二次根式测试题(复习提高)
二次根式单元提高测试题(一)及答案
。
21.比较大小: 2 3
。
22.计算 a
3
9a 3
a
=
。
a
3
23. 1 与 3 2 的关系是
。
3 2
24.若 x 5 3 ,则 x 2 6x 5 的值为
。
and Su 25.若 3 的整数部分为 x ,小数部分为 y ,则 3x y 的值是
。
ing 26. 化简: 18a2b3( a<0 ,b>0)=_________; eth 27.在△ABC 中,∠C=90°,AC= 10cm,AB= 34cm,则 BC=___________cm; m 28.在数轴上与表示 3的点的距离最近的整数点所表示的数是______________;
19.1
20. 15 3 5 16 3 3
三、解答题
g a 21.(1) x 4 (2) a 1 (3)全体实数 (4) x 0
in 3
24
e 22.解:(1)原式= 144 169 144 169 12 13 156 ;
ir b (2)原式= 1 15 5 ;(3)原式= 1 322 5 1 32 5 16 5 ;
11
)A.
B. 30 330
330
C.
D. 30 11
30
30
e a 9、小明的作业本上有以下四题:
tim ① 16a4 4a2 ; ② 5a 10a 5 2a ;
t a ③ a 1 a2 1 a ;④ 3a 2a a 。做错的题是(
)
a a
a
g A.①
B.②
C.③
D.④
ly one thin 10、若最简二次根式 1 a与 4 2a 的被开方数相同,则 a 的值为( )
(完整版)二次根式提高练习题(含答案)
1.( )( );
2. - - ;
3.(a2 - + )÷a2b2 ;
4.( + )÷( + - )(a≠b).
二.求值:
1.已知x= ,y= ,求 的值.
2.当x=1- 时,求 + + 的值.
三.解答题:
1.计算(2 +1)( + + +…+ ).
2.若x,y为实数,且y= + + .求 - 的值.
=(2 +1)( )
=9(2 +1).
【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.
2、【提示】要使y有意义,必须满足什么条件? 你能求出x,y的值吗?
【解】要使y有意义,必须 ,即 ∴x= .当x= 时,y= .
y= = =5-2 .
∴x+y=10,x-y=4 ,xy=52-(2 )2=1.
= = = = .
【点评】本题将x、y化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.
2、【提示】注意:x2+a2= ,
∴x2+a2-x = ( -x),x2-x =-x( -x).
【解】原式= - +
=
= = =
= .当x=1- 时,原式= =-1- .【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式= - +
= - + = .
解答题:
1、【提示】先将每个部分分母有理化后,再计算.
【解】原式=(2 +1)( + + +…+ )
=(2 +1)[( )+( )+( )+…+( )]
又∵ - = -
=| |-| |∵x= ,y= ,∴ < .
第二十一章 二次根式复习及单元测试
第二十一章 二次根式复习(2):二次根式加减时,可以先得二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
1. 下列根式中,与3是同类二次根式的是( ) A. 24 B. 12 C.32 D. 18 2. 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式B. 8与80是同类二次根式C. 2与150不是同类二次根式 D. 同类二次根式是根指数为2的根式 3. 与3a b 不是同类二次根式的是( ) A. 2ab B. b a C. 1ab D. 3b a 4. 下列根式中,是最简二次根式的是( ) A. 0.2b B. 1212a b - C. 22x y - D. 25ab5. 若12x ,则224421x x x x -++++化简的结果是( )A. 21x -B. 21x -+C. 3D. -3 6. 若2182102x x x x++=,则x 的值等于( ) A. 4 B. 2± C. 2 D. 4±7. 若3的整数部分为x ,小数部分为y ,则3x y -的值是( ) A. 333- B. 3 C. 1 D. 38. 下列式子中正确的是( ) A. 527+= B. 22a b a b -=- C. ()a x b x a b x -=- D. 6834322+=+=+ 9. 在8,12,18,20中,与2是同类二次根式的是 。
10.若最简二次根式125a a ++与34b a +是同类二次根式,则____,____a b ==。
11. 一个三角形的三边长分别为8,12,18cm cm cm ,则它的周长是 cm 。
12. 若最简二次根式23412a +与22613a -是同类二次根式,则 ______a =。
13. 已知32,32x y =+=-,则33_________x y xy +=。
14. 已知33x =,则21________x x -+=。
《二次根式》一章训练题及标准答案
《二次根式》一章复习训练题21.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a +B. 22a +C. ()222a +D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥19.)A. 0B. 42a -C. 24a -D. 24a -或42a -20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()421.2440y y -+=,求xy 的值。
22. 当a 1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
初中数学 中考复习二次根式专题练习(含答案)
二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
中考数学复习《二次根式》专项练习题-附带答案
中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。
中考数学复习《二次根式》专项提升训练题-附答案
