实用的5.1_相交线(第1课时)--

合集下载

5.1.1相交线(课件)-2022-2023学年数学七年级下册(人教版)

5.1.1相交线(课件)-2022-2023学年数学七年级下册(人教版)

右图的几何描述为:
直线AB、CD相交于点O.
C
A
O
B D
情境引入
剪刀是我们生活中的常见 工具,剪刀可以抽象成什么几何图形?当我 们使用剪刀时,如何控制剪刀开口大小?
合作探究
思考1:我们将剪刀抽象成如图所示的两条相交 直线,那么∠1 与∠3在数量上有什么关系呢? ∠2 与∠4呢?
思考Байду номын сангаас:∠1 与∠3在位置上又有什么关系呢? ∠2 与∠4在位置上又有什么关系呢
那么这两个角互为邻补角.图中∠1的邻补角有__∠__2_、___∠__4_.
对顶角:如果一个角的两边是另一个角的两边的 反向延长,线那么这两
个角互为对顶角.图中∠1的对顶角是__∠___3_.
性质:对顶角相等,邻补角互补
当堂检测
1、下列各图中, ∠1 、∠2是对顶角吗?
2、下列各图中, ∠1 、∠2是邻补角吗?
观察下列图片,说一说图中直线与直线的位置关系.
情境引入
观察下列图片,说一说直线与直线的位置关系.
归纳:
两条直线的 位置关系
异面 共面
相交 平行
一般的相交
特殊的相交 (垂直)
在同一平面内,两条直线的位置关系有两种:相交和平行。
你能画出两条相交直线吗?如何定义相交?相交可以分为几类?
如果两条直线只有一个公共点,就说这两条直线相交.该公共点叫 做两直线的交点.
合作探究
已知:直线AB与CD相交于O点(如图),试说明:∠1=∠3、
∠2=∠4.
解:∵直线AB与CD相交于O点, ∴∠1+∠2=180° ∠2+∠3=180°, ∴∠1=∠3. 同理可得:∠2=∠4.
应用格式:∵直线AB与CD相交于O点 ∴∠1=∠3

5.1.1相交线(同步课件)-2023-2024学年七年级数学下册同步精品课堂(人教版) (1)

5.1.1相交线(同步课件)-2023-2024学年七年级数学下册同步精品课堂(人教版) (1)
2
谢谢聆听
人教版数学七年级下册
4
能不能说一说理由呢?
C
B
探究新知
人教版数学七年级下册
已知:直线 AB 与 CD 相交于 O 点. A
D
求证:∠1=∠2.
3 1O 2
4
证明:∵直线 AB 与 CD 相交于 O 点,C
B
∴∠1+∠3=180°, ∠2+∠3=180°, 平角的定义 ∴∠1=∠2. 等量代换 同理可得∠3=∠4.
例题讲解
人教版数学七年级下册
人教版数学七年级下册
第5.1.1 相交线
学习目标
人教版数学七年级下册
1.理解邻补角与对顶角的概念; 2.掌握邻补角与对顶角的性质,并能运用它们的性质进行角 的计算及解决简单实际问题.
情境引入 观察下列图片,你能从中找出2条直线吗?
人教版数学七年级下册
情境引入
人教版数学七年级下册
解:根据题意,∠1与∠3是邻补角,
a
∴∠1+∠3=180°, ∵2∠3=3∠1, ∴∠3=108°,∠1=72°
3 1
2 b
根据对顶角性质,得
∠2=∠3=108°.
拓展训练
人教版数学七年级下册
2.观察下列各图,寻找对顶角(不含平角)
Hale Waihona Puke A Ca OD
b
DG
c E
A
O
BA
O
BC
CF
D B
H
⑴ 如图a,图中共有 2 对对顶角;
解:(1)35°,145°,145° (2)均为90° (3)65°, 115°, 65° (4)(180-m)°, m°, (180-m)°

5_1_1相交线 (分层作业)【2023春人教版七下数学精品备课】 解析版

5_1_1相交线  (分层作业)【2023春人教版七下数学精品备课】  解析版

5.1 相交线第1课时相交线参考答案与试题解析夯基训练知识点1 邻补角1.识别邻补角应同时满足以下三条:①有公共_____________;②有一条公共边;③两角的另一边_____________.1.【答案】①顶点③分别互为反向延长线2.邻补角是指( )A.和为180°的两个角B.有公共顶点且互补的两个角C.有一条公共边且相等的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角2.【答案】D3.下列选项中,∠1与∠2互为邻补角的是( )3.【答案】D解:根据邻补角的定义是有公共顶点且有一条公共边,另一边互为反向延长线的两个角,故选项D正确。

4.如图,∠1的邻补角是( )A.∠BOCB.∠BOE和∠AOFC.∠AOFD.∠BOC和∠AOF4.【答案】B解:根据邻补角的定义,与∠1有公共顶点且有一条公共边,另一边互为反向延长线的角为∠BOE和∠AOF,故选项B正确。

