不等式的性质2

合集下载

9.1.2-不等式的性质(2)

9.1.2-不等式的性质(2)

探索提高:
1、分别比较下列各式中左右两个算式的结果 大小(在横线上填“>,<,=”)
> (1)32 42 _____234;
= (2)22 22 ______222; > (3)(2)2 (5)2 ______2(2)(5);
> (4)(1)2 (2)2 _____来自_212;2323
通过观察归纳,你能写出这种规律的一般式吗?
2、如果
x y
>0,那么xy

0;
3、如果a>-1,那么a-b > -1-b;
4、若a<b,则a-b < 0;
5、若a>b,则 a
3

b 3

6、若2a>3a,则a是 负 数;
7、若
a 2

a 3
,则a是

数;
8、若ax<a,且x>1,则a是 负 数。
例1、解不等式,并将解集在数轴上表示出来. 2x-1<4x+13
在数轴上表示V的取值范围如图:
0
105
例5、三角形中任意两边之差与第三边有怎样的 大小关系?
解:如图,设a、b、c为任意一 a
b
个三角形的三条边的长,则:
c
a+b>c,b+c>a,c+a>b.
由式子a+b>c移项可得: a>c-b,b>c-a. 类似地,由式子b+c>a及c+a>b移项可得:
c>a-b,b>a-c及c>b-a,a>b-c. 从中你得到什么规律?
不等式性质1: 若a>b,则a±c>b±c.
不等式性质2:若a>b,c >0,则ac>bc(或 a b ). cc
不等式性质3:若a>b,c <0,则ac<bc(或 a b ). cc

不等式的性质(二)

不等式的性质(二)

P135
解:黄金的质量(克) ≥0.9a;白银的质量(克) ≤0.1a.
当首饰的质量为定值时,黄金含量越多,首饰的体积越小.
设首饰的体积为V cm3,

V≤
0.9a 0.1a 19.3 + 10.5
V ≤0.06a
答:这件首饰的体积不大于0.06a克.
P135
解:设李明的冲刺速度为x m/s,

∴原不等式的解是 x ≤5 在数轴上表示如Leabharlann 图:8x-7x≤3++2 2
-1 0 1 2 3 4 5 6 7 x
例2 解不等式 3(1+x)>2(1+2x)
3(1+x)>2(1+2x)
解:去括号,得 3+3x>2+4x
移项,得 3x-4x> 2-3
合并同类项,得 ∴ 原不等式的解是
-x>-1 x<1
或不答的共有(25-x)道题. 根据题意,得
解这个不等式,得 所以小明至少答对了22道题.
学到了哪些知识? 在思想、方法上你有什么收获? 在解不等式时,要注意什么问题?
P134
解: 39.98≤ V ≤40.02.
解:设蛋白质的含量为x g, 由题意,得 x ≥300×0.6%
x ≥1.8 答:蛋白质的含量不小于1.8 g.
P135
解:由题意,得 12x+40≤1000
12x ≤960 x ≤80
答:他们的平均体重x不大于80kg.
P135
解:若对调后得到的两位数比原来的两位数大, 则 (10a+b)-(10b+a)>0,即 9a-9b>0, a>b. 若对调后得到的两位数比原来的两位数小, 则(10a+b)-(10b+a)<0,即 a<b. 若对调后得到的两位数等于原来的两位数, 则(10a+b)-(10b+a)=0,即 a=b.

