1.3 探索三角形全等的条件 (2)

合集下载

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。

鲁教版七年级数学上1.3.3探索三角形全等的条件(边角边)

鲁教版七年级数学上1.3.3探索三角形全等的条件(边角边)

鲁教版七年级数学上1.3.3探索三角形全等的条件(边角边)【学习目标】1.掌握三角形全等的“边角边”条件.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.【学习过程】一、复习1.在前两节课的讨论中,我们知道:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能出现的情况,想一想,是哪四种呢?二、探索新知,合作探究(一)自学指导1.通过自学课本第24~28页的内容.思考:小明不慎将一块三角形模具打碎成两块,他是否可以只带其中的一块碎片到商店去配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么?(二)合作探究1.大家想一想:如果已知一个三角形的两边及一角,那么有几种可能情况呢?那在每种情况下得到的三角形全等吗?我们逐一来研究.先看第一种情况下,两个三角形是否全等.2.做一做(1)如果“两边及一角”条件中的角是两边的夹角.如:三角形的两条边分别为2.5 cm,3.5 cm.它们的夹角为40°,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?(2)大家利用直尺、三角尺和量角器来画满足以上条件的三角形,然后与同伴画的来比较一下.(3)由此得到结论:我们来改变上述条件中的角度和边长,大家分组讨论,是否能得到以上结论?(4)由此我们得到了三角形全等的条件:两边和它们的夹角对应相等的两个三角形全等.简称“边角边”或“SAS”.(5)[例1]如图,已知AB与CD相交于点O,OA=OB,OD=OC,△AOD与△BOC全等吗?说明理由.3.议一议(1)如果“两边及一角”条件中角是一边的对角,如:两边长分别为2.5 cm和3.5 cm,其中2.5 cm的边所对的角为45°,画图形会得到什么情况?画一画,试一试.并与同桌比较.结论:两边分别相等且其中一组等边的对角相等的两个三角形不一定全等.即:“边边角”或“SSA”不一定成立.4.[例2]已知:△ABC≌△A1B1C1,D,D1分别是BC,B1C1上的一点,且BD=B1D1.AD与A1D1相等吗?为什么?(三)小结(四)当堂训练1.图(1)中,AB=EF,AC=ED,∠A=∠E.图(2)中,AD=CB,∠DAC=∠BCA=90°,分别找出各图中的全等三角形,并说明理由.2.小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD.将上述条件标注在图中,小明不用测量就能知道EH=FH吗?与同伴进行交流.3.如图,AD是△ABC的中线,在AD及其延长线上截取DE=DF,连接CE,BF,试说明:(1)△BDF≌△CDE;(2)BF与CE有何关系?为什么?4.如图,点E,F在AC上,AB∥CD,AB=CD,AE=CF,△ABF与△CDE全等吗?请说明理由.5.(2019淄博)已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.试说明:∠E=∠C.6.如图,AD=BC,AC=BD,DE与CE相等吗?为什么?7.(2019邵阳)如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是.(不添加任何字母和辅助线)1.如图,FE=BC,DE=AB,若∠B=∠E=40°,∠F=70°,则∠A等于( )第1题图(A)40° (B)50° (C)60° (D)70°2.(2020利津期中)下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )(A)甲和乙(B)乙和丙(C)甲和丙(D)只有丙3.(2020济宁附中期中)如图,在△ABC和△DEF中,已知:AC=DF,BE=CF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)第3题图4.(2020利津期中)如图,在△A B C与△A E F中,A B=A E,B C=E F,∠B= ∠E,AB交EF于点D.给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC.其中正确的结论是(填序号).5.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:BD=CE.6.如图,AC∥EG,BC∥EF,直线GE分别交BC,BA于P,D.且AC=GE,BC=FE.试说明:∠A=∠G.7.(2020利津期中)如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形的对数是( )(A)4 (B)3(C)2 (D)18.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使得△ABC ≌△DEF的共有( )(A)1组(B)2组(C)3组(D)4组9.(2020利津期中)如图,E,F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE与BF 交于点P.(1)试说明:CE=BF;(2)求∠BPC的度数.【提高训练】10.(探究题)如图,在△ABC中,BE,CF分别是AC,AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.试说明:(1)AD=AG;(2)AD与AG的位置关系如何?。

第三课时 探索三角形全等的条件(二)

第三课时  探索三角形全等的条件(二)