中考数学复习《二次根式》专项提升训练题-附答案学校:班级:姓名:考号:一、单选题1.如果代数式有意义,那么x的取值范围是()A.x≥0且x≠1 B.x≠1 C.x>0 D.x≥02.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列各式计算正确的是().A.B.C.D.4.估算的值应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间5.已知,则的值是()A.B.C.D.6.若,则()A.B.C.D.x为一切实数7.已知,,则代数式的值为()A.9 B.C.3 D.58.在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣3c D.2a二、填空题9.的倒数为.10.如果式子有意义,那么x的取值范围是.11.比较大小:.12.已知,那么,.13.符合的正整数的值有个.三、解答题14.计算:(1)(2)15.已知,求代数式的值.16.求代数式的值,其中如表是小明和小颖的解答过程:解:原式.解:原式.(1)填空:的解法是错误的;(2)求代数式的值,其中.17.(1)已知是的算术平方根,是的立方根,求的立方根;(2)若,的算术平方根是5,求的平方根.18.如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求的值;(2)在数轴上还有C、D两点分别表示实数c和d,且有|2c+6|与互为相反数,求2c+3d 的平方根.参考答案:1.A2.D3.C4.B5.B6.A7.C8.B9.10.且11.<12.4;-813.314.(1)解:原式(2)解:.15.解:当,时.16.(1)小明(2)解:原式原式.17.(1)解:由题意知∴∴∴∴的立方根为;(2)解:由,解得∴.∵的算术平方根是5∴∴∴的平方根为.18.(1)解:∵AB=2∴∴∴;(2)解:∵|2c+6|与互为相反数∴∵∴2c+6=0,d−4=0∴c=−3,d=4∴∴的平方根是。
2014年中考数学总复习提高测试题《二次根式》提高测试
2014年中考数学总复习提高测试题《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………()【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.()【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…()【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、ba x 2-是同类二次根式.…( )【提示】31b a 3、ba x 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2aa .【点评】注意除法法则和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D . 【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………()(A )x 2 (B )-x 2(C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………()(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.(五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -m ab mn +m n nm)÷a 2b 2m n ;【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2mn-m ab mn +m n n m )·221ba n m=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy yx +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22a x +=22a x +(22a x +-x ),x 2-x22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x - =|xy yx +|-|x y y x -|∵ x =41,y =21,∴yx<xy .∴ 原式=x y y x +-y x xy+=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
数学八年级下《二次根式》复习测试题(答案)
;
3、计算:3÷ 6的结果是 ( 1 A、 2 B、
2
) C、 3 2 ) D、负数或零 D、 2
13、实数 a 在数轴上的位置如图所示,化简: 14、若 ab<0,则化简
=___________.
6 2
a2b 的结果是_____________.
班级:
4、如果 a =-a,那么 a 一定是 ( A、负数 B、正数 ) B、若
A、3
B、9
C、-3
D、3 或-3
试马镇初级中学八年级数学第一次月考试题
一、选择题(共 20 分): 1、下列各式中,不是二次根式的是( A、 45 B、 3 )
6X3 D. X2+1
10、若 a ) C、 a2 2 A、 a D、
1 5 ,b ,则 a、 b 两数的关系是( 5 5
2
A
B
(3)
3 1 2 3
2
2ቤተ መጻሕፍቲ ባይዱ
(4) 32-5
1 +6 2
1 8
26、 (5 分)观察下列各式及验证过程:
1 -2 0 ( 3+1)( 3-1)+( 2-1) -() (5) 3
(6)
式①: 2
2 2 2 3 3
验证: 2 (7) 4 5 45 8 4 2 式②: 3
姓名:
6、若 2m-4 与 3m-1 是同一个数的平方根,则 m 为( A、-3 7、能使等式 A、x≠2 B、1 C、-3 或 1
x x = x-2 x-2
B、x≥0
1 2 1
成立的 x 值的取值范围是( C、x>2
= 2 +1; ②
中考数学总复习《二次根式》专项提升练习题(附答案)
