华东师大版七年级数学下册期末试卷 含答案

合集下载

华师大版七年级下册数学期末试题试卷含答案

华师大版七年级下册数学期末试题试卷含答案

华师大版七年级下册数学期末考试试卷一、选择题(每小题3分,共30分)1.(3分)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy2.(3分)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤4.(3分)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.元C.元D.27元5.(3分)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>16.(3分)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或107.(3分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.8.(3分)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个B.5个C.4个D.3个9.(3分)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形 C.正六边形D.正八边形10.(3分)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3二、填空题(每小题3分,共15分)11.若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x= .12.方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y= .13.一个多边形的每一个外角都等于72°,则这个多边形是边形.14.一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为cm,cm.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.三、解答题(本题共8小题,共75分)16.(8分)﹣=.17.(9分)解方程组:.18.(9分)解不等式组:把解集表示在数轴上并求出它的整数解的和.19.(9分)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE 的度数和EC的长.20.(9分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.21.(10分)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 度;(2)求∠EDF的度数.22.(10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A 型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案哪种方案的总费用最低23.(11分)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017春•淅川县期末)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy【分析】二元一次方程就是含有两个未知数,并且未知数的项的最高次数是1的整式方程,依据定义即可判断.【解答】解:A、是一元一次方程,故错误;B、正确;C、未知数的项的最高次数是2,故错误;D、未知数的项的最高次数是2,故错误.故选B.【点评】此题考查了二元一次方程的条件:①只含有两个未知数;②未知数的项的次数都是1;③整式方程.2.(3分)(2016•云南)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2017春•淅川县期末)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤【分析】解方程得出x=﹣4k+3,由解为正数得出﹣4k+3>0,解之可得答案.【解答】解:解方程x﹣2+3k=,得:x=﹣4k+3,∵方程得解为正数,∴﹣4k+3>0,解得:k<,故选:C.【点评】本题主要考查解方程和不等式的能力,根据题意列出关于k的不等式是解题的关键.4.(3分)(2006•恩施州)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.元C.元D.27元【分析】本题要注意关键语“按标价9折出售,仍获利润10%”.要求商品进货价,可先设出未知数,再依题意列出方程求解.【解答】解:设进货价为x元.那么根据题意可得出:(1+10%)x=33×90%,解得:x=27,故选:D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.5.(3分)(2017春•淅川县期末)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>1【分析】根据不等式的性质,可得答案.【解答】解;A、a>b,c=0时,ac2=bc2,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边没诚乘以﹣2,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D错误;故选:B.【点评】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.6.(3分)(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.7.(3分)(2016•茂名)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【解答】解:设有x匹大马,y匹小马,根据题意得,故选C【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.8.(3分)(2017春•淅川县期末)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个B.5个C.4个D.3个【分析】根据三角形的三边关系定理可得8﹣3<x<8+3,解出x的取值范围,再根据周长为奇数确定x的值.【解答】解:根据三角形的三边关系可得:8﹣3<x<8+3,即:5<x<11,∵三角形的周长为奇数,∴x=6,8,10,共3个.故选D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.9.(3分)(2017春•淅川县期末)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形 C.正六边形D.正八边形【分析】根据密铺的条件能整除360度的能密铺地面,分别对每一项进行分析即可.【解答】解:A、正方形的每个内角是90°,能整除360°,能密铺;B、任意三角形的内角和是180°,能整除360°,能密铺;C、正六边形每个内角是120°,能整除360°,能密铺;D、正八边形每个内角是135°,不能整除360°,不能密铺;故选D.【点评】此题考查了平面镶嵌,用到的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.10.(3分)(2017春•淅川县期末)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3【分析】首先解不等式组确定不等式组的解集,然后根据不等式的整数解有5个,即可得到一个关于a的不等式组,解不等式组即可求解.【解答】解:,解①得:x≥a,解②得:x<2,则不等式组的解集是:a≤x<2,不等式组有5个整数解,则﹣4<a≤﹣3,故选D.【点评】此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(每小题3分,共15分)11.(3分)(2017春•淅川县期末)若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x= .【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求的m的值,进而求得x的值,从而求解.【解答】解:根据题意得:k﹣2≠0且|k﹣1|=1,解得:k=0.把k=0代入方程得﹣2x+1=0,解得:x=,则k+x=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.(3分)(2017春•淅川县期末)方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y= 2 .【分析】两数互为相反数,则两数和为0,即x+y=0,x=﹣y.可将x=﹣y代入方程中解出x、y的值,再把x、y的值代入3x+y=2中.即可解出本题.【解答】解:依题意得:x=﹣y.∴3x﹣y=3x+x=4x=4,∴x=1,则y=﹣1.∴3x+y=2.故答案为:2【点评】本题考查的是二元一次方程的解法与相反数的性质的综合题目.注意:两数互为相反数,它们的和为0.13.(3分)(2014•金平区模拟)一个多边形的每一个外角都等于72°,则这个多边形是五边形.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:五.【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.14.(3分)(2017春•淅川县期末)一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为7 cm,7 cm.【分析】题目中只给出了周长为18cm,三角形的一边长为4cm,没有明确该边是底边还是腰,所以分两种情况进行讨论.【解答】解:(1)若4cm为底边,则另外两边均为(18﹣4)=7厘米;(2)若4cm为腰长,则另一腰为4厘米,底边为18﹣4×2=10厘米∵4+4<10,∴此时不能构成三角形,舍去.因此其他两边的长分别为7cm、7cm.故答案为:7,7.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握;做题时注意分情况讨论,并注意是否能构成三角形.15.(3分)(2016•绍兴)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296 元.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=,解得:x=(舍去);②当<x≤时,x+×3x=,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=,解得:x=74,此时两次购书原价总和为:4x=4×74=296;④当100<x≤200时,x+×3x=,解得:x≈(舍去);⑤当x>200时,x+×3x=,解得:x≈(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.【点评】本题考查了一元一次方程的应用,解题的关键是分段考虑,结合熟练关系找出每段x区间内的关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.三、解答题(本题共8小题,共75分)16.(8分)(2017春•淅川县期末)﹣=.【分析】首先对每个式子进行化简,然后去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:原式即﹣=,去分母,得5(10x﹣10)﹣3(10x+20)=18,去括号,得50x﹣50﹣30x﹣60=18,移项,得50x﹣30x=18+50+60,合并同类项,得20x=128,系数化为1得x=.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.17.(9分)(2013•黄冈)解方程组:.【分析】把方程组整理成一般形式,然后利用代入消元法其求即可.【解答】解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.18.(9分)(2017春•淅川县期末)解不等式组:把解集表示在数轴上并求出它的整数解的和.【分析】先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的整数解,最后求解即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x≥﹣4,∴不等式组的解集为﹣4≤x<3,在数轴上表示为:∴不等式组的最大整数解为﹣4、﹣3、﹣2、﹣1、0、1、2,∴这个不等式组的整数解得和为﹣4﹣3﹣2﹣1+0+1+2=﹣7.【点评】本题考查了解一元一次不等式组,不等式组的整数解,能根据不等式的解集求出不等式组的解集是解此题的关键.19.(9分)(2017春•淅川县期末)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.【分析】根据全等三角形的性质得出∠D=∠A=48°,∠E=∠B=32°,BC=EF,求出BF=EC,即可求出答案.【解答】解:∵△ABC≌△DEF,∠A=32°,∠B=48°,∴∠D=∠A=48°,∠E=∠B=32°,在△DEF中,∠D+∠E+∠DFE=180°,解得:∠DFE=100°,∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+CF,∴BF=EC,∵BF=3,∴EC=3.【点评】本题考查了全等三角形的性质定理,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应角相等,对应边相等.20.(9分)(2017春•淅川县期末)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中心对称图形的性质得出对应点位置;(3)利用轴对称求最短路线的方法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△DEF,即为所求;(3)如图所示:P点位置,使△ABP的周长最小.【点评】此题主要考查了旋转变换以及平移变换以及利用轴对称求最短路线,正确得出对应点位置是解题关键.21.(10分)(2017春•淅川县期末)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.【点评】此题考查了三角形的内角和定理、三角形的外角的性质、翻折变换等问题,解答的关键是沟通外角和内角的关系.22.(10分)(2012•河南)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案哪种方案的总费用最低【分析】(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.【解答】解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.【点评】此题主要考查了一元一次方程的应用和不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.23.(11分)(2017春•淅川县期末)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=15 度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=45 度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.【分析】(1)根据平行线的性质,可得∠BAE=∠E=30°,再根据∠BAC=45°,即可得出∠CAE=45°﹣30°=15°;(2)根据当旋转到AB与AE重叠时,∠α=∠BAC即可得到结果;(3)要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC,分别画出图形,计算出度数即可;(4)先设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180,再根据∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,得出∠E+∠BDE+∠CAE+∠C+∠DBC=180°,然后根据∠C=30°,∠E=45°,即可得出∠BDE+∠CAE+∠DBC的度数.【解答】解:(1)如图2,当AB∥DE时,∠BAE=∠E=30°,∵∠BAC=45°,∴∠CAE=45°﹣30°=15°,即∠α=15°,故答案为:15;(2)当旋转到AB与AE重叠时,∠α=∠BAC=45°,故答案为:45;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的度数为15°,45°,105°,135°,150°.如图a﹣e所示:①当AD∥BC时,α=15°;②当DE∥AB时,α=45°;③当DE∥BC时,α=105°;④当DE∥AC时,α=135°;⑤当AE∥BC时,α=150°.(4)如图4,当0°<α≤45°时,∠DBC+∠CAE+∠BDE=105°,保持不变;理由如下:设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180°,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠DBC+∠CAE+∠BDE=180°﹣75°=105°.【点评】本题考查了平行线的性质,三角形内角和定理以及旋转的性质的运用.解题时注意:旋转变化前后,对应点到旋转中心的距离相等,每一对对应点与旋转中心连线所构成的旋转角相等.。

华东师大版七年级数学下册期末试卷 含答案

华东师大版七年级数学下册期末试卷 含答案

华东师大版七年级数学下册期末综合检测含解析(120分钟120分)一、选择题(每小题3分,共30分)1.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2B.4C.6D.82.方程=1-去分母后正确的结果是( )A.2(2x-1)=8-3-xB.2(2x-1)=1-(3-x)C.2x-1=1-(3-x)D.2(2x-1)=8-(3-x)3.下列标志图中,既是轴对称图形,又是中心对称图形的是( )4.如果一个多边形的内角和是其外角和的一半,那么这个多边形是( )A.六边形B.五边形C.四边形D.三角形5.已知是二元一次方程组的解,则a-b的值为( )A.-1B.1C.2D.36.如图,不等式组的解集在数轴上表示为( )7.下列图形中,不能通过其中一个四边形平移得到的是( )8.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为( )A.13B.3C.4D.69.将一副三角板按如图所示摆放,图中∠α的度数是( )A.75°B.90°C.105°D.120°10.现有100名人员,需要同时租用6人间和4人间两种客房,若每个房间都住满,则租房方案共有( )A.8种B.9种C.16种D.17种二、填空题(每小题3分,共24分)11.图中多边形的周长是厘米.12.已知关于x的不等式x-a<1的解集为x<2,则a的值是.13.若关于x,y的二元一次方程组的解满足x+y>1,则k的取值范围是.14.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= .15.利用边长相等的正三角形和正六边形的地砖镶嵌地面时,在每个顶点周围有a块正三角形和b块正六边形的地砖(a,b都不为0),则a+b的值为.16.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB的度数为.17.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为元.18.对于任意有理数a,b,c,d,规定a bc d=ad-bc,如1 23 4=1×4-2×3,若x 23 4--=-2,则x= .三、解答题(共66分)19.(8分)(1)解方程-=1.(2)解方程组20.(8分)(1)解不等式:->-1,并把解集在数轴上表示出来.(2)解不等式组并将其解集在数轴上表示出来.21.(8分)画图并填空:(1)画出图中△ABC的高CD(标注出点D的位置).(2)画出把△ABC沿射线CD方向平移3cm后得到的△A1B1C1.(3)根据“图形平移”的性质,得BB1= cm,AC与A1C1的关系是:.22.(8分)列方程或方程组解应用题:在“五一”期间,小明、小亮等同学随家长一同到某公园去游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?23.(8分)已知方程组和有相同的解,求a2-2ab+b2的值.24.(8分)如图,点P是△ABC内部的一点.(1)度量线段AB,AC,PB,PC的长度,根据度量结果比较AB+AC与PB+PC的大小.(2)改变点P的位置,上述结论还成立吗?(3)你能说明上述结论为什么正确吗?25.(8分)(1)观察图案(1),它可以看作是由哪个“基本图案”经过怎样的变换得到的.(2)如图(2)所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).①把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2.26.(10分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元) 300~400400~500500~600600~700700~900…返还金额(元)30 60 100 130 150 …注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元).(1)购买一件标价为1 000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?答案解析1.【解析】选B.由三角形的三边关系可得第三边的范围为大于2小于6,则B项正确.2.【解析】选D.方程左右两边同时乘以8,得:2(2x-1)=8-(3-x).3.【解析】选B.A只是中心对称图形,C只是轴对称图形,D既不是轴对称图形也不是中心对称图形.4.【解析】选D.四个选项中三角形的内角和是其外角和的一半,故选D.5.【解析】选A.∵已知是二元一次方程组的解,∴由①+②,得a=2,由①-②,得b=3,∴a-b=-1.6.【解析】选C.由2x-1≤3得x≤2,由2-x<3得x>-1,故解集为-1<x≤2,结合选项中解集表示,可知选C.7.【解析】选D.A,B,C能通过其中一个四边形平移得到;D不能通过其中一个四边形平移得到,可需要一个四边形旋转得到.8.【解析】选D.∵△ABC≌△DEF,∴DF=AC,∵△DEF的周长为13,DE=3,EF=4,∴DF=6,即AC=6.9.【解析】选C.∠α的度数为180°-45°-30°=105°.10.【解析】选A.设租用6人间为x间,4人间为y间.依题意,得6x+4y=100,整理得:3x+2y=50∴y=25-x>0,∴0<x<<17,由于x,y为正整数,∴x能被2整除,即x为偶数,∴x=2,4,6,…,16(8个数值),相应的y=22,19,16,…,1(8个数值),∴对应如下8个租房方案:方案一二三四五六七八数量房间6人间 2 4 6 8 10 12 14 164人间22 19 16 13 10 7 4 111.【解析】通过平移可知多边形的周长为:(5+2)×2=14(厘米).答案:1412.【解析】不等式x-a<1两边都加a,得x<1+a,所以1+a=2,所以a=1.答案:113.【解析】①+②得3x+3y=3k-3,∴x+y=k-1.∵x+y>1,∴k-1>1,解得k>2.答案:k>214.【解析】∵∠3=∠1+∠5,∴∠5=∠3-∠1=76°30′.又∵∠2=40°,∴∠6=180°-40°-76°30′=63°30′.∴∠4=∠6=63°30′.答案:63°30′15.【解析】∵正三角形和正六边形内角分别为60°,120°,又∵60×4+120=360,或60×2+120×2=360,∴a=4,b=1或a=2,b=2,①当a=4,b=1时,a+b=5;②当a=2,b=2时,a+b=4.答案:4或516.【解析】∠A1OB=∠AOA1-∠AOB=100°-30°=70°.答案:70°17.【解析】设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x-300=100. 解得:x=500.答案:50018.【解析】由题意得,-4x-(-2)×3=-2,即-4x+6=-2,两边都减6,得-4x=-8,两边同除以-4,得x=2. 答案:219.【解析】(1)原方程可化为:-=1,去分母(方程两边同乘以6),得:20x-3(17-20x)=6,去括号,得:20x-51+60x=6,移项,得:20x+60x=6+51,合并同类项,得:80x=57,两边都除以80,得:x=.(2)由①得x=-3y-1③,将③代入②,得3(-3y-1)-2y=8,解得:y=-1.将y=-1代入③,得x=2.故原方程组的解是20.(1)【解析】去分母,得2(2x+1)-(2-x)>3(x-1)-6,去括号,得4x+2-2+x>3x-3-6,移项,得4x+x-3x>-3-6-2+2,合并同类项,得2x>-9,两边都除以2,得x>-,解集用数轴表示如下:(2)【解析】由①得x≤1,由②得x>-2.所以不等式组的解集为-2<x≤1,在数轴上表示为:21.【解析】(1),(2)如图:(3)根据“图形平移”的性质,得BB1=3cm,AC与A1C1的关系是平行且相等.22.【解析】(1)设去了x个成人,则去了(12-x)个学生,依题意得40x+20(12-x)=400,解得x=8,12-x=4.答:小明他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384,∵384<400,∴按团体票购票更省钱.23.【解析】解方程组得把代入方程组得解此方程组得∴a2-2ab+b2=1.24.【解析】(1)如图有:AB+AC>PB+PC.(2)改变点P的位置,上述结论还成立.(3)如图,连结AP,BP,CP,延长BP交于AC于点E,在△ABE中有,AB+AE>BE=BP+PE ①在△CEP中有,PE+CE>PC ②①+②得,AB+AE+PE+CE>BP+PE+PC,AB+AC+PE>BP+PE+PC,∴AB+AC>BP+PC.25.【解析】(1)基本图案先连续两次平移,前后得到三个星星组成的一个基本图案,再连续旋转三次,即分别旋转90°,前后图形共同组成的.(2)①②如图26.【解析】(1)购买一件标价为1 000元的商品,消费金额为800元,顾客获得的优惠额为1 000×(1-80%)+150=350(元).(2)设该商品的标价为x元.当80%x≤500,即x≤625时,顾客获得的优惠额不超过625×(1-80%)+60=185<226;当500<80%x≤600,即625<x≤750时,(1-80%)x+100≥226.解得x≥630.所以630≤x≤750.当600<80%x≤800×80%,即750<x≤800时,顾客获得的优惠额大于750×(1-80%)+130=280>226.综上,顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为630元.。