第三课时 探索三角形全等的条件(二)一、 学习目标:掌握三角形的“角边角”、“角角边”的全等条件;二、温故知新:1、三边对应相等的两个三角形全等,简写为__________或___________;2、如图,在△ABC 中,PA=PB ,PC 是AB 边上的中线,PC 能平分∠APB 吗?证明∵PC 是AB 边上的中线,∴AC=__________( )在_________________________中∴________≌__________ (___________)∴_________=_________ (__________________)∴PC 平分∠APB3、如图, (1)∵AB ∥CD (已知)∴∠_____=∠_____(_______________)(2)∵AD ∥BC (已知)∴∠_____=∠_____(_______________)4、如图,∵EA ⊥AD ,FD ⊥AD (已知)∴∠______=∠______=90°(______________)三、探索新知:1、如果“两角及一边”条件中的边是两角所夹的边,比如三角形的两个内角分别是60°和80°,它们所夹的边为2cm ,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?结论:________及其_________分别__________的两个三角形____________; 简写成“____________”或“___________”2、如果“两角及一边”条件中的边是其中一角的对边,比如三角形的两个内角分别是60°和45°,一条边长为3cm ,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?结论:_______分别_______其中一组______的对边_____的两个三角形_______; 简写成“____________”或“___________”⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________四、巩固新知:1、图中的两个三角形全等吗?依据是什么?依据(_____________) 依据(_____________)2、如图,AB=AC ,∠B=∠C ,你能证明△ABD ≌△ACE 吗?证明:在_________________________中∴________≌__________ (___________)3、如图,∠B=∠C ,AD 平分∠BAC ,你能证明,△ABD ≌△ACD 吗?若BD=3cm ,则CD 有多长? 解:∵,AD 平分∠BAC (已知)∴∠________=∠________ ( )在_________________________中∴________≌__________ (___________)∴BD=________=________(___________)4、如图,已知AB=CD ,∠B=∠C ,求证△ABO ≌△DCO ;证明: 在_________________________中∴________≌__________ (_________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________五、提高练习:5、如图,已知AC 与BD 交于点O ,AD ∥BC ,且AD=BC ,你能说明BO=DO 吗? 证明:∵AD ∥BC ,(已知)∴∠_____=∠_____∠_____=∠_____ ( )在_________________________中∴________≌__________ (___________)∴________=________ (______________________)6、如图,在△ABC 中,AD 是BC 边上的中线, 且BE ⊥AD 于E ,CF ⊥AD 于F , 求证:BE=CF证明:∵AD 是BC 边上的中线,(已知)∴_______=________ ( )∵BE ⊥AD ,CF ⊥AD∴_________=_________ =90°( )在_________________________中∴________≌__________ (___________)∴________=________ (______________________)7、如果,AB ∥CD ,∠A=∠D ,BF=CE ,∠AEB=80°,求∠DFC 的度数? 证明:∵AB ∥CD , (已知)∴ ∠______=∠_______ ( )∵BF=CE∴BF-______=CE-________即_______=________在_________________________中∴________≌__________ (___________)∴∠DFC =________=________ (______________________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________8、如图,AB=AD ,∠1=∠2,∠ABC=∠ADE ,求证△ABC ≌△ADE ; 证明:∵∠1=∠2, (已知)∴ ∠1-_______=∠2-_______ ( )∴ __________=__________在_________________________中∴_________≌_________ (___________)9、如图,AB=AD ,∠1=∠2,∠ABC=∠ADE ,求证△ABC ≌△ADE ; 证明:∵∠1=∠2, (已知)∴ ∠1+______=∠2+_______ ( )∴ __________=__________在_________________________中∴_________≌_________ (___________)10、如图,AB ⊥BC 于B ,DF ⊥AC 于F ,BC=BE ,△ABC ≌△DBE ; 证明:∵AB ⊥BC , (已知)∴ ∠______=∠______=90°( )∵DF ⊥AC , (已知)∴ ∠______=90° ( )∴ ______+∠C=______+∠C∴ __________=__________在_________________________中∴_________≌_________ (___________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________。

第3讲探索三角形全等的条件(二)

