲ . 15. 若函数()f x 在R 上是单调函数,且满足对任意x ∈R ,都有()3o 1l g x f f x −=⎡⎤⎣⎦,则函数()f x 的零点是 ▲ .16. 已知定义在实数集R 上的偶函数()f x 在区间(],0−∞上单调递增,且()20f −=. 若A 是ABC 的一个内角,且满足()12sin 21f f A ⎛⎫<⎪+⎝⎭,则A 的取值范围为 ▲ . 四、解答题:本大题共6题,计70分.17. 已知角的终边经过点()4,3P −,(1)求()tan sin cos 2αππαα⎛⎫−−+ ⎪⎝⎭的值;(2)求22sin sin cos 2cos αααα++的值.α18. 设全集,已知集合,.(1)若,求;(2)若,求实数的取值范围.19.设是上的奇函数,,当时,. (1)求的值; (2)求时,的解析式;(3)当时,求方程的所有实根之和. (写出正确答案即可)20. 设12()2x x mf x n+−+=+(0,0m n >>)是奇函数.(1)求m 与n 的值;(2)如果对任意x R ∈,不等式2(2cos )(4sin 7)0f a x f x ++−>恒成立,求实数a 的取值范围.21.已知函数()11lg+−=x xx f . (1) 求不等式(())(lg3)0f f x f +>的解集;(2) 函数()),1,0(2≠>−=a a a x g x若存在[),1,0,21∈x x 使得)()(21x g x f =成立,求实数a 的取值范围;22. 已知函数.(1)若关于的方程有两个不同的实数解,求实数的值; (2)求函数在区间上的最大值.R U ={}1≤−=a x x A {}0)1)(4(≤−−=x x x B 4=a B A ⋃A B A = a ()f x (,)−∞+∞(2)()f x f x +=−01x ≤≤()f x x =()f π13x −≤≤()f x 44x −≤≤()(0)f x m m =<2()1,()|1|f x x g x a x =−=−x |()|()f x g x =a ()|()|()h x f x g x =+[2,2]−高一数学12月月考答案一、单项选择题:1.D .2. C3.C4.B5.B6.D7.A8.B二、多项选择题:9.AB10.BCD11..ABD12. ABC三、填空题:13.14 14. 32−15.13. 16. 73311,,124412ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭四、解答题:17.解:由题意3sin 5α=,4cos 5α=−,则: (1)原式=sin 15cos sin sin 2cos 8ααααα==−+。
高一(上)12月月考数学试卷 (1)
高一(上)12月月考数学试卷一.选择题:1.已知,集合,,则A. B. C. D.2.有个命题:三点确定一个平面.梯形一定是平面图形.平行于同一条直线的两直线平行.垂直于同一直线的两直线互相平行.其中正确命题的个数为()A. B. C. D.3.函数的图象是()A. B.C. D.4.已知直线与直线垂直,面,则与面的位置关系是()A. B.C.与相交D.以上都有可能5.如图的正方体中,异面直线与所成的角是()A. B. C. D.6.已知、为两条不同的直线、为两个不同的平面,给出下列四个命题①若,,则;②若,,则;③若,,则;④若,,则.其中真命题的序号是()A.①②B.③④C.①④D.②③7.若函数,则函数的定义域为()A. B. C. D.8.