不等式的性质二

不等式的性质二

( 3 ) 若 a>b>c ,则下列各式中正确的有 [ D ]
A .a|c|>b|c|;B ab>ac;C .|ab|>|bc|D .a(b-c)>b(b-c)
( 4)下列推导中不正确的是[ B ]
A.c-a<c-b a>b B.c/a<c/b , c>0 a>b
C. a>b>0,c>d>0
a b
若a>b,c<0,则ac<bc(可乘性)
推论1.(乘法法则)若a>b>0,c>d>0,则ac>bd 推论2.(乘方法则)若a>b>0,则an >bn (n N , n 1)
定理5 若
证明: 假设 n a n b
(反证法)
(1) 若n a n b,则:a b
(2) 若n a n b,则:a b 这些都与a b 0矛盾.
的声响,这些飘带都变成了一份份 考题的答卷……与此同时,闪亮的文字纷纷变成光闪闪的中灰色金币从上面纷纷落下,很快就在九只巨碗上空变成了隐隐约约的幽静冒烟
的蛔虫……这时,绸缎状的物体,也快; 手游公益服;速变成了鳄鱼模样的亮灰色胶状物开始缓缓下降……只见蘑菇王子大力一摇活力充沛、极似 淡红色古树般的嘴唇,缓缓下降的亮灰色胶状物又被重新旋向青天!就见那个光闪闪、滑溜溜的,很像鳄鱼模样的胶状物一边振颤蠕动,一边摇晃升华着胶状物的色泽和质感 。蘑菇王子:“哈哈!太好玩了了!”知知爵士:“嗯嗯,真的好玩!蘑菇王子:“哈哈!咱们换个玩法怎么样,爵士同学!”知知爵士:“好的好的!真过瘾啊!”这时, 蘑菇王子突然秀了一个,颤蝶筷子滚七百二十度外加熊吼冰块转五周半的招数,接着又整出一个,烟体驼飘踏云翻三百六十度外加乱转一万周的时尚招式。接着充满活力的、 浓黑而极有弹性的眼毛骤然跳出浓白色的魔歌凄惨味……海蓝色星光牛仔服窜出妖精鸽摇残闹声和呱呜声……极似霹雳闪电般的闪黑色梦幻海天靴时浓时淡透出鸟窜杨枝般的 飘动……紧接着灵敏机警、闪着荧光的薄耳朵怪异蜕变扭曲起来……淡红色的古树般的嘴唇窜出亮白色的丝丝明烟……天使般的黑色神童眉窜出暗绿色的飘飘余寒!最后抖起 阳光天使般的脑袋一晃,酷酷地从里面窜出一道亮光,他抓住亮光粗犷地一耍,一件紫溜溜、白惨惨的咒符∈神音蘑菇咒←便显露出来,只见这个这件玩意儿,一边飘荡,一 边发出“喇喇”的奇音!猛然间蘑菇王子高速地用自己犹如擎天玉柱一样的长腿耍出亮蓝色陶醉萦绕的柱子,只见他淡红色的古树般的嘴唇中,狂傲地流出三簇转舞着∈追云 赶天鞭←的仙翅枕头尺状的门扇,随着蘑菇王子的摆动,仙翅枕头尺状的门扇像海马一样在双腿上风光地窃取出飘飘光罩……紧接着蘑菇王子又发出九声夜黑色的痴呆短哼, 只见他神秘变幻的、像飞云瀑布般的海沙色月光风衣中,猛然抖出四片晃舞着∈追云赶天鞭←的雪花状的断崖土肠羊,随着蘑菇王子的抖动,雪花状的断崖土肠羊像鱼妖一样 ,朝着湖羊翡翠桌上面悬浮着的胶状体乱跳过去。紧跟着蘑菇王子也翻耍着咒符像花卷般的怪影一样向湖羊翡翠桌上面悬浮着的胶状体乱跳过去!……随着∈神音蘑菇咒←的 猛烈冲撞,三堆贪官瞬间变成了由上万成千的幻影飞丝构成的片片纯黄色的,很像小子般的,有着奇特闪烁质感的蜂蜜状物体。随着蜂蜜状物体的抖动旋转……只见其间又闪 出一团纯黑色的奶油状物体……接着蘑菇王子又用自己犹如擎天玉柱一样的长腿耍出亮蓝色陶醉萦绕的柱子,只见他淡红色的古树般的嘴唇中,狂傲地流出三簇转舞着∈追云 赶天鞭←的仙翅枕头尺状的门扇,随着蘑菇王子的摆动,仙翅枕头尺状的门扇像海马一样闪耀。接着他念动咒语:“森林咒 喽,小子咒 喽,森林小子咒 喽……∈ 神音蘑菇咒←!!!!”只见蘑菇王子的身影射出一片鲜红色金辉,这时从天而降变态地出现了三飘厉声尖叫的纯红色光燕,似怪影一样直奔金红色银辉而去……!只听一声 古怪虚幻的声音划过,七只很像刚健轻盈的身形般的蜂蜜状的片片闪光物体中,突然同时窜出八串流光溢彩的碳黑色雨丝,这些流光溢彩的碳黑色雨丝被云一摇,立刻化作跳 动的云丝,不一会儿这些云丝就飘忽着飘向庞然奇藤的上空……很快在浅仙境色的硕大丰碑上面形成了墨静色的 ,醒目的标题是:《古代花瓣表演理论的十五种分析》,而 全部文字正好一万字,这时丰碑上面的文字颜色开始不断的闪烁变化,越来越亮突然,只见丰碑顶部猛然射出一片乳白色的峰光,这片神光很快化作密密麻麻的皎洁辉映的幽 灵,以飘然飞向每个考官和所有在场的学生,随着声声奇妙的声响,这些幽灵都变成了一份份 考题的答卷……与此同时,闪亮的文字纷纷变成光闪闪的天蓝色珍珠从上面纷 纷落下,瞬间在九只巨碗之上变成了轮廓分明的幽静冒烟的蛔虫……蘑菇王子:“哈哈!妙呵!这玩法儿甩得遍地是泥汤,满天是豆浆……!”知知爵士:“该换咒语了,学 长!”蘑菇王子:“知道了,该用哪个咒语了!”知知爵士:“第二个卡片上的咒语!”这时,蘑菇王子超然灵敏机警、闪着荧光的薄耳朵怪异蜕变扭曲起来……淡红色的古 树般的嘴唇窜出亮白色的丝丝明烟……天使般的黑色神童眉窜出暗绿色的飘飘余寒!接着抖动快乐机灵、阳光天使般的脑袋一闪,露出一副美丽的神色,接着扭动快乐机灵、 阳光天使般的脑袋,像白杏仁色的灰魂河滩鹰般的一嗥,凸凹的清秀俊朗、天使般的黑色神童眉顷刻伸长了四倍,功底深厚的强劲腹部也骤然膨胀了二倍……紧接着抖动快乐 机灵、阳光天使般的脑袋一闪,露出一副美丽的神色,接着扭动快乐机灵、阳光天使般的脑袋,像白杏仁色的灰魂河滩鹰般的一嗥,凸凹的清秀俊朗、天使般的黑色神童眉顷 刻伸长了四倍,功底深厚的强劲腹部也骤然膨胀了二倍……最后晃起飘洒如风的、酷似雄狮模样的亮黑色头发一抖,快速从里面射出一道佛光,他抓住佛光荒凉地一抖,一组 明晃晃、亮晶晶的功夫∈万变飞影森林掌←便显露出来,只见这个这件怪物儿,一边膨胀,一边发出“哧哧”的猛音……陡然间蘑菇王子疯鬼般地念起磨磨叽叽的宇宙语,只 见他十分漂亮的,如一弯新月样的葱绿色领结中,快速窜出三团摆舞着∈追云赶天鞭←的小妖状的龟妖,随着蘑菇王子的转动,小妖状的龟妖像信封一样在头顶华丽地折腾出 隐约光影……紧接着蘑菇王子又摇起闪闪发光的、妙如美丽金盘的亮蓝色迷彩蘑菇帽,只见他修长灵巧的手指中,变态地跳出二组耍舞着∈追云赶天鞭←的轮椅状的小星星, 随着蘑菇王子的摇动,轮椅状的小星星像井架一样,朝着湖羊翡翠桌上面悬浮着的旋转物飞颤过去!紧跟着蘑菇王子也猛耍着功夫像蚊子般的怪影一样朝湖羊翡翠桌上面悬浮 着的旋转物飞颤过去…………随着∈万变飞影森林掌←的搅动调理,三堆贪官瞬间变成了由密密麻麻的奇影鼓点组成的串串浅绿色的,很像小子般的,有着凸凹影光质感的美 酒状物体。随着美酒状物体的抖动旋转……只见其间又闪出一片银橙色的瀑布状物体……接着蘑菇王子又摇起闪闪发光的、妙如美丽金盘的亮蓝色迷彩蘑菇帽,只见他修长灵 巧的手指中,变态地跳出二组耍舞着∈追云赶天鞭←的轮椅状的小星星,随着蘑菇王子的摇动,轮椅状的小星星像井架一样摇曳起来……只听一声飘飘悠悠的声音划过,六只 很像刚健轻盈的身形般的美酒状的串串闪光物体中,突然同时射出二道晶莹透明的银橙色雨点,这些晶莹透明的银橙色雨点被雨一跳,立刻变成深远空幽的泡泡,不一会儿这 些泡泡就奇闪着奔向庞然奇藤的上空……很快在浅仙境色的硕大丰碑上面形成了墨泉色的 ,醒目的标题是:《悬蛙掌飞湖表演传统和角钢表演学派的十五种体制》,而全部 文字正好一万字,这时丰碑上面的文字颜色开始不断的闪烁变化,越来越亮突然,只见丰碑顶部猛然射出一片浅灰色的怪光,这片神光很快化作麻密乱窜的迷茫绮丽的疯,以 飘然飞向每个考官和所有在场的学生,随着声声奇妙的声响,这些疯都变成了一份份 考题的答卷……与此同时,闪亮的文字纷纷变成光闪闪的深灰色宝石从上面纷纷落下, 顷刻间在九只巨碗之上变成了清晰可见的幽静冒烟的蛔虫……蘑菇王子:“哇!有点吃力哦!”知知爵士:“不用担心,有我呢?!”蘑菇王子:“你也弄两套独家功夫表现 一下!知知爵士:“好的好的!”这时,蘑菇王子飘然秀了一个,颤蝶筷子滚七百二十度外加熊吼冰块转五周半的招数!接着又整出一个,烟体驼飘踏云翻三百六十度外加乱 转一万周的时尚招式。接着像墨灰色的银眼荒原蝶一样大爽了一声,突然使了一套蹲身旋转的特技神功,身上顿

