第二讲 函数-映射
大一高数知识点映射与函数
大一高数知识点映射与函数高等数学是大多数理工科专业大一必修的一门课程,其中包含了许多重要的数学知识点。
在这篇文章中,我们将重点讨论高数中的映射与函数。
一、映射的概念与性质映射是数学上非常重要的概念,它描述了元素之间的对应关系。
在集合论中,我们将一个元素从一个集合映射到另一个集合,这两个集合可以是相同的,也可以是不同的。
映射一般用函数符号f(x) 表示,其中 x 是原集合的元素,f(x) 是它在目标集合中的对应元素。
映射具有以下性质:1. 单射:若 f(x1) = f(x2),则 x1 = x2。
即不同的元素在映射中有不同的对应元素。
2. 满射:若对于任意的 y ∈目标集合,都存在 x ∈原集合,使得 f(x) = y。
即每一个元素都有对应的映射元素。
3. 一一映射:即又是单射又是满射的映射。
二、函数的定义与性质函数是映射的一种特殊形式,它在数学和其他学科中都有着广泛的应用。
函数的定义比较简洁,它是一种特殊的映射,其中原集合只能有一个元素对应到目标集合中的一个元素。
函数具有以下性质:1. 定义域和值域:函数的定义域是指输入变量的取值范围,值域是指函数输出的取值范围。
2. 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) = f(x) 或 f(-x) = -f(x) 是否成立。
3. 单调性:函数在定义域上的增减状况,可以分为递增、递减或保持不变。
4. 极值与最值:函数在定义域的某一点或某一区间上取得的最大值或最小值。
5. 对称性:函数是否具有关于某个轴的对称性。
三、常见的函数类型在高数课程中,我们学习了许多常见的函数类型。
下面是其中一些重要的函数:1. 幂函数:y = x^n,其中 n 是正整数。
2. 指数函数:y = a^x,其中 a 是正实数且不等于 1。
3. 对数函数:y = log_a(x),其中 a 是正实数且不等于 1。
4. 三角函数:包括正弦函数、余弦函数和正切函数等。
5. 反三角函数:包括反正弦函数、反余弦函数和反正切函数等。
函数、映射的概念
函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。
(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。
2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。
(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。
显然值域是集合B的子集。
3、构成函数的三要素:定义域,值域,对应法则。
值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。
4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。
注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。
•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。
函数映射知识点总结
函数映射知识点总结一、函数映射的定义函数映射是数学中一个重要的概念,它描述了一个集合到另一个集合的元素之间的对应关系。
在数学中,我们通常将集合A中的元素a通过一个函数f映射到集合B中的元素f(a)上。
函数映射的定义可以形式化地表述为:设A、B为两个非空的集合,如果存在一个映射f,对于A中的每一个元素a,都有对应的B中的元素f(a)与之对应,则称函数f为从A 到B的映射,通常记作f:A→B。
我们可以根据函数映射的定义,得出函数映射的几个重要性质:1. 一一对应:如果对于A中的每一个元素a,都有对应的B中唯一的元素f(a),且对于B中的每一个元素b,也都有对应的A中唯一的元素f^(-1)(b),则称函数f为A到B的一一对应映射。
2. 到函数:如果对于A中的每一个元素a,都有对应的B中的元素f(a),则称函数f为从A到B的到函数映射。
3. 满函数:如果对于B中的每一个元素b,都有对应的A中的元素a,使得f(a)=b,则称函数f为A到B的满函数映射。
二、函数映射的性质1.函数的合成和反函数在函数映射中,我们可以将两个函数f:A→B和g:B→C进行合成,构成一个新的函数h:A→C。
这个新函数h被称为函数f和g的合成函数,通常记作h=g∘f,它的定义为h(a)=g(f(a)),其中a∈A。
此外,若函数f是一个一一对应映射,那么我们可以定义一个反函数f^(-1),使得对于B中的每一个元素b,都有唯一的f^(-1)(b)与之对应,这个反函数被称为函数f的反函数,满足f^(-1)(f(a))=a,f(f^(-1)(b))=b。
2. 函数的性质函数映射具有一些重要的性质,如可加性、齐性、单调性等,这些性质在函数的分析和应用中具有重要作用。
比如,如果一个函数f同时满足f(x+y)=f(x)+f(y)和f(ax)=af(x),那么我们称这个函数具有可加性和齐性。
另外,如果对于A中的任意两个元素x1和x2,若有x1<x2,则有f(x1)<f(x2),则称函数f具有单调性。
高一数学必修一1.2.2函数的表示法(二)映射 教学课件PPT
射个数为 nm 个
1
1
0
0
2 1
2 1
3
3
1
1
0
0
2
2
1
1
3
3
1 0
2 1
3
1 0
1 0
2 1
2 1
3
3
共 23 8个
1 0
2 1
3
课堂小结
(1) 映射三要素: 原象、象、对应法则; (2) 取元任意性,成象唯一性; (3) A中元素不可剩,B中元素可剩; (4) 多对一行,一对多不行; (5) 映射具有方向性:f : A→B与
记作:f:x y, x A, y B 或者f:A B,其中x称为原象,y称为象
象与原象的定义:
给定一个集合A到B的映射,且a∈A, b∈B,若a与b对应,则把元素b叫做a在 B中的象,而a叫做b的原象.