中考数学总复习《二次根式》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________ 1. 已知二次根式x+1,请回答下列问题:(1)要使该二次根式有意义,则x的取值范围为__________;(2)若该二次根式能与5进行合并,则x的值可为________;(3)该二次根式为最简二次根式,则x可取的最小整数为__________.2.计算:(1)(-3)2=________;(2)(-0.2)2=________;(3)34=________;(4)18-8=________;(5)32÷2=________;(6)3×(2+8)=________.3. 北师八上P34习题改编请按要求估计下列各数的值:(1)11在相邻的整数________和________之间;(2)17-3的值在相邻的整数________和________之间;(3)与15最接近的整数为________.知识逐点过考点1 二次根式的相关概念及性质相关概念1. 二次根式定义:形如 a (a≥0)的式子;2. 有意义的条件:被开方数①________;3. 最简二次根式必须同时满足的两个条件:(1)被开方数中不含分母(即分母中不含根号);(2)被开方数中不含能开得尽方的因数或因式;4. 同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式性质1. 双重非负性: a ≥0且a≥0;2. ( a )2=a(a②________);3. a2=|a|=⎩⎪⎨⎪⎧③(a≥0)④(a<0);4. ab =⑤________(a≥0,b≥0);5.ab=⑥________(a≥0,b>0)考点2 二次根式的运算加减法先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并乘法 a ·b =⑦______(a≥0,b≥0)除法ab=ab(a≥0,b>0)考点3 无理数的估值估值确定无理数的值在哪两个相邻整数之间:1. 先对无理数平方,如(7)2=7;2. 找出与平方后所得数字相邻的两个开得尽方的整数,如4和9;3. 对以上两个整数开方,如4=2,9=3;4. 确定这个无理数的值在开方后所得的两个整数之间,即2<7<3确定无理数的整数部分和小数部分要确定a±b 的整数部分和小数部分,先对a±b 进行估值,如1+7的整数部分是3,则它的小数部分是1+7-3,即7-2【温馨提示】牢记常见的无理数的近似值:2≈1.414,3≈1.732,5≈2.236,π≈3.142,5-12≈0.618真题演练命题点1 二次根式的相关概念及性质1. 若式子2x-4在实数范围内有意义,则x的取值范围是()A. x≠2B. x≥2C. x≤2D. x≠-22. 化简42的结果是()A. -4B. 4C. ±4D. 2命题点2 二次根式的运算3. 计算:3×12=________.命题点3 无理数的估值4. 设6-10的整数部分为a,小数部分为b,则(2a+10)b的值是()A. 6B. 210C. 12D. 910基础过关1. 下列二次根式是最简二次根式的是()A. 8B. 13 C. 18 D. 72. 若a-4有意义,则a的值可以是()A. -1B. 0C. 2D. 63. 对于二次根式的乘法运算,一般地,有 a ·b =ab .该运算法则成立的条件是()A. a>0,b>0B. a<0,b<0C. a≤0,b≤0D. a≥0,b≥04.如图,数轴上表示实数7的点可能是()第4题图A. 点PB. 点QC. 点RD. 点S5. 下列计算正确的是()A. (2)0=2B. 23+33=56C. 8=42D. 3(23-2)=6-236. 墨迹覆盖了等式“9-■=1”中的一部分,则覆盖的部分可以是()A. 80B. 8C. 38 D. 237. 若a=2,b=7,则14a2b2=()A. 2B. 4C. 7D. 28. 最简二次根式m-1与33可以合并,则m=__________.9. 计算:2-8=__________.10.计算:20×5=__________.11. 已知x,y为正整数,且x<6<y,则y x的值可以是__________.12. 请写出一个正整数m的值使得8m 是整数:m=__________.13. 计算:27÷32×22-62.综合提升14. 已知k=2(5+3)(5-3),则与k最接近的整数为()A. 2B. 3C. 4D. 5二次根式(参考答案)1. (1)x ≥-1; 【解析】根据二次根式的非负性可得x +1≥0,解得x ≥-1.(2)4(答案不唯一); 【解析】∵x +1 能与5 进行合并,∴x +1的值可以为5,解得x =4(答案不唯一).(3)1.2. (1)3;(2)0.2;(3)32;(4)2 ;(5)4;(6)36 . 3. (1)3,4;(2)1,2;(3)4; 【解析】∵9<15<16,∴9 <15 <16 ,3<15 <4,∵3.52=12.25,即9<12.5<16,∴与15 最接近的整数为4. 知识逐点过①大于或等于0 ②≥0 ③a ④-a ⑤ a ·b ⑥a b⑦ab 真题演练 1. B 【解析】∵2x -4 在实数范围内有意义,∴2x -4≥0,解得x ≥2. 2. B 【解析】∵a 2 =|a |,∴42 =4. 3. 6 【解析】原式=3×12 =36=6.4. A 【解析】∵9<10<16,∴3<10 <4,∴-4<-10 <-3,∴2<6-10 <3,∴6-10 的整数部分是2,小数部分是6-10 -2=4-10 ,即a =2,b =4-10 ,∴(2a +10 )b =(2×2+10 )×(4-10 )=6.基础过关1. D2. D 【解析】 ∵二次根式a -4 有意义,∴a -4≥0,解得a ≥4,∴a 的值可以是6.3. D 【解析】 根据二次根式有意义的条件,得⎩⎪⎨⎪⎧a ≥0b ≥0ab ≥0,∴a ≥0,b ≥0. 4. B 【解析】∵4 <7 <9 ,∴7 位于2和3之间,∴数轴上表示实数7 的点可能是点Q.5. D【解析】A.(2)0=1,故该选项不正确,不符合题意;B.23+33=53,故该选项不正确,不符合题意;C.8=22,故该选项不正确,不符合题意;D.3(23-2)=6-23,故该选项正确,符合题意.6. C【解析】9-38=3-2=1.7. A【解析】∵a=2,b=7,∴14a2b2=14×(2)2(7)2=14×27=4=2.8. 4【解析】∵最简二次根式m-1与33可以合并,∴m-1=3,∴m=4.9. -2【解析】2-8=2-22=-2.10. 10【解析】原式=100=10.11. 3(答案不唯一)【解析】∵4<6<9,∴2<6<3.∵x,y为正整数,∴x=1或2,y≥3,∴y x的值不唯一,只要符合要求即可,可以是3,4,9,16等.12. 2(答案不唯一)【解析】当m=2时,则8m =16=4,符合题意,∴m的值可以为2(答案不唯一).13. 解:原式=33×23×22-62=122-62=62.14. B【解析】k=2(5+3)(5-3)=22=8,∵4<8<9,9-8<8-4,∴与8最接近的整数为3.。
二次根式提高复习
