第一课时 空间几何体的结构及其表面积与体积.doc

合集下载

空间几何体的表面积与体积

空间几何体的表面积与体积

V柱 = pR2·2R
面积, 再减去渗水孔的面积.
组合体的体积怎样计算?
柱体、锥体、台体 京沪铁路全长1462 km,
球的表面积公式是怎样的? 是用什么方法得到的?
京沪高铁全长1318 km. 0230568 (kg),
的表面积与体积
∴ h(a+c)>bh,
≈1197 (cm2).
球的体积和表面积
柱体、锥体、台体 的表面积与体积
12
解: 这个零件的表面积为
S = S棱柱表+S圆柱侧
p = 2 [ 6 3 ( 2 + 1 4 )+ 6 2 ] 1 5 + 2 6 25
≈1579.485 (mm2),
10000个零件的表面积约为15794850 mm2,
约合15.795平方米.
2. 如图是一种机器零件, 零件
下面是六棱柱 (底面是正六边形, 侧
种零件需要用锌, 已知每平方米用锌 0.
某街心花园有许多钢球(钢的密度是7.
在△SBC中, 边长为 a,
五棱台的上、下底面均是正五边形, 边长分别是 8 cm 和 18 cm, 侧面是全等的等腰梯形, 侧棱长是 13 cm, 求它的侧面面积.
≈2956 (mm3)
圆柱、圆锥、圆台的表面积
当半球切得的片数无限多,
2. 圆柱、圆锥、圆台的表面积 底面积加侧面积.
底面积: S底=p r2. 圆柱侧面积: S柱侧=2p rh. 圆锥侧面积: S锥侧=p rl. 圆台侧面积: S台侧=p l (r+r).
【课时小结】
3. 柱体、锥体、台体体积
柱体体积: V柱 = Sh.
锥体体积:
V锥
=

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。

[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。

[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。

[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。

[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。

数学一轮复习第8章立体几何第1讲空间几何体的结构三视图表面积和体积试题2理

数学一轮复习第8章立体几何第1讲空间几何体的结构三视图表面积和体积试题2理

第八章立体几何第一讲空间几何体的结构、三视图、表面积和体积1。

[2020全国卷Ⅲ,8,5分][理]如图8-1—1为某几何体的三视图,则该几何体的表面积是()A.6+4√2B.4+4√2C。

6+2√3D。

4+2√32。

[2020浙江,5,4分]某几何体的三视图(单位:cm)如图8—1-2所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.63。

[2021合肥市调研检测]表面积为324π的球,其内接正四棱柱(底面是正方形的直棱柱)的高是14,则这个正四棱柱的表面积等于()A。

567 B.576 C.240 D.49π4.[2021安徽省四校联考]在三棱锥A—BCD中,△ABC和△BCD 都是边长为2的正三角形,当三棱锥A-BCD的表面积最大时,其内切球的半径是()A。

2√2−√6 B。

2-√3 C。

√2D。

√665。

[数学文化题]《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法。

在如图8—1—3所示的羡除中,平面ABDA’是铅垂面,下宽AA'=3 m,上宽BD=4 m,深3 m,平面BCED是水平面,末端宽CE=5 m,无深,长6 m(直线CE到BD的距离),则该羡除的体积为()图8-1—3A.24 m3B.30 m3 C。

36 m3 D。

42 m36.[2020全国卷Ⅱ,10,5分][理]已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上。

若球O的表面积为16π,则O到平面ABC的距离为()A。

√3B。

32C.1 D。

√327.[2021安徽省示范高中联考]蹴鞠(如图8—1—4所示),又名“蹋鞠”“蹴球”“蹴圆"“筑球”“踢圆”等,“蹴”有用脚蹴、蹋、踢的含义,“鞠”最早系外包皮革、内实米糠的球.因而“蹴鞠”就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球。

空间几何体的结构、表面积与体积

空间几何体的结构、表面积与体积

2021年新高考数学总复习第八章《立体几何与空间向量》空间几何体的结构、表面积与体积1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行侧棱平行且相等相交于一点但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线平行、相等且垂直于底面相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r 1+r 2)l3.空间几何体的表面积与体积公式名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底·h 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13S 底·h台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3概念方法微思考1.底面是正多边形的棱柱是正棱柱吗?为什么?提示 不一定.因为底面是正多边形的直棱柱才是正棱柱. 2.如何求不规则几何体的体积?提示 求不规则几何体的体积要注意分割与补形,将不规则的几何体通过分割或补形转化为规则的几何体求解.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × ) (3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ ) (4)锥体的体积等于底面积与高之积.( × )(5)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .( √ ) (6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × ) 题组二 教材改编2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D.32 cm答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,。