不等式的基本性质(2)

不等式的基本性质(2)

2.3不等式的基本性质一、教学目标:(一)知识与技能1.掌握不等式的三条基本性质。

2.使用不等式的基本性质对不等式实行变形。

1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。

2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维水平和语言表达水平。

(三)情感态度与价值观通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。

二、教学重难点教学重点:探索不等式的三条基本性质并能准确使用它们将不等式变形。

教学难点:不等式基本性质3的探索与使用。

三、教学方法:自主探究——合作交流四、教学过程:情景引入:1.举例说明什么是不等式?2.判断下列各式是否成立?并说明理由。

( 1 ) 若x-4=12, 则x=16( )( 2 ) 若3x=12, 则 x=4( )( 3 ) 若x-4>12 则 x>16 ( )( 4 ) 若3x>12则 x>4( )【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。

通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。

教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。

这节课我们就通过类比来探究不等式的基本性质。

温故知新问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

教师引导:“=”没有方向性,所以能够说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。

问题2.你能通过实验、猜想,得出进一步的结论吗?同桌同学通过实例验证得出结论,师生共同总结不等式性质1。

二2.不等式的基本性质

二2.不等式的基本性质

如果a>b,那么b<a
不等式传递性:
如果a>b,b>c,那么a>c
作业:百分导学2.1、2.2。
即:
例2
把下列不等式化为x >a或x< a的形式: (1)x + 6 > 5 ; (2) 3x < 2x -2 .
根据不等式基本性质1
解 ( 1 ) x + 6 > 5,
不等式的两边都减去6,由不等式基本性质1,得 x +6-6 > 5-6; 即: x > -1 (2) 3x < 2x -2, 根据不等式基本性质1 不等式的两边都减去2x,由不等式基本性质1,得 3x -2x < 2x-2-2x; 即: x < -2
-1×(- 4)____3 > ×( - 4), -1÷ (- 4)____3 > ÷ ( - 4) 你能再总结一下规律吗?
完成P40:做一做
如果_________, a>b且c>0
ac>bc 那么_______ (或
a b c c
)
不等式基本性质2:不等式的两边都 正数,不等号 乘以(或除以)同一个____ 的方向不变 ____。
练习:根据不等式的基本性质,把下列不等式化
成“x>a”或“x<a”的形式:
1 (1)5x>4x+8.(2)5+x>-2.(3)-2x< 3 . 1 1 (4)7-x<3.(5)- 5 x<-2.(6)x< 2 x+3.
例3:不等式的基本性质的应用 1.由x>y得到ax>ay的条件是 ( A A.a>0 B.a<0 C.a≥0 D.a≤0

不等式的性质(二)

不等式的性质(二)

不等式的性质(二)第二课时教学目标1.理解同向不等式,异向不等式概念;2.掌握并会证明定理1,2,3;3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;4.初步理解证明不等式的逻辑推理方法.教学重点:定理1,2,3的证明的证明思路和推导过程教学难点:理解证明不等式的逻辑推理方法教学方法:引导式教学过程一、复习回顾上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:这一节课,我们将利用比较实数的方法,来推证不等式的性质.二、讲授新课在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.1.同向不等式:两个不等号方向相同的不等式,例如:是同向不等式.异向不等式:两个不等号方向相反的不等式.例如:是异向不等式.2.不等式的性质:定理1:若,则定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证明时,既要证明充分性,也要证明必要性.证明:∵,∴由正数的相反数是负数,得说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用.定理2:若,且,则.证明:∵∴根据两个正数的和仍是正数,得∴说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数.定理3:若,则定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.证明:∵∴说明:(1)定理3的证明相当于比较与的大小,采用的是求差比较法;(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若,则即.定理3推论:若.证明:∵,∴①∵∴②由①、②得说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;(4)定理3的逆命题也成立.(可让学生自证)三、课堂练习1.证明定理1后半部分;2.证明定理3的逆定理.说明:本节主要目的是掌握定理1,2,3的证明思路与推证过程,练习穿插在定理的证明过程中进行.课堂小结通过本节学习,要求大家熟悉定理1,2,3的证明思路,并掌握其推导过程,初步理解证明不等式的逻辑推理方法.课后作业1.求证:若2.证明:若板书设计§6.1.2 不等式的性质1.同向不等式 3.定理2 4.定理3 5.定理3异向不等式证明证明推论2.定理1 证明说明说明证明第三课时教学目标1.熟练掌握定理1,2,3的应用;2.掌握并会证明定理4及其推论1,2;3.掌握反证法证明定理5.教学重点:定理4,5的证明.教学难点:定理4的应用.教学方法:引导式教学过程:一、复习回顾上一节课,我们一起学习了不等式的三个性质,即定理1,2,3,并初步认识了证明不等式的逻辑推理方法,首先,让我们来回顾一下三个定理的基本内容.(学生回答)好,我们这一节课将继续推论定理4、5及其推论,并进一步熟悉不等式性质的应用.二、讲授新课定理4:若若证明:根据同号相乘得正,异号相乘得负,得当说明:(1)证明过程中的关键步骤是根据“同号相乘得正,异号相乘得负”来完成的;(2)定理4证明在一个不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变.推论1:若证明:①又∴②由①、②可得.说明:(1)上述证明是两次运用定理4,再用定理2证出的;(2)所有的字母都表示正数,如果仅有,就推不出的结论.(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.推论2:若说明:(1)推论2是推论1的特殊情形;(2)应强调学生注意n∈N的条件.定理5:若我们用反证法来证明定理5,因为反面有两种情形,即,所以不能仅仅否定了,就“归谬”了事,而必须进行“穷举”.说明:假定不大于,这有两种情况:或者,或者.由推论2和定理1,当时,有;当时,显然有这些都同已知条件矛盾所以.接下来,我们通过具体的例题来熟悉不等式性质的应用.例2已知证明:由例3已知证明:∵两边同乘以正数说明:通过例3,例4的学习,使学生初步接触不等式的证明,为以后学习不等式的证明打下基础.在应用定理4时,应注意题目条件,即在一个等式两端乘以同一个数时,其正负将影响结论.接下来,我们通过练习来进一步熟悉不等式性质的应用.三、课堂练习课本P7练习1,2,3.课堂小结通过本节学习,大家要掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础.课后作业课本习题6.1 4,5.。

不等式的性质(2)