设是定义在上的奇函数,且当时,,则的值等于()A. B. C. D.9.定义在上的函数满足:对任意的,,有,则()A. B.C. D.10.一长方体的长,宽,高分别为,,,则该长方体的外接球的体积是()A. B.C. D.11.已知函数,在下列区间中,包含零点的区间是()A. B. C. D.12.已知两条直线和,与函数的图象从左至右相交于点,,与函数的图象从左至右相交于,.记线段和在轴上的投影长度分别为,,当变化时,的最小值为()A. B. C. D.二.填空题:13.函数的值域是________.14.一个圆锥的底面半径是,侧面展开图为四分之一圆面,一小虫从圆锥底面圆周上一点出发绕圆锥表面一周回到原处,其最小距离为________.15.函数的零点个数是________.16.所在的平面,是的直径,是上的一点,,分别是点在,上的射影,给出下列结论:① ;② ;③ ;④ 平面.其中正确命题的序号是________.三.解答题17.17.. . .18.如图为一个几何体的三视图画出该几何体的直观.求该几何体的体积.求该几何体的表面积.19.如图,在正方体中.如图求与平面所成的角如图求证:平面.20.是定义在上的偶函数,当时,;当时,.当时,求满足方程的的值.求在上的值域.21.已知定义域为的函数是奇函数求,的值.判断的单调性,并用定义证明若存在,使成立,求的取值范围.22.已知函数,.求的最小值;关于的方程有解,求实数的取值范围.答案1. 【答案】A【解析】根据集合的基本运算进行求解即可.【解答】解:∵或,∴ ,则,故选:2. 【答案】C【解析】由公理三及其推论能判断、的正误,由平行公理能判断的正误,垂直于同一直线的两直线相交、平行或异面,由此能判断的正误.【解答】解:不共线的三点确定一个平面,故错误;∵梯形中有一组对边互相平行,∴梯形一定是平面图形,故正确;由平行公理得平行于同一条直线的两直线平行,故正确;垂直于同一直线的两直线相交、平行或异面,故错误.故选:.3. 【答案】A【解析】由函数解析式,此函数是一个指数型函数,且在指数位置带有绝对值号,此类函数一般先去绝对值号变为分段函数,再依据此分段函数的性质来确定那一个选项的图象是符合题意的.【解答】解:,即由解析式可以看出,函数图象先是反比例函数的一部分,接着是直线的一部分,考察四个选项,只有选项符合题意,故选.4. 【答案】D【解析】以正方体为载体,利用空间中线线、线面、面面间的位置关系求解.【解答】解:在正方体中,,平面,平面;,平面,平面;,平面,与平面相交.∴直线与直线垂直,面,则与面的位置关系是或或与相交.故选:.5. 【答案】C【解析】连接,根据正方体的几何特征及异面直线夹角的定义,我们可得即为异面直线与所成的角,连接后,解三角形即可得到异面直线与所成的角.【解答】解:连接,由正方体的几何特征可得:,则即为异面直线与所成的角,连接,易得:故故选6. 【答案】D【解析】,,则或与是异面直线;若,则垂直于中所有的直线,,则平行于中的一条直线,故,;若,,则;,,则,或,相交,或,异面.【解答】解:,,则或与是异面直线,故①不正确;若,则垂直于中所有的直线,,则平行于中的一条直线,∴ ,故.故②正确;若,,则.这是直线和平面垂直的一个性质定理,故③成立;,,则,或,相交,或,异面.故④不正确,综上可知②③正确,故答案为:②③.7. 【答案】B【解析】要使函数有意义,则有,解不等式组即可得.到答案.【解答】解:要使函数有意义,则,.解得:.∴函数的定义域为:.故选:.8. 