高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案

高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案

第1讲空间几何体及其表面积与体积知识梳理1.多面体的结构特征(1)棱柱:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;棱柱两个底面是全等多边形,且对应边互相平行,侧面都是平行四边形.(2)棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥;棱锥底面是多边形,侧面是有一个公共顶点的三角形.(3)棱台:棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.2.旋转体的结构特征(1)将矩形、直角三角形、直角梯形分别绕它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台;这条直线叫做轴,垂直于轴的边旋转而成的圆面叫做底面.不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线.(2)球:半圆绕着它的直径所在的直线旋转一周所成的曲面叫做球面,球面围成的几何体叫做球体,简称球.3.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh续表4.(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨析感悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(×)(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(5)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(6)(2014·青州模拟改编)将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为312a3.(×)[感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.考点一空间几何体的结构特征【例1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱②侧面都是等腰三角形的棱锥是正棱锥③侧面都是矩形的直四棱柱是长方体④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱其中不正确的命题为________.解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④正确.答案①②③规律方法解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【训练1】设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析命题①符合平行六面体的定义,故命题①是正确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的.因为直四棱柱的底面不一定是平行四边形,故命题③是错误的.命题④由棱台的定义知是正确的. 答案 ①④考点二 几何体的表面积与体积【例2】 如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°, △ADP ∽△BAD . (1)求线段PD 的长;(2)若PC =11R ,求三棱锥P -ABC 的体积. 解 (1)∵BD 是圆的直径,∴∠BAD =90°, 又∵△ADP ∽△BAD ,∴AD BA =DP AD , ∠PDA =∠BAD =90°, DP =AD 2BA =(BD sin 60°)2BD sin 30°=4R 2×342R ×12=3R . ∴DP 的长为3R .(2)在Rt △BCD 中,BC =CD =BD cos 45°=2R , ∵PD 2+CD 2=9R 2+2R 2=11R 2=PC 2,∴PD ⊥CD , 又∠PDA =90°,AD ∩CD =D ,∴PD ⊥底面ABCD , 则S △ABC =12AB ·BC sin(60°+45°) =12R ·2R ⎝ ⎛⎭⎪⎫32×22+12×22=3+14R 2.所以三棱锥P -ABC 的体积为V P -ABC =13·S △ABC ·PD =13·3+14R 2·3R =3+14R 3.规律方法 求几何体的体积问题,可以多角度、全方位地考虑问题,常采用的方法有“换底法”、“分割法”、“补体法”等,尤其是“等积转化”的数学思想方法应高度重视.【训练2】 (2014·苏州模拟)一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积. 解(1)设O 1、O 分别为正三棱台ABC -A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32, 因O 1D 1=36×3=32,OD =36×6=3,则DE =OD -O 1D 1=3-32=32.在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3(cm). (2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732(cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2).故三棱台斜高为 3 cm ,侧面积为2732 cm 2,表面积为9934 cm 2.考点三 球与空间几何体的接、切问题【例3】 (1)(2013·新课标全国Ⅱ卷)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.(2)(2013·辽宁卷改编)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.审题路线 (1)根据正四棱锥的体积求高⇒求底面正方形的对角线长⇒由勾股定理求OA ⇒由球的表面积公式求解.(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解. 解析 (1)设正四棱锥的高为h , 则13×(3)2×h =322,解得h =322. 又底面正方形的对角线长为2×3= 6. 所以OA =⎝ ⎛⎭⎪⎫3222+⎝ ⎛⎭⎪⎫622= 6. 故球的表面积为S 球=4π×(6)2=24π.(2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)24π (2)132规律方法 解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】(2012·辽宁卷)已知点P,A,B,C,D是球O表面上的点,P A⊥平面ABCD,四边形ABCD是边长为23的正方形.若P A=26,则△OAB的面积为________.解析根据球的内接四棱锥的性质求解.如图所示,线段PC就是球的直径,设球的半径为R,因为AB=BC=23,所以AC=2 6.又P A=26,所以PC2=P A2+AC2=24+24=48,所以PC=43,所以OA=OB=23,所以△AOB是正三角形,所以S=12×23×23×32=3 3.答案3 3考点四几何体的展开与折叠问题【例4】(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,沿棱柱表面使CP+P A1最小,则最小值为________.解析 (1)折叠后的四面体如图所示.OA ,OC ,OD 两两相互垂直,且OA =OC =OD =22,体积V =13 S △OCD ·OA =13×12×(22)3=823.(2)由题意知,A 1P 在几何体内部,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可. 