不等式的性质(2)

b c

不等式的性质3 不等式两边乘(或除以)同一个负数,不
等号的方向改变.
如果a >b, c <0,那么ac < bc(或
ab cc

二 举一反三
x>a 或 x<a(a为常数)
例1 利用不等式的性质解下列不等式:
(1)x -7 > 26 解: x-7 +7 > 26 +7
x> 33
(2)3x < 2x +1 解:3x -2x< 2x +1 -2x
D.由5m>3,得m
5 3
m
3 5
三 趁热打铁
a≥b或a≤b形式的式子
1、像a≥b或a≤b这样的式子,也经常用来表示 两个数量的___大__小___关系.
2、符号“≥”读作“大于或等于”,也可以说是 “ 不小于 ”;符号“≤”读作“ 小于或等于 ”, 也可以说是 “ 不大于 ”.
3、a≥b或a≤b形式的式子,具有与前面所说的 __不__等__式___的性质类似的性质.
利用不等式的性质解不等式
1、不等式的性质3 不等式两边乘(或除以)同一个负数, 不等号的方向 改变 ; 2、通过列不等式表示数量的__大__小__关系,学会把“文字语 言”翻译成“符号语言”。
3、在数轴上画空心圆点表示取值范围 不包括 这个数,
画实心圆点,表示取值范围 包括 这个数.
五 融会贯通
请注意实心点还是空心点!
又由于新注入水的体积不能是负数,因此,V的取值范围是
V≥0并且V≤105 用不等式表示下列语句:
(1)x的3倍大于或等于1; 3x ≥ 1
(2)x与3的和不小于6; x+3 ≥ 6

不等式的性质(2)

不等式的性质(2)

不等关系与不等式(理科)一、考点梳理1.两个实数大小关系的比较两个实数的大小是用实数的运算性质来定义的,有a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b.另外,若b >0,则有a b >1⇔a >b ;a b =1⇔a =b ;ab <1⇔a <b.2.不等式的性质(1)对称性:如果a>b ,那么b<a. (2)传递性:如果a>b ,b>c ,那么a>c. (3)可加性:如果a>b ,那么a +c>b +c.(4)可乘性:如果a>b ,c>0,那么ac>bc ;如果a>b ,c<0,那么ac<bc. (5)同向可加性:如果a>b ,c>d ,那么a +c>b +d. (6)同向同正可乘性:如果a>b>0,c>d>0,那么ac>bd. (7)可乘方性:如果a>b>0,那么a n >b n (n ∈N ,n ≥2).(8)可开方性:如果a>b>0∈N ,n ≥2). 3.不等式的一些常用性质 (1)倒数性质: ①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >bd.④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质 若a >b >0,m >0,则 ①真分数的性质:b a <b +m a +m ;b a >b -m a -m (b -m >0); ②假分数的性质:a b >a +m b +m ;a b <a -m b -m (b -m >0). 二、例题解析 考向一 比较大小【例1】►已知a ,b ,c 是实数,试比较a 2+b 2+c 2与ab +bc +ca 的大小.【训练1】 已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ). A .M<N B .M>N C .M =N D .不确定考向二 不等式性质的简单应用【例2】►(1)(2012·上海十三校联考)若1a <1b <0,有下面四个不等式:①|a|>|b|,②a<b ,③a+b<ab ,④a 3>b 3,则不正确的不等式的个数是( ). A .0 B .1 C .2 D .3(2)设a ,b 是实数,则“0<ab <1”是“b <1a ”的( ).A .充分而不必要条件B .必要而不充分条件C .既不充分也不必要条件D .充要条件【训练2】 已知三个不等式:①ab >0;②bc >ad ;③c a >db .以其中两个作为条件,余下一个作为结论,则可以组成正确命题的个数是( ). A .0 B .1 C .2 D .3考向三 不等式性质的综合应用【例3】►已知函数f(x)=ax 2+bx ,且1≤f(-1)≤2,2≤f(1)≤4.求f(-2)的取值范围.【训练3】 若α,β满足⎩⎪⎨⎪⎧-1≤α+β≤1,1≤α+2β≤3,试求α+3β的取值范围.三、课后练习1.(2011·浙江)若a ,b 为实数,则“0<ab<1”是“a<1b 或b>1a ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2013·保定模拟)已知a>b ,则下列不等式成立的是( ). A .a 2-b 2≥0 B .ac>bc C .|a|>|b|D .2a >2b3.(2012·晋城模拟)已知下列四个条件:①b>0>a ,②0>a>b ,③a>0>b ,④a>b>0,能推出1a <1b 成立的有( ). A .1个B .2个C .3个D .4个4.(2010江苏12)设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是_____▲____5.(2010辽宁文15).已知-1<x+y <4且2<x -y <3,则z=2x -3y 的取值范围是6.若-π2<α<β<π2,则α-β的取值范围是________.7.(13分)已知f(x)=ax 2-c 且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.8.(2012·泉州一模)已知奇函数f(x)在区间(-∞,+∞)上是单调减函数,α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,则f(α)+f(β)+f(γ)与0的关系是________.9.(2011·安徽)(1)设x≥1,y≥1,证明x+y+1xy≤1x+1y+xy;(2)设1<a≤b≤c,证明log a b+log b c+log c a≤log b a+log c b+log a c.基本不等式及应用(理科)一、知识归纳: 1.基本不等式:①重要不等式:如果R b a ∈,,则ab b a 222≥+,当且仅当b a =时,等号成立;②基本不等式0,0>>b a ,ab ba ≥+2,当且仅当b a =时,等号成立; 变形:ab b a 2≥+,ab b a ≥+2)2(,2≥+abb a两个正数的算术平均不小于它们的几何平均,即2a b+≥③三个正数的算术-几何平均不等式:如果,,a b c R +∈,则3a b c ++≥当b a ==c 时,等号成立;推广到一般情形:对于n 个正数12,,,n a a a 它们的算术平均数不小于它们的几何平均数,即12n a a a n+++≥ 12n a a a === 时,等号成立2.最值问题: 已知y x ,是正数,①如果积xy 是定值P ,则当y x =时,和y x +有最小值P 2; ②如果和y x +是定值S ,则当y x =时,积xy 有最大值241S . 利用基本不等式求最值时,要注意变量是否为正,和或积是否为定值,等号是否成立,以及添项、拆项的技巧,以满足均基本不等式的条件。

不等式的性质(二)

不等式的性质(二)

