高考数学一轮总复习 第7章 不等式、推理与证明 第五节 推理与证明AB卷 文 新人教A版
2021年数学一轮复习考点与题型总结:第七章不等式、推理与证明
解析 答案
-53-
考点1
考点2
考点3
考向三 求非线性目标函数的最值
关闭
A.4 B.9 C.10 D.12 思考如何利用可行域求非线性目标函数最值?
关闭
解析 答案ቤተ መጻሕፍቲ ባይዱ
-54-
考点1
考点2
考点3
解题心得1.利用可行域求线性目标函数最值的方法:首先利用约 束条件作出可行域,然后根据目标函数找到最优解时的点,最后把 解得点的坐标代入求解即可.
关闭
答案
-30-
考点1
考点2
考点3
解析:(1)∵x>1,y>1,∴lg x>0,lg y>0,由题意得lg x+lg y=4,即
xy=104.
-31-
考点1
考点2
考点3
-32-
考点1
考点2
考点3
-33-
考点1
考点2
考点3
-34-
考点1
考点2
考点3
例5要制作一个容积为4 m3,高为1 m的无盖长方体容器.已知该容 器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容 关闭
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最 低?
(2)该单位每月能否获利?如果获利,那么求出最大利润;如果不获 利,那么需要国家至少补贴多少元才能使该单位不亏损?
-37-
考点1
考点2
考点3
知识梳理
-38-
知识梳理 双基自测
12
2.线性规划的相关概念
线性约束条件
可行解 最大值
12345
5.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和
2017高考理科数学一轮复习课件:第7章 不等式、推理与证明 第5讲
解析:等式的左边的通项为2n1-1-21n,前 n 项和为 1-12+13-14 +…+2n1-1-21n;右边的每个式子的第一项为n+1 1,共有 n 项, 故为n+1 1+n+1 2+…+n+1 n.
第十八页,编辑于星期六:二十二点 四分。
2.有一个奇数组成的数阵排列如下: 1 3 7 13 21 … 5 9 15 23 … … 11 17 25 … … … 19 27 … … … … 29 … … … … … ……………… 则第 30 行从左到右第 3 个数是__1_0_5_1___.
n 级分形图中共有_a_n=__3_×__2_n_-__3_(_n_∈__N_*_)_条线段.
第十一页,编辑于星期六:二十二点 四分。
解析:分形图的每条线段的末端出发再生成两条线段,由题图知, 一级分形图有 3=(3×2-3)条线段,二级分形图有 9=(3×22-3) 条线段,三级分形图中有 21=(3×23-3)条线段,按此规律 n 级分 形图中的线段条数 an=3×2n-3(n∈N*).
第二十页,编辑于星期六:二十二点 四分。
3.已知 f(n)=1+12+13+…+n1(n∈N*),经计算得 f(4)>2,f(8)>52, f(16)>3,f(32)>72,则有_f_(_2_n)_>_n_+_2_2_(_n_≥__2_,__n_∈__N__*)_. 解析:由题意得 f(22)>42,f(23)>52,f(24)>62,f(25)>72,所以当 n≥2 时,有 f(2n)>n+2 2.
第十四页,编辑于星期六:二十二点 四分。
x (2)f1(x)=1+x x,f2(x)=1+1+1+xx x=1+x2x,
高三数学一轮复习 第七章 不等式、推理与证明 7.5 数学归纳法
关闭
C
答案
-8-
知识梳理 双基自测
12345
3.已知
n
为正偶数,用数学归纳法证明
1-12
+
1 3
−
14+…-���1���=2
1 ������+2
+
������+1 4+…+21������
时,若已假设 n=k(k≥2,且 k 为偶数)时
命题为真,则还需要用归纳假设再证 ( )
A.n=k+1时等式成立 B.n=k+2时等式成立 C.n=2k+2时等式成立 D.n=2(k+2)时等式成立
关闭
B
答案
-9-
知识梳理 双基自测
12345
4.在用数学归纳法证明“平面内有n条(n≥2)直线,任何两条不平 行,任何三条不过同一个点的交点个数为 ������(���2���-1)” 时,第一步验证n0等 于( )
A.1 B.2 C.3 D.4
因为平面内不平行的两条相交直线就有交点,所以验证n0=2. B
解析
关闭 关闭
答案
-10-
知识梳理 双基自测
12345
5.用数学归纳法证明1+2+3+…+n2=
������4
+ 2
������2
,当n=k+1时,左端应
在n=k的基础上增添的代数式是
.