则A 1、P 、C 三点共线时,CP +P A 1最小, ∵∠ACB =90°,AC =4,BC =C 1C =3,∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8,∴A 1C =82+32=73.故CP +P A 1的最小值为73.答案 (1)823 (2)73规律方法 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q共线,点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P-ABCD(如图所示),其中PD⊥平面ABCD,因此该四棱锥的体积V=13×6×6×6=72,而棱长为6=3个这样的几何体,才能拼成的正方体的体积V=6×6×6=216,故需要21672一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16. [优美解法] E 点移到A 点,F 点移到C 点,则VD 1-EDF =VD 1-ADC =13×12×1×1×1=16. [答案] 16[反思感悟] (1)一般解法利用了转化思想,把三棱锥D 1-EDF 的体积转化为三棱锥F -DD 1E 的体积,但这种解法还是难度稍大,不如采用特殊点的解法易理解、也简单易求.(2)在求几何体体积时还经常用到等积法、割补法. 【自主体验】 如图,在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,此三棱柱ABC-A1B1C1的体积为________.解析补形法将三棱柱补成四棱柱,如图所示.记A1到平面BCC1B1的距离为d,则d=2.则V三棱柱=12V四棱柱=12S四边形BCC1B1·d=12×4×2=4.答案 4基础巩固题组(建议用时:40分钟)一、填空题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数是________.解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②题,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 12.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析①显然可能;②不可能;③取一个顶点处的三条棱,连接各棱端点构成的四面体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABCD-A1B1C1D1中,三棱锥D1-DBC满足条件.答案①③④⑤3.在三棱锥S-ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC的表面积是________.解析设侧棱长为a,则2a=2,a=2,侧面积为3×12×a2=3,底面积为34×22=3,表面积为3+ 3.答案3+ 34.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________.解析 设圆锥的底面圆半径为r ,高为h ,母线长为l ,则⎩⎪⎨⎪⎧ πrl =2π,πr 2=π,∴⎩⎪⎨⎪⎧r =1,l =2.∴h =l 2-r 2=22-12= 3.∴圆锥的体积V =13π·12·3=33π. 答案 33π5.(2012·新课标全国卷改编)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为________. 解析如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1,∴OM =(2)2+1=3,即球的半径为3,∴V =43π(3)3=43π.答案 43π 6.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案 267.(2013·天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析 设正方体的棱长为a ,外接球的半径为R ,由题意知43πR 3=9π2,∴R 3=278,而R =32.由于3a 2=4R 2,∴a 2=43R 2=43×⎝ ⎛⎭⎪⎫322=3,∴a = 3.答案 38.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23. 答案 23 二、解答题 9.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .(1)求证:PC ⊥AB ;(2)求点C 到平面APB 的距离. (1)证明 取AB 中点D ,连接PD ,CD .因为AP =BP ,所以PD ⊥AB , 因为AC =BC ,所以CD ⊥AB .因为PD ∩CD =D ,所以AB ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥AB . (2)解 设C 到平面APB 的距离为h ,则由题意,得AP =PB =AB =AC 2+BC 2=22, 所以PC =AP 2-AC 2=2.因为CD =12AB =2,PD =32PB =6, 所以PC 2+CD 2=PD 2,所以PC ⊥CD .由(1)得AB ⊥平面PCD ,于是由V C -APB =V A -PDC +V B -PDC , 得13·h ·S △APB =13AB ·S △PDC ,所以h =AB ·S △PDCS △APB=22×12×2×234×(22)2=233.故点C 到平面APB 的距离为233.10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解 如图所示,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r ,水面半径BC 的长为3r ,则容器内水的体积为 V =V 圆锥-V 球=13π(3r )2·3r - 43πr 3=53πr 3,将球取出后,设容器中水的深度为h , 则水面圆的半径为33h ,从而容器内水的体积为 V ′=13π⎝ ⎛⎭⎪⎫33h 2h =19πh 3,由V =V ′,得h =315r .能力提升题组 (建议用时:25分钟)一、填空题1.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为________.解析 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,因此V S -ABC =13×34×(3)2×4= 3. 答案 32.(2014·南京模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.解析 如图,当AM +MC 1最小时,BM =1,所以AM 2=2,C 1M 2=8,AC 21=14,于是由余弦定理,得cos ∠AMC 1=AM 2+MC 21-AC 212AM ·MC 1=-12,所以sin ∠AMC 1=32,S △AMC 1=12×2×22×32= 3. 答案 33.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm 、高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 cm.答案 13 二、解答题4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2, 故AC ⊥BC ,又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC , BC ⊂平面ABC , ∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2,∴V B -ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423.。