③求正弦
④乘以2 1
1
2 3
2
4
3
5
6
函数与映射之间的异同: 1)函数是一个特殊的映射; 2)函数:数集A数集都是数集,
记作:f:x y, x A, y B 或者f:A B,其中x称为原象,y称为象
象与原象的定义:
给定一个集合A到B的映射,且a∈A, b∈B,若a与b对应,则把元素b叫做a在 B中的象,而a叫做b的原象.
③求正弦
④乘以2 1
1
2 3
2
4
3
5
6
函数与映射之间的异同: 1)函数是一个特殊的映射; 2)函数:数集A数集都是数集,
内接三角形;f:B--->A
函数 映射
函数映射
函数是数学中的一个重要概念,是一种映射关系。
在现代数学中,函数是指一个集合中的每个元素都有且仅有一个映射到另一个集合中
的元素,这种关系被称为函数映射。
函数映射在数学、物理、工程学
等多个领域都有广泛的应用,下面就来分步骤阐述函数映射的相关概
念和应用。
1. 函数映射的定义
函数是指在两个集合之间的映射关系,也可以理解成是将一个数
集中的数值映射到另一个数集中的数值。
函数的定义包括定义域、值
域和映射关系。
其中定义域是指函数的自变量的取值范围,值域是指
函数的因变量的取值范围,映射关系是指对于定义域中的每一个元素,都对应着唯一的值域中的元素。
2. 函数映射的分类
函数映射可以分为线性函数和非线性函数两种类型。
线性函数是
指函数的图像是一条直线,而非线性函数则是除线性函数外的其他类型。
3. 函数映射的应用
函数映射的应用非常广泛,以下是一些常见的应用:
(1)在数学和物理学中,函数映射被广泛应用于研究各种自然
现象的规律性,例如物理中的运动、电路中的电压等等。
(2)在计算机科学中,函数映射也是非常重要的一种概念,被
广泛应用于编写程序、进行数据处理、进行模拟等等。
(3)在金融学中,函数映射可以被用于研究股票市场、期货市
场等金融交易的规律性。
(4)在生物学中,函数映射可以被用于研究基因、生命活动等
方面的规律性。
总之,函数映射是一种非常重要的概念,在多个领域都有着广泛
的应用。
学好和熟练应用函数映射,可以为我们的学习和工作带来很多便利和帮助。
高数课件映射与函数
3
图像和原像的关系
图像和原像之间存在一对多或多对一的关系,取决于映射的特性。
函数的定义和性质
什么是函数?
函数是一种特殊的映射,它 将定义域中的每个元素映射 到值域中唯一的元素。
函数的性质
函数具有单调性、有界性和 奇偶性等重要性质,可应用 于各个领域。
示例
举例说明具体函数的定义和 性质,在实际问题中的应用。
映射与函数的关系
1 映射与函数的相同点
映射和函数都是描述元素之间的对应关系,具有相似的数学概念和性质。
2 映射与函数的不同点
映射是一个更普遍的概念,而函数是一种特殊的映射。
3 映射与函数的交叉应用
通过具体案例来展示映射和函数在高等数学中的应用。
映射与函数在高数中的应用
微积分
映射和函数是微积分中研究函数 极限、导数和积分等重要工具。
高数课件映射与函数
欢迎来到高数课件映射与函数的世界!本课程将带你深入了解映射和函数的 定义、性质以及它们在高等数学中的应用。准备好开始探索吧!