关闭
∵当n=k时,左侧=1+2+3+…+k2,当n=k+1时,左侧
=1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2,
高考数学一轮总复习:基本不等式
2.下列不等式证明过程正确的是( ) A.若 a,b∈R,则ba+ba≥2 ba·ba=2 B.若 x>0,y>0,则 lgx+lgy≥2 lgx·lgy C.若 x<0,则 x+4x≥-2 x·4x=-4 D.若 x<0,则 2x+2-x>2 2x·2-x=2 答案 D 解析 ∵x<0,∴2x∈(0,1),2-x>1.∴2x+2-x>2 2x·2-x=2.∴D 正确.而 A,B 首先不满足“一正”,C 应当为“≤”.
∵x>0,y>0,∴x+3y≥6. 【答案】 6
(3) 设 a, b>0 , a +b = 5, 则 a+1 + b+3 的 最 大 值 为 ________.
【解析】 ( a+1+ b+3)2=a+b+4+2 a+1· b+3≤9+
( 2·
a+1)2+( 2
b+3)2=9+a+b+4=18,所以
x 16y y·x
=18,当且仅当
8x+1y=1, xy=1x6y,
即
x=12, y=3
时“=”成
立,故x+2y的最小值是18.
方法二:(消元法)由
8 x
+
1 y
=1,得y=
x x-8
,由y>0⇒
x x-8
>0,又x>0⇒x>8,则x+2y=x+
2x x-8
=x+
2(x-8)+16 x-8
=x+
2+ x-168
【答案】
1 5
★状元笔记★ 拼凑法求最值的技巧 (1)用均值定理求最值要注意三个条件:一正、二定、三相 等.“一正”不满足时,需提负号或加以讨论,如例(1)①,“二 定”不满足时,需变形如例(1)②,“三相等”不满足时,可利用 函数单调性如例(1)③. (2)求乘积的最值.同样要检验“一正、二定、三相等”如例 (2)本例的关键是变形,凑出和为常数.
高考数学一轮总复习第七单元不等式与推理证明课时5合情推理与演绎推理课件文新人教A版
解:(1)证明:tan(x+π4)=1t-antxa+n xttaannπ4π4=11+-ttaann
x x.
(2)f(x)是以 4 为其一个周期的周期函数.
因为 f(x+2)=f[(x+1)+1]=11+-ffxx++11=11-+1111+-+-ffffxxxx=
- 1 ,所以 fx
点评:(1)合情推理是从已知的结论推测未知的结论, 发现与猜测的结论都要经过进一步的严格证明.
(2)演绎推理是由一般到特殊的推理,它常用来证明和 推理数学问题,注意推理过程的严密性,书写格式的规范 性.
【变式探究】
3.(1)求证:tan(x+π4)=11-+ttaann xx, (2)设 x∈R 且 f(x+1)=11+-ffxx,试问:f(x)是周期函数吗? 证明你的结论.
所以第 n 个等式为 1-12+13-41+…+2n1-1-21n=n+1 1 +n+1 2+…+21n.
2.用类比的方法填写下表中的空白:
等差数列{an}中
等比数列{bn}中
a3=a2+d
b3=b2·q
a3+a4=a2+a5
b3·b4=b2·b5
a1+a2+a3+a4+a5=5 a3
解:类比得:b1·b2·b3·b4·b5=b53.
考点一·归纳推理
【例 1】(2018·陕西咸阳模拟)观察下列等式: 1×2<2, 1×2+ 2×3<92, 1×2+ 2×3+ 3×4<8,
1×2+ 2×3+ 3×4+ 4×5<225,
……
根据以上规律,第 n(n∈N*)个不等式是
.