【答案】B【解析】先根据是定义在上的奇函数,把自变量转化到所给的区间内,即可求出函数值.【解答】解:∵ 是定义在上的奇函数,∴ ,又∵当时,,∴ ,∴ .故答案是.9. 【答案】D【解析】根据函数单调性的等价条件,即可到底结论.【解答】解:若对任意的,,有,则函数满足在上单调递减,则,故选:.10. 【答案】C【解析】长方体的对角线就是外接球的直径,求出长方体的对角线长,即可求出球的半径,外接球的体积可求.【解答】解:由题意长方体的对角线就是球的直径.长方体的对角线长为:,外接球的半径为:外接球的体积.故选:.11. 【答案】C【解析】可得,,由零点的判定定理可得.【解答】解:∵,∴ ,,满足,∴ 在区间内必有零点,故选:12. 【答案】C【解析】由题意设,,,各点的横坐标分别为,,,,依题意可求得为,,,的值,,,下面利用基本不等式可求最小值【解答】解:设,,,各点的横坐标分别为,,,,则,;,;∴ ,,,.∴ ,,∴又,∴,当且仅当时取“ ”号,∴,∴的最小值为.故选:.13. 【答案】【解析】根据复合函数单调性之间的性质进行求解即可.【解答】解:,∴,∵,∴,即函数的值域为.故答案为:.14. 【答案】【解析】根据已知,求出圆锥的母线长,进而根据小虫爬行的最小距离是侧面展开图中的弦长,可得答案.【解答】解:设圆锥的底面半径为,母线长为,∵圆锥的侧面展开图是一个四分之一圆面,∴,∴ ,又∵小虫爬行的最小距离是侧面展开图中的弦长,如下图所示:故最小距离为:,故答案为:.15. 【答案】【解析】分段讨论,当时,解得,即在上有个零点,当时,在同一坐标系中,作出与,根据图象,易知有个交点,即可求出零点的个数.【解答】解:当时,,解得,即在上有个零点,当时,,即,分别画出与的图象,如图所示:由图象可知道函数,与函有个交点,函数的零点有个,综上所述,的零点有个,故答案为:.16. 【答案】①②③【解析】对于①②③可根据直线与平面垂直的判定定理进行证明,对于④利用反证法进行证明,假设面,而面,则,显然不成立,从而得到结论.【解答】解:∵ 所在的平面,所在的平面∴ ,而,∴ 面,又∵ 面,∴ ,而,∴ 面,而面,∴ ,故③正确;而面,∴ ,而,∴ 面,而面,面∴ ,,故①②正确,∵ 面,假设面∴ ,显然不成立,故④不正确.故答案为:①②③.17. 【答案】(本题满分分)解:原式.; 原式.【解析】直接利用对数运算法则化简求解即可.; 利用有理指数幂的运算法则化简求解即可.【解答】(本题满分分)解:原式.; 原式.18. 【答案】(本题满分分)解:由几何体的三视图得到几何体的直观图为一个三棱椎,如右图,其中平面,,,.; 由知,∴该几何体的体积.; 该几何体的表面积:.【解析】由几何体的三视图能作出几何体的直观图为一个三棱椎.; 先求出,由此能求出该几何体的体积.; 该几何体的表面积,由此能求出结果.【解答】(本题满分分)解:由几何体的三视图得到几何体的直观图为一个三棱椎,如右图,其中平面,,,.; 由知,∴该几何体的体积.; 该几何体的表面积:.19. 【答案】(本题满分分).解:在正方体,连接交于点,连接,如图①,则又∵ 平面,平面,∴又∵ ,∴ 平面,∴ 是与平面所成的角,在中,,∴ ,∴ 与平面所成的角为.证明:; 连接交于点,连结,如图②则,又,∴∵ 平面,平面,∴ 平面.【解析】连接交于点,连接,则,,从而平面,是与平面所成的角,由此能求出与平面所成的角.; 连接交于点,连结,则,由此能证明平面.【解答】(本题满分分).解:在正方体,连接交于点,连接,如图①,则又∵ 平面,平面,∴又∵ ,∴ 平面,∴ 是与平面所成的角,在中,,∴ ,∴ 与平面所成的角为.