【华东师大版】七年级数学下期末试卷(含答案)

【华东师大版】七年级数学下期末试卷(含答案)

一、选择题1.定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a ﹣b .例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6222=--=-,则方程(3x ﹣7)☆(3﹣2x )=2的解为x=( )A .1B .125C .6或125D .62.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 3.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D .4.对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( )A .3B .4C .6D .7 5.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = 6.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩ B .253x y x y -=⎧⎨+=⎩ C .32x y x y +=⎧⎨-=⎩ D .2536x y x y -=⎧⎨+=⎩7.由方程组223224x y m x y m -=+⎧⎨+=+⎩可得x 与y 的关系式是( ) A .3x =7+3m B .5x ﹣2y =10 C .﹣3x+6y =2 D .3x ﹣6y =2 8.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 9.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 10.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .1011.如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 12.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数 C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7 二、填空题13.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__. 14.130+-++=x y y ,则x y -=________.15.已知x y x x ++=,且490x y ,则5x y -的值为____________. 16.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 17.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.18.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______.19.下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC =,则点C 是线段AB 的中点;⑥同角的余角相等正确的有_________.(填序号)20.不等式2x+9>3(x+4)的最大整数解是_____.三、解答题21.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x22.某公交公司有A ,B 型两种客车,它们的载客量和租金如下表:,B 型客车共5辆,同时送2016~2017学年度八年级师生到基地校参加社会实践活动,设租用A 型客车x 辆,根据要求回答下列问题: (1)用含x 的式子填写下表:(3)在(2)的条件下,若2016~2017学年度八年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.23.若关于,x y 的方程组37x y ax y b -=⎧⎨+=⎩和关于,x y 的方程组28x by a x y +=⎧⎨+=⎩有相同的解,求,a b 的值.24.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长;(3)求111O A B ∆的面积.25.(1)解方程组;25342x y x y -=⎧⎨+=⎩(2)解不等式组:352(2)22x xx x -≥-⎧⎪⎨>-⎪⎩①②,并写出它的所有整数解. (3)解方程:2(x 2)100-=(4)计算:201723(1)|7|9(5)27---++--.26.如图所示,直线MN 分别与直线,AC DG 是好点B 、F ,且12∠=∠,ABF ∠的平分线BE 交直线DG 于点E ,BFG ∠的平分线FC 交直线AC 于点C .(1)请判断直线AC 与DG 的位置关系,并说明理由(2)请判断直线BE 与CF 的位置关系,并说明理由(3)若35C ∠=︒,求BED ∠的度数【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分3x-7≥3-2x 和3x-7<3-2x 两种情况,依据新定义列出方程求解可得.【详解】解:当3x ﹣7≥3﹣2x ,即x ≥2时,由题意得:(3x ﹣7)+(3﹣2x )=2,解得:x =6;当3x ﹣7<3﹣2x ,即x <2时,由题意得:(3x ﹣7)﹣(3﹣2x )=2,解得:x =125(不符合前提条件,舍去), ∴x 的值为6.故选:D .【点睛】 本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x 的不等式及解一元一次不等式、一元一次方程的能力.2.C解析:C【分析】根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.3.A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.D解析:D【分析】根据新定义运算,得到关于a ,b 的方程组,求出a ,b 的值,再代入求解,即可.【详解】∵211=※,()322-=-※,∴221=1a b +-⨯,-32(3)22a b +--⨯=-,∴a=2,b=-1,∴a b ※=2(1)22(1)(1)2(1)7-=⨯+-⨯--⨯-=※,故选D .【点睛】本题主要考查解二元一次方程组,理解新定义的运算以及加减消元法解二元一次方程组,是解题的关键.5.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键. 6.D解析:D【解析】把31x y =⎧⎨=⎩代入选项A 第2个方程24x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项B 第2个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项C 第1个方程3x y +=不成立,故错误;把31x y =⎧⎨=⎩代入选项D 两个方程均成立,故正确; 故选D.7.D解析:D【分析】方程组消去m 即可得到x 与y 的关系式.【详解】解:223224x y m x y m -=+⎧⎨+=+⎩①②, ①×2﹣②得:3x ﹣6y =2,故选:D .【点睛】此题考查了解二元一次方程组,利用了消元的思想,本题用的是加减消元法. 8.D解析:D【分析】由123B B B ,,的规律写出n B 的坐标.【详解】∵点B 1的坐标为(1,1),点B 2的坐标为(3,2),∴点B 3的坐标为(7,4),∴Bn 的横坐标是:2n ﹣1,纵坐标是:2n ﹣1.则B n 的坐标是(2n ﹣1,2n ﹣1).故选:D .【点睛】本题考查点的坐标规律探索,观察图形前面某些点的坐标,找出规律后再写出图形一般点的坐标.9.B解析:B【分析】根据横坐标为负,纵坐标为正的点在第二象限解答即可.【详解】解:∵点A(-π,4)横坐标为负,纵坐标为正,∴应在第二象限.故选:B .【点睛】本题主要考查了坐标的特点,解答此题的关键是熟记平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.11.B解析:B【分析】根据平行线的性质求出∠ABE,求出∠CBA,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62°,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B观察点A的方向是北偏东28°,故选:B.【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE的度数是解题的关键.12.C解析:C【分析】根据平行线的判定、无理数、平面直角坐标系和不等式组的解判断即可.解:A 、两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行,是真命题;B 、在实数7.5-,π-,2中,有3个有理数,2个无理数,是真命题;C 、在平面直角坐标系中,点P (2a-1,a+7)在x 轴上,a+7=0,a=-7,则点P 的坐标为(-15,0),原命题是假命题;D 、不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7,是真命题; 故选:C .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.【分析】求出不等式组中每个不等式的解集根据已知即可得出关于a 的不等式即可得出答案【详解】解:不等式组无解解得:故答案为:【点睛】本题考查了一元一次不等式组的应用解此题的关键是能得出关于a 的不等式题目 解析:2a【分析】求出不等式组中每个不等式的解集,根据已知即可得出关于a 的不等式,即可得出答案.【详解】 解:不等式组11x x a >⎧⎨<-⎩无解, 11a ∴-,解得:2a ,故答案为:2a .【点睛】本题考查了一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式,题目比较好,难度适中.14.7【分析】由绝对值的性质可以得到关于xy 的二元一次方程解方程求得xy 的值后即可算出x-y 的值【详解】解:由题意得:解之得:故答案为7【点睛】本题考查绝对值的应用理解绝对值为非负数的性质是解题关键解析:7由绝对值的性质可以得到关于x、y的二元一次方程,解方程求得x、y的值后即可算出x-y 的值.【详解】解:由题意得:1030x yy+-=⎧⎨+=⎩,解之得:43xy=⎧⎨=-⎩,()437x y∴-=--=,故答案为7.【点睛】本题考查绝对值的应用,理解绝对值为非负数的性质是解题关键.15.18【分析】由第一个等式得到等号右边x为非负进而得到|x|=x化简为进而得到再结合即可求解【详解】解:由绝对值的非负性可知:中等号右边x为非负数即|x|=x∴可化简为:进一步得到∴解得∴故答案为:1解析:18【分析】由第一个等式得到等号右边x为非负,进而得到|x|=x,化简为x y x x,进而得到0x y ,再结合490x y即可求解.【详解】解:由绝对值的非负性可知:x y x x++=中等号右边x为非负数,即|x|=x,∴x y x x++=可化简为:x y x x,进一步得到0x y,∴490x yx y+=⎧⎨+-=⎩,解得33xy=⎧⎨=-⎩,∴515(3)18x y,故答案为:18.【点睛】本题考查了绝对值的非负性及二元一次方程组的解法,本题的关键是能得到x为非负数,即|x|=x进而化简求解.16.16【分析】利用非负数的性质可求出b的值a=c进而可得PQ的长再根据平移的性质和平行四边形的面积公式即可求出a进一步即可求出答案【详解】解:∵|a﹣c|+=0又∵|a﹣c|≥0≥0∴a﹣c=0b﹣8解析:16【分析】利用非负数的性质可求出b的值,a=c,进而可得PQ的长,再根据平移的性质和平行四边形的面积公式即可求出a,进一步即可求出答案.【详解】解:∵|a﹣0,又∵|a ﹣c|≥0,∴a ﹣c =0,b ﹣8=0,∴a =c ,b =8,∴P (a ,8),Q (a ,2),∴PQ =6,∵线段PQ 向右平移a 个单位长度,其扫过的面积为24,∴624a ⨯=,解得a =4,∴a =c =4,∴a+b+c =4+8+4=16.故答案为:16.【点睛】本题考查了非负数的性质、图形与坐标以及平移的性质等知识,正确理解题意、熟练掌握上述知识是解题的关键.17.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键 解析:四【分析】根据直角坐标系象限坐标特征即可判断.【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y ><∴*A B 在第四象限故答案为:四【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.18.【分析】根据新定义将3与-2代入原式求解即可【详解】故答案为:【点睛】本题考查了新定义运算把新定义运算转换成有理数混合运算是解题关键 解析:3-【分析】根据新定义,将3与-2代入原式求解即可.【详解】()()()23*223232-=-+⨯--+461=--=-.3-.故答案为:3【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.19.①④⑥【分析】利用对顶角的性质判断①利用两点距离定义判定②利用平行公理判定③利用垂线公里判定④利用线段中点定义判定⑤利用余角的性质判定⑥【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离所以解析:①④⑥【分析】利用对顶角的性质判断①,利用两点距离定义判定②,利用平行公理判定③,利用垂线公里判定④,利用线段中点定义判定⑤,利用余角的性质判定⑥.【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确;③由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确;④过一点有且只有一条直线与已知直线垂直正确;=,点C在AB上,则点C是线段AB的中点,所以若⑤由线段中点的性质,若AC BC=,则点C是线段AB的中点不正确;AC BC⑥同角的余角相等正确;正确的有①④⑥.故答案为:①④⑥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键.20.-4【分析】先求出不等式的解集在其解集范围内找出符合条件的x的最大整数解即可【详解】解:去括号移项得2x﹣3x>12﹣9合并同类项得﹣x>3系数化为1得x<﹣3∴x的最大整数解是﹣4故答案为:﹣4【解析:-4【分析】先求出不等式的解集,在其解集范围内找出符合条件的x的最大整数解即可.【详解】解:去括号、移项得,2x﹣3x>12﹣9,合并同类项得,﹣x>3,系数化为1得,x<﹣3,∴x 的最大整数解是﹣4.故答案为:﹣4.【点睛】考核知识点:解不等式.运用不等式基本性质是关键.三、解答题21.(1)42n m =⎧⎨=⎩;(2)-43a ≤<-;(3)99a ;(4)2712x x ++; 【分析】(1)根据代入消元法解方程组即可;(2)解不等式组即可;(3)根据幂的运算性质计算即可;(4)根据多项式乘以多项式计算即可;【详解】(1)26m n m n =⎧⎨+=⎩, 把2=m n 代入6+=m n 中,得到:26m m +=,解得:2m =,∴4n =,∴方程组的解为42n m =⎧⎨=⎩. (2)26015a a +<⎧⎨-≤⎩, 由260a +<得:3a <-,由15-≤a 得:4a ≥-,∴不等式组的解集为:-43a ≤<-.(3)原式99989a a a =+=. (4)原式224312712x x x x x =+++=++.【点睛】本题主要考查了二元一次方程组求解,不等式组求解,整式乘法的应用,准确计算是解题的关键.22.(1)见解析;(2)4;(3)见解析【分析】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x 的取值范围,一一列举计算,排除不合题意方案即可.【详解】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5-x);B型客车租金=280(5-x);填表如下:(2)根据题意,400x+280(5-x)≤1900,解得:x≤46,∴x的最大值为4;(3)由(2)可知,x≤416,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【点睛】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.23.75a=-,115b=-.【分析】首先把3x-y=7和2x+y=8联立方程组,求得x、y的数值,再进一步代入原方程组的另一个方程,再进一步联立关于a、b的方程组,进一步解方程组求得答案即可.【详解】解:由题意得37 28 x yx y-=⎧⎨+=⎩,解得32 xy=⎧⎨=⎩,把32x y =⎧⎨=⎩代入原方程组+y ax b x by a =⎧⎨+=⎩, 得,3+232a b b a =⎧⎨+=⎩, 解得75115a b ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.24.(1)见解析;(2)6;(3)9.【分析】(1)首先根据()1,1M 和()13,5M -可判定三角形的平移变化,然后根据图像信息可得知(0,0),(2,4),(4,1)O A B -,进而得出111(2,6),(0,2),(6,5)O A B ---,即可画出三角形; (2)点1B 到y 轴的距离即为点1B 的横坐标,由(1)中可得知;(3)利用矩形的面积减去111O A B ∆周围三角形的面积,即可得解.【详解】解:(1)由已知条件,可得111O A B ∆是OAB ∆先向右平移2个单位,再向下平移6个单位得到的,根据图像信息,可知(0,0),(2,4),(4,1)O A B -∴111(2,6),(0,2),(6,5)O A B ---连接三点,即可得到111O A B ∆,如图所示:(2)由(1)中知,1(6,5)B -,所以点1B 到y 轴的距离即为6个单位长; (3)111111642436149222O A B S =⨯-⨯⨯-⨯⨯-⨯⨯=△.【点睛】此题主要考查图形的平移,熟练掌握,即可解题.25.(1)21x y =⎧⎨=-⎩;(2)x =1;x =2;x =3;(3)12x =或8x =-;(4)-13 【分析】(1)运用加减消元解答二元一次方程组即可求解;(2)分别求出不等式组中两不等式的解集,找出两解集的方法部分确定出不等式组的解集,即可求解;(3)根据解方程的方法和平方根的定义即可解得;(4)先根据算术平方根、绝对值、-1的偶数次幂、立方根等知识化简,然后再计算即可.【详解】解:(1)25342x y x y -=⎧⎨+=⎩①② ①×4+②得83202x x +=+解得2x =将2x =代入①得225⨯-=y解得1y =-∴方程组的解为21x y =⎧⎨=-⎩(2)()352222x x x x ⎧-≥-⎪⎨>-⎪⎩①② 解不等式①得:x ≥1,解不等式②得:x <4,所以,原不等式组的解集是1≤x <4,它的所有整数解有:x =1;x =2;x =3.(3)()22100x -= 210x -=±∴12x =或8x =-(4)原式=17353--+--=13-【点睛】本题考查二元一次方程组、一元一次不等式组、平方根解方程和算术平方根、绝对值、零次幂、立方根等知识,灵活应用相关知识成为解答本题的关键.26.(1)AC∥DG,理由见解析;(2)BE∥CF,理由见解析;(3)145°【分析】(1)求出∠1=∠BFG,根据平行线的判定得出AC∥DG;(2)求出∠EBF=∠BFC,根据平行线的判定得出即可;(3)根据平行线的性质得出∠C=∠CFG=∠BEF=35°,再求出答案即可.【详解】(1)AC∥DG证明:∵∠1=∠2,∠2=∠BFG,∴∠1=∠BFG,∴AC∥DG,(2)BE∥CF证明:∵AC∥DG∴∠ABF=∠BFG,∵∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∴∠EBF=12∠ABF,∠CFB=12∠BFG,∴∠EBF=∠CFB,∴BE∥CF;(3)∵AC∥DG,BE∥CF,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°-∠BEG=145°.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.。