解: 观察不等式,可得: 1×2<2=42=222=1+2 12, 1×2+ 2×3<92=322=2+212, 1×2+ 2×3+ 3×4<8=126=422=3+2 12, 1×2+ 2×3+ 3×4+ 4×5<225=522=4+212,
高考数学一轮总复习第7章不等式推理与证明第五节推理与证明课件文新人教A版
高考AB卷
学法大视野
2.间接证明——反证法
一般地,假设原命题 不成立 (即在原命题的条件下,结论不 成立),经过正确的推理,最后得出矛盾,因此说明假设错误 , 从而证明了 原命题成立 ,这样的证明方法叫做反证法.
高考AB卷
学法大视野
►一个易错点:反证法. (3)[反证法必须从否定结论进行推理,即应把结论的反面作为 条件,且必须根据这一条件进行推证,否则,仅否定结论, 不从结论的反面出发进行推理,就不是反证法]用反证法证明 “ 三 角 形 中 至 少 有 一 个 内 角 不 小 于 60 ° ” , 应 先 假 设 为 ________. 答案 三角形中每一个内角都小于60°
一、“超前思考,比较听课”
什么叫“超前思考,比较听课”?简单地说,就是同学们在上课的时候不仅要跟着老师的思路走,还要力争走在老师思路的前面,用自己的思路和老师的思路进行对 比,从而发现不同之处,优化思维。
比如在讲《林冲棒打洪教头》一文,老师会提出一些问题,如林冲当时为什么要戴着枷锁?林冲、洪教头是什么关系?林冲为什么要棒打洪教头?••••••
1.直接证明 直接证明中最基本的两种证明方法是 综合法 和 分析法 . (1)综合法:一般地,利用已知条件和某些数学定义、定理、 公理等,经过一系列的推理论证,最后推导出所要证明的结 论成立,这种证明方法叫做综合法. 综合法又称为: 由因导果法 (顺推证法). (2)分析法:一般地,从要证明的结论出发,逐步寻求使它成 立的充分条件,直至最后,把要证明的结论归结为判定一个 明显成立的条件(已知条件、定理、定义、公理等)为止,这 种证明方法叫做分析法. 分析法又称为: 执果索因法 (逆推证法).
高考AB卷
学法大视野
[方法归纳] 1.反证法的适用范围 (1)否定性命题; (2)结论涉及“至多”“至少”“无限”“唯一”等词语的命 题; (3)命题成立非常明显,直接证明所用的理论太少,且不容易 证明,而其逆否命题非常容易证明; (4)要讨论的情况很复杂,而反面情况很少.
高考数学一轮总复习 第7章 不等式、推理与证明 第5节 推理与证明高考AB卷 理-人教版高三全册数学
【大高考】2017版高考数学一轮总复习第7章不等式、推理与证明第5节推理与证明高考AB卷理合情推理与演绎推理(2016·全国Ⅱ,15)有三X卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.答案1和3合情推理与演绎推理1.(2014·,8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A.2人B.3人C.4人D.5人解析学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙.一组学生中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B.答案 B2.(2012·某某,6)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.28B.76C.123D.199解析 利用归纳法:a +b =1,a 2+b 2=3,a 3+b 3=4=3+1,a 4+b 4=4+3=7,a 5+b 5=7+4=11,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123. 答案 C3.(2015·某某,11)观察下列各式: C 01=40; C 03+C 13=41;C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43; ……照此规律,当n ∈N *时,C 02n -1+C 12n -1+ C 22n -1+…+ C n -12n -1=________. 解析 观察等式,第1个等式右边为40=41-1,第2个等式右边为41=42-1,第3个等式右边为42=43-1, 第4个等式右边为43=44-1,所以第n 个等式右边为4n -1.答案 4n -14.(2015·某某,15)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.解析 (ⅰ)x 4⊕x 5⊕x 6⊕x 7=1⊕1⊕0⊕1=1,(ⅱ)x 2⊕x 3⊕x 6⊕x 7=1⊕0⊕0⊕1=0;(ⅲ)x 1⊕x 3⊕x 5⊕x 7=1⊕0⊕1⊕1=1.由(ⅰ)(ⅲ)知x 5,x 7有一个错误,(ⅱ)中没有错误,∴x 5错误,故k 等于5. 答案 55.(2013·某某,14)观察下列等式 12=112-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为________. 解析左边共n 项,每项的符号为(-1)n +1,通项为(-1)n +1·n 2.等式右边的值符号为(-1)n +1,各式为(-1)n +1(1+2+3+…+n )=(-1)n +1n (n +1)2,∴第n 个等式为12-22+32-42+…+(-1)n +1·n 2=(-1)n +1·n (n +1)2.答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)26.(2013·某某,14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n ,3)=12n 2+12n ,正方形数 N (n ,4)=n 2, 五边形数 N (n ,5)=32n 2-12n ,六边形数 N (n ,6)=2n 2-n , …… ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.解析 由题中数据可猜想:含n 2项的系数为首项是12,公差是12的等差数列,含n 项的系数为首项是12,公差是-12的等差数列,因此N (n ,k )=⎣⎢⎡⎦⎥⎤12+(k -3)12n 2+⎣⎢⎡⎦⎥⎤12+(k -3)⎝ ⎛⎭⎪⎫-12n =k -22n 2+4-k 2n .故N (10,24)=11n 2-10n =11×102-10×10=1 000.答案 1 0007.(2014·某某,14)观察分析下表中的数据:解析三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.答案F+V-E=28.(2012·某某,11)观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74,……照此规律,第五个不等式为________________________________________.解析先观察左边,第一个不等式为2项相加,第二个不等式为3项相加,第三个不等式为4项相加,则第五个不等式应为6项相加,右边分子为分母的2倍减1,分母即为所对应项数,故应填1+122+132+142+152+162<116.答案1+122+132+142+152+162<1169.(2012·某某,13)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99;3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N+)位回文数有________个.