第3讲探索三角形全等的条件(二)
(AAS),正确;B 选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C, ∠DFB=∠DEC=90°∴DF=DE 故点 D 在∠BAC 的平分线上,正确;C 选项: ∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴ △BDF≌△CDE(AAS),正确.
(1)一个锐角和这个角的对边对应相等;( )
(2)一个锐角和斜边对应相等;
()
(3)两直角边对应相等;
()
(4)一条直角边和斜边对应相等. ( )
【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SA根据全等三角形的判定来判断.
4、【答案】A 【解析】解:∵OM=ON,CM=CN,OC 为公共边, ∴△MOC≌△NOC(SSS).∴∠MOC=∠NOC 故选:A.
5【答案】AH=CB; 【解析】∵AD⊥BC,CE⊥AB,垂足分别为 D、E, ∴∠BEC=∠AEC=90°, 在 Rt△AEH 中,∠EAH=90°﹣∠AHE, 又∵∠EAH=∠BAD, ∴∠BAD=90°﹣∠AHE, 在 Rt△AEH 和 Rt△CDH 中,∠CHD=∠AHE, ∴∠EAH=∠DCH, ∴∠EAH=90°﹣∠CHD=∠BCE, 所以根据 AAS 添加 AH=CB 或 EH=EB; 根据 ASA 添加 AE=CE. 可证△AEH≌△CEB.
【总结升华】直角三角形全等可用的判定方法有 5 种:SAS、ASA、AAS、SSS、HL.
例 3、如图,AB⊥AC 于 A,BD⊥CD 于 D,若 AC=DB,则下列结论中不正确的是( )
A.∠A=∠D B.∠ABC=∠DCB C.OB=OD D.OA=OD 【答案与解析】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合 已知条件与全等的判定方法逐一验证. 解:∵AB⊥AC 于 A,BD⊥CD 于 D ∴∠A=∠D=90°(A 正确) 又∵AC=DB,BC=BC ∴△ABC≌△DCB(HL) ∴∠ABC=∠DCB(B 正确) ∴AB=CD 又∵∠AOB=∠C ∴△AOB≌△DOC(AAS) ∴OA=OD(D 正确) C 中 OD、OB 不是对应边,不相等. 故选 C. 【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、 SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全 等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

数学(七下)3.3探索三角形全等的条件(二)

数学(七下)3.3探索三角形全等的条件(二)

1、角.边.角;
2、角.角.边
每种情况下得到的三角形都全等吗?
做一做
1.角.边.角;
若三角形的两个内角分别是60°和80° 它们所夹的边为4cm,你能画出这个三角形吗?
2cm
60°
80°
做一做
2.角.角.边
若三角形的两个内角分别是60°和45°,且45° 所对的边为3cm,你能画出这个三角形吗?
2
C
∴△ABC≌△DCB( AAS )
巩固练习:
如图,O是AB的中点,∠A=∠B,△AOC 与△BOD全等吗?为什么? 我的思考过程如下: 两角与夹边对应相 等 A
C O B D
∴△AOC≌△BOD
补充练习
1﹑请在下列空格中填上适当的条件, 使△ABC≌△DEF。 在△ABC和△DEF中 A D
课堂小结
通过这堂课的学习你有 什么收获?知道了哪些 新知识?学会了做什么?
布置作业
P83 知识技能2.3; 问题解决。
第三章
三角形
3 探索三角形全等的条件(第2课时)
情境导入
我们已学过识别两个三角形全等的方法 是什么?识别三角形全等是不是还有其 它方法呢?
情境导入
有一块三角形纸片撕去了一个角, 要去剪一块新的,如果你手头没 有测量的仪器,你能保证新 剪的纸片形状、大小和原来的一 样吗?
实践探究
我们知道:如果给出一个三角形三条边的长度, 那么因此得到的三角形都是全等.如果已知一个 三角形的两角及一边,那么有几边对应相等的两个三 角形全等,简写成“角边角”或“ASA”
两角和其中一角的对边对应相等的两个 三角形全等,简写成“角角边”或“AAS”
练一练
1.如图,已知AB=DE, ∠A =∠D, ,∠B=∠E, 则△ABC ≌△DEF的理由是:角边角(ASA) 2.如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则 △ABC ≌△DEF的理由是: 角角边(AAS)

1.3 探索三角形全等的条件 (2)

1.3  探索三角形全等的条件 (2)

③平移.
学生独立完成练习,及时纠正书写中出现的问题.
通过练习设
~17 页第 1、2、3 题.
运用新知识的过
行有条理的思考 的推理. 学生自由表述,其他学生补充.
通过学生小
节课的学习,你有什么体会?说出
的口头表达能力