映射的定义和性质
1 什么是映射?
映射是一个将一个集合中的每个元素映射到另一个集合中的元素的规则。
2 映射的性质
映射可以是单射、满射或双射,具有重要的代数和几何意义。
图论
映射和函数被广泛应用于图论中 的图的表示和性质研究。
最优化问题
映射和函数为解决最优化问题提 供了数学建模的基础。
ห้องสมุดไป่ตู้
什么是复合函数?
复合函数是将两个函数结合在 一起形成一个新的函数。
复合函数的性质
复合函数的定义域和值域取决 于两个函数的定义域和值域。
示例
通过具体的数学表达式和图形 展示复合函数的概念和性质。
高中数学复习课件-第二章 映射
f(a) f(b) f(c)
0
0
0
1
0
1
0
1
1
-1
0
-1
0
-1
-1
1
-1
0
-1
1
0
由上表可知满足条件的映射有 7 个.
小结:
1、映射的概念 2、映射与函数的区别与联系
思考:映射与函数有什么区别与联系?
函数 映射
建立在两个非空数集上的特殊对应
扩展
建立在两个任意集合上的特殊对应
(1)函数是特殊的映射,映射是函数概念的扩展
1.可以是“一对一” 2.可以是“多对一” 3.不能“一对多”
4.A中不能有剩余元素
5.B中可以有剩余元素
例1 说出下图所示的对应中,哪些是A到B的映射?
求一定条件下映射的个数
已知 A={a,b,c},B={-1,0,1},映射 f:A→B 满足
f(a)+f(b)=f(c),求映射 f:A→B 的个数.
【解析】(法一)由于 f(a),f(b),f(c)∈{-1,0,1},故符合
f(a)+f(b)=f(c)条件的 f(a),f(b),f(c)的取值情况如下表所示:
练习1:下列对应是否为从集合A到集合B的映射?
(1)A R, B {y | y 0}, f : x | x |;
(2) A R, B R, f : x x2;
(3) A Z , B R, f : x x; (4) A Z, B N, f : x x2 3
练习2 :已知集合A={a , b},集合B={c, d, e}. (1)一共可建立多少个从集合A到集合B的映射?
(1)点(2,3)在映射f下的像是(1,7);
1.2.2函数的表示法(二)——映射的概念
§1.2.2函数的表示法(二)——映射的概念一、内容与解析(一)内容:映射(二)解析:⑴映射是两个集合A与B中,元素之间存在的某种对应关系.说其是一种特殊的对应,就是因为它只允许存在“一对一”与“多对一”这两种对应,而不允许存在“一对多”的对应.⑵映射中只允许“一对一”与“多对一”这两种对应的特点,从A到B的映射f:A→B实际是要求集合A中的任一元素都必须对应于集合B中唯一的元素.但对集合B中的元素并无任何要求,即允许集合B中的元素在集合A中可能有一个元素与之对应,可能有两个或多个元素与之对应,也可能没有元素与之对应.⑶映射中对应法则f是有方向的,一般来说从集合A到集合B的映射与从集合B到集合A的映射是不同的.(4)我们可以把对应关系看成一面镜子,集合A中的元素在这面镜子中存在一个像,一个相对应的元素,原像则是集合A中的元素.这样像和原像的概念就比较容易理解.并且映射中集合A的每一个元素在集合B中都有它的像,通过对应关系——即通过镜子总存在像,而且像是唯一的,不会“照”出许多的像来,这是映射区别于一般对应的本质特征.二、目标及其解析:(一)教学目标(1)了解映射的概念及表示方法;结合简单的对应图示,了解一一映射的概念.(2)解析:重点把握映射与函数的区别。
三、问题诊断分析函数与映射的区别与联系(1)函数包括三要素:定义域、值域、两者之间的对应关系;映射包括三要素: 集合A, 集合B, 以及A,B之间的对应关系(2)函数定义中的两个集合为非空数集; 映射中两个集合中的元素为任意元素,如人、物、命题等都可以.(3)在函数中,对定义域中的每一个x,在值域中都有唯一确定的函数值和它对应;在映射中,对集合A中的任意元素a,在集合B中都有唯一确定的像b和它对应.(4)在函数中,对值域中的每一个确定的函数值,在定义域中都有确定的自变量的值和它对应;在映射中,对于集合B中的任一元素b,在集合A中不(5)函数实际上就是非空数集A到非空数集B的一个映射:f A B →(6)通过右图我们可以清晰的看到这三者的关系. 四、教学支持条件分析在本节课一次递推的教学中,准备使用PowerPoint 2003。
函数 2 (映射)PPT教学课件
1
m
1
3
n
2
5
p
3
7
q
4
9
第一个图有什么特点?