解析(1)2位回文数均是不为0的自然数,故有9个;而对于3位回文数,首、末均相同且不为0,故有9种,而对于中间一数可含有0,故有10种,因此3位回文数有90种;对于4位回文数,首、末均相同且不为0,故有9种,对于中间两数则可含有0,故有10种,因此也有90种;(2)经归纳可得2n +1位回文数有9×10n个. 答案 (1)90 (2)9×10n10.(2013·某某,22)对正整数n ,记I n ={1,2,…,n },P n =⎩⎨⎧⎭⎬⎫⎪⎪⎪m k m ∈I n ,k ∈I n . (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”.求n 的最大值,使P n 能分成两个不相交的稀疏集的并.解 (1)当k =4时,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k |m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n ⊇I n ,不妨设1∈A ,则因1+3=22,故3∉A ,即3∈B .同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾. 再证P 14符合要求,当k =1时,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k |m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14. 当k =4时,集⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k |m ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132.当k =9时,集⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k |m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143.最后,集C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k |m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14. 综上,所求n 的最大值为14. 注:对P 14的分拆方法不是唯一的.直接证明与间接证明11.(2014·某某,4)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( ) A.方程x 3+ax +b =0没有实根 B.方程x 3+ax +b =0至多有一个实根 C.方程x 3+ax +b =0至多有两个实根 D.方程x 3+ax +b =0恰好有两个实根解析 至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax +b =0没有实根”. 答案 A12.(2013·某某,15)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”,例如,线段AB 上的任意点都是端点A ,B 的中位点,现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________(写出所有真命题的序号).解析 由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|PA |+|PB |+|PC |=32|AB |=32,而若C 为“中位点”,则|CB |+|CA |=4<32,故②错;对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1, 则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |,则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |,故O 为梯形内唯一中位点,④是正确的. 答案 ①④13.(2012·某某,17)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解 (1)选择②式,计算如下: sin 215°+cos 215°-sin 15°cos 15° =1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =sin 2α+(cos 30°cos α+sin 30°sin α)2- sin α(cos 30°cos α+sin 30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34 cos 2α=34. 数学归纳法14.(2015·某某,23)已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解 (1)f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝ ⎛⎭⎪⎫n 2+n 3,n =6t ,n +2+⎝ ⎛⎭⎪⎫n -12+n -13,n =6t +1,n +2+⎝ ⎛⎭⎪⎫n 2+n -23,n =6t +2,n +2+⎝ ⎛⎭⎪⎫n -12+n 3,n =6t +3,n +2+⎝ ⎛⎭⎪⎫n 2+n -13,n =6t +4,n +2+⎝ ⎛⎭⎪⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立;②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:1)若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;2)若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+(k +1)-12+(k +1)-13,结论成立;3)若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+(k +1)-23,结论成立;4)若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+(k +1)-12+k +13,结论成立;5)若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (x )+2=k +2+k -12+k3+2=(k +1)+2+k +12+(k +1)-13,结论成立;6)若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+(k +1)-12+(k +1)-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立.15.(2014·某某,21)设函数f (x )=ln (1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N *,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,某某数a 的取值X 围;(3)设n ∈N *,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明. 