证明:; 连接交于点,连结,如图②则,又,∴∵ 平面,平面,∴ 平面.20. 【答案】解:当时,则,此时,∵ 是定义在上的偶函数,∴ ,即,当时,由得,即,即,则,即,解得.即方程的根.; ∵ 时,,∴当时,由得,若,则函数在上单调递减,则函数的值域为.若,此时函数在上的最大值为,最小值为,则函数的值域为.若,则此时,此时函数在在上的最大值为,最小值为,函数的值域为.【解析】当时,利用函数奇偶性的对称性求出函数的表达式,解对数方程即可求满足方程的的值.; 讨论的取值范围,结合对数函数和一元二次函数的性质即可求在上的值域.【解答】解:当时,则,此时,∵ 是定义在上的偶函数,∴ ,即,当时,由得,即,即,则,即,解得.即方程的根.; ∵ 时,,∴当时,由得,若,则函数在上单调递减,则函数的值域为.若,此时函数在上的最大值为,最小值为,则函数的值域为.若,则此时,此时函数在在上的最大值为,最小值为,函数的值域为.21. 【答案】解: ∵ 是上的奇函数,∴即∴∴即∴∴经验证符合题意.∴ ,;在上是减函数,证明如下:任取,,且,∵ ∴∴ 即∴ 在上是减函数.; ∵ ,是奇函数.∴又∵ 是减函数,∴ ∴设,∴问题转化为,∴【解析】根据函数奇偶性的性质建立方程关系进行求解.; 利用函数单调性的定义进行证明即可.; 根据函数单调性和奇偶性的性质将不等式进行转化求解即可.【解答】解: ∵ 是上的奇函数,∴即∴∴即∴∴经验证符合题意.∴ ,;在上是减函数,证明如下:任取,,且,∵ ∴∴ 即∴ 在上是减函数.; ∵ ,是奇函数.∴又∵ 是减函数,∴ ∴设,∴问题转化为,∴22. 【答案】解:令,则当时,关于的函数是单调递增∴,此时当时,当时,当时,.; 方程有解,即方程在上有解,而∴,可证明在上单调递减,上单调递增为奇函数,∴当时∴ 的取值范围是.【解析】先把函数化简为的形式,令,则可看作关于的二次函数,并根据的范围求出的范围,再利用二次函数求最值的方法求出的最小值.; 关于的方程有解,即方程在上有解,而把与分离,得到,则只需求出的范围,即可求出的范围,再借助型的函数的单调性求范围即可.【解答】解:令,则当时,关于的函数是单调递增∴,此时当时,当时,当时,.; 方程有解,即方程在上有解,而∴,可证明在上单调递减,上单调递增为奇函数,∴当时∴ 的取值范围是.。
河北省NT20名校联合体2023-2024学年高一上学期12月月考数学试卷
B.若1- b + c > 0 ,则 x02 < 1
C.若
x0
>
0
,则 cx2
- bx
+1
<
0
的解集为
æ ç
è
1 x0 +
2
,
1 x0
ö ÷ ø
D.
b
+
c
有最小值为
-
9 4
三、填空题
13.
x
>
0
时,
y
=
x2 (x +1)2
+
1 的值域为 x+1
.
14.写出一个函数 f ( x) 的解析式,满足:① f ( x) 是定义在 R 上的偶函数;② x ¹ 0 时,
æçè1,
16 9
ù úû
D.
é16 êë 9
,
2ùúû
二、多选题 9.已知 -1 £ a £ 3,1 £ b £ 2 ,则以下命题正确的是( )
A. -1 £ ab £ 6 C. -2 £ a - b £ 1 10.以下函数是偶函数的是( )
A. f ( x) = 2x + 2-x
B. 0 £ a + b £ 5
a
+ 2
b
³
2
-
ab ,即
a+
2
b ³ 4 ,即
a+
b ³2,
故
a
+b 2
³
2-
ab 是
a+
b ³ 2 的充要条件,故 D 错误.