空间几何体的面积与体积关系

空间几何体的面积与体积关系

空间几何体的面积与体积关系几何学是研究空间形状和大小的学科,而空间几何体的面积与体积关系是几何学中一个重要的概念。

面积和体积是描述几何体大小的两个基本量,它们之间存在着一定的关系。

首先,我们来看一下面积和体积的定义。

面积是指一个平面内所包围的区域的大小,通常用平方单位来表示,比如平方米、平方厘米等。

而体积是指一个立体所占据的空间大小,通常用立方单位来表示,比如立方米、立方厘米等。

对于一些简单的几何体,面积与体积的关系比较容易理解。

比如,对于一个正方形,它的面积等于边长的平方,而体积等于面积乘以高度。

这是因为正方形的底面积和高度决定了它的体积。

同样,对于一个正方体,它的体积等于边长的立方,而它的表面积等于边长的平方乘以6。

这是因为正方体的边长决定了它的体积和表面积。

然而,对于一些复杂的几何体,面积与体积的关系就不那么直观了。

比如,对于一个圆柱体,它的底面积等于圆的面积,而体积等于底面积乘以高度。

这是因为圆柱体的底面积和高度决定了它的体积。

同样,对于一个球体,它的表面积等于球的面积,而体积等于球的体积。

这是因为球体的半径决定了它的表面积和体积。

在实际应用中,面积和体积的关系经常被用来解决一些实际问题。

比如,在建筑设计中,我们需要计算房间的面积和体积,以确定房间的大小和容量。

在工程测量中,我们需要计算土地的面积和体积,以确定土地的面积和容量。

在物流管理中,我们需要计算货物的面积和体积,以确定货物的空间占用和运输成本。

总结一下,空间几何体的面积与体积关系是几何学中一个重要的概念。

面积和体积是描述几何体大小的两个基本量,它们之间存在着一定的关系。

对于一些简单的几何体,面积与体积的关系比较容易理解。

然而,对于一些复杂的几何体,面积与体积的关系就不那么直观了。

在实际应用中,面积和体积的关系经常被用来解决一些实际问题。

通过对面积和体积的计算和理解,我们可以更好地理解和应用几何学的知识。

空间几何体的表面积和体积

空间几何体的表面积和体积
1.直 接 求 球 、柱 、锥 、台 的侧 面 积 和体 积 问题
当题 目要 求 求 解 几 何 体 的 面 积 或 体 积 时 .只需 直 接 套 用 公 式 即 可 求 解 .必 要 时应 考 虑 采 用 “等 积 法 ”
进行 转 化.(见 例 1)
三 棱锥A—PBD的体积 .
2.已知 面积 或体 积求 某 些 元素
A -AC=1 所 以 0(0,0,0),A(0,-1, ,
0),A。(0,0,、/了 ),C(0,1,0),C1(0, 2,、/了 ),B(1,0,o),则有 =(o,1, 一 、/了 ), =(0,1,、/了 ), =(1,
I,0).设 平 面AA1B的 一 个 法 向 量 为
BC:l AD ,CD_I_AD,平 面肋 C上平

、/3
面 ABCD.