【华东师大版】七年级数学下期末试卷(带答案)

【华东师大版】七年级数学下期末试卷(带答案)

一、选择题1.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥2.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm3.已知下列各式:①12+=y x;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( ) A .1B .2C .3D .44.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( ) A . 4.512x y y xB . 4.512x y yxC .4.512xy x yD .4.512xyy x5.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( )A .23-B .23 C .16- D .166.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4-7.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25-的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上8.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是()A.②④⑤B.①③⑥C.④⑤⑥D.③④⑤9.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④10.若a b<,则下列不等式中不正确的是()A.11+<+a b B.a b->-C.22a b--<--D.44a b<11.若关于x的不等式组132(2)x ax x≥-⎧⎨≤+⎩仅有四个整数解,则a的取值范围是()A.12a≤≤B.12a≤<C.12a<≤D.12a<<12.已知关于x的方程:24263a x xx--=-的解是非正整数,则符合条件的所有整数a 的值有()种.A.3 B.2 C.1 D.0二、填空题13.不等式组2x ax>⎧⎨>⎩的解为2x>,则a的取值范围是______.14.如果方程组25xbx ay=⎧⎨+=⎩的解与方程组41yby ax=⎧⎨+=⎩的解相同,则+a b的值为______.15.如果关于x,y的二元一次方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解是62xy=⎧⎨=⎩,则关于x,y的二元一次方程组111222325325a xb y ca xb y c+=⎧⎨+=⎩的解是______.16.在x轴上方的点P到x轴的距离为3,到y轴距离为2,则点P的坐标为________.17.已知点A(2a+5,a﹣3)在第一、三象限的角平分线上,则a=_____.18.根据如图所示的程序计算,若输出y的值为16,则输入x的值为 ______.19.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为______米.20.关于x的不等式组460930xx->⎧⎨-≥⎩的所有整数解的积是__________.三、解答题21.解不等式(组):(1)24123x x ---≤;(2)63(4) 23253x xx x-≥-⎧⎪⎨++>⎪⎩①②.22.11月份,是猕猴桃上市的季节,猕猴桃酸甜,含有丰富的维生素c和大量的营养元素.万州某水果超市的红心猕猴桃与黄心猕猴桃这两种水果很受欢迎,红心猕猴桃售价12元/千克,黄心猕猴桃售价9元/千克.(1)若第一周红心猕猴桃的销量比黄心猕猴桃的销量多200千克,要使这两种水果的总销售额不低于6600元,则第一周至少销售红心猕猴桃多少千克?(2)若该水果超市第一周按照(1)中红心猕猴桃和黄心猕猴桃的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周红心猕猴桃售价不变,销量比第一周增加了43a%,黄心猕猴桃的售价保持不变,销量比第一周增加了13a%,结果这两种水果第二周的总销售额比第一周增加了711a%的基础上还多了280元,求a的值.23.今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市去年外来和外出旅游的人数.24.在平面直角坐标系xOy中,△ABC的位置如图所示.(l )分别写出△ABC 各个顶点的坐标.(2)请在图中画出△ABC 关于y 轴对称的图形△A'B'C'. (3)计算出△ABC 的面积. 25.(1)求x 的值:2490x -=; (2)计算:()2325227+--26.如图,已知12∠=∠,C D ∠=∠,求证:A F ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围. 【详解】∵关于x的不等式组21xx a<⎧⎨>-⎩无解,∴a-1≥2,∴a≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.C解析:C【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【详解】设一个小长方形的长为xcm,宽为ycm,由图形可知,25 24x yx x y+=⎧⎨=+⎩,解得:205xy=⎧⎨=⎩,所以一个小长方形的面积为205100⨯=(cm2) .故选:C.【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.3.A解析:A【分析】根据二元一次方程的定义即可判断.【详解】①是分式方程,故不是二元一次方程;②正确;③是二元二次方程,故不是二元一次方程;④有3个未知数,故不是二元一次方程;⑤是一元一次方程,不是二元一次方程.故选:A.【点睛】考查二元一次方程的定义,含有2个未知数,未知项的最高次数是1的整式方程就是二元一次方程.4.A解析:A 【分析】用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长4.5尺得: 4.5x y ;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:12y x ;组成方程组即可. 【详解】解:如果设木条长x 尺,绳子长y 尺, 根据题意得: 4.512x yy x .故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,理解题意,找出等量关系是解题的关键.5.A解析:A 【分析】根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案. 【详解】 解:由题意,得 6×(-3)k-2×2=8,解得k=-23, 故选A . 【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k 方程是解题关键.6.A解析:A 【分析】过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,运用AAS 证明ACE CBF ∆≅∆得到AE CF =,CE BF =即可求得结论. 【详解】解:过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,90AEC CFB ∴∠=∠=︒ 90A ACE ∴∠+∠=︒,90ACB ∠=︒90ACE BCF ∴∠=∠=︒ A BCF ∴∠=∠,在ACE ∆和CBF ∆中,90A BCF AEC CFB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACE CBF AAS ∴∆≅∆AE CF ∴=,CE BF =,(2,0)C -,(1,4)B4BF ∴=,1(2)3CF =--=,3AE CF ∴==,4CE BF ==, 426OE CE OC ∴=+=+=,()6,3A ∴-故选A . 【点睛】此题考查了坐标与图形,证明ACE CBF ∆≅∆得到AE CF =,CE BF =是解决问题的关键.7.B解析:B 【分析】5 【详解】由被开方数越大算术平方根越大,得5由不等式的性质得:5故选B. 【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.8.D解析:D 【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数,②227是分数,是有理数,③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D.【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.9.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.10.C解析:C【分析】根据不等式的性质来解答即可.不等式的性质为:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A:不等式a<b两边都加1,不等号的方向不变,原变形正确,故此选项不符合题意;B:不等式a<b两边都乘以-1,不等号的方向改变,原变形正确,故此选项不符合题意;C :不等式a <b 两边都乘-1再加上-2,不等号的方向改变,原变形不正确,故此选项符合题意;D :不等式a <b 两边都除以4,不等号的方向不变,原变形正确,故此选项不符合题意; 故选:C . 【点睛】本题考查了利用不等式的性质进行不等式的变形.解题的关键是熟练掌握不等式的性质并正确运用.11.C解析:C 【分析】先解含参的不等式组,根据不等式组仅有四个整数解得到关于a 的不等式组,求解即可. 【详解】解:132(2)x a x x ≥-⎧⎨≤+⎩①②,解不等式①,得1x a ≥-, 解不等式②,得:4x ≤, ∵不等式组仅有四个整数解, ∴011a <-≤,解得12a <≤, 故选:C . 【点睛】本题考查解不等式组,根据解集的情况得到关于a 的不等式组是解题的关键.12.A解析:A 【分析】先用含a 的式子表示出原方程的解,再根据解为非正整数,即可求得符合条件的所有整数a . 【详解】解:24263a x x x --=-()264212--=-x a x x 264+212-=-x a x x()24+8=-a x284+=-x a ∵方程的解是非正整数, ∴2804+-≤a∴2804+≥a ∴24+=1a 或2或4或8 ∴a=0或2或-2,共3个 故选:A 【点睛】本题考查了一元一次方程的解法及解不等式,根据方程的解为非正整数列出关于a 的不等式是解题的关键.二、填空题13.【分析】根据不等式组的公共解集即可确定a 的取值范围【详解】由不等式组的解为可得故答案为:【点睛】本题主要考查了不等式组的解法关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大 解析:2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围. 【详解】 由不等式组2x ax >⎧⎨>⎩的解为2x >, 可得2a ≤. 故答案为:2a ≤. 【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.14.1【分析】把代入方程组即可得到一个关于ab 的方程组即可求解【详解】解:由题意可知:为的解将代入得①×2-②得将代入①得故答案为:1【点睛】本题考查了二元一次方程组的解的定义理解定义是关键解析:1 【分析】把24x y =⎧⎨=⎩代入方程组51bx ay by ax +=⎧⎨+=⎩,即可得到一个关于a ,b 的方程组,即可求解.【详解】解:由题意可知:24x y =⎧⎨=⎩为51bx ay by ax +=⎧⎨+=⎩的解,∴将2x =,4y =代入得,245421b a b a +=⎧⎨+=⎩①②,①×2-②,得69a =,32a =, 将32a =代入①得,32452b +⨯=,12b =, 31122a b ⎛⎫+=+-= ⎪⎝⎭, 故答案为:1.【点睛】本题考查了二元一次方程组的解的定义,理解定义是关键.15.【分析】先将所求的方程组变形为然后根据题意可得进一步即可求出答案【详解】解:由方程组可得∵关于xy 的二元一次方程组的解是∴解得故答案为【点睛】本题考查了二元一次方程组的解法正确理解题意合理变形得出是解析:105x y =⎧⎨=⎩【分析】先将所求的方程组变形为11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩,然后根据题意可得365225x y ⎧=⎪⎪⎨⎪=⎪⎩,进一步即可求出答案.【详解】解: 由方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可得11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩, ∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩, ∴365225x y ⎧=⎪⎪⎨⎪=⎪⎩,解得105x y =⎧⎨=⎩, 故答案为105x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,正确理解题意、合理变形、得出365225xy⎧=⎪⎪⎨⎪=⎪⎩是解本题的关键.16.(-23)或(23)【分析】先判断出点P在第一或第二象限再根据点到x轴的距离等于纵坐标的绝对值到y轴的距离等于横坐标的绝对值求解【详解】解:∵点P在x轴上方∴点P在第一或第二象限∵点P到x轴的距离为解析:(-2,3)或(2,3)【分析】先判断出点P在第一或第二象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解.【详解】解:∵点P在x轴上方,∴点P在第一或第二象限,∵点P到x轴的距离为3,到y轴的距离为2,∴点P的横坐标为2或-2,纵坐标为3,∴点P的坐标为(-2,3)或(2,3).故答案为:(-2,3)或(2,3).【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.17.﹣8【分析】根据第一三象限角平分线上的点的坐标特点:点的横纵坐标相等即可解答【详解】点A(2a+5a-3)在第一三象限的角平分线上且第一三象限角平分线上的点的坐标特点为:点的横纵坐标相等∴2a+5=解析:﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【详解】点A(2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.18.或【分析】根据题意得出解方程即可求解【详解】依题意得:∵∴或∴或故答案为:或【点睛】本题考查了乘方的意义解一元一次方程熟练掌握乘方的意义是解题的关键解析:6或2-【分析】根据题意得出()2216x -=,解方程即可求解.【详解】依题意得:()2216x -=,∵2416=,()2416-=,∴24x -=或24x -=-,∴6x =或2x =-,故答案为:6或2-.【点睛】本题考查了乘方的意义,解一元一次方程,熟练掌握乘方的意义是解题的关键. 19.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.20.6【分析】分别解出两不等式的解集再求其公共解然后求得整数解进行相乘即可【详解】解:由①得;由②得∴不等式组的解集为∴不等式组的解集中所有整数解有:23∴故答案为:6【点睛】此题考查了一元一次不等式组 解析:6【分析】分别解出两不等式的解集,再求其公共解,然后求得整数解进行相乘即可.【详解】解:460930->⎧⎨-≥⎩①②x x 由①得32x > ;由②得3x ≤∴不等式组的解集为332x <≤, ∴不等式组的解集中所有整数解有:2,3,∴23=6⨯ ,故答案为:6.【点睛】此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、解答题21.(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x ﹣2)﹣6≤2(4﹣x ),去括号,得:3x ﹣6﹣6≤8﹣2x ,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x >1,则不等式组的解集为1<x≤3.【点睛】此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.22.(1)第一周至少销售红心猕猴桃400千克;(2)a 的值为10.【分析】(1)设第一周销售红心猕猴桃x 千克.则黄心猕猴桃(x ﹣200)千克,根据总价=单价×数量结合总销售额不低于6600元,即可得出关于x 的一元一次不等式,解之取其中最小值即可得出结论;(2)根据总价=单价×数量,结合两种水果第二周的总销售额比第一周增加了711a %的基础上还多了280元,即可得出关于a 的一元一次方程,解之取其正值即可得出结论.【详解】(1)设第一周销售红心猕猴桃x 千克.则黄心猕猴桃(x ﹣200)千克,根据题意得:12x+9(x ﹣200)≥6600,解得:x≥400,答:第一周至少销售红心猕猴桃400千克;(2)根据题意得:12×400(1+43a%)+9×200(1+13a%)=6600(1+711a %)+280, 解得:a=10.答:a 的值为10.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.23.该市去年外来旅游的人数为100万人和外出旅游的人数为80万人【分析】设该市去年外来旅游的人数为x 万人和外出旅游的人数为y 万人,根据题意列二元一次方程组解答.【详解】设该市去年外来旅游的人数为x 万人和外出旅游的人数为y 万人,则 20(130%)(120%)226x y x y -=⎧⎨+++=⎩,解得10080x y =⎧⎨=⎩答:该市去年外来旅游的人数为100万人和外出旅游的人数为80万人.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.24.(1)A (−1,6),B (−2,0),C (−4,3);(2)见解析;(3)7.5.【分析】(1)根据A ,B ,C 的位置写出坐标即可;(2)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,依次连接各点即可; (3)利用割补法求三角形的面积即可.【详解】解:(1)A (−1,6),B (−2,0),C (−4,3).(2)如图,△A'B'C'即为所求.(3)S △ABC =3×6−12×3×3−12×2×3−12×1×6=7.5. 【点睛】 本题考查作图−轴对称变换,解题的关键是熟练掌握轴对称变换的性质. 25.(1)32x =或32x =-;(2)4 【分析】(1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键. 26.证明见解析【分析】根据平行线的判定与性质即可得证.【详解】解:∵12∠=∠,∴//BD CE ,∴C ABD ∠=∠,∵C D ∠=∠,∴D ABD ∠=∠,AC DF,∴//∠=∠.∴A F【点睛】本题考查平行线的判定与性质,熟练运用平行线的判定与性质定理是解题的关键.。

【华东师大版】七年级数学下期末试卷(附答案)

【华东师大版】七年级数学下期末试卷(附答案)