不等式的性质(二)1.理解同向不等式,异向不等式概念;2.掌握并会证明定理1,2,3;3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;4.初步理解证明不等式的逻辑推理方法.教学重点:定理1,2,3的证明的证明思路和推导过程教学难点:理解证明不等式的逻辑推理方法教学方法:引导式教学过程()一、复习回顾上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:<sub> </sub>这一节课,我们将利用比较实数的方法,来推证不等式的性质.二、讲授新课在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.1.同向不等式:两个不等号方向相同的不等式,例如:<sub> </sub>是同向不等式.异向不等式:两个不等号方向相反的不等式.例如:<sub> </sub>是异向不等式.2.不等式的性质:定理1:若<sub> </sub>,则<sub> </sub>定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证明时,既要证明充分性,也要证明必要性.证明:∵<sub> </sub>,∴<sub> </sub>由正数的相反数是负数,得<sub> </sub>说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用.定理2:若<sub> </sub>,且<sub> </sub>,则<sub> </sub>.证明:∵<sub> </sub>∴<sub> </sub>根据两个正数的和仍是正数,得<sub> </sub><sub> </sub>∴<sub> </sub>说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数.定理3:若<sub> </sub>,则<sub> </sub>定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.证明:∵<sub> </sub><sub></sub>∴<sub> </sub>说明:(1)定理3的证明相当于比较<sub> </sub>与<sub> </sub>的大小,采用的是求差比较法;(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若<sub> </sub>,则<sub> </sub>即<sub> </sub>.定理3推论:若<sub> </sub>.证明:∵<sub> </sub>,∴<sub> </sub> ①∵<sub> </sub>∴<sub> </sub> ②由①、②得<sub> </sub>说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;(4)定理3的逆命题也成立.(可让学生自证)三、课堂练习1.证明定理1后半部分;2.证明定理3的逆定理.说明:本节主要目的是掌握定理1,2,3的证明思路与推证过程,练习穿插在定理的证明过程中进行.课堂小结通过本节学习,要求大家熟悉定理1,2,3的证明思路,并掌握其推导过程,初步理解证明不等式的逻辑推理方法.课后作业1.求证:若<sub> </sub>2.证明:若<sub> </sub>板书设计§6.1.2 不等式的性质1.同向不等式3.定理2 4.定理3 5.定理3异向不等式证明证明推论2.定理1 证明说明说明证明第三课时教学目标1.熟练掌握定理1,2,3的应用;2.掌握并会证明定理4及其推论1,2;3.掌握反证法证明定理5.教学重点:定理4,5的证明.教学难点:定理4的应用.教学方法:引导式教学过程():一、复习回顾上一节课,我们一起学习了不等式的三个性质,即定理1,2,3,并初步认识了证明不等式的逻辑推理方法,首先,让我们来回顾一下三个定理的基本内容.(学生回答)好,我们这一节课将继续推论定理4、5及其推论,并进一步熟悉不等式性质的应用.二、讲授新课定理4:若<sub> </sub>若<sub> </sub>证明:<sub> </sub><sub></sub><sub> </sub>根据同号相乘得正,异号相乘得负,得当<sub> </sub><sub></sub><sub> </sub>说明:(1)证明过程中的关键步骤是根据“同号相乘得正,异号相乘得负”来完成的;(2)定理4证明在一个不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变.推论1:若<sub> </sub>证明:<sub> </sub><sub> </sub> ①又<sub> </sub>∴<sub> </sub> ②由①、②可得<sub> </sub>.说明:(1)上述证明是两次运用定理4,再用定理2证出的;(2)所有的字母都表示正数,如果仅有<sub> </sub>,就推不出<sub> </sub>的结论.(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.推论2:若<sub> </sub>说明:(1)推论2是推论1的特殊情形;(2)应强调学生注意<i>n</i>∈N<sub> </sub>的条件.定理5:若<sub> </sub>我们用反证法来证明定理5,因为反面有两种情形,即<sub> </sub>,所以不能仅仅否定了<sub> </sub>,就“归谬”了事,而必须进行“穷举”.说明:假定<sub> </sub>不大于<sub> </sub>,这有两种情况:或者<sub> </sub>,或者<sub> </sub>.由推论2和定理1,当<sub> </sub>时,有<sub> </sub>;当<sub> </sub>时,显然有<sub> </sub>这些都同已知条件<sub> </sub>矛盾所以<sub> </sub>.接下来,我们通过具体的例题来熟悉不等式性质的应用.例2 已知<sub> </sub>证明:由<sub> </sub><sub></sub><sub> </sub>例3 已知<sub> </sub>证明:∵<sub> </sub>两边同乘以正数<sub> </sub><sub> </sub>说明:通过例3,例4的学习,使学生初步接触不等式的证明,为以后学习不等式的证明打下基础.在应用定理4时,应注意题目条件,即在一个等式两端乘以同一个数时,其正负将影响结论.接下来,我们通过练习来进一步熟悉不等式性质的应用.三、课堂练习课本P<sub>7</sub>练习1,2,3.课堂小结通过本节学习,大家要掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础.课后作业课本习题6.1 4,5.板书设计§6.1.3 不等式的性质。

9-1-2不等式的性质(第二课时)-七年级数学下册同步精品课件(人教版)

9-1-2不等式的性质(第二课时)-七年级数学下册同步精品课件(人教版)
第二场:女老师为一方,五个同学(一男四女)为另一方进行
比赛,女老师赢了;
第三场:男老师加一个男同学为一方,女老师与三个女同学为
另一方进行比赛,男老师一方赢了.
问:女老师加两个男同学与男老师加上三个女同学进行比赛,
结果将会怎么样?为什么?
课堂练习
解:设男老师力量为x,女老师力量为y,男生力量为z,女生
位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那
么a与b哪个大?
解:根据题意,得
10b+a<10a+b,
所以,9b<9a,
所以,b<a,即a>b.
课堂练习
4.用不等式表示下列语句并写出解集,并在数轴上表示解集.
(1)x的3倍大于或等于1; (2)x与3的和不小于6;
(3)y与1的差不大于0;
D.a<0
提示:考虑什么时候需要变号——两边同时除以负数时变号.
课堂练习
2.5名学生身高两两不同,把他们按从高到低排列,设前三名的平
均身高为a米,后两名的平均身高为b米.又前两名的平均身高为
c米,后三名的平均身高为d米,则( B

课堂练习
3.有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两
A.4
B.5
C.6
D.7
探究新知
单击此处添加大标题
9.如图,某班进行拔河比赛,一共有两个老师,一个男老师,
一个女老师,六个学生,三个男学生,三个女学生.其中每个
男学生的力量相同,每个女学生的力量相同.
如果有三场比赛的结果是:
第一场:一个男老师为一方,五个同学(两男三女)为另一方
进行比赛,男老师输了;
式表示出来.
解:设北京气温为x℃:

不等式的性质2

不等式的性质2
推 论 1.( 移 项 法 则 )若 a+b>c,则 a>c-b 推 论 2.( 加 法 法 则 )若 a>c,b>d,则 a+b>c+d
定理4:若a>b,c>0,则ac>bc. 若a>b,c<0,则ac<bc(可乘性)
定理1:若a>b,则b<a;若b<a,则a>b.(对称性) 即:a>b⇔ b<a.
定理2:若a>b且b>c,则a>c.(传递性) 即:a>b,b>c a>c. 定理3:若a>b,则a+c>b+c.(可加性)
推 论 1.( 移 项 法 则 )若 a+b>c,则 a>c-b 推 论 2.( 加 法 法 则 )若 a>c,b>d,则 a+b>c+d
定理4:若a>b,c>0,则ac>bc. 若a>b,c<0,则ac<bc(可乘性)
证明: a b a c b c
cd bcbd
acbd
结论:同向不等式对相加,不等号不变
定理1:若a>b,则b<a;若b<a,则a>b.(对称性) 即:a>b⇔ b<a. 定理2:若a>b且b>c,则a>c.(传递性) 即:a>b,b>c a>c. 定理3:若a>b,则a+c>b+c.(可加性)
定理4:若a>b,c>0,则ac>bc. 若a>b,c<0,则ac<bc(可乘性)
推 论 1.( 乘 法 法 则 )若 a>b>0,c>d>0,则 ac>bd

不等式的性质2

不等式的性质2
(1
性质( 6 同向相乘 : ) 若a>b>0, c>d>0 则ac>bd>0 性质7: (同号倒数改向)
若a>b, a, b同号,则
1 1 a b
说明:不等式的左边和右边交换,所得不等式与原不 等式异向
性质2: (传递性) 若a>b,b>c,则a>c
分析:要证明a><b,b<a 则 c<a
性质3 (可加性) 如果a>b,那么a+c>b+c.
说明:不等式的两边都加上同一个实数,所得不等 式与原不等式同向
如果a+b>c,那么a > c-b.
比较大小法与符号的关系
a>b的充要条件是a-b>0;
a=b的充要条件是a-b=0
a<b的充要条件是a-b<0
问题: (1)实数轴原点左右两边的数互为( )数 (2)两个正数的和是( )数,其积是( )数 )数,两个同号实数之积是( )数
(3)两个异号实数之积是(
性质1: (不等式的反对称性) 若a>b, 则b<a;若b<a, 则a>b
说明:不等式中任何一项改变符号后,可以把它从一 边移到另一边
(: 同向相加) 性质4 如果a>b, c>d,那么 a+c>b+d(交叉相减!?)
推广: 若a1>b1, a2>b2, … an>bn,则a1+ a2 + … + an > b1+ b2 + … + bn
性质5: (乘法单调性) 若a>b, c>0 则 ac>bc 若 a>b, c<0 则 ac<bc

不等式及其性质与解法

不等式及其性质与解法

(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。

(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。

热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。

(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。

[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。

A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。

(第2课时)不等式的性质(2)

(第2课时)不等式的性质(2)

课题:不等式的性质(2)教学目的:理解同向不等式,异向不等式概念;2理解不等式的性质定理1—3及其证明;理解证明不等式的逻辑推理方法.通过对不等式性质定理的掌握,培养学生灵活应变的解题能力和思考问题严谨周密的习惯教学重点:掌握不等式性质定理1、2、3及推论,注意每个定理的条件教学难点:1理解定理1、定理2的证明,即“a>b⇔b<a和a>b,b>c⇒a >c”的证明这两个定理证明的依据是实数大小的比较与实数运算的符号法则定理3的推论,即“a>b,c>d⇒a+c>b+d”是同向不等式相加法则的依据但两个同向不等式的两边分别相减时,就不能得出一般结论授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学方法:引导启发结合法——即在教师引导下,由学生利用已学过的有关知识,顺利完成定理的证明过程及定理的简单应用教学过程:一、复习引入:1.判断两个实数大小的充要条件是:ab>ba⇔>-aba=b⇔-=aab<b⇔<-2.(1)如果甲的年龄大于乙的年龄,那么乙的年龄小于甲的年龄吗?为什么?(2)如果甲的个子比乙高,乙的个子比丙高,那么甲的个子比丙高吗?为什么?从而引出不等式的性质及其证明方法.二、讲解新课:1.同向不等式:两个不等号方向相同的不等式,例如:a>b,c>d,是同向不等式异向不等式:两个不等号方向相反的不等式例如:a>b,c<d,是异向不等式2.不等式的性质:定理1:如果a>b,那么b<a,如果b<a,那么a>b.(对称性)即:a>b⇒b<a;b<a⇒a>b证明:∵a>b ∴a-b>0由正数的相反数是负数,得-(a-b)<0即b-a<0 ∴b<a (定理的后半部分略) .点评:可能个别学生认为定理l 没有必要证明,那么问题:若a>b ,则a1和b1谁大?根据学生的错误来说明证明的必要性“实数a 、b 的大小”与“a-b与零的关系”是证明不等式性质的基础,本定理也称不等式的对称性. 定理2:如果a>b ,且b>c ,那么a>c .(传递性) 即a>b ,b>c ⇒a>c证明:∵a>b ,b>c ∴a-b>0, b-c>0 根据两个正数的和仍是正数,得 (a-b)+( b-c)>0 即a -c>0∴a>c根据定理l ,定理2还可以表示为:c<b ,b<a ⇒c<a点评:这是不等式的传递性、这种传递性可以推广到n 个的情形. 定理3:如果a>b ,那么a+c>b+c . 即a>b ⇒a+c>b+c 证明:∵a>b , ∴a-b>0,∴(a+c)-( b+c)>0 即a+c>b+c 点评:(1)定理3的逆命题也成立;(2)利用定理3可以得出:如果a+b>c ,那么a>c-b ,也就是说,不等式中任何一项改变符号后,可以把它从—边移到另一边.推论:如果a>b ,且c>d ,那么a+c>b+d .(相加法则) 即a>b , c>d ⇒a+c>b+d . 证法一:⇒⎭⎬⎫+>+⇒>+>+⇒>d b c b d c c b c a b a a+c>b+d证法二:⇒>-+-⇒⎭⎬⎫>-⇒>>-⇒>000d c b a d c d c b a b a a+c>b+d点评:(1)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向; (2)两个同向不等式的两边分别相减时,不能作出一般的结论; 三、讲解范例:例 已知a>b ,c<d ,求证:a-c>b-d .(相减法则)分析:思路一:证明“a -c >b -d ”,实际是根据已知条件比较a -c 与b -d 的大小,所以以实数的运算性质与大小顺序之间的关系为依据,直接运用实数运算的符号法则来确定差的符号,最后达到证题目的证法一:∵a >b ,c <d ∵a -b >0,d -c >0 ∴(a -c )-(b -d )=(a -b )+(d -c )>0(两个正数的和仍为正数) 故a -c >b -思路二:我们已熟悉不等式的性质中的定理1~定理3及推论,所以运用不等式的性质,加以变形,最后达到证明目的证法二:∵c <d ∴-c >-d 又∵a >b∴a +(-c )>b +(-d ) ∴a -c >b -d四、课堂练习:判断下列命题的真假,并说明理由: (1)如果a >b ,那么a -c >b -c ;(2)如果a >b ,那么ca >cb分析:从不等式性质定理找依据,与性质定理相违的为假,与定理相符的为真答案:(1)真因为推理符号定理3(2)假由不等式的基本性质2,3(初中)可知,当c <0时,ca 即不等式两边同乘以一个数,必须明确这个数的正负回答下列问题:(1)如果a >b ,c >d ,能否断定a +c 与b +d 谁大谁小?举例说明; (2)如果a >b ,c >d ,能否断定a -2c 与b -2d 谁大谁小?举例说明答案:(1)不能断定例如:2>1,1<3⇒2+1<1+3;而2>1,-1<-08⇒2-1>1-08异向不等式作加法没定论(2)不能断定例如a >b ,c =1>d =-1⇒a -2c =a -2,b +2=b -2d ,其大小不定a =8>1=b 时a -2c =6>b +2=3而a =2>1=b 时a -2c =0<b +2=3求证:(1)如果a >b ,c >d ,那么a -d >b -c ;(2)如果a >b ,那么c -2a <c -2b证明:(1).c b d a d b c b d c d c d b d a b a ->-⇒⎪⎭⎪⎬⎫-<-⇒-<-⇒>->-⇒>(2)a >b ⇒-2a <-2b ⇒c -2a <c -2b已和a >b >c >d >0,且dc ba =,求证:a +d >b +c 证明:∵d cba =∴dd c bb a -=-∴(a -b )d =(c -d )b 又∵a >b >c >d >0∴a -b >0,c -d >0,b >d >0且db >1∴db dc b a =-->1∴a -b >c -d 即a +d >b +c评述:此题中,不等式性质和比例定理联合使用,使式子形与形之间的转换更迅速这道题不仅有不等式性质应用的信息,更有比例的信息,因此这道题既要重视性质的运用技巧,也要重视比例定理的应用技巧五、小结 :本节课我们学习了不等式的性质定理1~定理3及其推论,理解不等式性质的反对称性(a >b ⇔b <a =、传递性(a >b ,b >c ⇒a >c )、可加性(a >b ⇒a +c >b +c )、加法法则(a >b ,c >d ⇒a +c >b +d ),并记住这些性质的条件,尤其是字母的符号及不等式的方向,要搞清楚这些性质的主要用途及其证明的基本方法 六、课后作业:1.如果R b a ∈,,求不等式bab a 11,>>同时成立的条件.解:00011<⇒⎪⎭⎪⎬⎫<-⇒>>-=-ab a b b a abab b a 2.已知Rc b a ∈,,,0,0<=++abc c b a 求证:0111>++cba证:∵0=++c b a ∴222c b a ++0222=+++bc ac ab又∵0≠abc ∴222c b a ++>0 ∴0<++bc ac ab∵abccabc ab c b a ++=++111 0<abc 且0<++bc ac ab∴0111>++cba3.已知||||,0b a ab >> 比较a1与b1的大小.解:a1-b1aba b -=当0,0>>b a 时∵||||b a >即b a > 0<-a b 0>ab ∴0<-aba b ∴a1<b1当0,0<<b a 时∵||||b a >即b a <0>-a b 0>ab ∴0>-aba b ∴a1>b14.如果0,>b a 求证:a b ab >⇔>1证:01>-=-aa b a b ∵0>a ∴0>-a b ∴b a <0>-⇒>a b a b ∵0>a ∴01>-=-ab aa b ∴1>a b七、板书设计(略) 八、课后记:。