于发表自己看法
巩固新知识
的学生发挥不同
第 4 页
共 4 页
2013-9-3
①△AEC≌⊿BED. ②AC∥DB.
个问题:
证明△AEC ≌△BED,已具备了
还缺什么条件?
证明 AC∥DB, 需什么条件?这个
得?Biblioteka 例包含哪一种图形变换?知:如图,点 E、F 在 CD 上,且
例3
学生经历分析例题的过程,口头叙述证明过程.
E=BF,AE∥BF.
参考答案 ①∵AE∥BF(已知) , ∴∠AEC=∠BFD(两直线平行,内错角相等), 在△AEC 和△BFD 中, AE=BF(已知) , ∠AEC=∠BFD(已证) ,
:△AEC ≌△BFD.
能证得其他新的结论吗?
图中的△AEC 可以通过_________ 所示图形.
A F E D B
C
CE=DF(已知) , ∴△AEC≌△BFD(SAS) . ②AC=BD,∠A=∠B,∠AEC=∠BFD,AC∥BD 等等.
第 3 页
共 4 页
2013-9-3
凤凰初中数学配套教学软件_教学设计
例1
(1)学生根据图形并结合已知条件作出猜想.
通过问题分
D=AE,∠1=∠2,由此你能得出 (2)学生经历分析例题的过程,口头叙述证明过程. 参考答案:△ABD≌△ACE. 证明:∵∠1+∠ADB=180°,∠2+∠AEC=180°, 且∠1=∠2(已知) ,

初二数学1.3探索三角形全等条件第2、4、6、8教案

初二数学1.3探索三角形全等条件第2、4、6、8教案

怀文中学2013—2014学年度第一学期教学设计初 二 数 学1.3探索三角形全等条件1巩固主备::陈秀珍 审校 郁胜军 日期:2013年9月3日教学目标:掌握利用“边角边”公理判定三角全等。

教学重点:边角边公理条件不具备的进行转换后,再利用边角边公理证明 教学难点:1.边角边公理条件不具备的进行转换后,再利用边角边公理证明2.边角边公理书写格式,对应元素顺序问题。

教学内容: 一、自主探究1. 边角边公理: 。

2. 边角边公理的几何表达形式:二、自主合作1. P15/课本例2已知:如图1-8AB 、CD 相交于点E ,且E 是AB 、CD 的中点。

求证:△AEC ≌△BE D2. 巩固练习:(1)你能证明P15/课本例2中AC ∥B D 吗?(2)P16、练习1三、自主展示1. P16/课本例3已知:如图1-9点 E 、F 在CD 上。

且CE=DF ,AE=BF ,AE ∥BF 求证:△AEC ≌△BF D巩固练习:(1)你能改变图1-9中△AEC 的位置得到图1-8?(2)根据例3的已知条件,你还能证出其它新的结论吗?(3)P16/课本练习2ED CBAC四、自主拓展1. 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C .求证:∠A =∠D .2. 如图所示,AB = AD ,∠1 = ∠2,添加一个适当的条件,使△ABC ≌ △ADE ,则需要添加的条件是______.请你证明3.如图(13)△ABC ≌△EDC 。

求证:BE=AD 。

4. 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .(SAS )五、自主评价课堂小结:布置作业::P 30/4、 5 教学反思:E(图13)DCBA怀文中学2013—2014学年度第一学期教学设计初 二 数 学1.3探索三角形全等条件2巩固主备::陈秀珍 审校 郁胜军 日期:2013年9月5日教学目标:1. 掌握且利用角边角、角角边定理判定三角全等教学重点:不能直接利用“角边角、角角边”定理判定三角全等要先进行转换,再利用角边角、角角边定理判定三角全等。

北师大版七年级数学下册探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等

北师大版七年级数学下册探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等

AB=AB(已证),
所以△ABD≌△A'B'D'.所以AD=A'D'.
课堂小结
内容
角边角 角角边
应用
有两角及夹边对应相等的两个三角 形全等(简写成“ASA”); 两角分别相等且其中一组等角的对 边相等的两个三角形全等(简写成 “AAS”)
为证明线段和角相等提供了新的证法
注意
注意“角角边”“角边角” 中两角与边的区分
第四章 三角形
3 探索三角形全等的条件
第2课时 利用“角边角”“角角边”判定三角形全等
学习目标
情境引入
1.探索并正确理解三角形全等的判定方法 “ASA”和“AAS”;
2.会用三角形全等的判定方法“ASA”和“AAS” 证明两个三角形全等.(重点)
情境导入
如图所示,某同学把一块三角形的玻璃不谨慎打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的 办法是带哪块去? 学生活动:学生先自主探究出答案,然后再与同学进行交流. 教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的, 而仅仅带③则可以,为什么呢? 本节课我们继续研究三角形全等的判定方法.
所以AB=A'B'(全等三角形对应边相等),
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'=90°.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),

