平行四边形的面积

合集下载

平行四边形面积公式

平行四边形面积公式

平行四边形面积公式平行四边形是一种具有特殊性质的四边形,它的两对对边是平行的。

在几何学中,我们常常需要计算平行四边形的面积。

本文将介绍平行四边形面积的计算公式,并提供一些相关的例题来帮助读者更好地理解。

一、平行四边形面积公式要计算平行四边形的面积,我们需要知道它的底边和对应底边的高。

假设平行四边形的底边长为b,对应底边的高为h,则平行四边形的面积可以用以下公式表示:面积 = 底边长 ×对应底边的高即:面积 = b × h这个公式适用于所有的平行四边形,不论其形状和大小。

二、例题解析为了更好地理解平行四边形面积的计算公式,我们来看几个例题。

例题1:一个平行四边形的底边长为8cm,对应底边的高为5cm,求其面积。

解析:根据平行四边形的面积公式,我们有:面积 = 底边长 ×对应底边的高= 8cm × 5cm= 40cm²所以,该平行四边形的面积为40平方厘米。

例题2:一个平行四边形的底边长为12m,对应底边的高为3m,求其面积。

解析:同样利用平行四边形的面积公式,我们可以计算出:面积 = 底边长 ×对应底边的高= 12m × 3m= 36m²所以,该平行四边形的面积为36平方米。

三、总结通过上述例题的计算,我们可以看出,平行四边形的面积计算相对简单。

只需要知道底边的长度以及对应底边的高,就能轻松求解面积。

需要注意的是,在实际应用中,要确保底边和对应底边的高在同一个单位下,以保证计算的准确性。

总之,通过本文的介绍,我们掌握了计算平行四边形面积的公式,并通过例题进行了实际计算。

希望这对您有所帮助,同时也希望读者能够进一步巩固和应用所学的知识。

平行四边形面积推导公式

平行四边形面积推导公式

1、平行四边形的面积公式:底×高(可运用割补法,推导方法如图);如用“h”表示高,“a”
表示底,“S”表示平行四边形面积,则S
平行四边形=a*h。

2、平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sinα。

平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。

平行四边形一般用图形名称加四个顶点依次命名。

在欧几里德几何中,平行四边形是具有两对平行边的简单四边形。

平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。

相比之下,只有一对平行边的四边形是梯形。

1。

平行四边形的面积公式表

平行四边形的面积公式表
需要注意的是,在使用这个公式时,底和高必须是相对应的,即底边和高必须是垂直的。如果底和高不是垂直的,那么就需要使用其他方法来计算平行四边形的面积。
以下是一个平行四边形面积公式的表格:
项目
公式
面积(S)
S=a×h
底边长度(a)

高度(h)

平行四边形的面积公式表
平行四边形的面积公式可以表示为:面积=底×高,其中“底”表示平行四边形的底边长度,“高”表示平行四边形的高度。
用S表示平行四边形的面积,a表示平行四边形的底边长度,h表示平行四边形的高度,可以将面积公式表示为:
S=a× h
如果已知平行四边形的底边和高,就可以使用这个公式ቤተ መጻሕፍቲ ባይዱ算其面积。

平行四边形面积怎么求

平行四边形面积怎么求

平行四边形的面积平行四边形的面积公式与推导:平行四边形的面积=底×高S = ah逆运算公式:平行四边形的底=面积÷高(a = S÷h)平行四边形的高=面积÷底(h = S÷a)注意:在求平行四边形的面积时,底和高必须对应。