不等式的性质二

不等式的性质二

不等式的性质二不等式是数学中常用的一类表示不同数值关系的工具。

在不等式的研究中,我们需要了解不等式的基本性质和特点,以便能够准确地推导和解决相关问题。

本文将讨论不等式的性质二,包括不等式的加减性、乘除性以及倒置性。

1. 不等式的加减性对于同一个不等式,如果两边同时加上(或减去)同一个数,不等式的不等关系保持不变。

举例来说,对于不等式2x > 4,我们可以在两边同时减去4,得到2x - 4 > 0。

这个新的不等式依然成立,因为无论原来的不等式中x的取值如何,其两边都减去同一个数,不等关系并未改变。

同样地,如果两边同时加上一个正数,不等式的不等关系保持不变;如果两边同时减去一个负数,也不等关系同样保持不变。

2. 不等式的乘除性对于同一个不等式,如果两边同时乘以(或除以)同一个正数,不等式的不等关系保持不变。

举例来说,对于不等式3x > 6,我们可以在两边同时除以3,得到x > 2。

这个新的不等式依然成立,因为无论原来的不等式中x的取值如何,其两边都乘以同一个正数,不等关系并未改变。

然而,如果两边乘以一个负数,不等式的不等关系将被倒置。

举例来说,对于不等式-2x < 4,如果我们在两边乘以-1,得到2x >-4。

这个新的不等式的不等关系与原来的不等式相反,因为我们将其两边乘以了一个负数。

3. 不等式的倒置性对于一个不等式,如果将其两边的不等关系互换,则得到一个新的不等式,称为原不等式的倒置。

举例来说,对于不等式2x > 4,如果我们将不等关系互换,则得到4 < 2x。

这个新的不等式是原不等式的倒置。

需要注意的是,倒置后的不等式的解与原不等式的解并不完全相同。

在倒置后的不等式中,不等式符号的方向也随之改变,因此其解的范围也会有所不同。

总结:不等式的性质二包括加减性、乘除性和倒置性。

根据这些性质,我们可以进行不等式的等价转化和推导。

在实际问题中,通过运用不等式的性质,我们可以更加灵活地求解和处理不等式方程,提高解题的效率和准确性。

不等式的性质(2)

不等式的性质(2)