探索三角形全等的条件(二)

探索三角形全等的条件(二)

= 如图:已知 AE=AD 如图:已知AB=AC, = , A ∠B=∠C,△ABD与△ACE全 = , 与 全 E 等吗?为什么? 等吗?为什么?
B
D C
课堂小结: 课堂小结:
通过本节课的学习, 通过本节课的学习,你有 所收获? 所收获?
作业: 作业: P164页 页 习题5.8第 题 习题 第1题
探索三角形全等 二 的条件(二)
学习目标
1.三角形全等的条件 角边角 三角形全等的条件:角边角 三角形全等的条件 角边角, 角角边
做一做 1、角.边.角; 、 边角
若三角形的两个内角分别是 60°和80°它们所夹的边为 ° °它们所夹的边为2cm, 你能画出这个三角形吗? 你能画出这个三角形吗
2cm
60°
80°
两角和它们的夹边对应相等的 两角和它们的夹边对应相等的 两个三角形全等,简写成“ 两个三角形全等,简写成“角边 A D 角”或“ASA” 1、在△ABC中,AB=AC, 、 中 ∠B= ∠ F ,∠ A= ∠ D。 。 求证: = 求证:BC=EF
B CE F
2、角.角.边 、 角边 若三角形的两个内角分别是60° 若三角形的两个内角分别是 ° 和45°,其中 °角所对的边 ° 其中60 为3cm,你能画出这个三角形吗 ,你能画出这个三角形吗?
60°
40°
A 1、在△ABC中,AB=AC, 、 中 1、在△ABC中,AB=AC, 、 中 AD是边 上的角平分线 是边BC上的角平分线 是边 上的角平分线. AD是边 上的中线。 是边BC上的中线 是边 上的中线。 B (1)图中有全等的三角形吗 (1)图中有全等的三角形吗 (2) AD是∠BAC的中线吗 是 的中线吗 (2) AD是∠BAC的平分线吗 是 的平分线吗

1.3 第8课时 探索直角三角形全等的条件—HL2023-2024学年苏科版八年级上册数学

1.3 第8课时 探索直角三角形全等的条件—HL2023-2024学年苏科版八年级上册数学

(3)判定一般三角形全等的所有方法对判定两个直角三角形
全等同样适用.
(4)在用一般方法证明直角三角形全等时,因为两个直角三
角形中已具备一对直角相等的条件,故只需找另外两个条件即
可.
合作探究
直角三角形的判定和性质的应用
2.求证:一条直角边相等且另一条直角边上的中线相等的两
个直角三角形全等.
要求:根据给出的Rt△ABC和Rt△A'B'C'(∠C=∠C'=
90°,AC=A'C'),在此图形上用尺规作出BC与B'C'边上的中
线,不写作法,保留作图痕迹,
并据此写出已知、求证和证明过程.
合作探究
解:如图,AD和A'D'就是所要求作的图形.
已知:在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,AC
=A'C',AD与A'D'分别为BC与B'C'边上的中线,且AD=A'D',
求证:△ABD≌△ABF.
合作探究
证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,
∴∠ADB=∠AFB=90°.
在Rt△ADC和Rt△AFE中,
=,
∴Rt△ADC≌Rt△AFE(HL),∴AD=AF.
=,
=,
在Rt△ABD和Rt△ABF中,
=,
∴Rt△ABD≌Rt△ABF(HL).
∠=∠′′′=°,
∴Rt△ACB≌Rt△A'C'B'(ASA).
际问题.
◎重点:能利用“斜边、直角边”来判定直角三角形全等.
◎难点:能熟练运用判定直角三角形全等的特殊方法解决简