1、对于集合A中的不同元素,在集合B中有不同的象;
2、集合B中的每一个元素都是集合A中的某个元素的
象,即集合B中每个元素都有原象。
2020/12/11
10
PPT教学课件
谢谢观看
Thank You For Watching
11
a3
b3
1.多多对应
2.多一对应
3.一多对应
4.一一对应
2020/12/11
5
二、映射
A
B
A
B
A
B
a1
b1
a2 a3
A
b2 b3 b4
B
a1
b1
a1
a2
b2
a2
a3
A
b3
a3 B a4
b1 b2
b3 b4
a1
b1
a2 a3
b2 b3 b4
a1
b1
a2
b2
a3
b3
这三个对应有一个共同的特点:
1、映射:对于集合A中的任何一个元素,在集 合B中都有唯一的元素和它对应。
2020/12/11
6
再看几个例子:
开平方 3
-3
9
2
4
-2
1
1
-1
求正弦 1
2
30。
2
45。
2
60。
3
90。
2
1
2020/12/11
7
开平 3
方
-3
9
高中数学课件函数的表示法2映射ppt课件.完整版PPT
①分段函数是一个函数;
②分段函数的定义域是每分段区间的并 集。
3x 2,x 0
பைடு நூலகம்
画出函数 f x
x 0 的图象,并
求 f 1 ,f2.1 x 0
日常生活中存在着丰富的对应关系. (1)对于高一3班的每一位同学,都有一个
学号与之对应. (2)我国各省会,都有一个区号与之对应. (3)我国各大中小城市,都有一个邮政编码
(1)对于高一3班的每一位同学,都有一个 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数 函数概念又可以叙述为:设A,B是两个非空数集,f是A到B的一个映射,那么映射f:A→B就叫做A到B的函数。 ①分段函数是一个函数;
函数是一种特殊的映射,是从非空数集到非空数集的映射。
B中有两个元素与A中一个元素对应 【高中数学课件】函数的表示法(2)-映射ppt课件 请思考并分析右边给出的对应关系: 从集合A到B是“多对一”,“一对一”的对应,
▪ 在函数中,原像的集合称为定义域,像的集合称为值 域。
▪ 在研究函数的过程中,人们通常通过编号等方式(如 风、海浪、地震等的级别)把一般映射数字化,使之 成为函数,因为一旦表示为函数,那么有关函数的性 质以及函数值的运算就可以使用了。
小结
▪ 映射是特殊的对应:多对一或一对一;
▪ 函数是特殊的映射;
与之对应. (4)顺德区的各种机动车辆,都有一个车牌
号与之对应.
初中数学中也学过一些对应. (1)对于任何一个实数a,数轴上都有唯一
的点P和它对应. (2)对于坐标平面内任何一个点A,都有唯
一的有序实数对(x,y)和它对应; (3)对于任意一个三角形,都有唯一确定的
第二章第讲函数与映射的概念[可修改版ppt]
(5)f(x)=x2-2x-1,g(t)=t2-2t-1. 解题思路:要判断两个函数是否为同个函数, 只需判断其定义域和对应关系是否相同即可.
解析:(1)由于 f(x)= x2=|x|,g(x)=3 x3=x,
故它们的对应关系不相同,∴它们不是同一函数.
A.{x|x≥-3}
B.{x|x>-3}
C.{x|x≤-3}
D.{x|x<-3}
2.函数 y=lgx4--3x的定义域是__{_x|_x_<_4_且___x_≠_3_}___.