求 直 线
PCD 是
A C与 平
边 长 为 2

面 A ̄tB A
的 等 边 三 A.
所 成 角 的
角 形 .求
图 1
正 弦值.
图 2
24
思 索 要 求 直 线 A C与 平 面 A ̄tB所 成 角 的 正 弦 值 . 则 需 要 知 道 三棱 柱 的底 面边 长 和 侧 棱 长 .因此 应 通 过 “三 棱 锥 . Bc的 体 积 ”这 一 已知 量 ,求解 出底 面 边 长和 侧 棱 长 , 进 而 求 解 原 问题 .
2.球 、柱 、锥 、台 的侧 面 积 和 体 积 的难 点
近些 年 来 在 高 考 中不 仅 有 直 接 求 球 、柱 、锥 、台 的侧 面 积 和 体 积 的 问题 。也有 已知 面 积 或 体 积 求 某 些 元 素 的量 或 元 素 间 的 位 置 关 系 问 题 ,更 有 与其 他 知 识 交 汇 的创 新 题 型 .即使 考 查 空 间 线 面 的 位 置 关 系 问题 ,也 常 以几 何体 为依 托 ,因而 我 们 要 熟 练 掌握 球 、柱 、锥 、台 的 侧 面 积 和 体 积 的求 积 公 式 .同 时 也 要 学 会 运用 等价 转 化 思想 .把 组 合 体 求 积 问题 转 化 为 基 本几 何 体 的求 积 问 题 ,把 立 体 问 题 转化 为平 面 问题 求 解 ,运 用 “割 补 法 ”等 求解 .

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥P­ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥P­ABC 可看作由正方体PADC­BEFG 截得,如图所示,PF 为三棱锥P­ABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。

空间几何体的结构及其表面积与体积

空间几何体的结构及其表面积与体积

第一课时空间几何体的结构及表面积与体积【学习目标】①认识柱,锥,台,球及其简单组合体的结构特征。

②了解柱,锥,台,球的表面积与体积的计算公式【考纲要求】①空间几何体的结构及其表面积与体积的计算公式是A级要求【自主学习】1.棱柱的定义:2.棱锥的定义:3.棱台的定义:4.圆柱的定义:5.圆锥的定义:6 圆台的定义:7 球的定义:[课前热身]1下列不正确的命题的序号是 .①有两个面平行,其余各面都是四边形的几何体叫棱柱②有两个面平行,其余各面都是平行四边形的几何体叫棱柱③有一个面是多边形,其余各面都是三角形的几何体叫棱锥④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥2如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是3 若一个球的体积为,则它的表面积为_____________4 一张长宽分别是8cm和6cm的矩形硬纸板,将这硬纸板折成正四棱柱的侧面,则此四棱柱的对角线长为_______________π,母线长为2,则此圆锥的底面半径5 一圆锥的侧面展开图的中心角为23为________________,则其母线与底面所成角的正弦6 一圆锥的轴截面面积等于它的侧面积的14值为_________________[典型例析]例1 下列结论不正确的是(填序号).①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥④圆锥的顶点与底面圆周上的任意一点的连线都是母线例2如图所示,等腰ABC D的底边AB=CD=3.点E是线段BD上异于B,D的动点。

点F在BC边上,且EF⊥AB.现沿EF将BEF折起到PEF的位置,使PE AE⊥.记BE=x,V(x)表示四棱锥P-ACEF的体积。

[当堂检测]1.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于 .2. 如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中为真命题的是(填序号).①等腰四棱锥的腰与底面所成的角都相等②等腰四棱锥的侧面与底面所成的二面角都相等或互补③等腰四棱锥的底面四边形必存在外接圆④等腰四棱锥的各顶点必在同一球面上3. 如图所示,E、F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是 .(把可能的图的序号都填上)4 若正方体的全面积为6,且它的所有顶点都在同一个球面上,则这个球的体积=_______________________5已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多面体的体积V= .[学后反思]____________________________________________________ ____________________________________________________________________ _____________________________________________________________。

几何体的表面积和体积求法

几何体的表面积和体积求法

几何体的表面积与体积问题之前已经学过空间几何体的相关概念,知道什么是多面体什么是旋转体。

然后它们之间的一系列转化也已经了解,那么我们知不知道这些几何体的表面积或者是体积怎么求,本节课主要就是学习这块的内容。

在初中我们已经知道圆柱的体积是底面积乘以高,然后圆锥的体积需要乘以31。

所以这边我们先要了解一些其它的几何体的表面积和体积。

1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面 展开图侧面 积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧 =π(r +r ′)l2.空间几何体的表面积与体积公式名 称 几何体 表面积体 积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =S 底h 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13S 底h台体 (棱台和圆台)S 表面积=S 侧 +S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球S =4πR 2V =43πR 3一些总结1.辨明两个易误点(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错. 2.求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体1.如图,一个空间几何体的正(主)视图、侧(左)视图、俯视图均为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )A .1B .12C.13D .16D [解析] 由三视图可知,该几何体为三棱锥,V =13Sh =13×12×1×1×1=16,故选D .2.(2015·高考陕西卷)一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .2π+4D .3π+4D [解析] 由几何体的三视图可知,该几何体为半圆柱,直观图如图所示. 表面积为2×2+2×12×π×12+π×1×2=4+3π.主要的难点在于如何由三视图来转化为原来的几何体,然后进而求解几何体的表面积和体积。