一、选择题1.下列说法中不正确的是( )A .抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关B .随机选择一户二孩家庭,头胎、二胎都是男孩的概率为14C .任意画一个三角形内角和为360°是随机事件D .连续投两次骰子,前后点数之和为偶数的概率是12 2.下列事件中,属于必然事件的是( )A .一个数的相反数等于它本身B .早上的太阳从北方升起C .380人中有两人的生日在同一天D .明天上学路上遇到下雨 3.在抛掷硬币的试验中,下列结论正确的是( )A .经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B .抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C .抛掷50000次硬币,可得“正面向上”的频率为0.5D .若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.518 4.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 5.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D . 6.如图,若ABC ∆的面积为24,6AC =,现将ABC ∆沿 AB 所在直线翻折,使点 C 落在直线AD 上的C '处,P 为直线AD 上一点,则线段 BP 的长可能是( )A .3B .5C .6D .107.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 8.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .189.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA 10.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入… 1 2 3 4 5 … 输出 … 2 5 10 17 26 …那么,当输入数据8时,输出的数据是( )A .61B .63C .65D .6711.如图,AB //EF,∠D=90°,则α,β,γ的大小关系是( )A .βαγ=+B .90βαγ=+-︒C .90βγα=+︒-D .90βαγ=+︒-12.下列计算正确的是( )A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 4二、填空题13.如图,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是______.14.在一不透明的口袋中有4个为红球,3个绿球,2个白球,它们除颜色不同外完全一样,现从中任摸一球,恰为红球的概率为__________.15.如图,Rt △AFC 和Rt △AEB 关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC ≌△AMB ;③CD =DN .其中正确的结论是_____.(填序号)16.生活中,将一个宽度相等的纸条按图所示折叠一下, 如果∠1=140º,那么∠2=_____.17.已知:AD 、AE 分别是ABC 的高,中线,6BE =,4CD =,则DE 的长为_________.18.拖拉机工作时,油箱中的余油量Q (升)与工作时间t (时)的关系式为406Q t =-.当4t =时,Q =_________,从关系式可知道这台拖拉机最多可工作_________小时.19.已知α∠的余角是354520'''︒,则α∠补角的度数是_______.20.计算:3212ab ⎛⎫ ⎪⎝⎭-=________________. 三、解答题21.将表示下列事件发生的概率的字母标在下图中:(1)投掷一枚骰子,掷出7点的概率1P ;(2)在数学测验中做一道四个选项的选择题(单选题),由于不知道那个是正确选项,现任选一个,做对的概率2P ;(3)袋子中有两个红球,一个黄球,从袋子中任取一球是红球的概率3P ;(4)太阳每天东升西落4P ;(5)在1---100之间,随机抽出一个整数是偶数的概率5P .22.如图①,将笔记本活页一角折过去,使角的顶点A 落在A '处,BC 为折痕.(1)图①中,若130∠=︒,则A BD '∠=________;(2)如果又将活页的另一角斜折过去,使BD 边与BA '重合,折痕为BE ,如图②所示,130∠=︒,求2∠以及CBE ∠的度数;(3)如果在图②中改变1∠的大小则BA '的位置也随之改变那么问题(2)中CBE ∠的大小是否改变?如果不会改变请直接写出CBE ∠的度数;如果会改变,请说明理由. 23.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由;(2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数. 24.科学家研究发现,声音在空气中传播的速度y (米/秒)与气温x (°C )有关,当气温是0°C 时,音速是331米/秒;当气温是5°C 时,音速是334米/秒;当气温是10°C 时,音速是337米/秒;气温是15°C 时,音速是340米/秒;气温是20℃时,音速是343米/秒;气温是25°C 时,音速是346米/秒;气温是30°C 时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪一个是对应的值?(3)当气温是35°C时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?25.己知:线段a如图所示.求作:正方形ABCD,使得AB a.26.计算:4a2·(-b)-8ab·(b-12 a).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据抛硬币简单概率求法判断选项A,利用求概率的方法判断选项B,根据三角形的内角和是180°判断选项C,求出两次抛骰子的所有可能结果和点数和为偶数的结果数即可判断选项D,即可做出选择.【详解】A、抛一枚质地均匀的硬币,出现的情况有两种一正一反,正面朝上的概率是12,与抛硬币的次数无关,故原选项正确;B、随机选择一户二孩家庭,头胎、二胎的共有4种等可能的结果,其中,都是男孩的有1种,所以随机选择一户二孩家庭,头胎、二胎都是男孩的概率为14,此原选项正确,C、任意一个三角形的内角和为180°,所以任意画一个三角形内角和为360°是不可能事件,为确定性事件,不是随机事件,故原选项不正确,;D、连续投两次骰子,前后点数之和共有36种等可能的结果,其中点数之和是偶数的有18种结果,所以前后点数之和为偶数的概率是181362,故原选项正确,故选择:C.【点睛】本题考查求事件发生的概率,理解事件发生的概率的意义,会区分确定事件与随机事件,能根据所学概率知识对各个选项作出正确判断是解答的关键.2.C解析:C【分析】根据事件发生的可能性判断相应事件的类型即可.【详解】A. 一个数的相反数等于它本身,0的相反数等于它本身,是不确定事件.B. 早上的太阳从北方升起,是不可能事件.C. 380人中有两个人的生日在同一天是必然事件.D. 明天上学路上遇到下雨,是不确定事件.故选:C.【点睛】此题考查随机事件,解题关键在于判断相应事件的类型.3.A解析:A【解析】【分析】根据概率的定义对各选项进行逐一分析即可.【详解】解:A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率不同,错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为0.482,错误;故选:A.【点睛】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.4.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A、全等三角形的对应边相等,是真命题;B、面积相等的两个三角形不一定全等,原命题是假命题;C、两个全等三角形不一定成轴对称,原命题是假命题;D、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A.【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.5.C解析:C【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】 解:将图形按三次对折的方式展开,依次为:.故选:C .【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.6.D解析:D【分析】过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,P 点在AD 上运动,,利用三角形的面积求出BN ,进而得到BM ,BM 的长即为BP 的最小值.【详解】如图,过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,△ABC 面积为24,AC 为6,故可得到BN=24×2÷6=8,因为△ABC 翻转得到ABC ∆',故=A B C C B A ,所以有BM=BN=8,所以BP 的最小值为8,选项中只有D 选项大于8,故选D.【点睛】本题考查翻转的性质,解题关键在于能够合理做出辅助线.7.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.8.C解析:C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键. 9.C解析:C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.10.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.11.D解析:D【分析】通过作辅助线,过点C和点D作CG//AB,DH//AB,可得CG//DH//AB,根据AB//EF,可得AB//EF//CG//DH,再根据平行线的性质即可得γ+β-α=90°,进而可得结论.【详解】解:如图,过点C和点D作CG//AB,DH//AB,∵CG//AB,DH//AB,∴CG//DH//AB,∵AB//EF,∴AB//EF//CG//DH,∵CG//AB,∴∠BCG=α,∴∠GCD=∠BCD-∠BCG=β-α,∵CG//DH,∴∠CDH=∠GCD=β-α,∵HD//EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β-α=90°,∴β=α+90°-γ.故选:D.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.12.C解析:C【分析】根据幂的乘方、积的乘方、同底数幂的乘除法逐项判断即可得.【详解】A 、236()a a =,此项错误;B 、224(2)4a a =,此项错误;C 、347a a a ⋅=,此项正确;D 、34a a a ÷=,此项错误;故选:C .【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘除法,熟练掌握各运算法则是解题关键.二、填空题13.【分析】根据几何概率的求法:这个点取在阴影部分的概率就是阴影部分的面积与总面面积的比值【详解】共有25个小正方形其中阴影部分的有7个∴其概率为故答案为【点睛】此题考查几何概率解题关键在于掌握计算公式 解析:725【分析】根据几何概率的求法:这个点取在阴影部分的概率就是阴影部分的面积与总面面积的比值.【详解】共有25个小正方形,其中阴影部分的有7个∴其概率为725 故答案为725. 【点睛】此题考查几何概率,解题关键在于掌握计算公式. 14.【解析】【分析】先求出袋子中球的总个数及红球的个数再根据概率公式解答即可【详解】袋子中球的总数为4+3+2=9而红球有4个则从中任摸一球恰为红球的概率为故答案为:【点睛】此题考查概率公式解题关键在于 解析:49【解析】【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【详解】袋子中球的总数为4+3+2=9,而红球有4个, 则从中任摸一球,恰为红球的概率为49. 故答案为: 49. 【点睛】此题考查概率公式,解题关键在于掌握公式运算法则.15.①②【分析】首先利用轴对称的性质分别判断正误即可【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称∴∠MAD =∠NAD ∠EAD =∠FAD ∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD 即:∠1=∠2故正解析:①② 【分析】首先利用轴对称的性质分别判断正误即可. 【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称, ∴∠MAD =∠NAD ,∠EAD =∠FAD , ∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD , 即:∠1=∠2,故正确;②∵Rt △AFC 和Rt △AEB 关于虚线成轴对称, ∴∠B =∠C ,AC =AB , 在△ANC 与△AMB 中,MAN NAM AC ABB C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ANC ≌△AMB ,故正确; ③易得:CD =BD ,但在三角形DNB 中,DN 不一定等于BD , 故错误.故答案为:①②. 【点睛】本题考查轴对称的性质,熟练掌握性质是解题的关键.16.110°【解析】【分析】如图因为AB ∥CD 所以∠BEM=∠1(两直线平行内错角相等);根据折叠的性质可知∠3=∠4可以求得∠4的度数;再根据两直线平行同旁内角互补即可求得∠2的度数【详解】∵AB ∥C解析:110° 【解析】 【分析】如图,因为AB ∥CD ,所以∠BEM=∠1(两直线平行,内错角相等);根据折叠的性质可知∠3=∠4,可以求得∠4的度数;再根据两直线平行,同旁内角互补,即可求得∠2的度数. 【详解】 ∵AB ∥CD ,∴∠BEM=∠1=140°,∠2+∠4=180°, ∵∠3=∠4,∴∠4=12∠BEM=70°, ∴∠2=180°−70°=110°. 故答案为:110° 【点睛】此题考查翻折变换(折叠问题),平行线的性质,解题关键在于根据折叠的性质得到∠3=∠417.2或10【分析】由已知条件可推导出;再假设D 点所在的不同位置分别计算即可得到答案【详解】∵是的中线且∴假设点D 在CB 的延长线上如下图∵是的中线且∴∵∴和图形不符∴该假设不成立;假设点D 在点E 和点B 之解析:2或10 【分析】由已知条件,可推导出6EC BE ==;再假设D 点所在的不同位置,分别计算DE ,即可得到答案. 【详解】∵AE 是ABC 的中线,且6BE = ∴6EC BE ==假设点D 在CB 的延长线上,如下图∵AE 是ABC 的中线,且6BE = ∴212BC BE == ∵4CD =∴CD BC <,和图形不符 ∴该假设不成立;假设点D 在点E 和点B 之间,如下图∵4CD =,6EC = ∴CD EC <,和图形不符 ∴该假设不成立;假设点D 在点E 和点C 之间,如下图∴642DE EC CD =-=-=; 假设点D 在点BC 延长线上,如下图∴6410DE EC CD =+=+=; 故答案为:2或10. 【点睛】本题考察了三角形中线和三角形高的知识;求解的关键是熟练掌握三角形中线和三角形高的性质,从而完成求解.18.【分析】根据题目意思将t=4代入计算Q 即可得到答案令Q≥0即可求出最多工作的时间【详解】解:当t=4时Q=40-24=16;根据台拖拉机工作时必须有油得到:Q≥0代入得到:解得:故答案为(1)16( 解析:203【分析】根据题目意思,将t=4代入计算Q 即可得到答案,令Q≥0即可求出最多工作的时间. 【详解】解:当t=4时,Q=40-24=16; 根据台拖拉机工作时必须有油得到: Q≥0,代入得到: 4060Q t =-≥, 解得:203t ≤, 故答案为(1). 16 (2). 203【点睛】本题主要考查了一次函数、一次函数在生活中的应用,做题是要注意自变量的取值范围,例如油量不可以为负数.19.125°45′20″【分析】当两角的和为90°时则两角互余当两个角和为180°则两角互补角度之间的等量关系为:1°=60′1′=60″【详解】根据定义:∵∠α的余角是35°45′20′′∴∠α的度数解析:125°45′20″ 【分析】当两角的和为90°时则两角互余,当两个角和为180°则两角互补,角度之间的等量关系为:1°=60′,1′=60″. 【详解】 根据定义:∵∠α 的余角是 35°45′20′′∴∠α的度数是:90°-35°45′20″=54°14′40″. ∠α的补角度数是: 180°-∠α =180°-54°14′40″ =125°45′20″ 故答案为:125°45′20″ 【点睛】本题考查了余角和补角的知识,属于基础题,解题的关键是掌握当两角的和为90°时则两角互余,当两个角和为180°则两角互补.20.【分析】根据积的乘方与幂的乘方运算法则进行计算即可得到答案【详解】解:故答案为:【点睛】此题主要考查了积的乘方与幂的乘方的运算熟练掌握积的乘方与幂的乘方运算法则是解答此题的关键解析:3618a b -【分析】根据积的乘方与幂的乘方运算法则进行计算即可得到答案. 【详解】解:()33323236111228ab a b a b ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭.故答案为:3618a b -.【点睛】此题主要考查了积的乘方与幂的乘方的运算,熟练掌握积的乘方与幂的乘方运算法则是解答此题的关键.三、解答题21.【解析】试题分析:(1)根据骰子没有7点,所以这种情况不可能发生,可知概率为0; (2)选择题的答案是4选1,因此其概率为14; (3)袋子中摸到红球的概率为23; (4)太阳的东升西落是必然事件,因此其概率为1;(5)由1---100之间有50个偶数可知随机抽取一个数为偶数的概率为5011002=. 试题考点:概率22.(1)120°;(2)60°,90°.(3)∠CBE 不变,是90°. 【分析】(1)根据∠A′BD=180°-2∠1计算即可. (2)由∠A′BD=120°,∠2=∠DBE ,可得∠2=12∠A′BD=60°, (3)由∠1+∠2=12∠ABA′+12∠A′BD=12(∠ABA′+∠A′BD )计算即可. 【详解】解:(1)∵∠1=30°, ∴∠1=∠ABC=30°,. ∴∠A′BD=180°-30°-30°=120° (2)∵∠A′BD=120°,∠2=∠DBE , ∴∠2=12∠A′BD=60°, ∴∠CBE=∠1+∠2=30°+60°=90°. (3)结论:∠CBE 不变.∵∠1=12∠ABA′,∠2=12∠A′BD ,∠ABA′+∠A′BD=180°, ∴∠1+∠2=12∠ABA′+12∠A′BD =12(∠ABA′+∠A′BD ) =12×180° =90°. 即∠CBE=90°. 【点睛】本题考查翻折变换,平角的性质等知识,解题的关键是利用法则不变性解决问题,属于基础题.23.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒. 【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解. 【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌. 在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌,∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒, 则18070ACB BAC B ∠+∠=︒-∠=︒, ∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒, 即BAE ∠的度数为135︒. 【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键. 24.答案见解析 【解析】试题分析:(1)将题干中的数据填写在有关气温和音速的2行8列的表格中即可 (2)根据变量的定义分析即可完成;(3)结合表格数据,根据传播速度与温度的变化规律即可得出答案; (4)结合表格数据,通过分析得出两个变量之间的关系. 试题(1)填表如下:x(℃)0510152025…y(米/秒)331334337340343346…(3)当气温是35℃时,估计音速y可能是:352m/s;(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0,y=331,故两个变量之间的关系为:y=331+35 x.25.见解析【分析】先画线段AB=a,再以AB为边画正方形即可.【详解】解:作法如图所示,【点睛】本题考查了正方形的画法,根据正方形的判定,画一个垂直,再画四边相等即可,注意:画法不唯一.26.28ab-【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a2·(-b)-8ab·(b-12a)=222484--+a b ab a b=28ab-.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.。

【华东师大版】初一数学下期末试题(含答案)

【华东师大版】初一数学下期末试题(含答案)