二次根式(提高)1.二次根式:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a)2=a(a≥0);(2)==aa25.分母有理化6.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)xx--+315;(2)22)-(x例3、在根式)A.1) 2) B.3) 4) C.1) 3) D.1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=xyyxxyyxxxy=a(a>0)a-(a<0)0 (a=0);例5、已知数a,b=b-a,则 ( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算1.化简:(1__ ;(2=___ (3___ _;(40,0)x y≥≥=___ _;(5)_______420=-。
(6=_________。
例1. 将根号外的a移到根号内,得 ( )A. ;B. -;C. -;D.例2.把(a-b)-1a-b化成最简二次根式例3、计算:例4、先化简,再求值:,其中例5、如图,实数a、b在数轴上的位置,化简:11()ba b b a a b++++4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >,>②如果a b <,<例1、比较与的大小。
二次根式练习题50道(含答案)
二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。
中考数学复习《二次根式》专项训练(含答案)
~数学中考专项:二次根式【沙盘预演】1.函数y=自变量的取值范围是()A.x≠﹣3 B.x>﹣3 C.x≥﹣3 D.x≤﹣3【解析】解:根据题意得到:x+3>0,解得x>﹣3,故选B.2.下列运算正确的是()A.﹣=13 B.=﹣6C.﹣=﹣5 D.=±3【解析】解:A、=﹣13,故错误;B、=6,故错误;C、=﹣5,正确;D、=3,故错误;故选:C.3.与是同类二次根式的是()A.B.C.D.【解析】解:A、与﹣的被开方数不同,故A错误;B、与﹣的被开方数不同,故B错误;C、与﹣的被开方数相同,故C正确;D、与﹣的被开方数不同,故D错误;故选:C4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣1【解析】解:A、﹣a•a3=﹣a4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.5.若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2 D.a≠2【解析】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选A6.在函数y=34xx--中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4【解析】欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.∴x的取值范围是30,40.xx-⎧⎨-⎩≥≠解得x≥3且x≠4.故选D.7.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1 【解析】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b 【解析】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.9.若式子1-x在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.10.下列算式①=±3;②=9;③26÷23=4;④=;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【解析】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=,正确;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:.故选:B.11.若式子1x在实数范围内有意义,则x的取值范围是x≥1.-【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.12.若二次根式有意义,则x的取值范围是x≥1.【解析】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【真题演练】1.(•张家界)下列运算正确的是()A.a2+a=2a3B.=aC.(a+1)2=a2+1 D.(a3)2=a6【解析】解:A、a2和a不是同类项,不能合并,故原题计算错误;B、=|a|,故原题计算错误;C、(a+1)2=a2+2a+1,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.2.(•聊城)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【解析】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.3.(•扬州)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3D.x≠3【解析】解:由题意,得x﹣3≥0,解得x≥3,故选:C.4.(•孝感)下列计算正确的是()A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a5【解析】解:A、a﹣2÷a5=,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.5.(•郴州)下列运算正确的是()A.a3•a2=a6B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4【解析】解:A、a3•a2=a5,故此选项错误;B、a﹣2=,故此选项错误;C、3﹣2=,故此选项正确;D、(a+2)(a﹣2)=a2﹣4,故此选项错误.6.(•泰州)下列运算正确的是()A.+=B.=2C.•=D.÷=2【解析】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.7.(•郴州)计算:=3.【解析】解:原式=3.故答案为:38.(•泸州)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, 则 a _________
发展:已知 练习 一、 选择
,则 a ______。
1
2 1、当m<0时,化简 m 的结果是( m
)
A.-1
B.1
C.m
D.-m.