说明:长方形框架拉成平行四边形,周长不变,面积变小;平行四边形框架拉成长方形,周长仍不变,但面积变大。

任何平行四边形都有无数条高。

例1、计算如图平行四边形的面积,正确算式是()A.4.8×10B.6×10C.8×10例2、下面图形中能算出面积的是()A.B.C.D.例3、已知平行四边形的面积是300平方分米,如果它的底缩小6倍,高扩大5倍,那么它的面积为()A.50平方分米B.60平方分米C.360平方分米D.250平方分米例4、如图,平行四边形的面积是80平方厘米,甲的面积是25平方厘米,则丙的面积是平方厘米.例4图例5图例5、如图,图A和图B的面积相比较,()A.图A的面积大B.图B的面积大C.两者一样大D.无法确定例6、用两根长4厘米和两根长5厘米的小棒围成一个平行四边形,面积最大不会超过()平方厘米.A.25B.18C.20D.81例7、北京奥运会期间北京市某单位做了一个如图所示的宣传标语牌,已知标语牌的周长是16米,两边上的高如图所示,求这个标语牌的面积是多少平方米?课堂练习1、平行四边形的高是6cm,底是5cm,面积是,如果把高和底各扩大2倍,那么面积就扩大为原来的倍.2、已知一个平行四边形的面积是60平方分米,底是12分米,高是分米.3、底为4分米,高为0.2米的平行四边形的面积是平方分米.4、一个平行四边形的面积是188平方分米,一个长方形的长和宽分别与平行四边形的底和高相等,这个长方形的面积是平方分米.5、两个平行四边形的面积相等,一个平行四边形的底是9厘米,高是8厘米,另一个平行四边形的高是6厘米,底是厘米.6、一个平行四边形的面积是12.5平方米.它的底是2.5米,对应高是米.7、如图,平行四边形的底为8厘米,高为4.5厘米,面积为36平方厘米,阴影部分面积为平方厘米.第7题图第13题图第14题图8、一个平行四边形的底是8分米,面积是48平方分米,它的高是厘米.9、一个平行四边形的面积是5.4平方米,高是3.6米,底是米.10、一个平行四边形的高4分米,比它的底短1分米,它的面积是.11、平行四边形的底是12米,它的两条高分别是9米、15米,这个平行四边形的面积是平方米.12、一个平行四边形的面积是24平方分米,它的底是6分米,高是分米.13、如图平行四边形的面积是48平方厘米.线段CD长5厘米,线段AF长4.8厘米,那么平行四边形的周长是厘米.14、如图,平行四边形的面积是20平方厘米,图中阴影部分的面积是平方厘米.如果阴影部分的面积是15平方厘米,平行四边形的底是6厘米,则它的高是厘米.15、如果把一个平行四边形的底和高都扩大原来的2倍,那么它的面积将()A.扩大原来2倍B.缩小原来4倍C.扩大原来4倍16、平行四边形相邻的两条边长度分别为12厘米和8厘米,已知其中的一条高是10厘米,那么这个平行四边形的面积是()平方厘米.A.120B.96C.80D.6017、计算如图平行四边形面积的正确算式是()A.8×12B.10×12C.8×10第17题图第18题图18、如图,平行四边形的面积是()平方厘米A.32B.24 C.48D.以上答案都不可能课后习题1、一个平行四边形的底是9分米,高是底的2倍,它的面积是.2、一个平行四边形的面积是80平方米,高是5米,底是.3、有一块平行四边形土地,底边长28m,高是底的,这块地的面积是平方米.4、如图是一个平行四边形,阴影部分的面积是8平方厘米,那么这个平行四边形的面积是平方厘米.第4题图第7题图第9题图5、王师傅从一个上底是5.5厘米、下底是7.5厘米、高是4厘米的梯形铁片上截取一个最大的平行四边形.这个平行四边形的面积是()平方厘米.A.22B.30C.无法选择6、平行四边形的两邻边长分别是6厘米和8厘米,夹角是30°,这个平行四边形的面积是()A.12厘米2B.24厘米2C.40厘米2D.都不对7、求下面平行四边形的面积,正确的列式是()A.6×4.8B.10×4.8C.8×10D.8×4.88、一个平行四边形的高减少了5cm,底增加了5cm,它的面积比原来()A.增加B.减小C.不变D.无法确定9、如图计算平行四边形的面积列式为()A.7.5×8 B.8×6 C.10×8 D.10×7.510、计算下面平行四边形面积的正确算式是()A.12×10B.7.5×12C.9×12D.7.5×1011、平行四边形的底扩大2倍,高也扩大2倍,面积()A.扩大2倍B.扩大4倍C.不变D.无法判断12、把一个平行四边形沿着高切开,拼成一个长方形.()A.面积变小,周长变小B.面积不变,周长不变C.面积变小,周长不变D.面积不变,周长变小13、平行四边形两边长分别是8厘米和6厘米,其中一条边上的高是4厘米,这个平行四边形的面积是()平方厘米.A.32B.24C.80或5614、把一个长6厘米,宽4厘米的长方形拉成一个平行四边形后面积减少6平方厘米,平行四边形的高是()A.3B.4C.515、将﹣个边长为4分米的正方形框架拉成一个高是3分米的平行四边形,则平行四边形的面积是()平方分米.A.12B.16C.无法确定。