高二第1讲 空间几何体及表面积与体积(教师)

高二第1讲  空间几何体及表面积与体积(教师)
直观图
2.画几何体的高:在已知图形中过O点作垂直于xOy平面的z轴,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍_平行于_z′轴且长度_不变_.
五、柱体、锥体、台体的表面积
1.多面体的表面积
(1)我们可以把多面体展成_平面图形_,利用_平面图形_求面积的方法,求多面体的表面积;
(2)棱柱、棱锥、棱台是由多个平面图形围成的多面体,它们的侧面积就是各_側面面积____之和,表面积是_各个面的面积_之和,即_側面积_与_底面积__之和.
2.旋转体的面积与体积
名称
图形
侧面积
表面积
体积
圆柱
S侧=2πrl_
S=_ 2πr2+2πrl
或S=_ 2πr(r+l)
V=Sh
圆锥
S侧=πrl
S=πr2+πrl
(2)(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是()
(3)已知正三角形ABC的边长为1,那么△ABC的平面直观图△A′B′C′的面积为________.
思考流程(1)分析:将直观图还原为平面图形;推理:将斜二测画法画直观图的要求逆用;结论:根据规则画出原来图形.(2)分析:观察俯视图,用淘汰法。
(2)如图7-37-8所示,已知△ABC的水平放置的直观图是等腰Rt△A′B′C′,且∠A′=90°,A′B′=,则△ABC的面积是()
A.B.2C.4D.1
[答案](1)2a2(2)B
[解析](1)一个平面图形的面积S与它的直观图的面积S′之间的关系是S′=S,而直观图面积S′=a2,所以原平面四边形的面积为=2a2.
4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).