3.函数 f(x)= 1 2x 的定义域是( A )
A.(-∞,0]
B.[0,+∞)
C.(-∞,0)
D.(-∞,+∞)
4.(2011 年广东)函数 f(x)=1-1 x+lg(1+x)的定义域是( C ) A.(-∞,-1) B.(1,+∞) C.(-1,1)∪(1,+∞) D.(-∞,+∞)
2.设 M={x|0≤x≤2},N={y|0≤y≤3},给出如图 2-1-1 所示四个图象,其中能表示从集合 M 到集合 N 的函数关系的是 __②__③___(填序号).
图 2-1-1
下面哪一个图形可以作为函数的图象…( B )
y
y
y
y
O
x
O
x
O
x
O
x
(A)
(B)
(C)
(D)
(1)设A={x|0≤x≤2},B={y|1≤y≤2},如下图,能表 示从集合A到集合B函数关系的是 ( ) D
考点3有关映射与函数的概念
已知集合 M={-1,1,2,4},N={0,1,2},给出下列四个对应
第2讲 函数与映射的概念,定义域,值域
第2讲 函数与映射的概念★知识梳理1.函数的概念设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),((2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域。
(2)函数的三要素:定义域、值域和对应法则2.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,这样的单值对应叫做从A 到B 的映射,记为B A f →: ★重、难点突破重点:掌握映射的概念、函数的概念,会求函数的定义域、值域难点:求函数的值域和求抽象函数的定义域重难点:1.关于抽象函数的定义域求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域[误解]因为函数)(x f y =的定义域为][b a ,,所以b x a ≤≤,从而222+≤+≤+b x a 故)2(+=x f y 的定义域是]2,2[++b a[正解]因为)(x f y =的定义域为][b a ,,所以在函数)2(+=x f y 中,b x a ≤+≤2, 从而22-≤≤-b x a ,故)2(+=x f y 的定义域是]2,2[--b a即本题的实质是求b x a ≤+≤2中x 的范围问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义域[误解]因为函数)2(+=x f y 的定义域是][b a ,,所以得到b x a ≤+≤2,从而22-≤≤-b x a ,所以函数)(x f y =的定义域是]2,2[--b a[正解]因为函数)2(+=x f y 的定义域是][b a ,,则b x a ≤≤,从而222+≤+≤+b x a 所以函数)(x f y =的定义域是]2,2[++b a即本题的实质是由b x a ≤≤求2+x 的范围即)(x f 与)2(+x f 中x 含义不同1. 求值域的几种常用方法(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数)32(log 221++-=x x y 就是利用函数u y 21log =和322++-=x x u 的值域来求。
映射与函数
例2、已知集合A {a,b,c},
B {1,0,1},从A到B的映射f:
满足f (a) f (b) f (c),则这样
的映射f有 _____ 个。
分析:分为三类情况考虑:
1f(a) -1 2f(a) 0 3f(a) 1
答案:2 3 2 7个。
例3、已知集合A {1,2,3,4,5},B {6,7,8},
x
x [1,),求f (x)的最小值.
法七、不等式法:用a b 2 ab, 求值域时,要注意“一正二定三相等”
例6、求函数y log 3 x log x 3 1的值域。
法八、数形结合法:利用函数所表示的 几何意义借助于几何方法来求函数的值域。 形如y | x a | | x b |, y | x a | | x b |的 函数求值域就可利用数轴。
则其值域是 ______________________ .