5.如图,∠α的度数等于( )A.135°B.125°C.115°D.105°5.【答案】A解:根据邻补角的性质可知。

6.如图所示,直线AB和CD相交所成的四个角中,∠1的邻补角是________.6.【答案】∠2和∠4解析:根据邻补角的概念判断:有一个公共顶点、一条公共边,另一边互为延长线.∠1和∠2、∠1和∠4都满足有一个公共顶点和一条公共边,另一边互为延长线,故为邻补角.故答案为∠2和∠4.方法总结:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.知识点2 对顶角及其性质7识别对顶角应同时满足:①有公共___________;②两个角的两边___________.7.【答案】①顶点②分别互为反向延长线8.如图,小强和小丽一起玩跷跷板,横板AB绕O上下转动,当小强从A到A'的位置时,∠AOA'=45°,则∠BOB'的度数为___________,理由是___________.8.【答案】45°;对顶角相等9.如图,直线AB,CD相交于点O,则∠1 ∠2,根据的是;∠2+∠3= ,根据的是.9.【答案】=;对顶角相等;180°;邻补角的定义10.下列语句正确的是( )A.顶点相对的两个角是对顶角B.有公共顶点并且相等的两个角是对顶角C.两条直线相交,有公共顶点的两个角是对顶角D.两条直线相交,有公共顶点且没有公共边的两个角是对顶角10.【答案】D解:A错误,如图①,∠1与∠2的顶点相对,但∠1与∠2不是对顶角;B错误,如图②,∠1与∠2有公共顶点,且∠1=∠2,但∠1与∠2不是对顶角;C错误,如图③,∠1与∠2是两条直线相交且有公共顶点的角,但∠1与∠2不是对顶角;D正确.11.下列图形中∠1与∠2互为对顶角的是( )11.解析:观察∠1与∠2的位置特征,只有C中∠1和∠2同时满足有公共顶点,且∠1的两边是∠2的两边的反向延长线.故选C.方法总结:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.12.如图,直线AB、CD相交于点O,若∠BOD=42°,OA平分∠COE,求∠DOE的度数.12.解析:根据对顶角的性质,可得∠AOC与∠BOD的关系,根据OA平分∠COE,可得∠COE 与∠AOC的关系,根据邻补角的性质,可得答案.解:由对顶角相等得∠AOC=∠BOD=42°.∵OA平分∠COE,∴∠COE=2∠AOC=84°.由邻补角的性质得∠DOE=180°-∠COE=180°-84°=96°.方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.题型总结题型1 利用对顶角的性质求角13.如图,直线AB,CD,EF相交于点O,如果∠AOC=65°,∠DOF=50°.(1)求∠BOE的度数;(2)通过计算∠AOF的度数,你发现射线OA有什么特殊性吗?13.解:(1)因为∠AOC=65°,所以∠BOD=∠AOC=65°.又因为∠BOE+∠BOD+∠DOF=180°,∠DOF=50°,所以∠BOE=180°-65°-50°=65°.(2)因为∠AOF=∠BOE=65°,且∠AOC=65°,所以∠AOF=∠AOC,所以射线OA是∠COF的平分线.题型2 利用邻补角及对顶角的性质求角(方程思想)14.补全解答过程:如图,已知直线AB,CD相交于点O,OA平分∠EOC,若∠EOC∶∠EOD=2∶3,求∠BOD的度数.解:由∠EOC∶∠EOD=2∶3,设∠EOC=2x°,则∠EOD=3x°.因为∠EOC+∠____________=180°(____________),所以2x+3x=180,解得x=36.所以∠EOC=72°.因为OA平分∠EOC(已知),所以∠AOC=12∠EOC=36°.因为∠BOD=∠AOC(____________),所以∠BOD=____________.14.EOD;平角的定义(邻补角的性质);对顶角相等;36°15.如图,直线AC,EF相交于点O,OD是∠AOB的平分线,OE在∠BOC内,∠BOE=12∠EOC,∠DOE=72°,求∠AOF的度数.15.解析:因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE =x,则∠AOF=∠EOC=2x,然后根据对顶角和邻补角找到等量关系,列方程.解:设∠BOE=x,则∠AOF=∠EOC=2x.∵∠AOB与∠BOC互为邻补角,∴∠AOB=180°-3x.∵OD平分∠AOB,∴∠DOB=12∠AOB=90°-32x.∵∠DOE=72°,∴90°-32x+x=72°,解得x=36°.∴∠AOF=2x=72°.方法总结:在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.拓展培优拓展角度1 利用邻补角的性质求折叠中的角(折叠法)16.将一张长方形纸片按图中的方式折叠,BC,BD为折痕,求∠CBD的大小.16.解:由折叠的性质可知∠ABC=∠A'BC,∠EBD=∠E'BD,所以∠A'BC=12∠ABE',∠E'BD=12∠EBE'.由∠ABE'与∠EBE'互为邻补角,得∠ABE'+∠EBE'=180°,因此∠CBD=∠A'BC+∠E'BD=12∠ABE'+12∠EBE'=12(∠ABE'+∠EBE')=90°点拨:此题运用了折叠法,解题时关键要弄清折叠前后哪些角对应相等.拓展角度2 利用邻补角及对顶角的定义进行计数(基本图形法)17.下列各图中的直线都相交于一点.(1)(2)若n 17.解:(1)2;6;12;4;12;24(2)对顶角共有n(n-1)对,邻补角共有2n(n-1)对.技巧解:巧数图形中对顶角或邻补角的对数:(1)在复杂图形中数对顶角或邻补角的对数时,我们一般先确定图形中包含有几个两条直线相交的基本图形;(2)在每个基本图形中有2对对顶角、4对邻补角,从而计算出所有对顶角、邻补角的对数. 拓展角度3 与对顶角有关的探究问题18.我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对;(2)n(n ≥2)条直线交于一点,对顶角有________对.18.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有()4244-⨯=2对对顶角;如图②,三条直线交于一点,图中共有()6264-⨯=6对对顶角;如图③,四条直线交于一点,图中共有()8284-⨯=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有()202204-⨯=90(对).故答案为90;(2)利用(1)中规律得出答案即可.由(1)得n(n ≥2)条直线交于一点,对顶角的对数为()2n 224n -=n(n -1).故答案为n(n -1).方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.。