解 由题设得,g (x )=x1+x(x ≥0). (1)由已知,g 1(x )=x1+x,g 2(x )=g (g 1(x ))=x1+x 1+x1+x=x1+2x, g 3(x )=x 1+3x ,…,可得g n (x )=x1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx. 那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx =x 1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立. (2)已知f (x )≥ag (x )恒成立, 即ln (1+x )≥ax1+x 恒成立.设φ(x )=ln (1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a (1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln (1+x )≥ax1+x恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0,∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0,即a >1时,存在x >0,使φ(x )<0, 故知ln (1+x )≥ax1+x不恒成立. 综上可知,a 的取值X 围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,n -f (n )=n -ln (n +1),比较结果为g (1)+g (2)+…+g (n )>n -ln (n +1). 证明如下:法一 上述不等式等价于12+13+…+1n +1<ln (n +1), 在(2)中取a =1,可得ln (1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n. 下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立. ②假设当n =k 时结论成立,即12+13+…+1k +1<ln (k +1). 那么,当n =k +1时,12+13+…+1k +1+1k +2<ln (k +1)+1k +2<ln (k +1)+ln k +2k +1=ln (k +2),即结论成立. 由①②可知,结论对n ∈N +成立.法二 上述不等式等价于12+13+…+1n +1<ln (n +1), 在(2)中取a =1,可得ln (1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1. 故有ln 2-ln 1>12, ln 3-ln 2>13, ……ln(n +1)-ln n >1n +1, 上述各式相加可得ln (n +1)>12+13+…+1n +1,结论得证. 法三 如图,⎠⎛0nxx +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+n n +1是图中所示各矩形的面积和.∴12+23+…+n n +1>⎠⎛0n x x +1d x =⎠⎛0n (1-1x +1)d x =n -ln (n +1),结论得证. 16.(2014·某某,22)设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *).(1)若b =1,求a 2,a 3及数列{a n }的通项公式;(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 解 (1)法一 a 2=2,a 3=2+1,再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0公差为1的等差数列,故(a n -1)2=n -1,即a n =n -1+1(n ∈N *).法二 a 2=2,a 3=2+1,可写为a 1=1-1+1,a 2=2-1+1, a 3=3-1+1.因此猜想a n =n -1+1.下面用数学归纳法证明上式:当n =1时结论显然成立.假设n =k 时结论成立,即a k =k -1+1.则a k +1=(a k -1)2+1+1 =(k -1)+1+1=(k +1)-1+1.这就是说,当n =k +1时结论成立.所以a n =n -1+1(n ∈N *).(2)法一 设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14. 下面用数学归纳法证明加强命题a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立. 假设n =k 时结论成立,即a 2k <c <a 2k +1<1.易知f (x )在(-∞,1]上为减函数,从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1.故c <a 2k +3<1, 因此a 2(k +1)<c <a 2(k +1)+1<1.这就是说,当n =k +1时结论成立.综上,符合条件的c 存在,其中一个值为c =14. 法二 设f (x )=(x -1)2+1-1,则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *).①当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1.易知f (x )在(-∞,1]上为减函数,从而0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立,故①成立.再证:a 2n <a 2n +1(n ∈N *).② 当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,有a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1,由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2,a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立,所以②对一切n ∈N *成立.由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14.③ 又由①、②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2,所以a 2n +1>a 22n +1-2a 2n +1+2-1.解得a 2n +1>14.④ 综上,由②、③、④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.。
高考数学一轮总复习第7章不等式推理与证明第五节推理与证明课件文新人教A版
推理问题突破方法 归纳推理技巧与方法
类比推理的技巧与方法
【例1】 (1)(2016·河南八市重点高中联考)观察下列等式: 24=7+9 34=25+27+29 44=61+63+65+67 …… 照此规律,第 4 个等式可为________.