1.3 探索三角形全等的条件 第二课时教学设计 2022-2023学年鲁教版(五四制)七年级数学上册

1.3 探索三角形全等的条件 第二课时教学设计 2022-2023学年鲁教版(五四制)七年级数学上册

1.3 探索三角形全等的条件第二课时教学设计课程目标
•掌握三角形全等的概念
•探究三角形全等的条件
•认识三角形全等的性质
教学重难点
•重点:掌握三角形全等的条件
•难点:分析和证明三角形的全等性
教学过程
1. 导入新知识
•引入三角形全等的概念
•提问:当两个三角形相等时,我们称它们为____?
2. 模拟实验
•带领学生进行三角形全等的模拟实验
•用尺子和量角器操作,让学生自己感悟全等的条件是什么
3. 探究三角形全等条件
•列出三角形全等的条件
–SSS
–SAS
–ASA
–RHS
•逐一分析并讲解全等条件
4. 确定全等条件的应用
•给出一些例题,让学生应用全等条件进行解答
•学生可使用全等条件进行推理,做出正确的选择
5. 总结三角形全等性质
•讲解三角形全等的性质:对应角相等、对应边相等、对应线段相等
•让学生分析、理解并总结
教学设计说明
本节课以探究的方式引入三角形全等,采用实验和推理的方法让学生掌握全等的条件,注重学生思维的启发和训练,以培养学生的自学能力为核心,让学生在自主性学习和思考中,逐渐理解全等性质,形成自我的认知。

小结
因为几何学是建立在直观的几何意象上的,所以在学习上加强视觉感受很有必要。

本节课通过模拟实验的方式,引导学生自己感悟全等条件,培养学生的观察能力和空间想象能力,让学生能够在理性思考的基础上,更好地理解全等的概念和条件。

作业
1.完成教材上与本课有关的练习题;
2.自己寻找几个“问答题”,能进行简单的分析和证明。

鲁教版(五四制)七年级数学上册教学案:1.3.3探索三角形全等的条件

鲁教版(五四制)七年级数学上册教学案:1.3.3探索三角形全等的条件
§1.3.3探索三角形全等的条件
时间:第周第课时执笔人:
教学目标:
知识与技能目标:1.知道三角形全等的判定方法“SAS”
2.能利用“SAS”判定三角形全等
过程与方法目标:1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力、有条理表达的能力
2.能利用“SAS”判定三角形全等
情感与价值目标:在学习中,不断的自我突破,体验收获知识的喜悦
求证:△ABE≌△DCF
★★☆练习2:已知,AD//BC,AD=BC,AE=CF,
求证BE=DF
四、合作探究
★★★例3:如图已知△ACE和△ECD都是等腰直角三角形,
∠ACB=∠ECD=90°,D是AB上的一点,
求证:△ACE≌△BCD
★★★练习3:
已知正方形ABCD和正方形AEFG,
求证DE=BG
方法一:已知两边,通过加减角,证明夹角相等
★☆☆例1:已知CE=CB,CD=CA,∠DCA=∠ECB
证明:DE=AB
★☆☆练习1:如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,
求证:∠D=∠E
方法二:已知一边和一角,通过加减线段,证明另一边相等
★★☆例2,:如图已知,AB//CD,AB=CD,CE=BF
训练要求:1、快速准确计算2、限时3分钟
二、预习自测(预习课本P5~P6,然后作答)
1.全等三角形的判定方法“SAS”:及其分别相等的两个三角形全等,简写成“边角如图,已知AC平分∠BAD,AB=AD,
证明:△ABC≌△ADC
三、精讲精练:“SAS”通过对应关系找出两条边及夹角
教学重点:能利用“SAS”判定三角形全等
教学难点:能利用“SAS”判定三角形全等

1.3 探索三角形全等的条件 课件(苏科版八年级上册) (2)