法四:二次函数法(图象法)
(1)求y cos2 x 4sin x 6的值域。 (2)求y 2x2 4x 10, x [5,2]的值域。 (3)求y 2x2 4x 10, x [3,6]的值域。
法五:换元法
例8、求函数y x 2 1 x 2的值域。
2
2 3 10 4
y sin x
答案:3
例5、设f (x)表示 x 6和 2x2 4x 6中 的较小者,则f (x)的最大值为______
画图: 6
6
答案:6
3、图象的变换问题:
例8、设f(x)定义域为R,则下列命题中: 1若y=f(x)为偶函数,则y=f(x+2)图象关于 y轴对称; 2y=f(x)为偶函数,则y=f(x)关于x=2对称; 3若f(x-2)=f(2-x),则y=f(x)关于x=2对称; 4y=f(x-2)与y=f(2-x)关于x=2对称;
第二讲 函数-映射
第二讲 函数-映射映射:设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射 记作:B A f →:象、原象:给定一个集合A 到集合B 的映射,且B b A a ∈∈,,如果元素a 和元素b 对应,则元素b 叫做元素a 的象,元素a 叫做元素b 的原象 辨析:①任意性:映射中的两个集合A,B 可以是数集、点集或由图形组成的集合等;②有序性:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射; ③存在性:映射中集合A 的每一个元素在集合B 中都有它的象; ④唯一性:映射中集合A 的任一元素在集合B 中的象是唯一的;⑤封闭性:映射中集合A 的任一元素的象都必须是B 中的元素,不要求B 中的每一个元素都有原象,即A 中元素的象集是B 的子集.映射三要素:集合A 、B 以及对应法则f ,缺一不可;一、例题讲解例1判断下列两个对应是否是集合A 到集合B 的映射?(1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则12:+→x x f (2)设}1,0{,*==B N A ,对应法则得的余数除以2:x x f → (3)N A =,}2,1,0{=B ,除所得的余数被3:x x f → (4)设}41,31,21,1{},4,3,2,1{==Y X 取倒数x x f →: (5)N B N x x x A =∈>=},,2|{,的最大质数小于x x f →: 二、练习:1.设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A 中的元素x 按照对应法则“乘2加1”和集合B 中的元素2x+1对应.这个对应是不是映射?(是)2.设A=N*,B={0,1},集合A 中的元素x 按照对应法则“x 除以2得的余数”和集合B 中的元素对应.这个对应是不是映射?(不是(A 中没有象))3.A=Z ,B=N*,集合A 中的元素x 按照对应法则“求绝对值”和集合B 中的元素对应.这个对应是不是映射? (是)4.A={0,1,2,4},B={0,1,4,9,64},集合A 中的元素x 按照对应法则“f :a τ b=(a -1)2”和集合B 中的元素对应.这个对应是不是映射? (是)5.在从集合A 到集合B 的映射中,下列说法哪一个是正确的? (A )B 中的某一个元素b 的原象可能不止一个 (B )A 中的某一个元素a 的象可能不止一个 (C )A 中的两个不同元素所对应的象必不相同 (D )B 中的两个不同元素的原象可能相同 6.下面哪一个说法正确?(A )对于任意两个集合A 与B ,都可以建立一个从集合A 到集合B 的映射(B )对于两个无限集合A 与B ,一定不能建立一个从集合A 到集合B 的映射(C )如果集合A 中只有一个元素,B 为任一非空集合,那么从集合A 到集合B 只能建立一个映射(D )如果集合B 只有一个元素,A 为任一非空集合,则从集合A 到集合B 只能建立一个映射7.集合A=N ,B={m|m=1212+-n n ,n ∈N},f:x →y=1212+-x x ,x ∈A ,y ∈B.请计算在f 作用下,象119,1311的原象分别是多少.( 5,6.) 分析:求象119的原象只需解方程1212+-x x =119求出x 即可.同理可求1311的原象.函数的有关概念设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A 其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((⊆B )叫做函数y=f(x)的值域.函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f .(1)函数实际上就是集合A 到集合B 的一个特殊对应 B A f →:这里 A, B 为非空的数集.(2)A :定义域,原象的集合;{}A x x f ∈|)(:值域,象的集合,其中{}A x x f ∈|)((3)函数符号:)(x f y = ↔y 是 x 的函数,简记 )(x f(一)已学函数的定义域和值域1.一次函数 2.反比例函3. 