5.1.1相交线课件(新人教版七年级数学下)

5.1.1相交线课件(新人教版七年级数学下)

尝试应用
学习体会
1.本节课你有哪些收获?
2.预习时的疑难问题解决了吗?你还有哪些疑惑?
3.你认为本节还有哪些需要注意的地方?
当堂达标
当堂达标
3.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求 ∠2的度数.
作业布置
必做题:1.课本第7---8页习题5.1第1、2题; 2.课本第9---10页习题5.1第8、9题. 选做题:《同步探究》第2页第2、3题.
课中探究
对顶角的性质: ___________________________
尝试应用
1.如图1所示,∠1和∠2是对顶角的图形有( ) A.1个 B.2个 C.3个 D.4个 2.如图2所示,AB与CD相交所成的四个角中,∠1的 邻补角是____,∠1的对顶角是___;若∠1=40°, 则∠2=___,∠3=__,∠4=___;若∠1=90°,则 ∠2=___,∠3=___,∠4= __.
课中探究
活动(二)观察图形,回答问题: 问题5:如图所示,任意两条相交的直线形成的4个
角中,两两相配共能组成几对角?
问题6:这些角有什么位置关系?
课中探究
结论: 邻补角的性质 问题7:对顶角大小有什么关系? 猜想:对顶角____________ 问题8:你能根据“同角的补角相等” 来说说你的发现是正确的吗? 说理过程:
人教版初中数学七年级下册
第五章
相交线与平行线
5.1.1 相交线
创设情景
情境引入
从图片中你能发现哪些几何图形? 你还能列举出生活中相交线的例子吗?
课中探究
探究一:邻补角,对顶角的概念 活动(一)根据问题,说一说、画一画:
问题1:一把张开的剪刀,你能联想出什么几何图形?

人教版七年级数学下册教案 5-1-1 相交线

人教版七年级数学下册教案 5-1-1 相交线

5.1.1相交线一、教学目标【知识与技能】1.借助两直线相交所形成的角初步理解邻补角、对顶角的概念.2.会根据邻补角、对顶角的性质去求一个角的度数.3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.【过程与方法】1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.【情感态度与价值观】引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.二、课型新授课三、课时1课时四、教学重难点【教学重点】对顶角的性质【教学难点】理解对顶角相等的性质的探索.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-5)同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?(二)探索新知1.出示课件7-12,探究邻补角与对顶角的定义教师问:如图,把两根木条用钉子钉在一起,转动其中一根木条,观察两根木条所形成的角的位置及大小关系.你能动手画出两条相交直线吗?学生答:能,作图如下:教师问:两条直线相交,形成的小于平角的角有几个,是哪几个?学生答:两条直线相交,形成的小于平角的角有四个 .分别是∠1,∠2,∠3,∠4.教师问:将这些角两两相配能得到几对角?教师依次展示学生答案:学生1答:∠1 和∠2.学生2答:∠2 和∠3.学生3答:∠3 和∠4.学生4答:∠4 和∠1.教师问:为何如此分类呢?学生答:有一条边在一条直线上,角的顶点相同.教师问:还有其他分类吗?学生答:分类如下:∠1 和∠3,∠2 和∠4.教师问:这样分的标准是什么?学生答:两边分别在一条直线上,有共同的顶点.总结点拨:(出示课件9)教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?师生一起解答:如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?学生答:这两个角的两边都在同一条直线上,有相同的顶点.教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.总结点拨:(出示课件12)考点1:对顶角的判断下列各图中,∠1与∠2是对顶角的是()(出示课件13)师生共同讨论解答如下:解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.答案:D.出示课件14,学生自主练习后口答,教师订正.答案:D.2.出示课件15-17,探究对顶角、邻补角的性质教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?学生答:猜想:∠1 =∠3.教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?学生答:∵∠1+∠2=180°,∠3+∠2=180°,∴∠1=∠3.教师问:∠1与∠3互为什么角?学生答:互为对顶角.教师问:由此你能猜想对顶角有什么性质?学生答:猜想:对顶角相等.教师问:你能证明你的猜想吗?学生先独立思考,师生共同讨论后解答如下:师生一起解答:已知:直线AB与CD相交于O点(如图),求证:∠1=∠3,∠2=∠4.证明:∵直线AB与CD相交于O点,∴∠1+∠2=180°∠2+∠3=180°,∴∠1=∠3.同理可得∠2=∠4.教师问:您能利用几何语言描述一下对顶角的性质吗?学生答:符号语言:∵直线AB与CD相交于O点,∴∠1=∠3,∠2=∠4.教师总结点拨:(出示课件18)两直线相交分类位置关系名称数量关系∠1 和∠2,∠2 和∠3,∠3 和∠4,∠4 和∠11.有公共顶点2.有一条公共边3.另一边互为反向延长线邻补角邻补角互补∠1 和∠3,∠2 和∠4.1.有公共顶点2.没有公共边对顶角对顶角相等3.两边互为反向延长线考点1:利用对顶角、邻补角的性质求角的度数如图,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(出示课件19)学生独立思考后,师生共同解答.学生1解:由邻补角的定义可知∠2=180°-∠1=180°-40°=140°;学生2解:由对顶角相等可得∠3=∠1=40°,∠4=∠2=140°.教师总结。