一、选择题1.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下2.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是()A.2018 B.2019 C.2020 D.20213.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有()A.4种B.5种C.6种D.7种4.方程组125x yx y+=⎧⎨+=⎩的解为()A.12xy=-⎧⎨=⎩B.21xy=⎧⎨=⎩C.43xy=⎧⎨=-⎩D.23xy=-⎧⎨=⎩5.为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这1000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.2210002.5%0.5%x yx y-=⎧⎪⎨+=⎪⎩B.1000222.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩C.10002.5%0.5%22x yx y-=⎧⎨+=⎩D.10002.5%0.5%22x yx y+=⎧⎨-=⎩6.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 7.若实数a ,b30b -=,则点P(a ,b)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在223.14,, 5.12112111227π+--……中,无理数的个数为 ( ) A .5 B .2 C .3 D .49.下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等10.若实数3是不等式2x a 20--<的一个解,则a 可取的最小整数为( )A .2B .3C .4D .511.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 12.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m二、填空题13.若关于x 的不等式组103420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.14.为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.15.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 16.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .17.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.18.计算:201()( 3.14)20|25|.2π---+--19.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.20.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 三、解答题21.某商店需要购进A 型、B 型两种节能台灯共160盏,其进价和售价如下表所示. 类型价格A 型B 型 进价/(元/盏)15 35 销售价/(元/盏) 20 451100元,问A 型、B 型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.22.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A ,B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A ,B 两种型号家用净水器各购进多少台;(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,设每台A 型号家用净水器的售价为x 元,则每台A 型号家用净水器的毛利润是元.每台B 型号家用净水器的毛利润是 元,并请列式求出每台A 型号家用净水器的售价至少是多少元.(注:毛利率=售价-进价)23.已知方程组4,6ax by ax by -=⎧⎨+=⎩与方程组35,471x y x y -=⎧⎨-=⎩的解相同,求a ,b 的值. 24.如图,在平面直角坐标系中,O 为坐标原点,点A (4,1)B (1,1),C (4,5),D (6,﹣3),E (﹣2,5).(1)在坐标系中描出各点,并画出△AEC ,△BCD .(2)求出△BCD的面积.25.计算:()223228432-----⨯+26.在ABC中,AB AC=,直线l经过点A,且与BC平行.仅用圆规完成下列画图.(保留画图痕迹,不写作法)(1)如图①,在直线l上画出一点P,使得APC ACB∠=∠;(2)如图②,在直线l上画出所有的点Q,使得12AQC ACB ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<40.故一颗玻璃球的体积在30cm3以上,40cm3以下.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.2.C解析:C【分析】设竖式纸盒x 个,横式纸盒y 个,正方形纸板a 张,长方形纸板b 张,由题意列出方程组可求解.【详解】解:设竖式纸盒x 个,横式纸盒y 个, 正方形纸板a 张,长方形纸板b 张,根据题意得:432x y b x y a +⎧⎨+⎩==, ∴5x+5y=5(x+y )=a+b∴a+b 是5的倍数故选:C .【点睛】本题考查了二元一次方程组,根据题意列出正确的方程组是本题的关键.3.A解析:A【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解.【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔,根据题意得:2330x y,且,x y 为正整数, 变形为:3023x y ,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x,即2y =时,12x =是整数,符合题意; 当3029x ,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意;当30215x ,即5y =时,7.5x =不是整数,舍去;当30218x ,即6y =时,6x =是整数,符合题意;当30221x,即7y =时, 4.5x =不是整数,舍去; 当30224x,即8y =时,3x =是整数,符合题意; 当30227x,即9y =时, 1.5x =不是整数,舍去; 故共有4种购买方案,故选:A .本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可.4.C解析:C【分析】根据解二元一次方程组的方法可以解答本题.【详解】解:125x y x y +=⎧⎨+=⎩①②②﹣①,得x=4,将x=4代入①,得y=﹣3,故原方程组的解为43x y =⎧⎨=-⎩, 故选:C .【点睛】本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法. 5.A解析:A【分析】根据在“吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”即可解答.【详解】解:由题意可得,22+10002.5%0.5%x y x y -=⎧⎪⎨=⎪⎩, 故选:A .【点睛】本题主要考查是二元一次方程的应用,正确的理解题意,列出方程是解题的关键. 6.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为(2,-3),故选:B .【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 7.B解析:B【分析】由算术平方根和绝对值的非负性,求出a 、b 的值,然后即可判断点P 所在的象限.【详解】解:∵30b -=,∴20a +=,30b -=,∴2a =-,3b =,∴点P (2-,3)在第二象限;故选:B .【点睛】本题考查了非负性的应用,以及判断点所在的象限,解题的关键是正确求出a 、b 的值. 8.D解析:D【分析】根据无理数的概念逐一判断即可,其中无限不循环小数是无理数.【详解】3.14是有理数,2π是无理数,===是无理数,0.1=-是有理数,2+227-是有理数, 5.121121112-……是无理数;故选D .【点睛】本题考查了无理数的概念,熟记无限不循环小数为无理数是本题的关键.9.D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A 、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.10.D解析:D【分析】=代入不等式得到关于a的不等式,求解即可.将x3【详解】=是不等式的一个解,根据题意,x3--<,∴将x3=代入不等式,得:6a20a>,解得:4则a可取的最小整数为5,故选:D.【点睛】此题考查不等式的解的定义,解一元一次不等式,正确理解不等式的解的定义将x=3代入得到关于a的不等式是解题的关键.11.C解析:C【分析】根据不等式的性质来解答即可.不等式的性质为:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A:不等式a<b两边都加1,不等号的方向不变,原变形正确,故此选项不符合题意;B:不等式a<b两边都乘以-1,不等号的方向改变,原变形正确,故此选项不符合题意;C:不等式a<b两边都乘-1再加上-2,不等号的方向改变,原变形不正确,故此选项符合题意;D:不等式a<b两边都除以4,不等号的方向不变,原变形正确,故此选项不符合题意;故选:C.【点睛】本题考查了利用不等式的性质进行不等式的变形.解题的关键是熟练掌握不等式的性质并正确运用.12.D解析:D【分析】根据点P(m ,1m -)在第四象限列出关于m 的不等式组,解之可得.【详解】∵点P(m ,1m -)在第四象限,∴010m m >⎧⎨-<⎩, 解得m >1,故选:D .【点睛】本题考查了解一元一次不等式组以及点的坐标,正确把握各象限内点的坐标特点是解题关键.二、填空题13.【分析】先解不等式组中的两个不等式然后根据不等式组无解可得关于a 的不等式解不等式即得答案【详解】解:对不等式组解不等式①得解不等式②得∵原不等式组无解∴解得:故答案为:【点睛】此题主要考查了解不等式 解析:23a ≥【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a 的不等式,解不等式即得答案.【详解】 解:对不等式组103420x a x ⎧->⎪⎨⎪-≥⎩①②,解不等式①,得3x a >,解不等式②,得2x ≤,∵原不等式组无解,∴32a ≥, 解得:23a ≥. 故答案为:23a ≥. 【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则,得出关于a 不等式是解题关键.14.【分析】根据题意表示出上午下午晚上摸到黑白红的次数列数返现的金额式子确定出abc 的值代入计算即可;【详解】设上午黑白红摸到的次数分别是abc 则下午摸到黑白红的次数是3a2b4c 晚上摸到黑白红的次数是解析:2460【分析】根据题意表示出上午、下午、晚上摸到黑、白、红的次数,列数返现的金额式子,确定出a ,b ,c 的值代入计算即可;【详解】设上午黑、白、红摸到的次数分别是a ,b ,c ,则下午摸到黑、白、红的次数是3a ,2b ,4c ,晚上摸到黑、白、红的次数是a ,4b ,2c ,晚上返现金额比上午多840,∴36020840b c ⨯+⨯=,∴18020840b c +=,总返现为:5004201405020a b c ++=,根据题意:a ,b ,c 是大于零的正整数,当4b =时满足条件a ,b ,c 为正整数,∴4b =,6c =,5a =,即下午返现的金额为1510086024202460⨯+⨯+⨯=元;故答案是2460.【点睛】本题主要考查了概率公式的应用,准确分析计算是解题的关键.15.【分析】变形方程组根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组即是当代入方程组之后的方程组则也是这一方程组的解所以∴故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算解析:52m n =⎧⎨=-⎩ 【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x m y n =-=⎧⎨=--=⎩,∴52m n =⎧⎨=-⎩.故答案是52m n =⎧⎨=-⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.16.(62)或(42)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标从而得解【详解】∵点A (12)AC ∥x 轴∴点C 的纵坐标为2∵AC=解析:(6,2)或(-4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解.【详解】∵点A (1,2),AC ∥x 轴,∴点C 的纵坐标为2,∵AC=5,∴点C 在点A 的左边时横坐标为1-5=-4,此时,点C 的坐标为(-4,2),点C 在点A 的右边时横坐标为1+5=6,此时,点C 的坐标为(6,2)综上所述,则点C 的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x 轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.17.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值.【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5,∴2n =-,()45m --=,∴9m =-或1,故答案为:9-或1;2-.【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.18.+5【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案【详解】解:原式=4﹣1++2=+5【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质和绝对值的性质正确化简各数.【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=4﹣1+.【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质和绝对值的性质,正确化简各数是解题关键.19.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数【详解】解:∵AB ⊥AE ∠CAE =42°∴∠BAC =90°﹣42°=48°∵AB ∥CD ∴∠BAC +∠ACD =180°解析:132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数.【详解】解:∵AB ⊥AE ,∠CAE =42°,∴∠BAC =90°﹣42°=48°,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠ACD =132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC 度数是解题关键.20.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①②解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.三、解答题21.(1)A 型台灯购进100盏,B 型台灯购进60盏;(2)有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出一元一次方程组求解 .【详解】(1)设分别购进A 型、B 型台灯x 盏、y 盏,根据题意,得160,5101100.x y x y +=⎧⎨+=⎩解得:100,60.x y =⎧⎨=⎩答:A 型台灯购进100盏,B 型台灯购进60盏.(2)设购进a 盏A 型台灯,则购进(160)a -盏B 型台灯,根据题意,得1535(160)4300,510(160)1260.a a a a +-<⎧⎨+->⎩解之,得6568a <<. ∵a 为非负整数,∴a 取66,67.∴160a -相应取94,93.∵当a=66时,5×66+10×94=1270(元),当a=67时,5×67+10×93=1265(元),∴方案一获利最大,答:有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【点睛】本题考查二元一次方程组与一元一次不等式的综合运用,在正确理解题意的基础上列出适合的二元一次方程组与一元一次不等式求解是解题关键.22.(1)A 型号家用净水器购进了100台,B 型号家用净水器购进了60台.(2)(x-150);2(x-150);每台A 型号家用净水器的售价至少是200元.【分析】(1)设A型号家用净水器购进了m台,则B型号家用净水器购进了(160-m)台,根据总价=单价×数量结合购进两种型号的家用净水器共用去36000元,即可得出关于m的一元一次方程,解之即可得出结论;(2)设每台A型号家用净水器的售价为x元,则每台A型号家用净水器的毛利润为(x-150)元,每台B型号家用净水器的毛利润为2(x-150)元,根据售完这160台家用净水器的毛利润不低于11000元,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论.【详解】(1)设A型号家用净水器购进了m台,则B型号家用净水器购进了(160-m)台,根据题意得:150m+350(160-m)=36000,解得:m=100,∴160-m=60.答:A型号家用净水器购进了100台,B型号家用净水器购进了60台.(2)设每台A型号家用净水器的售价为x元,则每台A型号家用净水器的毛利润为(x-150)元,每台B型号家用净水器的毛利润为2(x-150)元,根据题意得:100(x-150)+60×2(x-150)≥11000;解得:x≥200.答:每台A型号家用净水器的售价至少是200元.【点睛】本题考查了一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)由总的毛利润不低于11000元,列出关于x的一元一次不等式.23.2.51 ab=⎧⎨=⎩【分析】先求出已知方程组(2)的解,再代入方程组(1)即可求出a、b的值.【详解】解:解方程组35,47 1.x yx y-=⎧⎨-=⎩得2,1.xy=⎧⎨=⎩把2,1.xy=⎧⎨=⎩代入方程组4,6.ax byax by-=⎧⎨+=⎩得24,2 6.a ba b-=⎧⎨+=⎩解这个方程组,得2.5,1. ab=⎧⎨=⎩【点睛】本题考查了同解方程组、解二元一次方程组.解答此题的关键是要弄清题意,方程组有相同的解及说明方程组(1)的解也适合(2),不要盲目求解,造成解题过程复杂化.24.(1)见解析;(2)16【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据割补法,利用三角形面积公式计算可得.【详解】解:(1)如图所示:(2)S△BCD=12×4×4+12×4×4=16.【点睛】此题主要考查通过描点法画图、再网格图中通过割补法求三角形面积,正确看图是解题关键.25.8-【分析】先化简绝对值、立方根、算术平方根,然后进行加减运算即可.【详解】(223228432--=222432--⨯+()=412-=8-【点睛】此题考查了实数的运算,熟练掌握算术平方根和立方根的性质是解本题的关键.26.(1)见解析;(2)见解析【分析】(1)以C为圆心,以CA为半径画弧,交点即为所求;(2)以A为圆心,以AC为半径画弧,交点即为所求.【详解】(1)如图所示,点P 即为所求,理由如下:CP CA =,//l BC ,则APC CAP ACB ∠=∠=∠. (2)如图所示,点12Q Q 、即为所求, 理由如下:1AC AQ =,//l BC ,则11112AQ C ACQ BCQ ACB ∠=∠=∠=∠; 12CQ CQ =,则1221CQ Q CQ Q ∠=∠.【点睛】本题考查了基本作图,熟记等腰三角形的性质,平行线的性质是解题的关键.。

华师大版七年级数学下册《期末试卷》(附答案)

华师大版七年级数学下册《期末试卷》(附答案)

华师大版七年级数学下册《期末试卷》(附答案)学校姓名班级座位号一、选择题(每小题3分,共30分)1.方程3x-1=-x+1的解是(。

)。

A。

x=-2 B。

x=0 C。

x=1 D。

x=22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()。

A。

B。

C。

D。

3.三角形的三边长分别是3,1-2a,8,则数a的取值范围是()。

A。

-5<a<-2 B。

-5<a<2 C。

5<a<11 D。

a<24.如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()。

A。

a>5 B。

a-2 D。

a<-55.不等式组的解集在数轴上表示为()。

A。

B。

C。

D。

6.将△XXX沿BC方向平移3个单位得△DEF。

若△ABC的周长等于8,则四边形ABFD的周长为()。

A。

14 B。

12 C。

10 D。

87.XXX所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,XXX家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()。

A。

5x+4(x+2)=44 B。

5x+4(x-2)=44 C。

9(x+2)=44 D。

9(x+2)-4×2=448.CD相交于点F,如图,在△ABC中,∠ABC、∠XXX的平分线BE,且∠ABC=42°,∠A=60°,则∠XXX等于()。

A。

121° B。

120° C。

119° D。

118°9.把边长相等的正五边形ABCDE和正方形ABFG按照XXX所示的方式叠合在一起,则∠EAG的度数是()。

A。

18° B。

20° C。

28° D。

30°10.如图,△ABC≌△ADE且BC、DE交于点O,连结BD、CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE,其中一定成立的有()。

(华东师大版)七年级下期末数学试卷(带答案)

(华东师大版)七年级下期末数学试卷(带答案)

七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a <90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD 折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=2x+5(用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n=6.【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是2.【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z 的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a <90°).若∠1=110°,则a=20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了132米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原来的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD 折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)画出△ABC关于直线m对称的△A2B2C2即可;(3)过点A2B2作直线,此直线与直线m的交点即为所求.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。

华东师大版七年级数学下册期末考试及答案【A4打印版】

华东师大版七年级数学下册期末考试及答案【A4打印版】

华东师大版七年级数学下册期末考试及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.若|a|=5,b=﹣2,且ab >0,则a+b=________.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程:223124x x x --=+-.2.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.3.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图,已知A 、O 、B 三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD 的度数;(2)若OE 平分∠BOD ,求∠COE 的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、C5、B6、C7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、60°3、-74、2m≤-5、16、7三、解答题(本大题共6小题,共72分)1、54 x=2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、(1)矩形的周长为4m;(2)矩形的面积为33.4、(1)∠BOD =138°;(2)∠COE=21°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)A型学习用品20元,B型学习用品30元;(2)800.。

华东师大新版七年级下册数学期末试卷(Word版,含答案)

华东师大新版七年级下册数学期末试卷(Word版,含答案)