故选:A. 8.D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学十二月考试卷一.填空题:(本大题共14小题,每小题5分,共70分)1.若{1,2,3,4},{1,2},{2,3}U M N ===,则)(N M C U = . 2.cos 20()3π-的值是 . 3.函数()3cos 24f x x π⎛⎫=+⎪⎝⎭的最小正周期为 .4.函数()lg(1)f x x =+的定义域是 .5.在ABC ∆中,点D 是BC 的中点,已知(3,2)AB =- ,(5,1)AC =--,则AD 的坐标为 .6.三个数5.06,65.0,6log 5.0的大小按从小到大顺序为 . 7.若函数 1 (0)()(2) (0)x x f x f x x +≥⎧=⎨+<⎩,则(2)f -=__________ .8.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于: . 9.函数3sin(2)6y x π=-+的单调递减区间为_____________.10.要得到函数()sin 23f x x π⎛⎫=-⎪⎝⎭的图象,只需将()sin 2f x x =的图象向右平移()02ρρπ<<个单位,则ρ= .11.12,e e是两个不共线的向量,已知122AB e ke =+ ,123CB e e =+ 122CD e e =- ,且D B A ,,三点共线,则实数k = .12.已知)(x f 是定义域为R 的奇函数)(x f ,若当(0,)∈+∞x 时,()lg =f x x ,则满足()0>f x 的x 的取值范围是 .13.已知1cos(75),180903αα+=-<<-其中,则sin(105)cos(375)αα-+-的值为 .14.关于向量有下列命题:(1)若,;a b a c b c ⋅=⋅= 则 (2)若0,00a b a b ⋅===则或;(3),,,()()1,0..a b c b c a a c b c a b a b a b ⋅-⋅==-=⋅= 若为非零向量则与垂直.(4)若则其中正确命题的个数是 二.解答题:(本大题共6小题,共90分) 15.(本小题满分14分)已知向量(1,2),(2,3)a b =-=.(1) 若(3)//()a b a kb -+,求k 的值;(2) 若()a ma b ⊥-,求m 的值;16.(本题满分14分)已知弹簧下方挂的小球做上下振动时,小球离开平衡位置的距离S 与t 的函数关系为sin(),(0,0,,0)2S A t A t πωϕωϕ=+>><≥,下图是其图象的一部分,试根据图象回答下列问题: (1)求小球振动时的振幅和周期; (2)求S 与t 的函数解析式.17.(本题满分14分)已知向量m n m),1,(sin ),1,32(cos αα=--=与n 为共线向量,且]0,2[πα-∈(Ⅰ)求ααcos sin +的值 (Ⅱ)求ααααcos sin cos sin -的值18.(本题满分16分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月效益最大?最大效益是多少?19.(本小题满分16分)已知O A B ∆的顶点坐标为(0,0)O ,(2,9)A ,(6,3)B -,点P 的横坐标为14,且OP PB λ= .点Q 是边AB 上一点,且0OQ AP ⋅=.(Ⅰ)求实数λ的值与点P 的坐标; (Ⅱ)求点Q 的坐标;(Ⅲ)若R 为线段OQ 上的一个动点,试求()RO RA RB ⋅+的最小值.20.(本小题满分16分)已知函数3()lg()3xf x x-=+,其中 (3,3)x ∈- (1)判别函数()f x 的奇偶性;(2)判断并证明函数()f x 在(3,3)-上单调性;(3)是否存在这样的负实数k ,使22(cos )(cos )0f k f k θθ-+-≥对一切R θ∈恒成立,若存在,试求出k 取值的集合;若不存在,说明理由。