5.1.1相交线教学课件

5.1.1相交线教学课件

B
2
1
3 4O
D
A
C
2
B
A
1
3 4O
D
两直线相交形成四个角中,有一条
公共边,另一条边互为反向延长线,这 样的两个角互为邻补角.
两直线相交形成四个角中,一个角 的两边分别是另一个角两边的反向延长 线,这样的两个角互为对顶角.
C
2
B
邻补角的两个角
A
1
3 4O
D
之间具有怎样的数量
关系?对顶角呢? ∵ ∠1+∠2=1800
∠2+∠3=1800
1、邻补角互补 (邻补角定义)
2、对顶角相等
∴ ∠1=∠3 (同角的补角相等)
∠1=∠3 (对顶角相等)
1、∠1和∠2是对顶角吗?为什么?
1
a
2
图(1)
1 2a 图(3)
1
2a
图(2) b
1 2a 图(4)
2、如图, ∠1= ∠2, ∠2与∠3的关系是___互__为__邻__补__角__, ∠1与∠3的关系是__互__为__补__角_.
相交 在同一平面内
平行
手中的剪刀可以抽象出什么 几何图形?
观察在此图形中还有哪些其 它几何图形?
∠1与∠2
B
∠1与∠3
C
2
∠1与∠4
1
3பைடு நூலகம்4O
∠2与∠3
D
A
∠2与∠4
∠3与∠4
活动要求:
1、独立思考,将这六对角按照某一标
准进行分类
2、组内交流,说说 你们分类的原则和 C 分类的结果
1
32
名称 特征 性质
有一公共
对顶角 顶点

相交线(第一课时)

相交线(第一课时)
策略
在解题过程中,需要遵循一定的策略,如先观察图形,再分析条件,然后根据条件进行推理和计算,最后得出结 论。
综合问题的实例解析
ቤተ መጻሕፍቲ ባይዱ
实例1
在三角形ABC中,AB平行于CD,角A=45 度,角B=30度,求角C的度数。
VS
实例2
在四边形ABCD中,AD平行于BC,角 A=90度,角BCD=75度,角ADC=60度, 求角ABC的度数。
03 相交线的应用
在几何图形中的应用
确定图形形状
相交线可以用来确定平面几何图 形,如三角形、四边形等的形状
和大小。
证明几何定理
相交线在证明几何定理中起到关键 作用,如角平分线定理、勾股定理 等。
求解几何问题
利用相交线可以求解关于面积、周 长等几何问题,例如求三角形面积 可以使用底乘高的一半公式。
综合问题的特点与类型
特点
相交线的综合问题通常涉及多个知识 点,如平行线、垂直线、角度等,需 要学生综合运用这些知识进行解题。
类型
相交线的综合问题可以分为几何证明 题、计算题、作图题等类型,每种类 型都有其特定的解题思路和技巧。
解决综合问题的方法与策略
方法
解决相交线的综合问题需要采用多种方法,如几何法、代数法、三角法等,根据问题的具体情况选择合适的方法。
04 相交线的作图问题
作图的基本原则
准确性
确保作图准确,线条清晰, 角度准确。
规范性
遵循几何作图规范,使用 标准符号和标记。
完整性
确保作图完整,不要遗漏 任何必要的步骤或细节。
作图的步骤与方法
01
02
03
04
确定交点
根据题意确定两直线的交点位 置。

相交线(第1课时)5.1.1相交线

相交线(第1课时)5.1.1相交线

相交线的定义
01
相交线是指两条直线在同一平面 内,且有一个公共点。
02
相交线可以分为垂直相交线和斜 相交线。
相交线的性质
相交线的两个角是补 角或邻补角。
相交线的对顶角相等。
相交线的两个角相等 相交时,其中一个角 是直角。
斜相交线
两条直线在相交时,角不是直角 。
垂直线的作图方法
确定垂直线的位置
在作图时,首先需要确定垂直线的位置,可以通过测量或计算来 确定。
绘制垂直线
根据确定的位置,使用直尺或三角板等工具绘制垂直线。在绘制 过程中,要保持线条的垂直和长度的一致。
检查垂直性
绘制完成后,需要检查绘制的线条是否真正垂直。可以通过使用 量角器或垂直尺等工具进行检查。
楼梯等的位置和大小。
确定建筑物的立体结构
03
相交线可以用来确定建筑物的立体结构,例如确定楼层、屋顶、
地下室等的位置和高度。
交通规划中的应用
01
02
03
道路规划
相交线可以用来规划道路, 例如确定道路的走向、交 叉口的位置和形状等。
交通信号灯控制
相交线可以用来控制交通 信号灯,例如确定红灯、 绿灯、黄灯的时间长度和 切换顺序。
PART 02
相交线的判定定理
REPORTING
WENKU DESIGN
平行线的判定定理
平行线的同位角相等
平行线的同旁内角互补
如果两条直线被第三条直线所截,且 同位角相等,则这两条直线平行。
如果两条直线被第三条直线所截,且 同旁内角互补,则这两条直线平行。
平行线的内错角相等
如果两条直线被第三条直线所截,且 内错角相等,则这两条直线平行。
垂直线与锐角和钝角