(2)(2014·广州模拟)已知数列{an}为等差数列,若 am=a,an=b(n -m≥1,m,n∈N*),则 am+n=nnb--mma.类比等差数列{an}的上 述结论,对于等比数列{bn}(bn>0,n∈N*),若 bm=c,bn=d(n -m≥2,m,n∈N*),则可以得到 bm+n=________.
n-m dn
(2)
cm
[点评] 关键是发现规律,利用规律找出一般的解决问题的
方法,进一步解决问题即可.
综合法和分析法求解方略
利用分析法证明问题的思路 分析法的证明思路:先从结论入手,由此逐步推出保证此结 论成立的充分条件,而当这些判断恰恰都是已证的命题(定 义、公理、定理、法则、公式等)或要证命题的已知条件时 命题得证.
(1)解 因为四边形 OABC 为菱形, 所以 AC 与 OB 相互垂直平分. 设 At,12,代入椭圆方程得t42+14=1, 即 t=± 3.所以|AC|=2 3.
(2)证明 假设四边形 OABC 为菱形.
因为点 B 不是 W 的顶点,且 AC⊥OB,所以 k≠0.
由
消 y 并整理得
解析 (1)观察可知每一行右边的数字都是连续的奇数,且奇 数的个数等于所在的行数加1,每行的第一个数字为行数加1 的和的3次方减去所在的行数,设行数为n,用an1表示每行的 第一个数,则an1=(n+1)3-n,因此第4行第一个数为(4+1)3 -4=121,则第4个等式为:54=121+123+125+127+129.
2020高考数学一轮总复习第7章不等式推理与证明第5节推理与证明高考AB卷理
【2019最新】精选高考数学一轮总复习第7章不等式推理与证明第5节推理与证明高考AB卷理合情推理与演绎推理(2016·全国Ⅱ,15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.答案1和3合情推理与演绎推理1.(2014·北京,8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A.2人B.3人C.4人D.5人解析学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙.一组学生中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B.答案B2.(2012·江西,6)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.28B.76C.123D.199解析利用归纳法:a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123.答案C3.(2015·山东,11)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;……照此规律,当n∈N*时,C +C+ C+…+ C=________.解析观察等式,第1个等式右边为40=41-1,第2个等式右边为41=42-1,第3个等式右边为42=43-1,第4个等式右边为43=44-1,所以第n个等式右边为4n-1.答案4n-14.(2015·福建,15)一个二元码是由0和1组成的数字串x1x2…xn(n∈N*),其中xk(k =1,2,…,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x1x2…x7的码元满足如下校验方程组:其中运算⊕定义为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于________.解析(ⅰ)x4⊕x5⊕x6⊕x7=1⊕1⊕0⊕1=1,(ⅱ)x2⊕x3⊕x6⊕x7=1⊕0⊕0⊕1=0;(ⅲ)x1⊕x3⊕x5⊕x7=1⊕0⊕1⊕1=1.由(ⅰ)(ⅲ)知x5,x7有一个错误,(ⅱ)中没有错误,∴x5错误,故k等于5.答案55.(2013·陕西,14)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为________.解析左边共n项,每项的符号为(-1)n+1,通项为(-1)n+1·n2.等式右边的值符号为(-1)n+1,各式为(-1)n+1(1+2+3+…+n)=(-1)n+1,∴第n个等式为12-22+32-42+…+(-1)n+1·n2=(-1)n+1·.答案12-22+32-42+…+(-1)n+1n2=(-1)n+1·n(n+1)26.(2013·湖北,14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三角形数为=n2+n.记第n个k边形数为N(n,k)(k ≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=n2+n,正方形数N(n,4)=n2,五边形数N(n,5)=n2-n,六边形数N(n,6)=2n2-n,…………可以推测N(n,k)的表达式,由此计算N(10,24)=________.解析由题中数据可猜想:含n2项的系数为首项是,公差是的等差数列,含n项的系数为首项是,公差是-的等差数列,因此N(n,k)=n2+n=n2+n.故N(10,24)=11n2-10n=11×102-10×10=1 000.答案 1 0007.(2014·陕西,14)观察分析下表中的数据:解析三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.