【高考数学】第三部分_重点板块_专题三立体几何:第1讲空间几何体的三视图、表面积及体积

【高考数学】第三部分_重点板块_专题三立体几何:第1讲空间几何体的三视图、表面积及体积

专题三立体几何第1讲空间几何体的三视图、表面积及体积[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019三棱锥的外接球、球的体积·T12空间几何体的结构特征、直观图、几何运算、数学文化·T16空间两直线的位置关系的判定·T8简单几何体的组合体、长方体和棱锥的体积·T16 2018空间几何体的三视图、直观图及最短路径问题·T7圆锥的性质及侧面积的计算·T16三视图与数学文化·T3与外接球有关的空间几何体体积的最值问题·T10 2017空间几何体的三视图与直观图、面积的计算·T7空间几何体的三视图及组合体体积的计算·T4球的内接圆柱、圆柱的体积的计算·T8“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).(2)考查一个小题时,本小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第12或16题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.考点一空间几何体的三视图、直观图与截面图[例1](1)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(2)(2019·江西八所重点中学联考)某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比值是()A .52B .2C .355D .32(3)(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .321.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .22.已知球O 是正三棱锥A ­BCD 的外接球,BC =3,AB =23,点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得截面中面积最小的截面圆的面积是________.考点二 几何体的表面积与体积 题型一 求空间几何体的表面积[例2] (1)《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体,如图所示,四边形ABCD 为矩形,棱EF ∥AB .若此几何体中,AB =4,EF =2,△ADE 和△BCF 都是边长为2的等边三角形,则该几何体的表面积为( )A .83B .8+83C .62+23D .8+62+23(2)我国古代数学名著《算法统宗》中有如下问题:“今有倚壁外角堆米,下周九十尺,高十二尺.”其意思为:在屋外墙角处堆放米(其三视图如图所示),米堆底部的弧长为90尺,米堆的高为12尺.圆周率约为3.若将此堆米用草席盖上,则此草席的面积至少约为(计算结果保留整数,如544≈23,550≈23)( )A .250平方尺B .990平方尺C .1 035平方尺D .518平方尺题型二 求空间几何体的体积[例3] (1)(2019·天津高考)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.(2)(2019·江西省五校协作体试题)某几何体的三视图如图所示,正视图是一个上底为2,下底为4的直角梯形,俯视图是一个边长为4的等边三角形,则该几何体的体积为______.1.(2019·重庆市学业质量调研)已知某几何体的三视图如图所示,则该几何体的体积为( )A.323 B .643C.1283 D .16032.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .3034B .6034C .3034+135D .1353.已知直四棱柱ABCD ­A 1B 1C 1D 1的所有棱长都是1,∠ABC =60°,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,点H 在线段OB 1上,OH =3HB 1,点M 是线段BD 上的动点,则三棱锥M ­C 1O 1H 的体积的最小值为________.考点三 与球有关的切、接问题 题型一 外接球[例4] (2019·全国卷Ⅰ)已知三棱锥P ­ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26πD .6π题型二 内切球[例5] 已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6 B .4π3C.2π3 D .π2题型三 与球有关的最值问题[例6] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ­ABC 体积的最大值为( )A .123B .183C .243D .5431.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A .83πB .323πC .16πD .32π2.(2019·福建五校第二次联考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的直径为______.3.已知四棱锥S ­ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积为______.4.已知某几何体的三视图如图所示,则该几何体的体积等于( )A .2π+4B .4π+2 C.2π3+4 D .4π3+8【课后专项练习】A 组一、选择题1.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )2.(2019·福州市质量检测)棱长为1的正方体ABCD ­A 1B 1C 1D 1木块的直观图如图所示,平面α过点D 且平行于平面ACD 1,则该木块在平面α内的正投影面积是( )A.3 B .323C.2D .13.已知矩形ABCD ,AB =2BC ,把这个矩形分别以AB ,BC 所在直线为轴旋转一周,所成几何体的侧面积分别记为S 1,S 2,则S 1与S 2的比值等于( )A.12 B .1 C .2D .44.设球O 是正方体ABCD ­A 1B 1C 1D 1的内切球,若平面ACD 1截球O 所得的截面面积为6π,则球O 的半径为( )A.32 B .3 C.32D .35.(2019·武汉市调研测试)如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 为CD 的中点,则三棱锥A ­BC 1M 的体积VA ­BC 1M =( )A.12 B .14C.16 D .1126.(2019·武汉市调研测试)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A.23π B .43πC .2πD .25π7.在三棱锥A ­BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥的体积为( ) A. 6 B .66 C .6 D .268.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2 D .π49.若一个球与四面体的六条棱都相切,则称此球为四面体的棱切球.已知正四面体的棱长为2,则它的棱切球的体积为( )A .3π54B .π6C .π3D .3π210.已知点A ,B ,C ,D 均在球O 上,AB =BC =3,AC =3.若三棱锥D ­ABC 体积的最大值为334,则球O 的表面积为( )A .36πB .16πC .12πD .163π11.已知一个半径为7的球中有一个各条棱长都相等的内接正三棱柱,则正三棱柱的体积是( )A .18B .16C .12D .812.(2019·福州市质量检测)如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B .2π C.3π2 D .9π4二、填空题13.(2019·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为______.14.已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M ­EFGH 的体积为______.15.古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为______.16.已知三棱锥P ­ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,AB ⊥BC ,且P A =8.若平面ABC 截球O 所得截面的面积为9π,则球O 的表面积为______.B 组1.(2019·合肥市第二次质量检测)如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对2.在棱长为3的正方体ABCD ­A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M ­PBC 的体积为( )A .1B .32C.92 D .与M 点的位置有关3.已知正方体ABCD ­A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD ­A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎤0,13 B .⎝⎛⎦⎤0,12 C.⎣⎡⎭⎫12,1 D .⎣⎡⎦⎤12,234.已知直三棱柱ABC ­A 1B 1C 1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA 1,BB 1,CC 1分别交于三点M ,N ,Q ,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为( )A .22B .3C.23D.45.(2019·郑州市第二次质量预测)在△ABC中,已知AB=23,BC=26,∠ABC=45°,D是边AC上的一点,将△ABD沿BD折叠,得到三棱锥A­BCD,若该三棱锥的顶点A在底面BCD上的射影M在线段BC上,设BM=x,则x的取值范围是() A.(0,23)B.(3,6)C.(6,23)D.(23,26)6.如图,在正三棱柱ABC­A1B1C1中,D为棱AA1的中点.若AA1=4,AB=2,则四棱锥B­ACC1D的体积为________.7.已知在正四棱锥S­ABCD中,SA=63,那么当该棱锥的体积最大时,它的高为________.8.(2019·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V的最大值为________.。