计算平行四边形的面积公式

计算平行四边形的面积公式

计算平行四边形的面积公式
几何学是数学的一个重要的分支,主要研究关于几何图形的性质、大小和位置的知识。

在几何学中,我们学习了很多不同类型的图形,其中一种是平行四边形。

平行四边形的特点是它的四个边都是平行的,比如矩形、正方形、菱形、平行四边形等等。

那么,我们如何计算一个平行四边形的面积呢?
平行四边形的面积计算公式是:S = (a + b)h/2。

其中,S表示平行四边形的面积,a和b分别表示平行四边形的两个相等的边,h
表示它们之间的斜边。

以计算正方形为例,它有四条相等的边,假设长度为c,则面积可以通过下面的计算式计算出来:S= c/2。

另外,如果平行四边形的边都不相等,我们还可以使用另一个面积计算公式:S= (a+b+c+d)s/2。

中,a、b、c、d分别代表平行四边形的四条边的长度,s表示它们的面积。

此外,我们还可以使用另一种更加精确的方法来计算平行四边形的面积,那就是海伦公式。

海伦公式是由古希腊数学家海伦伯格拉斯提出的一种公式,用于计算多边形的面积。

它可以用来计算平行四边形的面积,只要我们按照海伦公式的规定,把多边形的两个角的度数等分,计算出四个边的长度,然后计算出多边形的面积。

总之,要想计算平行四边形的面积,可以使用以上三种公式,根据实际情况选择最合适的方法即可。

以上就是关于计算平行四边形面积的公式,希望能对大家有所帮助。

平行四边形的三种面积公式

平行四边形的三种面积公式

平行四边形的三种面积公式
1.基于底和高的公式
2.基于两边和夹角的公式
这个公式的推导基于平行四边形的高也就是两个非邻边之间的距离。

从一个顶点向另外一条边引垂线,可以得到一个直角三角形。

根据正弦定理可以得到sin(θ) = h / b,即h = b * sin(θ)。

结合平行四边形的面积公式S = b * h,可以得到S = a * b * sin(θ)。

3.基于三个顶点坐标的公式
平行四边形的面积还可以通过已知三个顶点的坐标来计算。

假设平行四边形的三个顶点分别为A(x1,y1),B(x2,y2)和C(x3,y3),则其面积公式为S=,(x1y2+x2y3+x3y1)-(y1x2+y2x3+y3x1),/2、其中,x,表示取x 的绝对值。