1.3 探索三角形全等的条件 课件(苏科版八年级上册) (2)
[来源:学科网ZXXK]
如图,在△ABC中,已知AC=BC, ∠C=900,AD是△ABC的角平分 线,DE⊥AB,垂足为E。 求证:AB=AC+CD。
A
E
C
D
B
已知,如图,P是∠AOB平分线上的 一点,PC⊥OA, PD⊥OB, 垂足分别 C、D, 求证:OP是CD的垂直平分线。
A C P O D B
O
E
B
D
C
如图,△ABC的角平分线AD、BE相 交于点O,点O到△ABC各边的距离 相等吗?点O在∠C的平分线上吗?
A
O
E
B
D
C
如图,已知△ABC的外角∠CBD和∠BCE 的平分线相交于点F, 求证:点F在∠DAE的平分线上
[来源:学科网ZXXK]
如图,在△ABC中,பைடு நூலகம்C=90度,点D 在BC上,DE垂直平分AB,且DE=DC。 求∠B的度数。
C P O E B
2、证明:在一个角的内部,且到角 的两边距离相等的点,在这个角的平 分线上。
A D P O E B
“如果一个点到角的两边的距离不相等, 那么这个点不在这个角的平分线上。” 你认为这个结论正确吗? 如果正确,你能证明吗?
了解一下 反证法
如图,△ABC的角平分线AD、BE相 交于点O,点O到△ABC各边的距离 相等吗?点O在∠C的平分线上吗? 为什么? A
初中数学九年级
(苏科版)
上册
1.2.2直角三角形全等的判定(二)
回忆:直角三角形全等的判定方法。
[来源:]
证明:角平分线上的点到这个角两边的 距离相等。 A
D
思考与表达: 怎么想 怎么写 要证PD=PE 只需证△POD≌△POE 已知∠POD==∠POE OP=OP 只要证∠PDO==∠PEO

八年级数学上册 1.3《探索三角形全等的条件》知识点解

八年级数学上册 1.3《探索三角形全等的条件》知识点解

知识点解读:快速判定三角形全等全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。

判断三角形全等公理有SAS 、ASA 、AAS 、SSS 和HL ,如果能够直接证明三角形的全等的条件,则比较简单,直接根据相应的公理就可以证明,但是如果给出的条件不全面,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。

一、已知一边及与其相邻的一个内角对应相等判断三角形全等的公理中边和角相邻的有SAS 、ASA 、AAS ,所以可以从三个方面进行考虑:例1、如图1,点C 、D 在线段AB 上,AC=DB ,AE=BF ,∠A=∠B 。

说明△ABF≌△DCE 的理由。

分析:本题是根据SAS 来判断两个三角形全等,应该首先推导这个内角的另一条边也是对应相等的,也就是AD =BC ,然后再证明三角形全等。

解:因为AC =DB (已知)所以AC +CD=BD +CD ,即 AD =BC 在△ABF 和△DCE 中,AE BFA B AD BC =⎧⎪∠=∠⎨⎪=⎩∴ △ABF≌△DCE(SAS )。

例2、如图2,F 是△ABC 的边AB 上一点,DF 交AC 于点E ,DE=FE ,DC∥AB。

说明△AFE≌△CDE 的理由。

分析:本题是在两个三角形有对顶角的情况下进行考虑的,根据ASA 来判断两个三角形全等,应该首先推导以DE 、FE 为一边的另一个角也是对应相等的,也就是∠AFE=∠CDE,然后再证明三角形全等。

CBA D 图1解:应为 FC∥AB(已知)所以∠AFE=∠CDE(两直线平行,内错角相等) 在△ADE 和△CFE 中,AFE CDE DE FEAEF CED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFE≌△CDE(ASA )。

例3、题目同例2,在DE=FE 的情况下也可以根据FC∥AB,证明AFE CDE ∠=∠和EAF ECD ∠=∠,然后根据AAS 公理来说明△AFE≌△CDE。

探索三角形全等的条件(第二课时)

探索三角形全等的条件(第二课时)

探索三角形全等的条件(第二课时)源南学校李舰锋三、运用新知深化理解例11、如图,已知AB=DE,∠A =∠D, ,∠B=∠E,则△ABC ≌△DEF的理由是:。

2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则△ABC ≌△DEF的理由是:。

例2如图,已知∠A=∠D,∠B=∠DEF ,请在横线上添加一个条件使△ABC≌△DEF,并说明理由。

()例3 如图,O是AB的中点,∠A=∠B ,△AOC与△BOD全等吗?为什么?引导:(1)O是AB的中点说明什么?(2)△AOC与△BOD满足哪三组对应相等条件?哪个全等条件?师:分析题意、启发学生找出满足所学的三角形全等的条件。