答案F+V-E=28.(2012·陕西,11)观察下列不等式1+<,1++<,1+++<,……照此规律,第五个不等式为________________________________________.解析先观察左边,第一个不等式为2项相加,第二个不等式为3项相加,第三个不等式为4项相加,则第五个不等式应为6项相加,右边分子为分母的2倍减1,分母即为所对应项数,故应填1+++++<.答案1+++++<1169.(2012·湖北,13)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99;3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N+)位回文数有________个.解析(1)2位回文数均是不为0的自然数,故有9个;而对于3位回文数,首、末均相同且不为0,故有9种,而对于中间一数可含有0,故有10种,因此3位回文数有90种;对于4位回文数,首、末均相同且不为0,故有9种,对于中间两数则可含有0,故有10种,因此也有90种;(2)经归纳可得2n+1位回文数有9×10n个.答案(1)90 (2)9×10n10.(2013·重庆,22)对正整数n,记In={1,2,…,n},Pn=.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n 的最大值,使Pn能分成两个不相交的稀疏集的并.解(1)当k=4时,中有3个数与I7中的3个数重复,因此P7中元素的个数为7×7-3=46.(2)先证:当n≥15时,Pn不能分成两个不相交的稀疏集的并.若不然,设A,B为不相交的稀疏集,使A∪B=Pn⊇In,不妨设1∈A,则因1+3=22,故3∉A,即3∈B.同理6∈A,10∈B,又推得15∈A,但1+15=42,这与A为稀疏集矛盾.再证P14符合要求,当k=1时,=I14可分成两个稀疏集之并,事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1为稀疏集,且A1∪B1=I14.当k=4时,集中除整数外剩下的数组成集,可分解为下面两稀疏集的并:A2=,B2=.当k=9时,集中除正整数外剩下的数组成集,可分解为下面两稀疏集的并:A3=,B3=.最后,集C=中的数的分母均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B =P14.综上,所求n的最大值为14.注:对P14的分拆方法不是唯一的.直接证明与间接证明11.(2014·山东,4)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析至少有一个实根的否定是没有实根,故要做的假设是“方程x3+ax+b=0没有实根”.答案A12.(2013·四川,15)设P1,P2,…,Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,Pn的距离之和最小,则称点P为点P1,P2,…,Pn 的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是________(写出所有真命题的序号).解析由“中位点”可知,若C在线段AB上,则线段AB上任一点都为“中位点”,C也不例外,故①正确;对于②假设在等腰Rt△ABC中,∠ACB=90°,如图所示,点P为斜边AB中点,设腰长为2,则|PA|+|PB|+|PC|=|AB|=3,而若C为“中位点”,则|CB|+|CA|=4<3,故②错;对于③,若B,C三等分AD,若设|AB|=|BC|=|CD|=1,则|BA|+|BC|+|BD|=4=|CA|+|CB|+|CD|,故③错;对于④,在梯形ABCD中,对角线AC与BD的交点为O,在梯形ABCD内任取不同于点O的一点M,则在△MAC中,|MA|+|MC|>|AC|=|OA|+|OC|,同理在△MBD中,|MB|+|MD|>|BD|=|OB|+|OD|,则得,|MA|+|MB|+|MC|+|MD|>|OA|+|OB|+|OC|+|OD|,故O为梯形内唯一中位点,④是正确的.答案①④13.(2012·福建,17)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-sin 30°=1-=.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin2α+cos2α+sin αcos α+sin2α-3sin αcos α-sin2α2=sin2α+ cos2α=.数学归纳法14.(2015·江苏,23)已知集合X={1,2,3},Yn={1,2,3,…,n}(n∈N*),设Sn={(a,b)|a整除b或b整除a,a∈X,b∈Yn},令f(n)表示集合Sn所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.解(1)f(6)=13.(2)当n≥6时,f(n)=(t∈N*).下面用数学归纳法证明:①当n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时结论成立,那么n=k+1时,Sk+1在Sk的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2+++3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,... 