七年级数学下册《相交线与平行线》导学案及课后练习

七年级数学下册《相交线与平行线》导学案及课后练习

七年级数学下册《相交线与平行线》导学案及课后练习《相交线与平行线》课后作业一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________;(2)与∠BOD 互余的角有________________________;(3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题4.如图,直线AB 与CD 相交于点O ,若A O D A O C ∠=∠31,则∠BOD 的度数为( ).(A)30°(B)45°(C)60°(D)135°三、 解答题5.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB 的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?6.已知:如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∶∠DOE =4∶1.求∠AOF 的度数.《相交线与平行线》课后作业参考答案1.公共,反向延长线.2.一个公共,反向延长线.3..(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.4.B.5.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.6.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.。

5.1相交线(导学案)

5.1相交线(导学案)

第五章相交线与平行线第一课时:5.1.1 相交线【学习目标】了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、学前准备各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,二、探索思考探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义呢?.练习一:1.如图1所示,直线AB和CD相交于点O,OE是一条射线.(1)写出∠AOC的邻补角:____ _ ___ __;(2)写出∠COE的邻补角: __;(3)写出∠BOC的邻补角:____ _ ___ __;(4)写出∠BOD的对顶角:____ _.2.如图所示,∠1与∠2是对顶角的是()探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”:.练习二:1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.三、当堂反馈1.若两个角互为邻补角,则它们的角平分线所夹的角为度.2.如图所示,直线a,b,c两两相交,∠1=60°,∠2=23∠4,•求∠3、∠5的度数.3.如图所示,有一个破损的扇形零件,•利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?4.探索规律:(1)两条直线交于一点,有对对顶角;(2)三条直线交于一点,有对对顶角;(3)四条直线交于一点,有对对顶角;(4)n条直线交于一点,有对对顶角.四、学习反思本节课你有哪些收获?图1ba4321第1题FEODCBA第2题FEODCBA第3题第二课时:5.1.2 垂线【学习目标】1了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;2会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用. 【学习难点】垂线的画法以及对点到直线的距离的概念的理解. 【学习过程】 一、学前准备在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB 与CD 相交于点O ”. 我们如果把直线CD 绕点O 旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD 的大小都将发生变化.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图 用几何语言表示:方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______ 二、探索思考探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条; ⑵如图2,经过直线l 上一点A 画l 的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;(图1) (图2) (图3a ) (图3b )经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直. 练习一:1.如图所示,OA ⊥OB ,OC 是一条射线,若∠AOC=120°, 求∠BOC 度数2.如图所示,直线AB ⊥CD 于点O ,直线EF 经过点O , 若∠1=26°,求∠2的度数.3.如图所示,直线AB ,CD 相交于点O ,P 是CD 上一点. (1)过点P 画AB 的垂线PE ,垂足为E .(2)过点P 画CD 的垂线,与AB 相交于F 点. (3)比较线段PE ,PF ,PO 三者的大小关系探索二:仔细观察测量比较上题中点P 分别到直线AB 上三点E 、F 、O 的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是 ,垂线段是一条 ,点到直线的距离是一个数量,不能说“垂线段”是距离. 练习二:1.在下列语句中,正确的是( ).A .在同一平面内,一条直线只有一条垂线B .在同一平面内,过直线上一点的直线只有一条C .在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D .在同一平面内,垂线段就是点到直线的距离 2.如图所示,AC ⊥BC ,CD ⊥AB 于D ,AC=5cm ,BC=12cm ,AB=13cm ,则点B 到AC 的距离是________,点A 到BC 的距离是_______,点C 到AB•的距离是_______,•AC>CD•的依据是_________. 三、当堂反馈1.如图所示AB ,CD 相交于点O ,EO ⊥AB 于O ,FO ⊥CD 于O ,∠EOD 与∠FOB 的大小关系是( )A .∠EOD 比∠FOB 大 B .∠EOD 比∠FOB 小C .∠EOD 与∠FOB 相等 D .∠EOD 与∠FOB 大小关系不确定 2.如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,C ,D 是分别位于公路AB 两侧的加油站.设汽车行驶到公路AB 上点M 的位置时,距离加油站C 最近;行驶到点N 的位置时,距离加油站D 最近,请在图中的公路上分别画出点M ,N 的位置并说明理由.3.如图,AOB 为直线,∠AOD :∠DOB=3:1,OD 平分∠COB . (1)求∠AOC 的度数;(2)判断AB 与OC 的位置关系.四、学习反思本节课你有哪些收获?O D CBAl A lBlB第三课时:5.1.3 同位角、内错角、同旁内角【学习目标】1使学生理解三线八角的意义,并能从复杂图形中识别它们;2通过三线八角的特点的分析,培养学生抽象概括问题的能力.【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角. 【学习难点】能准确在各种变式的图形中找出这三类角. 【学习过程】 一、学前准备在前面我们学习了两条直线相交于一点,得到四个角,即“两线四角”,这四个角里面,有 对对顶角,有 对邻补角.如果是一条直线分别与两条直线相交,结果又会怎样呢? 二、探索思考探索:如图,直线c 分别与直线a 、b 相交(也可以说两条直线a 、b 被第三条直线c 所截),得到8个角,通常称为“三线八角”,那么这8个角之间有哪些关系呢?1.如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角.(图1) (图2) (图3)2.如图2所示,∠1与∠2是___ _角,是直线______和直线_______•被直线_______所截而形成的,∠1与∠3是___ __角,是直线________和直线______•被直线________所截而形成的.3.如图3所示,∠B 同旁内角有哪些?三、当堂反馈1.如图,(1)直线AD 、BC 被直线AC 所截,找出图中由AD 、BC 被直线AC 所截而成的内错角是_________和__________(2)∠3和∠4是直线_________和_________被_________所截,构成内错角.2.已知∠1与∠2是同旁内角,且∠1=60°,则∠2为( )A. 60°B. 120°C. 60°或120°D.无法确定 3.如图,判断正误①∠1和∠4是同位角;( ) ②∠1和∠5是同位角;( ) ③∠2和∠7是内错角;( ) ④∠1和∠4是同旁内角;( )4.如图,直线DE 、BC 被直线AB 所截. ⑴∠1与∠2、∠1与∠3、∠1与∠4各是什么角?⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?四、学习反思本节课你有哪些收获?ab c 341E 2B C D A 341E 2BC D A。