几何体的表面积与体积比问题

几何体的表面积与体积比问题

几何体的表面积与体积比问题几何体的表面积与体积比是一个在数学和物理学中经常讨论的问题。

它涉及到确定一个几何体的表面积与其体积之间的比例关系。

表面积和体积的定义在讨论表面积和体积比之前,我们首先需要了解表面积和体积的定义。

- 表面积:一个几何体的表面积是指覆盖该几何体外部的总面积。

不同几何体的表面积计算方式不同,具体的计算公式可以在几何学教材或相关的数学手册中找到。

- 体积:一个几何体的体积是指该几何体所占据的空间大小。

同样,不同几何体的体积计算方式也不同。

表面积与体积比问题的例子下面是几个常见的几何体的表面积与体积比问题的例子:1. 立方体:一个立方体的表面积与体积比是多少?2. 球体:一个球体的表面积与体积比是多少?3. 圆锥体:一个圆锥体的表面积与体积比是多少?具体的计算方法和结果可以通过使用几何学公式进行计算来得到。

每个问题的具体计算步骤可以在几何学教材中找到。

应用与意义研究几何体的表面积与体积比对于科学和工程领域具有重要意义。

它可以帮助我们了解不同几何体在空间中的分布情况,对问题的解决和优化提供指导。

例如,在建筑设计中,表面积与体积比可以用来评估建筑物的节能性能。

较小的表面积与体积比意味着建筑物在保温和冷却方面的能源消耗会相对较低。

此外,在物理学中,表面积与体积比也与物体的传热性能有关。

较大的表面积与体积比可以增加物体与外界环境的接触面积,从而加快物体的传热速率。

结论几何体的表面积与体积比问题在数学和物理学中占据着重要的地位。

通过研究不同几何体的表面积与体积比,我们可以更深入地理解几何体的特性和作用,并在科学和工程领域中得到实际应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时空间几何体的结构及表面积与体积
【学习目标】
①认识柱,锥,台,球及其简单组合体的结构特征。

②了解柱,锥,台,球的表面积与体积的计算公式
【考纲要求】
①空间几何体的结构及其表面积与体积的计算公式是A级要求
【自主学习】
1.棱柱的定义:
2.棱锥的定义:
3.棱台的定义:
4.圆柱的定义:
5.圆锥的定义:
6 圆台的定义:
7 球的定义:
[课前热身]
1下列不正确的命题的序号是 .
③有一个面是多边形,其余各面都是三角形的几何体叫棱锥
④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥
2如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是
3 若一个球的体积为
,则它的表面积为_____________
4 一张长宽分别是8cm和6cm的矩形硬纸板,将这硬纸板折成正四棱柱的侧面,则此四棱柱的对角线长为_______________
π,母线长为2,则此圆锥的底面半径5 一圆锥的侧面展开图的中心角为2
3
为________________
6 一圆锥的轴截面面积等于它的侧面积的1
,则其母线与底面所成角的正弦
4
值为_________________
[典型例析]
例1 下列结论不正确的是(填序号).
①各个面都是三角形的几何体是三棱锥
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥
④圆锥的顶点与底面圆周上的任意一点的连线都是母线
例2如图所示,等腰ABC
V D的底边AB=,高CD=3.点E是线段BD上异于B,D的动点。

点F在BC边上,且EF⊥AB.现沿EF将BEF
⊥.
V的位置,使PE AE
V折起到PEF
记BE=x,V(x)表示四棱锥P-ACEF的体积。

[当堂检测]
1.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于 .
2. 如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中为真命题的是(填序号).
①等腰四棱锥的腰与底面所成的角都相等
②等腰四棱锥的侧面与底面所成的二面角都相等或互补
③等腰四棱锥的底面四边形必存在外接圆
④等腰四棱锥的各顶点必在同一球面上
3. 如图所示,E、F分别是正方体的面ADD
1A
1
、面BCC
1
B
1
的中心,则四边形BFD
1
E在该正
方体的面上的正投影可能是 .(把可能的图的序号都填上)
4 若正方体的全面积为6,且它的所有顶点都在同一个球面上,则这个球的体积
=_______________________
5已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多面体的体积V= .
[学后反思]____________________________________________________ _______
_____________________________________________________________ _____________________________________________________________。

相关文档
最新文档