高一数学十二月考试卷参考答案一、填空题:1. {}42. -213. π4. (]21,-5. 3(1,)2-- 6. 5.065.065.06log << 7. 1 8. 52 9. [,],63k k k Z ππππ-++∈10. 766ππ或 11. -8 12. ),1()0,1(+∞⋃- 13. 234-14. 1个 二、解答题:15. 解:(1)∵(1,2),(2,3)a b =-=,∴33(1,2)(2,3)(1,9)a b -=--=-, (1,2)(2,3)(12,23)a kb k k k +=-+=+-+.(3)//()a b a kb -+ ,∴-9(1+2k )=-2+3k ,∴13k =-.(2) ∵(2,23)ma b m m -=--- ,由()a ma b ⊥-,得1×(m -2)-2×(-2m -3)=0,∴m =45-.16.解:(1)A=2,T=π (2)⎪⎭⎫⎝⎛+=42sin 2πt S 17. 解:(Ⅰ)∵m 与n 为共线向量,∴,0sin )1(1)32(cos =⋅--⋅-α 即.32cos sin =+αα (Ⅱ).187cos sin ,92)cos (sin 2-=∴=+αααα .916)32(2)cos (sin ,2)cos (sin )cos (sin 2222=-=-∴=+++αααααα 又.34cos sin ,0cos sin ],0,2[-=-<-∴-∈ααααπα 因此,.247cos sin cos sin =-αααα18. 解:(1)3600-3000=600(元) 600÷50=12(辆) 100-12=88(辆)答:当每辆车的月租金为3600元时,能租出88辆.(2)设每辆车的月租金定为(3000+50x )元时,租赁公司的月效益为y 元,则y =(100-x )(3000+50x -150)-50x ,其中x ∈N , 对于y =(100-x )(3000+50x -150)-50x=-50(x -21)2+307050,当x =21时,此时月租金为3000+50×21=4050(元),y max =307050(元). 答:当每辆车的月租金定为4050元时,租赁公司的月效益最大,为307050元.19.(本题计16分)解:(I)设(14,)P y ,则(14,),(8,3)O P y P B y==---,由O P P B λ= , 得(14,)(8,3)y y λ=---,解得7,74y λ=-=-,所以点(14,7)P -……………… 4分(Ⅱ)设点(,)Q a b ,则(,)OQ a b = ,又(12,16)AP =- ,则由0OQ AP ⋅=,得34a b =①……………………………………………………………………………6分又点Q 在边AB 上,所以12346b a +=--,即3150a b +-=②………………………9分 联立①②,解得4,3a b ==,所以点(4,3)Q ………………………………………10分(Ⅲ)因为点Q 是线段AB 的中点,所以2RA RB RQ +=……………………………12分由于RO RQ 与反向,所以()22||||RO RA RB RO RQ RO RQ ⋅+=⋅=-⋅……14分又||5OQ =,若设||(05)RO t t =≤≤ ,则||5RQ t =-,所以2525()2(5)2()22RO RA RB t t t ⋅+=--=-- ………………………………15分故当52t =时,()RO RA RB ⋅+ 取得最小值为252-……………………………16分20.(1)()()x f x x x x x f -=⎪⎭⎫⎝⎛+--=⎪⎭⎫⎝⎛-+=-33lg 33lg()x f ∴是奇函数.(2)任取()()()⎪⎪⎭⎫⎝⎛+--⎪⎪⎭⎫⎝⎛+-=-<-∈221121212133lg 33lg ,,3,3,x x x x x f x f x x x x 且 ()()()()()()2121211*********lg 3333lgx x x x x x x x x x x x --+--+=-++-=()()0393921122112>--->--+x x x x x x x x()()()()()()212121212112013939x f x f x f x f x x x x x x x x >⇒>-⇒>--+--+∴()x f ∴是()3,3-上的减函数;(3)()()()θθθ2222cos cos cos -=--≥-k f k f k f()x f 是()3,3-上的减函数恒成立对恒成立得:对由恒成立对R k k R k k R k k k k k ∈-≤-∈-≤-∈⎪⎪⎩⎪⎪⎨⎧-≤-<-<-<-<-<∴θθθθθθθθθθθ22222222cos cos cos cos cos cos 3cos 33cos 30令2221cos 41cos cos ⎪⎭⎫⎝⎛--=-=θθθy[]1241,21,1cos 2-≤⇒-≤-∴⎥⎦⎤⎢⎣⎡-∈∴-∈k k k y θ 同理:由3cos 3<-<-θk 恒成立对R ∈θ得:22<<-k 由3cos 322<-<-k θ恒成立对R ∈θ得:33<<-k 即综上所得:13-≤<-k所以存在这样的k 其范围为13-≤<-k。