这个公式的推导基于行列式的性质。

将三个顶点的坐标分别代入到行列式中,然后按照特定的顺序进行计算,可以得到平行四边形的面积。

综上所述,平行四边形的面积可以通过这三种公式进行计算。

根据实际问题的不同,我们可以选择合适的公式来求解。

平行四边形面积5种方法

平行四边形面积5种方法

平行四边形面积5种方法
平行四边形是我们日常生活中比较常见的几何形状,它是由四条边组成一个平行四边形的形状。

它有4个相等的角,4个相等的边,如果求出它的面积,就会变
得十分重要和有用。

第一种方法:三角形面积公式。

我们知道平行四边形可以划分为两个相等的三角形,如果我们知道三角形的底和高,乘以底乘以高除以2就可以求出三角形面积,两个三角形面积相加就是平行四边形面积。

第二种方法,直观思维方法。

直观思维认为平行四边形是由一系列小正方形组成的,当画出所有小正方形,然后将它们加起来就可以得到平行四边形的面积。

第三种方法,公式法。

假设a是平行四边形的一条边的长度,h是平行四边形
的高,则可以用a*h这个公式求出平行四边形的面积。

第四种方法:三角形中点面积公式。

如果平行四边形的边有中点M,用中点连
接四条边的距离就会产生四个相等的三角形,通过计算这四个三角形的公式,相加就可以得到平行四边形的面积。

第五种方法:勾股定理法。

假设a是平行四边形的一条边的长度,b是另一条
边的长度,则可以用勾股定理来求出对角线的长度,并且乘以2除以2来求出平行四边形的面积。

以上就是求解平行四边形面积的五种方法。

在实际应用中,我们可根据平行四边形的特性从这五种方法中选择最合适的,从而达成更有效的结果。

平行四边形求面积的公式

平行四边形求面积的公式

平行四边形求面积的公式平行四边形,或称平行四边形,是一种特殊的几何图形,它由四条平行的线段组成,每两条线段相互垂直。

它是一种具有定义的几何结构,可以用来研究和计算面积。

计算平行四边形面积的公式是:面积 =行边1行边2 sin(平行边3和平行边4的夹角)上述公式是由一个平行四边形的三个角构成的三角形的公式进行推导而来的。

由此可见,计算平行四边形的面积需要知道它的四条边向量和其中两条相互垂直边的夹角。

首先,计算一个平行四边形的面积时,需要知道它的四条边,即平行边1、平行边2、平行边3和平行边4。

这四条边的长度取决于图形的形状和大小,因此,我们需要使用测量仪器来精确计算这四条边的长度。

接下来,我们需要计算平行边3和平行边4之间的夹角,也就是说,要计算它们的夹角的度数。

这可以通过角度尺或其他适当的工具来进行测量。

有了夹角的度数后,就可以使用下面的公式来算出夹角的弧度数:夹角弧度数 =角度数×π/180有了夹角弧度数后,我们就可以计算该平行四边形的面积了。

只要将上述公式中的三个变量(平行边1行边2 sin(夹角弧度数))填入即可。

计算平行四边形的面积,也可以使用高等几何函数软件。

高等几何软件是专门用于几何计算的软件,它将测量四边形的参数转换为数字,然后直接计算平行四边形面积。

上述是有关平行四边形求面积的公式的相关介绍与计算。

平行四边形的面积计算公式基于三角形的相关公式,需要提供四条边向量和两条相互垂直边之间的夹角。

高等几何函数软件可以更有效地计算平行四边形的面积。

总而言之,计算平行四边形的面积并不是一件困难的事情,只要掌握了基本的原理和公式,就可以轻松的搞定。

平行四边形面积算法

平行四边形面积算法

平行四边形面积算法
一、引言
平行四边形是初中数学中的一个重要概念,其面积计算是初中数学中的基础内容。

本文将介绍平行四边形面积算法。

二、平行四边形定义
平行四边形是指有两组对边分别平行的四边形。

其中,对边指两个相对的边。

三、平行四边形面积公式
平行四边形的面积公式为:S = 底 x 高,其中底为任意一组相邻的底边长度,高为垂直于该底的高度。

四、证明
1. 以ABCD为底的高为EF,以E为起点向BC延长线上作垂线EG,则EG即为以ABCD为底时的高。

2. 因为AEFC和BEGD是全等三角形,所以EF = GD。

3. 又因为BC // AD和GD // EF,所以∠BGC = ∠DGF。

4. 同理可得∠AGC = ∠BEF。