二次函数 (二 )函数的值:关于函数值 )(a f例:)(x f =2x +3x+1 则 f(2)=22+3×2+1=11注意:1︒在)(x f y =中f 表示对应法则,不同的函数其含义不一样2︒)(x f 不一定是解析式,有时可能是“列表”“图象”3︒)(x f 与)(a f 是不同的,前者为变数,后者为常数(三)函数的三要素: 对应法则f 、定义域A 、值域{}A x x f ∈|)(108642-2-4-6-10-5510Q'P'O'N'M'L'K'G'GQP ONML K 只有当这三要素完全相同时,两个函数才能称为同一函数 三、例题讲解例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(. 强调:解题时要注意书写过程,注意紧扣函数定义域的含义.由本例可知,求函数的定义域就是根据使函数式有意义的条件,布列自变量应满足的不等式或不等式组,解不等式或不等式组就得到所求的函数的定义域.例2 已知函数)(x f =32x -5x+2,求f(3), f(-2), f(a+1). 例3下列函数中哪个与函数x y =是同一个函数?⑴()2x y =;⑵33x y =;⑶2x y =解:⑴()2x y ==x (0≥x ),0≥y ,定义域不同且值域不同,不是;例4 下列各组中的两个函数是否为相同的函数?①3)5)(3(1+-+=x x x y 52-=x y (定义域不同)②111-+=x x y )1)(1(2-+=x x y (定义域不同)③21)52()(-=x x f 52)(2-=x x f (定义域、值域都不同) 函数的表示法 例一作出函数xx y 1+=的图象 列表描点:补充:8642-2-4-6-10-5510654321-1-2-3-4-6-4-224681.作函数y=|x-2|(x +1)的图像分析 显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.解:(1)当x ≥2时,即x-2≥0时,49)21(2)1)(2(22--=--=+-=x x x x x y当x <2时,即x-2<0时,49)21(2)1)(2(22+--=++-=+--=x x x x x y .∴⎪⎪⎩⎪⎪⎨⎧+⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=4921492122x x y22<≥x x 这是分段函数,每段函数图象可根据二次函数图象作出2. 作出函数|32|2--=x x y 的函数图像解:⎩⎨⎧<-----≥----=032)32(032322222x x x x x x x x y 步骤:(1)作出函数y=2x -2x -3的图象(2)将上述图象x 轴下方部分以x 轴为对称轴向上翻折(上方部分不变),即得y=|2x -2x -3|的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 函数-映射
映射:设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射 记作:B A f →:
象、原象:给定一个集合A 到集合B 的映射,且B b A a ∈∈,,如果元素a 和元素b 对应,则元素b 叫做元素a 的象,元素a 叫做元素b 的原象 辨析:
①任意性:映射中的两个集合A,B 可以是数集、点集或由图形组成的集合等;
②有序性:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射; ③存在性:映射中集合A 的每一个元素在集合B 中都有它的象; ④唯一性:映射中集合A 的任一元素在集合B 中的象是唯一的;
⑤封闭性:映射中集合A 的任一元素的象都必须是B 中的元素,不要求B 中的每一个元素都有原象,即A 中元素的象集是B 的子集.
映射三要素:集合A 、B 以及对应法则f ,缺一不可;
一、例题讲解
例1判断下列两个对应是否是集合A 到集合B 的映射?
(1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则12:+→x x f (2)设}1,0{,*==B N A ,对应法则得的余数除以2:x x f → (3)N A =,}2,1,0{=B ,除所得的余数被3:x x f → (4)设}4
1
,31,21,
1{},4,3,2,1{==Y X 取倒数x x f →: (5)N B N x x x A =∈>=},,2|{,的最大质数小于x x f →: 二、练习:
1.设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A 中的元素x 按照对应法则“乘2加1”和集合B 中的元素2x+1对应.这个对应是不是映射?(是)
2.设A=N*,B={0,1},集合A 中的元素x 按照对应法则“x 除以2得的余数”和集合B 中的元素对应.这个对应是不是映射?(不是(A 中没有象))
3.A=Z ,B=N*,集合A 中的元素x 按照对应法则“求绝对值”和集合B 中的元素对应.这个对应是不是映射? (是)
4.A={0,1,2,4},B={0,1,4,9,64},集合A 中的元素x 按照对应法则“f :a τ b=(a -1)2”和集合B 中的元素对应.这个对应是不是映射? (是)
5.在从集合A 到集合B 的映射中,下列说法哪一个是正确的? (A )B 中的某一个元素b 的原象可能不止一个 (B )A 中的某一个元素a 的象可能不止一个 (C )A 中的两个不同元素所对应的象必不相同 (D )B 中的两个不同元素的原象可能相同 6.下面哪一个说法正确?