华东师大新版七年级下册数学期末试卷一.选择题(共10小题,满分30分,每小题3分)1.方程x﹣5=3x+7移项后正确的是()A.x+3x=7+5B.x﹣3x=﹣5+7C.x﹣3x=7﹣5D.x﹣3x=7+5 2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形5.下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则6.如图,将一张长方形纸片ABCD沿AE折叠,若∠BAD'=28°,则∠AED'等于()A.28°B.59°C.66°D.68°7.如图,将周长为7的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.16B.9C.11D.128.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.109.如图,△ABC中∠BAC=100°,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B、C、D恰好在同一直线上,则∠E的度数为()A.50°B.75°C.65°D.60°10.已知关于x,y的方程组,给出下列结论:①a=5时方程组的解为;②当时,方程组的解x,y的值相等;③不论a取何值,方程组的解x,y的值至少有一个是负数,其中正确的是()A.①②B.①③C.②③D.①②③二.填空题(共6小题,满分18分,每小题3分)11.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB,CD),这其中的数学原理是.12.已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为.13.如图,将一张长方形纸片如图所示折叠后,再展开.如果∠1=66°,那么∠2=.14.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y=.15.若2减去的差为6,可列等式表示为;则可求得m的值为.16.已知a2+3a=2,则3a2+9a+1的值为.三.解答题(共8小题,满分72分)17.解方程(组):(1)15﹣(7﹣5x)=2x+(5﹣3x);(2)﹣=0.75;(3);(4).18.解下面一元一次不等式组,并写出它的所有非负整数解..19.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)补全△A′B′C′,利用网格点和直尺画图;(2)图中AC与A1C1的关系是:;(3)画出AB边上的高线CD;(4)画出△ABC中AB边上的中线CE.20.在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?21.如图,在△ABC中,BD、CD分别平分∠ABC、∠BCA,∠A=80°,求∠D.22.阅读材料:我们已经学过利用“代入消元法”和“加减消元法”来解二元一次方程组,通过查阅相关资料,“勤奋组”的同学们发现在解方程组:时,可以采用一种“整体代入”的解法:解:将方程②变形为4x+2y+y=6,即2(2x+y)+y=6③,把方程①代入方程③,得:2×0+y=6,所以y=6,把y=6代入方程①得x=﹣3,所以方程组的解为.请你解决以下问题:利用“整体代入”法解方程组.23.某学校为了满足疫情防控需求,决定购进A、B两种型号的口罩若干盒,若购进A型口罩10盒,B型口罩5盒,共需1000元,若购进A型口罩4盒,B型口罩3盒,共需550元.(1)求A、B两种型号的口罩每盒各需多少元?(2)若该学校决定购进这两种型号的口罩共计200盒,并要求购进A型口罩的盒数不超过B型口罩盒数的4倍,请为该学校设计出最省钱的购买方案,并说明理由.24.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:方程x﹣5=3x+7,移项得:x﹣3x=7+5,故选:D.2.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.3.解:不等式组的解集为﹣1<x<2,在数轴上表示为:故选:B.4.解:A、正三角形的每个内角是60°,正八边形形的每个内角是135°,∵2×135°+1×90°≠360°,不能密铺.B、正三角形的每个内角是60°,正方形的每个内角是90°,∵3×90°+2×60°≠360°,不能密铺.C、正五边形的每个内角是108°,正十边形的每个内角是144°,∵108°+144°≠360°,不能密铺.D、正六边形的每个内角是120°,正三角形每个内角是60°,2×120°+2×60°=360°,能铺满.故选:D.5.解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.6.解:根据折叠可知:∠D′=∠D=90°,∠D′AE=∠DAD′=×(90°﹣28°)=31°,∴∠AED′=90°﹣31°=59°.故选:B.7.解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AC=DF,AD=CF=2,∵△ABC的周长为7,∴AB+BC+AC=7,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=7+CF+AD=7+2+2=11.故选:C.8.解:第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.则该三角形的周长是14.故选:B.9.解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∠E=∠ACB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°﹣∠BAD)=15°,∴∠E=∠ACB=180°﹣∠BAC﹣∠B=180°﹣100°﹣15°=65°,故选:C.10.解:,①+②得:x=3﹣a,把x=3﹣a代入②得:y=a﹣4,①当a=5时,方程组的解为,结论正确;②当a=时,x=﹣,y=﹣,即方程组的解x,y的值相等,结论正确;③x+y=(3﹣a)+(a﹣4)=﹣1,所以方程组的解x,y的值至少有一个是负数,故结论正确,则正确的结论是①②③,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.12.解:将x=3代入方程得:3a+2×3﹣3=0,解得:a=﹣1.故答案为:﹣1.13.解:由折叠的性质可知,∠1=∠3,∵∠1=66°,∴∠3=66°,∵长方形的两条长边平行,∴∠2+∠1+∠3=180°,∴∠2=48°,故答案为:48°.14.解:∵两个三角形全等,∴x=6,y=5,∴x﹣y=6﹣5=1,故答案为:1.15.解:依题意得:2﹣=6,移项,合并同类项得:=﹣4,方程两边同时×5得:3m+4=﹣20,移项,合并同类项得:3m=﹣24,方程两边同时÷3得:m=﹣8.故答案为:2﹣=6;﹣8.16.解:∵a2+3a=2,∴3a2+9a+1=3(a2+3a)+1=3×2+1=6+1=7.故答案为:7.三.解答题(共8小题,满分72分)17.解:(1)15﹣(7﹣5x)=2x+(5﹣3x),去括号,得15﹣7+5x=2x+5﹣3x,移项,得5x﹣2x+3x=5﹣15+7,合并同类项,得6x=﹣3,系数化为1,得x=﹣;(2)﹣=0.75,方程变形,得﹣=,去分母,得2(30+2x)﹣4(20+3x)=3,去括号,得60+4x﹣80﹣12x=3,移项,得4x﹣12x=3﹣60+80,合并同类项,得﹣8x=23,系数化为1,得x=﹣;(3)方程组变形,得,①×3+②×2得13x=26,解得x=2,把x=2代入①得,y=5,所以方程组的解为;(4)方程变形,得,①×3﹣②得x=,把x=代入①得,y=,所以方程组的解为.18.解:,解不等式①得x>﹣1;解不等式②得x≤2;∴原不等式组的解集为﹣1<x≤2,∴原不等式组的所有非负整数解为0,1,2.19.解:(1)如图,△A′B′C′为所作;(2)AC=A1C1,AC∥A1C1.故答案为平行且相等;(3)如图,CD为所作;(4)如图,CE为所作.20.解:(1)设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20)+α=180°,解得α=40°.即多边形的每个外角为40°.又∵多边形的外角和为360°,∴多边形的外角个数==9.∴多边形的边数=9,答:这个多边形的边数是9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,当截线为经过对角2个顶点的直线时,多边形的边数减少了1条边,内角和=(9﹣2﹣1)×180°=1080°;当截线为经过多边形一组对边的直线时,多边形的边数不变,内角和=(9﹣2)×180°=1260°;当截线为只经过正方形一组邻边的一条直线时,多边形的边数增加一条边,内角和=(9﹣2+1)×180°=1440°.答:将这个多边形剪去一个角,剩下多边形的内角和是1080°或1260°或1440°.21.解:∵BD、CD分别平分∠ABC、∠BCA,∴∠DBC=∠DBA=∠ABC,∠DCB=∠DCA=∠ACB,又∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠DBC+∠DCB=(∠ABC+∠ACB)=50°,∴∠D=180°﹣∠DBC﹣∠DCB=180°﹣(∠DBC+∠DCB)=180°﹣50°=130°.22.解:,将方程②变形为x+6x﹣3y=20,即x+3(2x﹣y)=20③,把方程①代入方程③,得x+15=20,所以x=5,把x=5代入方程①得y=5,所以方程组的解为.23.解:(1)设购进A型口罩每盒需x元,B型口罩每盒需y元,依题意,得:,解得:,答:A型口罩每盒需25元,B型口罩每盒需150元;(2)设购进m盒A型口罩,则购进(200﹣m)盒B型口罩,依题意,得:m≤4(200﹣m),解得:m≤160.设该学校购进这批口罩共花费w元,则w=25m+150(200﹣m)=﹣125m+30000.∵﹣125<0,∴w随m的增大而减小,又∵m≤160,且m为整数,∴当m=160时,w取得最小值,此时200﹣m=40.∴最省钱的购买方案为:购进160盒A型口罩,40盒B型口罩.24.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.。

华东师大版七年级数学下册期末测试卷带答案

华东师大版七年级数学下册期末测试卷带答案

华东师大版七年级数学下册期末测试卷带答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.下列图形中,不是轴对称图形的是()A.B.C.D.3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.若a x=6,a y=4,则a2x﹣y的值为()A.8 B.9 C.32 D.405.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A .厉B .害C .了D .我7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.6的相反数为( )A .-6B .6C .16-D .16 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c,则图c中的∠CFE的度数是__________°.3.因式分解:2218x-=______.4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)321123x x-+-=(2)31322322105x x x+-+-=-2.若不等式组122x ax x+≥⎧⎨->-⎩①有解;②无解.请分别探讨a的取值范围.3.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某水果批发市场苹果的价格如表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、D4、B5、A6、D7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、105°3、2(x +3)(x ﹣3).4、-15、两6、54°三、解答题(本大题共6小题,共72分)1、(1)17x =-;(2)716x =.2、①a >-1②a ≤-13、20°4、(1)详略;(2)70°.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)16,4;(2)第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.。

【华东师大版】七年级数学下期末试题(含答案)

【华东师大版】七年级数学下期末试题(含答案)

一、选择题1.“两个相等的角一定是对顶角”,此事件是( )A .不可能事件B .不确定事件C .必然事件D .确定事件 2.“学习强国”的英语“Learningpower ”中,字母“n ”出现的频率是( )A .1B .12C .213D .23.下列说法中错误的是( )A .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是16B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .某种彩票的中奖率为1%,买100张彩票一定有1张中奖4.“最美佳木斯”五个字中,是轴对称图形的有( )A .1个B .2个C .3个D .4个5.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm6.下列轴对称图形中,对称轴最多的图形是( ) A . B . C .D .7.下列长度的三条线段,能组成三角形的是( )A .5,6,11B .3,4,8C .5,6,10D .6,6,13 8.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC cm =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动______分钟后CAP 与PQB △全等( )A .4或6B .4C .6D .59.直角ABC 、DEF 如图放置,其中90ACB DFE ∠=∠=︒,AB DE =且AB DE ⊥.若DF a =,BC b =,CF c =.则AE 的长为( )A .a c +B .b c +C .a b c +-D .a b c -+ 10.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t (小时)之间的函数关系的图象是( )A .B .C .D .11.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°12.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m ﹣nC .2mD .2n 二、填空题13.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别.从袋子中随机摸出一个小球,则摸出的小球是绿球的概率是_____________. 14.如图:同学们在操场的一个圆形区域内玩投掷沙包的游戏,圆形区域由5个过同一点且半径不同的圆组成.经过多次实验,发现沙包如果都能落在区域内时,落在2、4两个阴影内的概率分别是0.36和0.21,设最大的圆的直径是5米,则1、3、5三个区域的面积和是_____.15.如图,三角形纸片中,7cm AB =,5cm =BC ,4cm AC =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边的点E 处,折痕为BD ,则AED 的周长为______.16.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.17.已知:AD 、AE 分别是ABC 的高,中线,6BE =,4CD =,则DE 的长为_________.18.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在___点追上兔子.19.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒. 20.计算:248(21)(21)(21)(21)1+++++=___________.三、解答题21.“初中生骑电动 车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题:(1)这次抽查的家长总人数是多少?(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大?22.生活中,有人喜欢把传送的便条折成“”形状,折叠过程按图①、②、③、④的顺序进行(其中阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长26AB =厘米,分别回答下列问题:(1)如图①、图②,如果长方形纸条的宽为4厘米,并且开始折叠时6AM =厘米,那么在图②中,BE =____厘米.(2)如图②,如果长方形纸条的宽为4厘米,现在不但要折成图②的形状,还希望纸条两端超出点E 的部分HE 和BE 相等,使图②. 是轴对称图形,AM =______厘米. (3)如图④,如果长方形纸条的宽为x 厘米,希望纸条两端超出点P 的部分AP 和PD 相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点A 的距离(结果用x 表示) .23.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.24.已知函数y =y 1+y 2,其中y 1与x 成反比例,y 2与x ﹣2成正比例,函数的自变量x 的取值范围是x ≥12,且当x =1或x =4时,y 的值均为32. 请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为: .(2)函数图象探究:①根据解析式,补全下表:x 121 32 2 5234 6 8 … y 134 32 1312 2120 76 32 73 …②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x =34,214,8时,函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系为: ;(用“<”或“=”表示) ②若直线y =k 与该函数图象有两个交点,则k 的取值范围是 ,此时,x 的取值范围是 .25.如图,找出标注角中的同位角、内错角和同旁内角.26.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系;(2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值; (3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:“两个相等的角一定是对顶角“是随机事件,故选:B .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 2.C解析:C直接利用频率的定义分析得出答案.【详解】∵“学习强国”的英语“Learningpower”中,一共有13个字母,n有2个,∴字母“n”出现的频率是:213故选C.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.3.D解析:D【分析】根据概率的意义、随机事件、调查方法的选择和概率公式对各选项作出判断即可.【详解】A、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是16,所以A选项的说法正确;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以D选项的说法错误;故选D.【点睛】本题考查概率的意义、随机事件、调查方法的选择和概率的公式,掌握概率的意义是解题的关键.4.B解析:B【分析】根据轴对称图形的概念解答即可.【详解】解:“最美佳木斯”五个字中,是轴对称图形的是“美”、“木”,共2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.B解析:B根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB=10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB−AE=10−6=4,设CD=DE=x,在Rt△DEB中,∵222+=,DE EB DB∴()222+=-,x x48∴x=3,∴CD=3.故答案为:B.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.6.D解析:D【分析】根据对称轴的概念、结合图形分别找出各个图形的对称轴,得到答案.【详解】A中图形有一条对称轴;B中图形有一条对称轴;C中图形有两条对称轴;D中图形有四条对称轴;故选:D.【点睛】此题考查轴对称图形,正确找出各个图形的对称轴是解题的关键.7.C【分析】根据三角形的两边和大于第三边解答.【详解】A、5+6=11,故不能构成三角形;B、3+4<8,故不能构成三角形;C、5+6>10,故能构成三角形;D、6+6<13,故不能构成三角形;故选:C.【点睛】此题考查三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.8.B解析:B【分析】分当△CPA≌△PQB时和当△CPA≌△PQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立.【详解】解:当△CPA≌△PQB时,BP=AC=4(米),则BQ=AP=AB-BP=12-4=8(米),A的运动时间是:4÷1=4(分钟),Q的运动时间是:8÷2=4(分钟),则当t=4分钟时,两个三角形全等;当△CPA≌△QPB时,BQ=AC=4(米),AP=BP=12AB=6(米),则P运动的时间是:6÷1=6(分钟),Q运动的时间是:4÷2=2(分钟),故不能成立.总之,运动4分钟后,△CPA与△PQB全等,故选B.【点睛】本题考查了全等三角形的判定,注意分△CPA≌△PQB和△CPA≌△QPB两种情况讨论是关键.9.C解析:C【分析】先利用AAS证明ABC DEF,再根据全等三角形的性质进行线段和差计算即可.【详解】解:90ACB ∠=︒,DE AB ⊥,90A B ∴∠+∠=︒,90A E ∠+∠=︒,B E ∴∠=∠,在ABC 与DEF 中90B E ACB DFE AB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABC DEF AAS ∴≅△△;AC DF =∴,BC EF =,∵DF a =,BC b =,CF c =,AE AC EF CF =+-,∴AE a b c =+-故选C .【点睛】本题主要考查了全等三角形的判定与全等三角形的性质,确定用AAS 定理进行证明是关键.10.B解析:B【分析】根据油箱内余油量=原有的油量-t 小时消耗的油量,可列出函数关系式,得出图象.【详解】解:由题意得,油箱内余油量Q (升)与行驶时间t (小时)的关系式为:Q=40-5t (0≤t≤8),结合解析式可得出图象:故选:B .【点睛】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.11.A解析:A【分析】过点E 作EF ∥AB ,则EF ∥CD ,利用“两直线平行,内错角相等”可得出∠BAE =∠AEF 及∠C =∠CEF ,结合∠AEF +∠CEF =90°可得出∠BAE +∠C =90°,由邻补角互补可求出∠BAE 的度数,进而可求出∠C 的度数.【详解】解:过点E 作EF ∥AB ,则EF ∥CD ,如图所示.∵EF ∥AB ,∴∠BAE =∠AEF .∵EF ∥CD ,∴∠C =∠CEF .∵AE ⊥CE ,∴∠AEC =90°,即∠AEF +∠CEF =90°,∴∠BAE +∠C =90°.∵∠1=125°,∠1+∠BAE =180°,∴∠BAE =180°﹣125°=55°,∴∠C =90°﹣55°=35°.故选:A .【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.12.A解析:A【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.【详解】解:设去掉的小正方形的边长为x ,则有()22n x mn x +=+, 解得:2m n x -=. 故选:A .【点睛】 本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决.二、填空题13.【分析】用绿球的个数除以总球数即可【详解】解:摸出的小球是绿球的概率是故答案为:【点睛】本题考查了概率的求法解题关键是理解等可能事件概率的求法解析:1 3【分析】用绿球的个数除以总球数即可.【详解】解:摸出的小球是绿球的概率是31 93 ,故答案为:13.【点睛】本题考查了概率的求法,解题关键是理解等可能事件概率的求法.14.6875πm2【解析】【分析】根据题意可得大圆的面积再由几何概率的意义可得第24两个阴影的面积所占的比例进而可得135三个区域的面积和占的比例计算可得其面积之和【详解】根据题意得最大的圆的直径是5米解析:6875πm2.【解析】【分析】根据题意,可得大圆的面积,再由几何概率的意义,可得第2、4两个阴影的面积所占的比例,进而可得1、3、5三个区域的面积和占的比例,计算可得其面积之和.【详解】根据题意得,最大的圆的直径是5米,则大圆的面积为6.25πm2,又有落在2、4两个阴影内的概率分别是0.36和0.21,则第2、4部分的面积和占总面积的0.36+0.21=0.57,即57%,则1、3、5三个区域的面积占总面积的1-0.57=0.43,即43%,故1、3、5三个区域的面积和为6.25π×0.43=2.6875π m2.故答案是:2.6875π m2.【点睛】考查了利用概率解决问题,解题关键是利用:部分数目=总体数目乘以相应概率.15.6【分析】由题意可得:CD=DEBC=BE=5即可求AE=2则可求的周长【详解】解:∵折叠∴CD=DEBC=BE=5∵AE=AB﹣BE∴AE=7﹣5=2∴的周长=AD+DE+AE=AD+DC+2=A解析:6【分析】由题意可得:CD=DE,BC=BE=5,即可求AE=2,则可求AED的周长.【详解】解:∵折叠,∴CD =DE ,BC =BE =5,∵AE =AB ﹣BE ,∴AE =7﹣5=2,∴AED 的周长=AD +DE +AE=AD +DC +2=AC +2=4+2=6,故答案为:6【点睛】本题考查折叠问题,熟练掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角,∴ADC A ABC ∠=∠+∠,∵ADC ∠是BOD 的外角,∴ADC BOD OBD ∠=∠+∠,∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.17.2或10【分析】由已知条件可推导出;再假设D 点所在的不同位置分别计算即可得到答案【详解】∵是的中线且∴假设点D 在CB 的延长线上如下图∵是的中线且∴∵∴和图形不符∴该假设不成立;假设点D 在点E 和点B 之 解析:2或10【分析】由已知条件,可推导出6EC BE ==;再假设D 点所在的不同位置,分别计算DE ,即可得到答案.【详解】∵AE 是ABC 的中线,且6BE =∴6EC BE ==假设点D 在CB 的延长线上,如下图∵AE 是ABC 的中线,且6BE =∴212BC BE ==∵4CD =∴CD BC <,和图形不符∴该假设不成立;假设点D 在点E 和点B 之间,如下图∵4CD =,6EC =∴CD EC <,和图形不符∴该假设不成立;假设点D 在点E 和点C 之间,如下图∴642DE EC CD =-=-=;假设点D 在点BC 延长线上,如下图∴6410DE EC CD =+=+=;故答案为:2或10.【点睛】本题考察了三角形中线和三角形高的知识;求解的关键是熟练掌握三角形中线和三角形高的性质,从而完成求解.18.18【解析】两个函数图形的交点的横坐标是10说明10小时后乌龟追上兔子此时的时间为:8+10=18时故答案为18解析:18【解析】两个函数图形的交点的横坐标是10,说明10小时后,乌龟追上兔子,此时的时间为:8+10=18时.故答案为18.19.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 20.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.三、解答题21.(1)这次调查了100个家长;(2)图形见解析;(3)持“赞成”态度的学生估计约有300个.【解析】试题分析:(1)根据“无所谓”的人数除以占的百分比得到调查的总家长数;(2)由调查家长的总数求出“反对”的人数,补全条形统计图,求出“反对”与“赞成”的百分比,补全扇形统计图即可;(3)求出学生中“赞成”的百分比,乘以1200即可得到结果.试题(1)根据题意得:20÷20%=100(个),则这次调查了100个家长;(2)家长“反对”的人数为100﹣(10+20)=70(个);占的百分比为70÷100=70%;“赞成”占的百分比为10÷100=10%;补全统计图,如图所示:(3)根据题意得:1200×=300(个),则持“赞成”态度的学生估计约有300个,考点:1、条形统计图;2、扇形统计图;3、用样本估计总体22.(1)16; (2)11; (3)3132x -【分析】(1)观察图形,由折叠的性质可得,BE=纸条的长—宽—AM ;(2)根据折叠的性质可得,BE HE AM ==,BE=纸条的长—宽—AM ,即可求出AM 的长;(3)根据轴对称的性质,由图可得2652x AP BM -==,继而可得在开始折叠时起点M 与点A 的距离.【详解】(1)∵由折叠的性质可得,BE=纸条的长—宽—AM∴图②中266416BE =--=;(2)∵BE HE AM ==,宽为4cm∴BE=纸条的长—宽—AM 264AM AM =--11AM =;(3)∵图④为轴对称图形 ∴2652x AP BM -== ∴26531322x AM AP PM x x -=+=+=- 即开始折叠时点M 与点A 的距离是3132x -厘米. 【点睛】本题考查了矩形折叠的问题,掌握折叠的性质是解题的关键.23.见解析【分析】根据SSS 可证明△ABD ≌△CDB ,即可得∠ABD =∠CDB ,∠ADB =∠CBD ,进而可证明结论.【详解】在ABD ∆和CDB ∆中AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()ABD CDB SSS ∴∆≅∆ABD CDB ∴∠=∠ADB CBD ∠=∠ABC ABD CBD ∠=∠-∠CDA CDB ADB ∠=∠-∠ABC CDA ∴∠=∠【点睛】本题主要考查全等三角形的性质与判定,利用SSS 证明△ABD ≌△CDB 是解题的关键. 24.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- ,故答案为2112y xx=+-,(2)①根据解析式,补全下表:x 121322523468…y 13432131212120763273134…(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x增大而增大,∴y2<y1<y3,故答案为y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键25.同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8,∠1与∠7.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角,结合图形进行分析即可.【详解】同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8,∠1与∠7.【点睛】本题主要考查了三线八角,解题关键是掌握同位角的边构成“F ”形,内错角的边构成“Z ”形,同旁内角的边构成“U ”形.26.(1)()()224a b a b ab +--=;(2)6x y +=±;(3)-15.【分析】(1)由长方形的面积公式解得图1的面积,图2中白色部分面积为大正方形面积与小正方形面积的差,又由图1与图2中的空白面积相等,据此列式解题;(2)由(1)中结论可得()()224x y x y xy +--=,将5x y -=,114xy =整体代入,结合平方根性质解题;(3)将()2019m -与()2021m -视为一个整体,结合(1)中公式,及平方的性质解题即可.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为()()()()2222a b b a a b a b +--=+-- ∵图1的面积和图2中白色部分的面积相等 ∴()()224a b a b ab +--=(2)根据(1)中的结论,可知()()224x y x y xy +--=∵5x y -=,114xy =∴()2211544x y +-=⨯∴()236x y += ∴6x y +=±(3)∵()()201920212m m -+-=-∴()()2201920214m m -+-=⎡⎤⎣⎦ ∴()()()()22201922019202120214m m m m -+--+-= ∵()()222019202134m m -+-= ∴()()22019202143430m m --=-=-∴()()2019202115m m --=-.【点睛】本题考查完全平方公式在几何图形中的应用,是重要考点,难度较易,掌握相关知识是解题关键.。