5.1 相交线(第1课时)--

5.1 相交线(第1课时)--

归纳小结
角的 名称 对 顶 角 邻 补 角 特 征 性 质 相同点 不同点
①两条直线相 对顶 ①都是两条 ①有无公共 交形成的角; 交形成的角; 直线相交而 边 有公共顶点; ②有公共顶点 角相 成的角; 成的角; ②两直线相 等 ③没有公共边 交时, ②都有一个 交时, ①两条直线相 对顶角只 公共顶点; 公共顶点; 交而成; 交而成; 邻补 有两对 有公共顶点; ②有公共顶点 角互 ③都是成对 邻补角有 ③有一条公共 四对 出现的 补 边
作业:P9/1,2 , 作业 P10/7,8 ,

有一个公共点的两条直线形成相交直线. 有一个公共点的两条直线形成相交直线. 问题:两条相交直线.形成的小于平角的角 问题:两条相交直线. 有几个? 有几个? 请你画出任意两条相交直线. 请你画出任意两条相交直线.看看这 四个角有什么关系? 四个角有什么关系?
任意画两条相交直线, 任意画两条相交直线,在形成的四个 如图) 两两相配共组成几对角? 角(如图)中,两两相配共组成几对角?各 对角存在怎样的位置关系? 对角存在怎样的位置关系?
达标测试
E 三,填空(每空3分) 填空(每空 分 1 G 如图1,直线AB, 交 于点 如图 ,直线 ,CD交EF于点 A B 2 G,H,∠2=∠3,∠1=70度.求 , , ∠ , 度 的度数. ∠4的度数. 的度数 3 H D ∵∠2=∠ 解:∵∠ ∠ 1 (对顶角相等) C 4 已知 ) ∠1=70 °( 图1 ∴∠2= ° 等量代换) ∴∠ 70° 等量代换) ( F 又∵ ∠2=∠3(已知) ∠ 已知) ∴∠3= ∴∠ 70 ° 等量代换) ( 的定义) ∴∠4=180°—∠ 3 = 110 °邻补角 的定义) ∴∠ ° ∠ ( E D 四,解答题 A 直线AB, 交于点 交于点O, 是 直线 ,CD交于点 ,OE是 ∠AOD的平分线,已知∠AOC=50° 的平分线,已知∠ ° 的平分线 O C 的度数. 求∠DOE的度数. 的度数 B 图2

5.1.1相交线

5.1.1相交线

E
B
那么∠AOE=(C )度
(A)80;(B)100;(C)130(D)150。
三、填空(每空3分) 如图1,直线AB、CD交EF于点
E 1
G
A
2
B
G、H,∠2=∠3,∠1=70度。求
∠4的度数。
C
解:∵∠2=∠ 1 (对顶角相等)
∠1=70 °(已知 )
3H D 4
图1 F
∴∠2= 70°(等量代换)
A
(2)∠AOC=80°;∠1=30°;求∠2的度数
D
1 2E
解:∵∠DOB=∠ AOC ,( 对顶角相等 )
∠AOC =80°(已知)
C
∴∠DOB= 80 °(等量代换)
B
又∵∠1=30°( 已知 )
∴∠2=∠ DOB -∠ 1 = 80°- 30°= 50 °
2 . 如图,已知直线a有这样的角吗?
∠2和∠3、∠3和∠4、 ∠1和∠4也是邻补角。
∠ 1和∠ 3有怎样的位置关系?
∠ 1和∠ 3有 一个公共顶点O ,
没有公共边, 但是∠ 1的 两
边分别是∠ 3的两边的反向延 A
长线,具有这种位置关系的两
2
D
个角,互为 对顶角 。
1
3
图中还有这样的角吗?
O4
∠2和∠4也是对顶角
1、两条直线相交得4个角,其中一个角是900, 其余各角是多少度?
2.如图AB,BC,AD都是直线,且∠1=∠2,那么
∠3=∠1吗?为什么? A