(A )对于任意两个集合A 与B ,都可以建立一个从集合A 到集合B 的映射
(B )对于两个无限集合A 与B ,一定不能建立一个从集合A 到集合B 的映射
(C )如果集合A 中只有一个元素,B 为任一非空集合,那么从集合A 到集合B 只能建立
一个映射
(D )如果集合B 只有一个元素,A 为任一非空集合,则从集合A 到集合B 只能建立一个
映射
7.集合A=N ,B={m|m=1212+-n n ,n ∈N},f:x →y=1
21
2+-x x ,x ∈A ,y ∈B.请计算在f 作用下,象
119,13
11
的原象分别是多少.( 5,6.) 分析:求象119的原象只需解方程1212+-x x =119求出x 即可.同理可求13
11
的原象.
函数的有关概念
设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A 其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((⊆B )叫做函
数y=f(x)的值域.
函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f .
(1)函数实际上就是集合A 到集合B 的一个特殊对应 B A f →:这里 A, B 为非空的数集.
(2)A :定义域,原象的集合;{}A x x f ∈|)(:值域,象的集合,其中{}A x x f ∈|)(
(3)函数符号:)(x f y = ↔y 是 x 的函数,简记 )(x f
(一)已学函数的定义域和值域
1.一次函数 2.反比例函3. 二次函数 (二 )函数的值:关于函数值 )(a f
例:)(x f =2x +3x+1 则 f(2)=2
2+3×2+1=11
注意:1︒在)(x f y =中f 表示对应法则,不同的函数其含义不一样
2︒)(x f 不一定是解析式,有时可能是“列表”“图象”
3︒)(x f 与)(a f 是不同的,前者为变数,后者为常数
(三)函数的三要素: 对应法则f 、定义域A 、值域{}A x x f ∈|)(
10
8
6
4
2
-2
-4
-6
-10-5510
Q'
P'O'
N'M'L'K'
G'G
Q
P O
N
M
L K 只有当这三要素完全相同时,两个函数才能称为同一函数 三、例题讲解
例1 求下列函数的定义域:
① 21)(-=
x x f ;② 23)(+=x x f ;③ x
x x f -++=21
1)(. 强调:解题时要注意书写过程,注意紧扣函数定义域的含义.由本例可知,求函数的定
义域就是根据使函数式有意义的条件,布列自变量应满足的不等式或不等式组,解不等式或不等式组就得到所求的函数的定义域.
例2 已知函数)(x f =32
x -5x+2,求f(3), f(-2), f(a+1). 例3下列函数中哪个与函数x y =是同一个函数?
⑴()2
x y =
;⑵33x y =;⑶2
x y =
解:⑴()2
x y ==x (0≥x ),0≥y ,定义域不同且值域不同,不是;
例4 下列各组中的两个函数是否为相同的函数?
①3
)
5)(3(1+-+=x x x y 52-=x y (定义域不同)
②111-+=
x x y )1)(1(2-+=x x y (定义域不同)
③21)52()(-=x x f 52)(2-=x x f (定义域、值域都不同) 函数的表示法 例一作出函数x
x y 1
+=的图象 列表描点:
补充:
8
6
4
2
-2
-4
-6
-10-5510
6
5
4
3
2
1
-1
-2
-3
-4
-6-4-22468
1.作函数y=|x-2|(x +1)的图像
分析 显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.
解:(1)当x ≥2时,即x-2≥0时,
4
9
)21(2)1)(2(22--=--=+-=x x x x x y
当x <2时,即x-2<0时,
4
9
)21(2)1)(2(22+--=++-=+--=x x x x x y .
∴⎪⎪⎩⎪⎪⎨⎧+⎪⎭⎫ ⎝
⎛---⎪⎭⎫ ⎝⎛-=492149212
2
x x y
22<≥x x 这是分段函数,每段函数图象可根据二次函
数图象作出
2. 作出函数|32|2
--=x x y 的函数图像
解:
⎩⎨⎧<-----≥----=0
32)
32(0
32322
2
22x x x x x x x x y 步骤:(1)作出函数y=2
x -2x -3的图象
(2)将上述图象x 轴下方部分以x 轴为对称轴向上翻折(上方部分不变),即得
y=|2
x -2x -3|的图象。