5. 因此,△BGC和△DGF全等,△AGC和△BEF全等。

6. 所以BG = DF,AG = CE。

7. 因此,在平行四边形ABCD中任意取一组相邻底边作为底,则另一组相邻底边长度也相等,从而可以使用S = 底 x 高的公式计算面积。

五、例题
已知平行四边形ABCD中,AB = 6cm,BC = 8cm,以AB为底的高为4cm,求其面积。

解:由于AB为底,所以S = AB x 高= 6cm x 4cm = 24cm²。

六、总结
平行四边形是初中数学中的基础内容之一,其面积计算是基于底和高的公式。

通过以上证明可以得出,在平行四边形中任意取一组相邻底边作为底,则另一组相邻底边长度也相等。

在实际应用中,平行四边形的面积计算是非常常见的。

平行四边形面积公式大全

平行四边形面积公式大全

平行四边形面积公式大全
1平行四边形面积公式大全
平行四边形面积=底×高
在同一个二维平面内,由两组平行线段组成的闭合图形,称为平行四边形。

平行四边形一般用图形名称加四个顶点依次命名。

在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。

2平行四边形的性质
1、平行四边形的对边是平行的(根据定义),因此永远不会相交。

2、平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。

3、平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。

4、任何通过平行四边形中点的线将该区域平分。

5、任何非简并仿射变换都采用平行四边形的平行四边形。

6、平行四边形具有2阶(至180°)的旋转对称性(如果是正方形则为4阶)。

如果它也具有两行反射对称性,那么它必须是菱形或长方形(非矩形矩形)。

如果它有四行反射对称,它是一个正方形。

7、平行四边形的周长为2(a+b),其中a和b为相邻边的长度。

8、与任何其他凸多边形不同,平行四边形不能刻在任何小于其面积的两倍的三角形。

9、在平行四边形的内侧或外部构造的四个正方形的中心是正方形的顶点。

10、如果与平行四边形平行的两条线与对角线并行构成,则在该对角线的相对侧上形成的平行四边形面积相等
11、平行四边形的对角线将其分成四个相等面积的三角形。

平行四边形的3个面积公式

平行四边形的3个面积公式

平行四边形的3个面积公式
第一个方法是使用基本面积公式:
三角形1的面积=0.5*底边1*高度
三角形2的面积=0.5*底边2*高度
然后将两个三角形的面积相加即可获得平行四边形的面积。

第二种方法是使用矩形的面积公式:
由于平行四边形的两对边平行,我们可以看到它可以划分为两个相等的矩形。

因此,平行四边形的面积等于一边的长度乘以与之垂直的高度。

面积=边长*高度
第三种方法是使用三角形面积和向量的方法:
我们可以将平行四边形的对角线分割为两根。

如果我们通过其中一根对角线连接相对顶点,并通过另一根对角线连接相对顶点,我们会得到两个相等且垂直的三角形。

通过求解这两个三角形的面积,并将其相加,我们可以计算平行四边形的面积。

我们可以使用以下公式计算三角形的面积:
面积=0.5*底边*高度
由于这两个三角形的面积相等,我们只需计算一个即可,然后将其乘以2
这些是计算平行四边形面积的三种方法。

每种方法都是有效的,但在不同的情况下可能有不同的适用性。

例如,如果我们已知平行四边形的底边和高度,使用基本面积公式会更容易和直观。

如果我们已知平行四边形的两个相邻边的长度,使用矩形的面积公式会更简单。

如果我们已知平行四边形的两条对角线的长度,并且垂直的高度也已知,使用三角形面积和向量的方法将很方便。

无论使用哪种方法,我们都可以计算平行四边形的面积,并通过理解这些方法的原理来加深对几何形状的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行四边形的面积》评课
西关小学唐红仙
《平行四边行的面积》一课,着重让学生先通过思考想象,再通过剪、拼、摆等动手操作的活动来主动探究平行四边形的面积计算公式,在自主得出平行四边形的面积计算公式的同时,又培养了学生积极参与、团结合作、主动探索的精神。