C3
达标测试
一、判断(每题10分) 1、有公共顶点且相等的两个角是对顶角。( × )
2、两条直线相交,有两组对顶角。

人教版七年级下数学5.1.1相交线教案

人教版七年级下数学5.1.1相交线教案

二、合作探究探究点1:邻补角与对顶角的概念【找一找】(1)∠1的邻补角是什么?一个角的邻补角一般有几个?(2)∠3的对顶角是什么?图中有几组对顶角?分别把它们找出来.例1.下列各图中,∠1与∠2是对顶角的是()归纳:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.探究点2:邻补角与对顶角的性质问题1:互为邻补角的两个角和是多少度?问题2:你能否利用问题1中的结论推导出互为对顶角的两个角之间具有相等关系?已知:直线AB与CD相交于O点(如图),试说明:∠1=∠3,∠2=∠4.解:例2.(教材P3例1变式)如图,直线a,b相交于点O.(1)若∠1+∠3= 60º,则∠1,∠2,∠3,∠4各个角的度数分别为__________________;(2)若∠2是∠1的 3倍,则∠1,∠2,∠3,∠4各个角的度数分别为________________________;(3)若1:2 = 2: 7 ,则∠1,∠2,∠3,∠4各个角的度数分别为__________________.归纳:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.方法总结:关键是找出图中隐含的角之间的关系,然后利用方程思想解决.在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.例3..如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数..方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.找一找1.如图,直线AB、CD、EF相交,若∠1 +∠5=180°,找出图中与∠1 相等的角.2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.三、课堂练习1.下列各图中,∠1 ,∠2是对顶角吗?2.找出图中∠AOE的邻补角及对顶角,若没有请画出.3.如图,直线AB,CD,EF相交于点O.(1)写出∠AOC, ∠BOE的邻补角;(2)写出∠DOA, ∠EOC的对顶角;(3)如果∠AOC =50°,求∠BOD ,∠COB的度数.4.(应用题)在下图中,花坛转角按图纸要求这个角(红色标注的角)为135°;施工结束后,要求你检测它是否合格?请你设计检测的方法.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化. 5.如图,直线AB,CD 相交于点O , ∠EOC=70°,OA 平分∠EOC ,求∠BOD 的度数.6.【拓展题】观察下列各图,寻找对顶角(不含平角)A BCD Oa b c A A B B CCD DO OEFG H⑴ 如图a ,图中共有 对对顶角; ⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有10条直线相交于一点,则可形成 对对顶角.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).利用(1)中规律得出答案即可.由(1)得n(n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4=n(n -1). 方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征. 四、课堂小结两直线相交归类位置关系名称 数量关系 ∠1和∠2、∠2和∠3、∠3和∠4、 1.有公共顶点 2.有一条公共边3.另一边互为反向延长线邻补角邻补角互 补。