【华东师大版】七年级数学下期末试卷含答案

【华东师大版】七年级数学下期末试卷含答案

一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤2.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 3.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩4.某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x 个,足球有y 个,根据题意可得方程组( )A .x y 66 x 2y 3+=⎧⎨=-⎩ B .x y 66 x 2y 3+=⎧⎨=+⎩ C .x y 66 y 2x 3+=⎧⎨=-⎩ D .x y 66 y 2x 3+=⎧⎨=+⎩ 5.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( ) A .B .C .D .6.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩8.与方程529x y +=-构成的方程组,其解为33x y =-⎧⎨=⎩的是( ) A .21x y += B .328x y +=- C .348x y -=- D .543x y +=- 9.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1)D .(﹣3,1) 11.下列说法正确的是( ) A .2-是4-的平方根B .2是()22-的算术平方根C .()22-的平方根是2D .8的平方根是412.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°二、填空题13.不等式组324111 2xxxx≤-⎧⎪⎨--<+⎪⎩的整数解是_________.14.已知方程组3951x y ax y a+=+⎧⎨-=+⎩的解为正数,求a的取值范围是_______.15.重庆某快递公司规定:寄件不超过1kg的部分按起步价计费,超过1kg不足2kg,按照2kg收费;超过2kg不足3kg按照3kg收费,以此类推.某产家分别寄快递到重庆市内和北京,其中,寄往重庆市内的起步价为a元,超过部分b元/kg;寄往北京的起步价为()7a+元,超过部分()4b+元/kg.已知一个寄往重庆市内的快件,质量为2kg,收费13元;一个寄往北京的快件,质量为4.5kg,收费42元.如果一个寄往北京的快件,质量为2.8kg,应收费______元.16.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%.17.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)18.已知点()3,2P-,//MP x轴,6MP=,则点M的坐标为______.19.(1)小明解方程2x1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x,y是有理数,且x,y满足等式2x2y2y1742++=-,求x-y的值.20.如图,点О为直线AB上一点,,,135OC OD OE AB⊥⊥∠=︒.(1)EOD∠= °,2∠= °;(2)1∠的余角是_ ,EOD∠的补角是__ .三、解答题21.某校购买了A 型课桌椅100套和B 型课桌椅150套供学生使用,共付款53000元.已知每套A 型课桌椅比每套B 型课桌椅多花30元.(1)求该校购买每套A 型课桌椅和每套B 型课桌椅的钱数.(2)因学生人数增加,该校需再购买A 、B 型课桌椅共100套,只有资金22000元,求最多能购买A 型课桌椅的套数.22.某电影院某日某场电影的票价是:成人票30元,学生票15元,满50人可以购团体票(不足50人可按50人计算,票价打9折).某班在4位老师的带领下去电影院看电影,学生人数为x 人.(1)若按个人票购买,该班师生买票共付费_________元(用含x 的代数式表示);若按团体票购买,该班师生买票共付费___________(用含x 的代数式表示,且46x ≥) (2)①如果该班学生人数为36人,该班师生买票最少可付费多少元?②如果该班学生人数为42人,该班师生买票最少可付费多少元?(3)用含x 的代数式表示该班买票最少应付多少元?23.如图,线段AB 上有一点C ,D 为线段BC 的中点,E 为线段AC 上一点,EC =4AE , AB =25(1)若AD =20,求AE 的长;(2)若DE =14,求BC 的长24.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标.25.把下列各数的序号填入相应的括号内①-3,②π,327-,④-3.14,2,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.26.如图,AD 平分∠BAC ,点E ,F 分别在边BC ,AB 上,且∠BFE =∠DAC ,延长EF ,CA 交于点G ,求证:∠G =∠AFG .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.2.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.A解析:A【分析】设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可.【详解】设原有树苗x 棵,公路长为y 米,由题意,得6(1)5(211)y x x y =-⎧⎨+-=⎩, 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.4.B解析:B【分析】根据题中的等量关系列方程组即可【详解】解:依题意,得:x y 66x 2y 3+=⎧⎨=+⎩. 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.A解析:A【分析】先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项.【详解】解不等式x-1≤0得x≤1,解不等式x+3>0得x>-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A.【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.6.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.7.A解析:A【分析】设醇酒为x斗,行酒为y斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可.【详解】解:由题意,得2 501030 x yx y+=⎧⎨+=⎩,故选A.【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键.8.D解析:D【分析】将解33xy=-⎧⎨=⎩代入选项中验证即可求解.【详解】解:A.33xy=-⎧⎨=⎩不是方程21x y+=的解,该项不符合题意;B.33xy=-⎧⎨=⎩不是方程328x y+=-的解,该项不符合题意;C.33xy=-⎧⎨=⎩不是方程348x y-=-的解,该项不符合题意;D.33xy=-⎧⎨=⎩是方程543x y+=-的解,该项符合题意;故选:D.【点睛】本题考查二元一次方程组的解,理解二元一次方程组的解的定义是解题的关键.9.B解析:B【解析】分析:首先根据勾股定理得出公园A到超市B的距离为500m,再计算出∠AOC的度数,进而得到∠AOD的度数.本题∵∠AOB=90°,∴3002+4002=5002,∴公园A到超市B的距离为500m∵超市在医院的南偏东25°的方向,∴∠COB=90°−25°=65°,∴∠AOC=90°−65°=25°,∴∠AOD=90°−25°=65°,故选B.10.D解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A2019的坐标与A3的坐标相同,为(﹣3,1).故选:D.【点睛】本题主要考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.11.B解析:B【分析】根据平方根、算术平方根,即可解答.【详解】A选项:4-没有平方根,故A错误;-=,4的算术平方根为2,故B正确;B选项:()224-=,4的平方根为2±,故C错误;C选项:()224D选项:8的平方根为±,故D错误故选B.【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的概念.12.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.二、填空题13.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组x=-解析:4【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.14.-<<4【分析】先解方程组用含a 的式子表示方程组的解根据方程组的解是正数列出关于a 的不等式组再求解【详解】解:①+②得:①-②得:所以原方程组的解为:∵方程组的解为正∴>0且>0解得:-<<4故填: 解析:-54<a <4 【分析】先解方程组用含a 的式子表示方程组的解,根据方程组的解是正数,列出关于a 的不等式组,再求解.【详解】 解:3951x y a x y a +=+⎧⎨-=+⎩①②, ①+②得:2810x a =+,45x a =+,①-②得:228y a =-+,4y a =-+,所以,原方程组的解为:454x a y a =+⎧⎨=-+⎩, ∵ 方程组的解为正,∴45a +>0且4a -+>0, 解得:-54<a <4, 故填:-54<a <4. 【点睛】本题考查了方程组的解法,以及一元一次不等式组的解法,解此类问题要先用字母a 表示方程组的解,再根据题意,列不等式组,最后求解.15.30【分析】根据分别寄快递到上海和北京的快递质量和费用即可得出关于ab 的二元一次方程组解之然后根据28kg 按照3kg 收费即可得出应收费【详解】解:依题意得:解得寄往北京市快件重28kg 按照3kg 收费解析:30【分析】根据分别寄快递到上海和北京的快递质量和费用,即可得出关于a ,b 的二元一次方程组,解之,然后根据2.8kg 按照3kg 收费即可得出应收费.【详解】解:依题意,得:137(51)(4)42a b a b +=⎧⎨++-+=⎩, 解得112a b =⎧⎨=⎩, 寄往北京市快件重2.8kg 按照3kg 收费,应收费:7(31)(4)1172(24)30a b ++-+=++⨯+=元,故答案为:30.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.【分析】设每个入口每小时可进可容纳人数的每个出口每小时可出可容纳人数的根据当风景区人数已达到可容纳人数的20时若同时开放4个入口和2个出口则16小时刚好达到可容纳人数;若同时开放2个入口和2个出口则 解析:53【分析】设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y ,根据“当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数”,即可得出关于,x y 的二元一次方程组,解之即可得出,x y 的值,再将其代入60%10%3%2%x y --即可求出结论.【详解】解:设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y , 依题意,得: 1.64 1.62100208282=10020x y x y ⨯-⨯=-⎧⎨⨯-⨯-⎩, 解得:2015x y =⎧⎨=⎩,∴60%10%50%5 3%2%320%215%3x y-== -⨯-⨯.故答案为:53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC∥BD∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC∥BD,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.18.(9﹣2)或(﹣3﹣2)【分析】根据平行线的性质可得点M的纵坐标与点P的纵坐标相同是﹣2再根据MP=6即可求出点M的坐标【详解】解:∵点P(3−2)MP//x轴∴点M的横坐标与点P的横坐标相同是﹣2解析:(9,﹣2)或 (﹣3,﹣2)【分析】根据平行线的性质可得点M的纵坐标与点P的纵坐标相同,是﹣2,再根据MP=6,即可求出点M的坐标.【详解】解:∵点P(3,−2), MP//x 轴,∴点M 的横坐标与点P 的横坐标相同,是﹣2,又∵MP =6,∴点M 的横坐标为为3+6=9,或3−6=−3,∴点M 的坐标为 (9,﹣2)或 (﹣3,﹣2).故答案为:(9,﹣2)或 (﹣3,﹣2).【点睛】本题考查了点坐标的问题,掌握平行线的性质、点坐标的性质是解题的关键.19.(1)x =−13;(2)(2)x-y 的值为9或-1【分析】(1)将错就错把x =2代入计算求出a 的值即可确定出正确的解;(2)根据题意可以求得xy 的值从而可以求得x−y 的值【详解】(1)把x =2代入2解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 20.(1)3555;(2)与【分析】(1)由可得所以所以已知的度数即可得出与的度数;(2)由(1)可得的余角是与要求的补角即要求的补角的补角是【详解】(1);(2)由(1)可得的余角是与的补角是的补角是解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.三、解答题21.(1)该校购买每套A 型课桌椅需230元,购买每套B 型课桌椅需200元.(2)最多能购买A 型课桌椅66套.【分析】(1)设该校购买每套B 型课桌椅需x 元,则购买每套A 型课桌椅需(x+30)元,根据购买A 型课桌椅100套和B 型课桌椅150套共需53000元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100-m )套,根据总价=单价×数量结合总价不超过22000元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再取其中的最大整数值即可得出结论.【详解】解:(1)设该校购买每套B 型课桌椅需x 元,则购买每套A 型课桌椅需(30)x +元, 依题意得:100(30)15053000x x ++=,解得:200x =,30230x ∴+=.答:该校购买每套A 型课桌椅需230元,购买每套B 型课桌椅需200元.(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100)m -套,依题意得:230200(100)22000m m +-,解得:2003m. 又m 为整数,m ∴可以取的最大值为66.答:最多能购买A 型课桌椅66套.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(1)()15120x +;()13.5108x +;(2)①660元;②729元;(3)若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【分析】(1)若按个人票购买,则费用为(4×30+15x )元;若按团体票购买,该班师生买票共付费(4×30×0.9+15x ×0.9)元;(2)①把x =36代入计算即可求解,注意团体票x 不足46取46;②把x =42代入计算即可求解,注意团体票x 不足46取46;(3)先计算学生人数为x 时,购团体票比实际票便宜时的人数为x ≥40 35;因此根据此结果分三种情况计算:①若41≤x ≤46时,购团体最少;②若x >46时,按实际打折计算;③若0<x ≤40时,按实际不打折计算.【详解】解:(1)()4301515120x x ⨯+=+元,所以若按个人票购买,该班师生买票共付费()15120x +元;()4300.9150.913.5108x x ⨯⨯+⋅=+元.所以若按团体票购买,该班师生买票共付费()13.5108x +元;故答案为:()15120x +;()13.5108x +;(2)①当按个人票购买时,1536120660⨯+=(元),当按团体票购买时,13.546108729⨯+=(元).所以该班师生买票最少可付费660元;②当按个人票购买时,1542120750⨯+=(元),当按团体票购买时,13.546108729⨯+= (元).所以该班师生买票最少可付费729元;(3)依题意有()4301543046150.9x ⨯+≥⨯+⨯⨯,15609x ≥,解得3405x ≥, ①若4146x ≤≤时,最好团体购票,则需费用:()43046150.98100.9729⨯+⨯⨯=⨯=(元),②若46x >时,则需费用为:()430150.910813.5x x ⨯+⨯=+(元),③若040x <≤时,则需费用:4301512015x x ⨯+=+(元),答:若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【点睛】本题考查了列代数式,代数式求值以及用一元一次不等式解决问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.23.(1)AE=3;(2)BC=20【分析】(1)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;(2)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;【详解】解:(1)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,AC =AE +CE =5a ,BC =2b ,∵AD =20,AB =25∴AC +CD =5a +b =20AC +BC =5a +2b =25解得:a =3,b =5即AE =a =3;(2)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,BC =2b ,∵DE =CE +CD =4a +b =14AB =AE +CE +BC =5a +2b =25解得:a =1,b =10即BC =2b =20.【点睛】本题考查两点间的距离和二元一次方程组,解题的关键是熟练掌握线段中点的性质及线段的和差倍数.24.(1)详见解析;(2)(﹣2,0)或(6,0)【分析】(1)在平面直角坐标系中描出对应点,然后连线即可;(2)根据题意求得PB,分两种情况讨论即可求得P的坐标.【详解】(1)在平面直角坐标系中画出△ABC如图所示:(2)由题意可知△ABP的面积=12×PB×OA=2∵OA=1,∴PB=4,∴P(﹣2,0)或(6,0).【点睛】本题考查了坐标与图形性质,三角形的面积,重点是掌握平面直角坐标系内点的特征.25.见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3273-=-,26.见解析【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.。