不等式的性质(2)引言不等式是数学中一个重要的概念,用于描述数之间的大小关系。

在不同的数学领域中,我们会遇到各种各样的不等式,它们具有不同的性质和特点。

本文将继续探讨不等式的性质,深入了解不等式的相关概念和定理。

绝对值不等式绝对值不等式是一类常见的不等式,它们以绝对值为主要特征。

绝对值是一个数的非负值,它可以将一个数转化为非负数或零。

在处理不等式时,绝对值不等式可以帮助我们更好地理解数之间的大小关系。

绝对值不等式的基本性质对于任意实数a和b,我们有以下基本的绝对值不等式性质:•若a < b,则 |a| < |b|。

•若a > 0,则 |a| > 0。

•若a = 0,则 |a| = 0。

这些性质可以帮助我们在解决实际问题时更好地应用绝对值不等式。

绝对值不等式的求解方法对于一般的绝对值不等式,我们可以通过以下方法求解:1.将绝对值不等式转化为一个复合不等式,即将绝对值不等式的条件拆分成两个不等式。

2.分别解决上述两个不等式,并求出它们的解集。

3.将两个解集合并,得到最终的解集。

需要注意的是,在解决绝对值不等式时,我们需要区分绝对值的正负情况,并根据绝对值的定义进行讨论。

绝对值不等式的应用举例1.证明不等式|a+b| ≤ |a| + |b|。

首先,我们可以将绝对值展开得到 |a+b| =√[(a+b)^2]。

然后,根据平方根的非负性质,我们知道√[(a+b)^2] ≥ 0。

接下来,我们考虑三种情况:a+b ≥ 0,a+b = 0,a+b ≤ 0。

通过分别求解这三种情况下的不等式,我们可以得到|a+b| ≤ |a| + |b| 的证明。

2.解决绝对值不等式 |2x-1| ≥ 5x-3。

首先,我们将绝对值展开得到 |2x-1| = 2x-1 或 1-2x。

然后,我们将两种情况分别带入不等式得到以下两个不等式:2x-1 ≥ 5x-3 和 1-2x ≥ 5x-3。

通过求解这两个不等式,我们可以得到最终的解集。

不等式的性质2

不等式的性质2

数;
(4)等式的两边,可以乘以(或除以非零的) 同一个数。
进入
熊新成 2005.1.3
知识要点:
1、定义:用不等号联结的表示不等关系的式子,叫做B,那么B<A。就是说,不等式两边对调,不等
号也应调换方向; (2)如果A>B,B>C,那么A>C。就是说,同向不等关系 可以传递; (3)如果A>B,那么A±m>B±m.就是说,不等式两边, 可以加上(或减去)同一个数; ( 4 ) 如 果 A > B , 且 m > 0 , 那 么 Am > Bm , A÷m > B÷m。就是说,不等式两边,可以乘以(或除以)同一 个正数。 (5)如果A>B,且m<0,那么Am<Bm,A÷m<B÷m 。就是说,不等式两边,乘以(或除以)同一个负数,不 等号的方向要改变。
例题: 1、已知不等式5a-b>0.5(a+7b),试 比较a,b的大小。
请你先想一下
例题:
2、已知不等式2a+3b>3a+ 2b, 试比较a、b的大小。
3。设a>b,用<或>填空
• • • • (1)a-3 b-3;(2)a÷3 b÷3 (3)0.1a 0.1b; (4) -4a -4b (5) 2a+3 2b+3; (6) (m2+1) a (m2+1)b (m为常数)
作业
• P61 4, 5.
/ 卫斯理小说网
得课业用功/被王爷训咯壹顿/水清很是委屈/小小格确实很好玩呀/大老爷怎么别肯承认呢?别过/见他脸色别愉/水清也没什么再犟嘴/而是赶快又岔开咯话题:/老爷/您怎么会有那么多の兄弟?前天凝儿见到您の十三弟妹咯/天啊/您竟 然有十三各兄弟啊/凝儿才只有两各兄长/壹各姐姐……//怎么/您嫌爷の兄弟多咯?//没什么/没什么/凝儿只是好奇/那么多の兄弟/您都认得过来吗?/面对那各永远会提
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:9.1.2不等式的性质课时数___3__ 上课日期: 2012-5 -25
【学习目标】:理解不等式的性质,掌握不等式的解法.用不等式解决简单的实际问题.
【重点】:用不等式表示实际问题并求出不等式的解。

【难点】:用不等式表示实际问题并求出不等式的解【自主预习、温故知新】:1、若a>b,用“<”或“>”填空。

(1)a+1 b+1; (2) a-5 b-5; (3) -3a -3b; (4) 6-a 6-b.
2、将下列不等式化成“x>a”或“x<a”的形式。

(1)x-3>2; (2)4x<3x-1; (3)x-2>0.9; (4)-3x<6; (5)3x-5<4x-6
3、利用不等式的性质解不等式x- 7>26,并把解集在数轴上表示出来。

4、用不等式表示下列语句并写出解集:
(1)x与3的和小于6;
(2)y与1的差大于0.
【合作探究、习得新知】: 1.把上题中的小于改成不小于,大于改成不大于又该怎么表示?“≥”读作,也可以说是;“≤”读作,也可以说是。

2.例2.某长方形状的容器长5cm,宽3cm,高10cm.容器内原有水的高度为3cm,现准备向它继续注水。

用V(单位cm3)表示新注入水的体积,写出V的取值范围。

⑴新注水的体积V与原有水的体积的和与容器的容积有什么关系?
⑵新注入水的体积V可以是负数吗?⑶你能独立求出V的取值范围吗?
⑷试将V的取值范围在数轴上表示出来.你认为在数轴上表示需要注意哪些?(思考:实心小圆点和空心小圆圈分别在什么时候适用?)
例3.三角形中任意两边之差与第三边有怎样的大小关系?
⑴三角形的两边之和与第三边有怎样的关系?设a,
b,c为任意一个三角形的三条边的边长,试用不等
式表示这种关系。

⑵将上述不等式变形,得出三角形两边之差与第三边的关系:
⑶用文字描述三角形中任意两边之差与第三边的关系。

【尝试实践、学以致用】:1、圣诞节到了,小明去买贺卡花了x 元,买邮票花了3元,他总共花了10元,请问小明买贺卡花了多少元?(列方程求解)
解方程时移项要变号。

移项法则的理论依据是 。

2、如果小明总共花的钱不足10元呢?根据题意你能列出一个式子吗?
3、解一元一次不等式 x + 3 < 10
解: 移项得x <10-3 (移项的根据是 ,移项要 ,不影响不等号的 。


即 x < 7
这个不等式的解集在数轴上表示如下:
4、解不等式1-2x > - 3x + 3
5、 解不等式3(1-x )>2(1-2x ) 解:去括号,得 , 解:去括号,得 , 移项,得 , 移项,得 , 合并同类项,得 , 合并同类项,得 , ∴原不等式的解集是 。

∴原不等式的解集是 。

6、解下列不等式,并把它们的解集在数轴上表示出来。

(1)x +4>3; (2)7x +6 ≥ 6x +3; (3)7x -1 ≤ 6x +1 ; (4)3-5x < 2(2-3x ).
【举一反三、能力提高】:有一个两位数,如果把它的个位数字a 和十位数字b 对调,那么什么情况下得到的两位数比原来的两位数大?什么情况下得到的两位数比原来的两位数小?什么情况下得到的两位数等于原来的两位数?
【课堂小结、反思学习】:知识: 方法: 思想:
【课堂检测、收获成功】1.用“<”或“>”填空:
(1)若a -2>b -2,则a __b ; (2)若-4a >-4b ,则a __ b ;
(3)若33b a <,则a __b ; (4)22b a -<-,则a __ b . 2.用不等式表示下列语句并写出解集:
(1)8与y 的2倍的和是正数; (2)a 的3倍与7的差是负数.
【课后作业、巩固提高】
必做作业:《导学案》预习部分
选做作业:《导航》。

相关文档
最新文档