生:独立思考,并解答。

例题设计由浅到深,通过不同题型帮助学生巩固知识。

鼓励学生大胆发表自己的思考推理过程,体会不同的表示方式,引导学生学会选择适合自己的解决方法。

培养学生的运用能力,分析问题的能力,有条理的表达能力。

A BCD EFAB CDE F四、巩固练习强化新知1﹑如图:已知AB=AC,∠B=∠C,△ABD与△ACE全等吗?BE=CD吗?为什么?2﹑如图,已知,∠C=∠E,∠1=∠2,AB=AD,△ABC和△ADE全等吗?为什么?生:独立完成或与同桌交流守成师:巡视、启发、引导学生完成练习。

检查学生对本节的两个全等条件是否能够熟练运用。

同时使学生进一步巩固所学知识的同时又能发挥学生对所掌握知识的灵活。

五、联系生活解决问题如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?学生互相讨论寻求解决办法让学生体会到数学知识来源于生活,又可以为生活服务。

AE DB CAB CDE12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号 课题
04
备课时间 1.3
9.2
主备人 林祥艳
所在学校 夹山中学
探索三角形全等的条件(2)
1.会利用基本事实:“边角边”判别两个三角形是否全等; 教学目标 2. 在基本事实 “边角边” 运用的过程中能够进行有条理的思考和简单的推理; 3.经历观察、探索、合作、交流等活动,营造和谐、平等的学习氛围. 教学重点 教学难点 教学方法 与手段 教学准备 三角形全等的“边角边”条件的应用. 三角形全等的“边角边”条件的应用. 讲授与引导相结合,ppt 辅助教学。 多媒体投影 教学内容 问题情境 师生活动 设计意图 个性复备
中直接给出 的条件、 间接 给出的条件 以及图中隐 含的条件, 以 巩固“边角 边” 条件判断 三角形全等 的方法.
例3
已知:如图,点 E、F 在 CD 例3 学 生经历分析 例题的过程, 口头叙述证 明过程.
上,且 CE=DF,AE=BF,AE∥BF. ①求证:△AEC ≌△BFD. ②你还能证得其他新的结论吗? ③ 本 例 图 中 的 △ AEC 可 以 通 过
D A
要 证 明 △ ABE ≌ △ ACD.
教 学 过 程
E C
(2) “三月三,放风筝. ”如图是小 东同学自己动手制作的风筝,他根据 AB =CB, ( 2 )学 生思考后回
∠ABD=∠CBD,不用度量,就知道 AD 答. =CD.请你用所学的知识给予说明.
-1-
B A C
D
合作探究 例1 如图,已知:点 D、E 在 BC 例1 (1)学生根 据图形并结 合已知条件
A
上,且 BD=CE,AD=AE,∠1=∠2, 由此你能得出哪两个三角形全等?请给 出证明.
作出猜想. (2) 学
B
1 D
2 E
生经历分析
C
例题的过程, 口头叙述证 明过程.
设置三个问题: (1)观察猜想哪两个三角形全等? (2)要证明两个三角形全等,已具 备了哪些条件?还缺什么条件? (3)所缺的这个条件如何获得?
_________变换得到例 2 所示图形.
A F E D B
C
课堂练习
通过练习设 学生独立完 课本 P16~17 页第 1、2、3 题. 置, 使学生在 成练习,及时 运用新知识 纠正书写中 ቤተ መጻሕፍቲ ባይዱ过程中能 体会小结 出现的问题. 够进行有条 通过本节课的学习,你有什么体会?说 理的思考并 出来告诉大家. 进行简单的 推理. 板 书 设 计 课题 一、活动一
例2 例2

已知:如图,AB、CD 相交于 生 经 历 分 析 例题的过程, ② AC 口 头 叙 述 证 明过程.
点 E,且 E 是 AB、CD 的中点. 求证:①△ AEC≌⊿BED. ∥DB.
A E D B C
通过问题分 散难点, 引导 学生分清题
-2-
设置三个问题: (1)要证明△AEC ≌△BED,已具 备了哪些条件?还缺什么条件? (2) 要证明 AC∥DB, 需什么条件? 这个条件如何获得? (3)本例包含哪一种图形变换?
( 1 )学生思 复 习 回 顾 三 角形全等的 ( 1 )如图, AB=AC ,还需补充条 考 后 给 出 所 条 件 — — ,让 件___________,就可根据“SAS”证明 补充的条件, “ SAS ” 学生学会有 △ABE≌△ACD. 并 根 据 所 补 条理的思考, 充的条件,简 规范的推理. B
二、活动二
三、例题讲解
四、展示交流
-3-
教 学 反 思
-4-
相关文档
最新文档