3、函数 y=
1 x 1 中,自变量 x 的取值范围是( ). x2
B.x>2 C.x>-1 且 x≠2 ) D.x≥-1 且 x≠2 A. 6 B. 8 B. a C. 12 D. 18 C. -3a D.3a
2 15、实数 a,b 在数轴上位置如图所示,化简 a2 - b2 + ( a b) .
16、直线 l : y (m 3) x n 2 ( m , n 为常数)的图象如图所示, 化简: m n n 4n 4 m 1 .
2
y l
o
x
图 (10)
2
y 6 =0,以 x,y 为两边长的等腰三角形的周长是_______.
3 12、计算:(1) 12 -2 +| 3 -2|+ 3 × 4
-1
2 1 1 (2) 3 1 ; 3 1 2 3
0
1
13、先化简,再求值: ( 2 1 ) (a 2 1) ,其中 a 3 3 。 a 1 a 1 14、先化简,再求值: (2a-b)2-2a(a-b)-(2a2+b2),其中 a= 3+1, b= 3-1.
二次根式 1.二次根式:2 最简二次根式 3.同类二次根式 4.二次根式的性质: 5.二次根式的运算: 1、概念与性质 例 1 下列各式 1)
1 1 , 2) 5,3) x 2 2, 4) 4,5) ( ) 2 ,6) 1 a ,7) a 2 2a 1 5 3
其中是二次根式的是_________(填序号). 例 2、求下列二次根式中字母的取值范围(1); (2)
2 2
D.-
2 2
二、填空 8、如果 y= x2 4 + 4 x2 +1,则 2x+y 的值是 . .
9、若实数 x, y 满足 x 2 ( y 3)2 0 ,则 xy 的值是
10、已知等边三角形 ABC 的边长为 3 3 ,则Δ ABC 的周长是____________; 11、已知│x-3│+ 三、解答题
x 例 3、 在根式 a 2 1) b2 ; 2) ;3) x 2 xy ; 4) 27abc
A.1) 、2) B. 3)、 4)
,最简二次根式是(
)
5
C.1)、 3)
D.1)、 4)
1 x y y 1 8x 8x 1 , 求代数式 2 2 y x 例 4、已知:
A.x≥-1
4、下列根式中,与 3 是同类二次根式的是( 5、已知 a <0,那么
a 2 2a 可化简为(
)A. -a
6、已知 x
2 ,则代数式
x 2 2 2 2 的值为( )A. 2 2 B. 2 2 C. D. x 1 3 3
)A. 2 B.- 2 C.
7、
1 的绝对值等于 ( 2
2 例 5、已知数 a,b,若 ( a b) =b-a,则 (
x y 2的值。 y x
C. a≥b D.ቤተ መጻሕፍቲ ባይዱa≤b
) A. a>b
B. a<b
2、二次根式的化简与计算
例 1. 将
根号外的 a 移到根号内,得 ( 1 -a-b 化成最简二次根式
)A.
;B.-
; C.-
;D.
例 2. 把(a-b)
例 3、先化简,再求值:
1 1 b 5 1 5 1 ,其中 a= ,b= . a b b a (a b) 2 2
例 4、如图,实数 a 、 b 在数轴上的位置,
2 2 2 化简 : a b (a b)
3、在实数范围内分解因式 (1) 4、规律性问题 例 1. 已知
;
(2)