我觉得这是一堂充满生命活动力的课堂,也是促进学生全面发展的课堂,体现了新课标理念,同时对我们平面几何图形的概念教学和高效课堂的建构也起了很好的引领作用。

我认为本节课有几大亮点:
一、教学思路清晰,目标明确,重难点突出
这节课以“激趣导入——自主探究——发现规律——实践应用”为线索,整个教学思路清晰;对三维目标把握准确,达到了知识与技能、过程与方法、情感态度与价值观的有机统一,充分体现了《课程标准》对学生在数学思考、解决问题以及情感与态度等方面的要求;在学生自主探究、合作交流的基础上,老师适时地引导,突破了本课的重难点——平行四边形面积公式的推导。

这样的设计,符合学生年龄特点和认知规律,体现了以学生为主体的学习过程,培养了学生的学习能力。

二、以故事导入,注重体现数学内容的生活化,激发学生的学习兴趣
以兔妈妈给兔宝宝分地这个故事导入,牢牢地抓住了学生的注意力,然后让学生帮助兔妈妈解决这一生活问题,引出本节课要研究的内容,激发了学生的探究欲望,使课伊始即有一个良好的开端。

三、重视操作探究,发挥主体作用
《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

在探究平行四边形的面积公式这一环节时,老师给学生提供了充足的时间和空间,让学生采用动手实践、合作学习等多样化的学习方式去自主发现平行四边形的面积计算公式。

在共同操作中,学生积极动手、动脑,从不同角度思考,将平行四边形转化成一个长方形,并通过观察讨论,发现了长方形与平行四边形之间的关系。

这样既充分张扬了学生的创造个性,也为概括平行四边形面积计算公式提供了丰富的感性活动。

四、注重数学方法和思想的渗透
在数学课堂渗透科学的数学方法和思想是一项很重要的任务,关系到学生思维的严密性和逻辑性等良好思维品质的培养。

老师在这方面非常注意。

例如,“平行四边形底与高的对应”“剪拼及由此产生的变与不变”“转化的思想方法”等几种思想和方法学生都得到了很好培养,为今后学生逻辑思维和解决问题能力发展打下良好的基础。

五、练习设计注重层次性,体现了对公式的运用和实践能力的培养
老师设计的练习题是从基础到最容易错的难题,习题精。

总体上说,体现了对平行四边形面积计算公式的理解,既有层次性、实践性,
又做到了前后照应;既注重让学生直接运用公式计算平行四边形的面积,更注重强化训练一些学生容易出错的底高对应的问题,并且还回过头来帮助财主解决了问题,让学生体会到数学在现实生活中的应用价值,使整节课“圆”满成功。

总的来说,老师在教学环节的安排上,既考虑了数学学科的特点,也考虑了学生的心理特征,能够让学生充分利用已有知识经验去探索新知识,在教学环节的处理上有详有略,有扶有放,把教学的重心落在让学生对平行四边形面积计算公式的探索理解上,注重让学生经历知识的形成过程,有利于培养学生的学习能力。

值得探讨的几点:
1、在引导学生分析平行四边形和长方形的异同点时,能否强调长方形的四个角都是直角,也就是邻边垂直,这样学生在后来的剪拼过程中沿高剪就水到渠成了。

2、学生在剪拼过程中,沿任意高剪和平行四边形面积字母公式的推导这两个环节能否提到前一个环节(这两个环节老师放在巩固练习中),这样会使条理更清晰,使整个公式的推导过程一气呵成。

3、剪拼后的长方形的长宽和原平行四边形的底高的关系能否让学生总结出来,因为大多数学生在操作过程中已经明了,这样更能让学生享受到成功的快乐,体会到学习的乐趣。

4、要正确处理预计与生成的关系,对没完成的教案要“舍得”,后面的等底等高的平行四边形的面积相等以及“变与不变”的关系都可以留下来让学生自己去探究,而且大多数学生也具备了这个能力。

相关文档
最新文档