最新华东师大版七年级数学下册期末试卷 含答案

最新华东师大版七年级数学下册期末试卷 含答案

华东师大七年级下册期末测试一、选择题(每小题3分,共30分)1.下列图形中,是轴对称图形又是中心对称图形的是( )2.已知下列方程:①x -2=1x ;②0.2x =1;③x3=x -3;④x 2-4=3x ;⑤x=0;⑥x -y =6.其中一元一次方程的个数是( )A .2个B .3个C .4个D .5个3.能钉成以下列各组数为边的三角形木架的是( ) A .4 cm ,6 cm ,11 cm B .4 cm ,4 cm ,9 cm C .4 cm ,8 cm ,17 cm D .6 cm ,8 cm ,10 cm4.用m 个正方形和n 个正八边形铺满地面,则m ,n 满足的关系式是( ) A .2m +3n =8 B .3m +2n =8 C .m +n =4 D .m +2n =85.不等式组⎩⎨⎧2x >-3,x -1≤8-2x 的最小整数解是( )A .-1B .0C .2D .36.如图,在△ABC 中,∠A =50°,∠ABC =70°,BD 平分∠ABC ,则∠BDC 的度数是( )A .85°B .80°C .75°D .70°7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A.⎩⎨⎧x =y +512x =y -5B.⎩⎨⎧x =y -512x =y +5C.⎩⎨⎧x =y +52x =y -5D.⎩⎨⎧x =y -52x =y +48.下列说法:①三角形的三条高都在三角形内,且都相交于一点;②三角形的中线就是过顶点平分对边的直线;③在△ABC 中,若∠A =12∠B =13∠C ,则△ABC 一定是直角三角形;④三角形的一个外角大于与它不相邻的内角;⑤一个三角形的两长边为8和10,那么它的最短边b 的取值范围是2<b <18.其中正确的说法有( )A .0个B .1个C .2个D .3个 9.某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( )A .1种B .2种C .3种D .4种 10.如图,已知△ABC 和△CDA 关于点O 对称,过点O 任作直线EF 分别交AD ,BC 于点E ,F ,下列的结论:①点E 和点F ,点B 和点D 是关于中心点O 的对称点;②直线BD 必经过点O ;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△AOE 与△COF 全等.其中正确的个数有( )A .1个B .2个C .3个D .5个二、填空题(每小题3分,共15分)11.已知x =-3是方程(2m +1)x -3=0的解,则m =____.12.如图,A ′B ′C ′是由△ABC 沿射线AC 方向平移2 cm 得,若AC =3 cm ,则A ′C =____.13.将一副三角板如图放置,若AE ∥BC ,则∠AFD =____.14.若关于x 、y 的二元一次方程组⎩⎨⎧x +y =3,2x -ay =5的解是⎩⎨⎧x =b ,y =1.则a b 的值为____.15.定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,则x 的取值范围为____. 三、解答题(共75分)16.(8分)解方程组或不等式组:(1)⎩⎨⎧2x -y =7,x +2y =-4;(2)⎩⎨⎧x 3+2<x ,2x +2≥3(x -1).17.(9分)解不等式组⎩⎨⎧x +3≥1,①4x ≤1+3x.②请结合题意填空,完成本题的解答. (1)解不等式①,得___; (2)解不等式②,得__ __;(3)把不等式①和②的解集在数轴上表示出来;18.(9分)已知关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4②的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y>0.求满足条件的m 的整数值.19.(9分)某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价-进价),这两种服装的进价、标价如表所示:类型价格A型B型进价(元/件)60100标价(元/件)100160(1)(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?20.(9分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行车的总数不变,那么至多能购进B型车多少辆?21.(10分)利用对称变换可设计出美丽图案,如图,在方格纸中有一个顶点都在格点上的四边形,且每个小正方形的边长都是1,完成下列问题:(1)图案设计:先作出四边形关于直线l成轴对称的图形,再将你所作的图形和原四边形绕O点按顺时针旋转90°;(2)完成上述图案设计后,可知这个图案的面积等于________.22.(10分)图形的操作过程(本题中四个长方形的水平方向的边长均为a,竖直方向的边长均为b):在图①中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到的封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述①②③三个图形中除去阴影部分后剩余部分的面积:S1=________,S2=________,S3=________;(3)联想与探索:如图④所示,在一块长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?23.(11分)为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2018年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2018年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(提示:水费=水价+污水处理费)(1)求m,n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%,若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?答案 选择题1-5:DBDAA 6-10:AACCD 填空 11. -1 12. 1cm 13. 75° 14. 115. 72<x <11216. (1)解:⎩⎨⎧x =2,y =-3(2)解:3<x ≤5 17. (1)_x ≥-2 (2)x ≤1(3)解:把不等式①和②的解集在数轴上表示出来为:(4)原不等式组的解集为__-2≤x ≤1__.18. 解:①+②,得3x +y =3m +4③;②-①,得x +5y =m +4④,∵关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4②的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y>0,∴将③,④代入不等式组,得⎩⎨⎧3m +4≤0,m +4>0,解得-4<m ≤-43,∴满足条件的m 的整数值为-3,-219. 解:(1)设A 种服装购进x 件,B 种服装购进y 件,由题意得⎩⎨⎧60x +100y =6000,40x +60y =3800,解得⎩⎨⎧x =50,y =30.答:A 种服装购进50件,B 种服装购进30件 (2)由题意得3800-50(100×0.8-60)-30(160×0.7-100)=3800-1000-360=2440(元).答:服装店比按标价出售少收入2440元20. 解:(1)设A 型自行车的单价为x 元/辆,B 型自行车的单价为y 元/辆,根据题意得⎩⎨⎧y =6x -60,100x +30y =71000.解得⎩⎨⎧x =260.y =1500.答:A 型自行车的单价为260元/辆,B型自行车的单价为1500元/辆 (2)设购进B 型自行车m 辆,则购进A 型自行车(130-m)辆,根据题意得260(130-m)+1500m ≤58600,解得m ≤20.答:至多能购进B 型车20辆21. 解:(1)略 (2)2022. 解:(1)画图(要求对应点在水平位置上,宽度保持一致),如图①所示 (2)ab -b ab -b ab -b (3)猜想:依据前面的有关计算,可以猜想草地的面积仍然是ab -b.方案是:①将小路沿着左右两个边界剪去;②将左侧的草地向右平移1个单位;③得到一个新的长方形,如图②所示,理由是:在新得到的长方形中,其纵向宽仍然是b ,其水平方向的长变成a -1,所以草地的面积是b(a -1)=ab -b23. 解:(1)由题意得⎩⎨⎧20(m +0.80)=49,49+(25-20)(n +0.80)=65.4,解得⎩⎨⎧m =1.65,n =2.48. (2)由(1)得m =1.65,n =2.48.当用水量为30吨时,水费为49+(30-20)×(2.48+0.80)=81.8(元),2%×8 190=163.8(元).∵163.8>81.8,∴小张家8月份的用水量可超过30吨,可设小张家6月份用水x 吨,由题意得81.8+(2×1.65+0.80)(x -30)≤163.8,解得x ≤50.答:小张家6月份最多能用水50吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师大版七年级数学下册期末综合检测含解析
(120分钟120分)
一、选择题(每小题3分,共30分)
1.如果一个三角形的两边长分别为2和4,则第三边长可能是( )
A.2
B.4
C.6
D.8
2.方程=1-去分母后正确的结果是( )
A.2(2x-1)=8-3-x
B.2(2x-1)=1-(3-x)
C.2x-1=1-(3-x)
D.2(2x-1)=8-(3-x)
3.下列标志图中,既是轴对称图形,又是中心对称图形的是( )
4.如果一个多边形的内角和是其外角和的一半,那么这个多边形是( )
A.六边形
B.五边形
C.四边形
D.三角形
5.已知是二元一次方程组的解,则a-b的值为( )
A.-1
B.1
C.2
D.3
6.如图,不等式组的解集在数轴上表示为( )
7.下列图形中,不能通过其中一个四边形平移得到的是( )
8.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为( )
A.13
B.3
C.4
D.6
9.将一副三角板按如图所示摆放,图中∠α的度数是( )
A.75°
B.90°
C.105°
D.120°
10.现有100名人员,需要同时租用6人间和4人间两种客房,若每个房间都住满,则租房方案共有( )
A.8种
B.9种
C.16种
D.17种
二、填空题(每小题3分,共24分)
11.图中多边形的周长是厘米.
12.已知关于x的不等式x-a<1的解集为x<2,则a的值是.
13.若关于x,y的二元一次方程组的解满足x+y>1,则k的取值范围是.
14.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= .
15.利用边长相等的正三角形和正六边形的地砖镶嵌地面时,在每个顶点周围有a块正三角形和b块正六边形的地砖(a,b都不为0),则a+b的值为.
16.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB的度数为.
17.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为元.
18.对于任意有理数a,b,c,d,规定a b
c d
=ad-bc,如
1 2
3 4
=1×4-2×3,若
x 2
3 4
-
-
=-2,则x= .
三、解答题(共66分)
19.(8分)(1)解方程-=1.
(2)解方程组
20.(8分)(1)解不等式:->-1,并把解集在数轴上表示出来.
(2)解不等式组并将其解集在数轴上表示出来.
21.(8分)画图并填空:
(1)画出图中△ABC的高CD(标注出点D的位置).
(2)画出把△ABC沿射线CD方向平移3cm后得到的△A1B1C1.
(3)根据“图形平移”的性质,得BB1= cm,AC与A1C1的关系是:.
22.(8分)列方程或方程组解应用题:
在“五一”期间,小明、小亮等同学随家长一同到某公园去游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:
(1)小明他们一共去了几个成人,几个学生?
(2)请你帮助小明算一算,用哪种方式购票更省钱?
23.(8分)已知方程组和有相同的解,求a2-2ab+b2的值.
24.(8分)如图,点P是△ABC内部的一点.
(1)度量线段AB,AC,PB,PC的长度,根据度量结果比较AB+AC与PB+PC的大小.
(2)改变点P的位置,上述结论还成立吗?
(3)你能说明上述结论为什么正确吗?
25.(8分)(1)观察图案(1),它可以看作是由哪个“基本图案”经过怎样的变换得到
的.
(2)如图(2)所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
①把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
②把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2.
26.(10分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.
消费金额(元) 300~
400
400~
500
500~
600
600~
700
700~
900

返还金
额(元)
30 60 100 130 150 …
注:300~400表示消费金额大于300元且小于或等于400元,其他类同.
根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元).
(1)购买一件标价为1 000元的商品,顾客获得的优惠额是多少?
(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?
答案解析
1.【解析】选B.由三角形的三边关系可得第三边的范围为大于2小于6,则B项正确.
2.【解析】选D.方程左右两边同时乘以8,
得:2(2x-1)=8-(3-x).
3.【解析】选B.A只是中心对称图形,C只是轴对称图形,D既不是轴对称图形也不是中心对称图形.
4.【解析】选D.四个选项中三角形的内角和是其外角和的一半,故选D.
5.【解析】选A.∵已知是二元一次方程组的解,

由①+②,得a=2,由①-②,得b=3,∴a-b=-1.
6.【解析】选C.由2x-1≤3得x≤2,由2-x<3得x>-1,故解集为-1<x≤2,结合选项中解集表示,可知选C.
7.【解析】选D.A,B,C能通过其中一个四边形平移得到;D不能通过其中一个四边形平移得到,可需要一个四边形旋转得到.
8.【解析】选D.∵△ABC≌△DEF,∴DF=AC,∵△DEF的周长为13,DE=3,EF=4,
∴DF=6,即AC=6.
9.【解析】选C.∠α的度数为180°-45°-30°=105°.
10.【解析】选A.设租用6人间为x间,4人间为y间.
依题意,得6x+4y=100,整理得:3x+2y=50
∴y=25-x>0,
∴0<x<<17,由于x,y为正整数,
∴x能被2整除,即x为偶数,
∴x=2,4,6,…,16(8个数值),
相应的y=22,19,16,…,1(8个数值),
∴对应如下8个租房方案:
方案
一二三四五六七八数量
房间
6人间 2 4 6 8 10 12 14 16
4人间22 19 16 13 10 7 4 1
11.【解析】通过平移可知多边形的周长为:(5+2)×2=14(厘米).
答案:14
12.【解析】不等式x-a<1两边都加a,得x<1+a,所以1+a=2,所以a=1.
答案:1。

相关文档
最新文档