5.1.1 相交线(第1课时)--

5.1.1 相交线(第1课时)--
对顶角相等 ) B ∵∠DOB=∠ AOC ,( 解:∵∠ ∠ ∠AOC =80°(已知) ° 已知) ∴∠DOB= 80 °(等量代换) 等量代换) ∴∠ ∵∠1=30°( 已知 ) 又∵∠ ° ° ° = ∴∠2=∠ ∠ ∴∠ ∠ DOB -∠ 1 = 80° 30° 50 °
练习与反馈
9,如图1,直线 ,CD交EF于点 E1 G ,如图 ,直线AB, 交 于点 B G,H,∠2=∠3,∠1=70度. A , , ∠ , 度 2 的度数. 求∠4的度数. 的度数 3 H ∵∠2=∠ 解:∵∠ ∠ 1 ( 对顶角相等 ) D C 已知 ) 4 ∠1=70 °( ∴∠2= ° 等量代换) ∴∠ 70° 等量代换) ( 图1 F ∠ 已知) 又∵ ∠2=∠3(已知) ∴∠3= ∴∠ 70 ° 等量代换) ( 的定义) ∴∠4=180°—∠ 3 =110 ° 邻补角 的定义) ( ∴∠ ° ∠
b a 1 2 4 3
练习与反馈
× × × √
2,右图是对顶角量角器,你能说出 ,右图是对顶角量角器 你能说出 用它测量角的原理吗? 用它测量角的原理吗? 答:对顶角相等. 对顶角相等.
练习与反馈
互为邻补角, 3,如图1,∠2与∠3互为邻补角, 如图 , ∠1=∠2,则∠1与∠3的关系 1=∠2, 为 互补 . 4,如图2,三条直线a,b,c相交于 如图2 三条直线a 点O,则∠1+∠2+∠3= 1800 . 1+∠2+∠3=
A O
D
C
B
如果两条直线有一个公共点,就说这两条直 如果两条直线有一个公共点,就说这两条直 线相交,公共点叫做这两条直线的交点. 叫做这两条直线的交点 线相交,公共点叫做这两条直线的交点.
直线AB, 相交于点 相交于点O 直线 ,CD相交于点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业:P9/1、2 P10/7、8
解:∵∠DOB=∠ AOC ,( 对顶角相等 ) ∠AOC =80°(已知) ∴∠DOB= 80 °(等量代换) 又∵∠1=30°( 已知 ) ∴∠2=∠ DOB -∠ 1 = 80° - 30° = 50 ° B
一、判断题 1、有公共顶点且相等的两个角是对顶角。( × ) 2、两条直线相交,有两组对顶角。 ( √ ) 3、两条直线相交所构成的四个角中有一个角是直角, 那么其余的三个角也是直角。 ( √ ) 二、选择题 1、如右图直线AB、CD交于点O,OE为射线,那么(C) A。∠AOC和∠BOE是对顶角; B。∠COE和∠AOD是对顶角; A D C。∠BOC和∠AOD是对顶角; O D。∠AOE和∠DOE是对顶角。 2、如右图中直线AB、CD交于O, C B E OE是∠BOC的平分线且∠BOE=50度, 那么∠AOE=( C)度 (A)80;(B)100;(C)130(D)150。
有一个公共点的两条直线形成相交直线. 问题:两条相交直线.形成的小于平角的角 有几个? 请你画出任意两条相交直线.看看这 四个角有什么关系?
任意画两条相交直线,在形成的四个 角(如图)中,两两相配共组成几对角?各 对角存在怎样的位置关系?
两直线相交 所形成的角 分 类
C
B ∠1 ∠2 2 O ( ∠ 1和∠ 4 ∠ 3和∠4 ( ) 1 3 ) ∠ 1 和 ∠ 3 ∠ 3 ∠ 4 4 D A ∠2 和∠ 4
四、解答题 直线AB、CD交于点O,OE 是∠AOD的平分线,已知 ∠AOC=50°。求∠DOE的 度数。
E A D O 图2
C
B
解:∵∠AOC=50°(已知) ∴∠AOD=180°—∠AOC=180°—50° =130°(邻补角的定义) ∵OE平分∠AOD(已知) ∴∠DOE=1/2∠AOD=130°÷2=65°(角 平分线的定义)
(5)图中是对顶角量角器,你能说出 用它测量角的原理吗?
• 【例1】如图,AB、CD、AD都是直线,且 ∠1=∠2,那么∠3=∠1吗?为什么?
活动与探究
两条直线相交于一点,有________对对 顶角,三条直线相交于一点,• 有_____对 对顶角.……n条直线相交于一点,共可 组成_______对对顶角.
达标测试
E 三、填空(每空3分) G 1 如图1,直线AB、CD交EF于点 A B 2 G、H,∠2=∠3,∠1=70度。求 ∠4的度数。 3 H D 解:∵∠2=∠ 1 (对顶角相等) C 4 ∠1=70 °(已知 ) 图1 ∴∠2= 70° (等量代换) F 又∵ ∠2=∠3(已知) ∴∠3= 70 ° (等量代换) ∴∠4=180°—∠ 3 = 110 ° (邻补角 的定义) E D 四、解答题 A 直线AB、CD交于点O,OE是 ∠AOD的平分线,已知∠AOC=50° O C 求∠DOE的度数。 B 图2
1(
)2
1(
)2
1(
)2
练习2、下列各图中∠1、∠2是邻补角 吗?为什么? 1( 2 ( 1( 2 1( 2
例1、如图,直线a、b相交,∠1=40°, 求 ∠2、∠3、∠ 4的度数。
解: b ∵∠3=∠1(对顶角相等) ( 1 a ∠1=40°(已知) ∴∠3=40°(等量代换) 2 ( ) ) 3 4
∠1和∠2 ∠2和∠3
有关概念: 邻补角:如果两个角有一 B C 2O ( 条公共边,它们的另一边 ( 1 ) 3 互为反向延长线,那么这 ) 4 两个角互为邻补角。 D A 对顶角:如果一个角的两 B 边是另一个角的两边的反 C 2 O ( 向延长线,那么这两个角 ( ) 1 3 ) 互为对顶角。 4 D A
∴∠2=180°—∠1=140° (邻补角的定义) ∴∠4=∠2=140°(对顶角相等)
• 变式1:若∠2是∠1的3倍,求∠3的度数? • 变式2:若∠2-∠1=400, 求∠4的度数?
二、 填空
1、一个角的对顶角有 一 个,邻补角最多有 两 个,而补角则可以有 无数 个。 2、右图中∠AOC的对顶角是 ∠DOB , 邻补角是 ∠AOD和∠COB . D A 3、如图,直线AB、CD相交于 )1 )2 E O,∠AOC=80°∠1=30°; O 求∠2的度数 角 特 征 性 质 相同点 不同点
①两条直线相 对顶 ①都是两条 ①有无公共 交形成的角; 直线相交而 边 角相 ②有公共顶点; 成的角; ②两直线相 等 ③没有公共边 ②都有一个 交时, ①两条直线相 对顶角只 公共顶点; 邻补 交而成; 有两对 ②有公共顶点; 角互 ③都是成对 邻补角有 ③有一条公共 四对 出现的 补 边
B 2 O ( ( ) 1 3 已知:直线AB与CD相 ) 4 交于O点(如图),求证: D A ∠1=∠3、 ∠2=∠4 为什么? 证明:∵直线AB与CD相交于O点, C
∴∠1+∠2=180°、 ∠2+∠3=180° ∴∠1=∠3 同理可得:∠2=∠4
对顶角的性质: 对顶角相等.
练习1、下列各图中∠1、∠2是对顶角 吗?为什么?
相关文档
最新文档