结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(x)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.15.(2014·陕西,21)设函数f(x)=ln (1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N*,求gn(x)的表达式;(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;(3)设n∈N*,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.解由题设得,g(x)=(x≥0).(1)由已知,g1(x)=,g2(x)=g(g1(x))==,g3(x)=,…,可得gn(x)=.下面用数学归纳法证明.①当n=1时,g1(x)=,结论成立.②假设n=k时结论成立,即gk(x)=.那么,当n=k+1时,gk+1(x)=g(gk(x))=gk(x)1+gk(x)==,即结论成立.由①②可知,结论对n∈N+成立.(2)已知f(x)≥ag(x)恒成立,即ln (1+x)≥恒成立.... 设φ(x)=ln (1+x)-(x≥0),则φ′(x)=-=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln (1+x)≥恒成立(仅当x=0时等号成立).当a>1时,对x∈(0,a-1]有φ′(x)<0,∴φ(x)在(0,a-1]上单调递减,∴φ(a-1)<φ(0)=0,即a>1时,存在x>0,使φ(x)<0,故知ln (1+x)≥不恒成立.综上可知,a的取值范围是(-∞,1].(3)由题设知g(1)+g(2)+…+g(n)=++…+,n-f(n)=n-ln (n+1),比较结果为g(1)+g(2)+…+g(n)>n-ln (n+1).证明如下:法一上述不等式等价于++…+1<ln (n+1),n+1在(2)中取a=1,可得ln (1+x)>,x>0.令x=,n∈N+,则<ln .下面用数学归纳法证明.①当n=1时,<ln 2,结论成立.②假设当n=k时结论成立,即++…+<ln (k+1).那么,当n=k+1时,1++…++<ln (k+1)+<ln (k+1)+ln =ln (k+2),即结论成立.2由①②可知,结论对n∈N+成立.法二上述不等式等价于++…+<ln (n+1),在(2)中取a=1,可得ln (1+x)>,x>0.令x=,n∈N+,则ln >.故有ln 2-ln 1>,ln 3-ln 2>,……ln(n+1)-ln n>,上述各式相加可得ln (n+1)>++…+,结论得证.法三如图,dx是由曲线y=,x=n及x轴所围成的曲边梯形的面积,而++…+是图中所示各矩形的面积和.∴++…+>dx=(1-)dx=n-ln (n+1),结论得证.16.(2014·重庆,22)设a1=1,an+1=-2an+2)+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.解(1)法一a2=2,a3=+1,再由题设条件知(an+1-1)2=(an-1)2+1.从而{(an-1)2}是首项为0公差为1的等差数列,故(an-1)2=n-1,即an=+1(n∈N*).法二a2=2,a3=+1,可写为a1=+1,a2=+1,a3=+1.因此猜想an=+1.下面用数学归纳法证明上式:当n=1时结论显然成立.假设n=k时结论成立,即ak=+1.则ak+1=+1=+1=+1.这就是说,当n=k+1时结论成立.所以an=+1(n∈N*).(2)法一设f(x)=-1,则an+1=f(an).令c=f(c),即c=-1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.当n=1时,a2=f(1)=0,a3=f(0)=-1,所以a2<<a3<1,结论成立.假设n=k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(-∞,1]上为减函数,从而c=f(c)>f(a2k+1)>f(1)=a2,即1>c>a2k+2>a2.再由f(x)在(-∞,1]上为减函数得c=f(c)<f(a2k+2)<f(a2)=a3<1.故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1.这就是说,当n=k+1时结论成立.综上,符合条件的c存在,其中一个值为c=.法二设f(x)=-1,则an+1=f(an).先证:0≤an≤1(n∈N*).①当n=1时,结论明显成立.假设n=k时结论成立,即0≤ak≤1.易知f(x)在(-∞,1]上为减函数,从而0=f(1)≤f(ak)≤f(0)=-1<1.即0≤ak+1≤1.这就是说,当n=k+1时结论成立,故①成立.再证:a2n<a2n+1(n∈N*).②当n=1时,a2=f(1)=0,a3=f(a2)=f(0)=-1,有a2<a3,即n=1时②成立.假设n=k时,结论成立,即a2k<a2k+1,由①及f(x)在(-∞,1]上为减函数,得a2k+1=f(a2k)>f(a2k+1)=a2k+2,a2(k+1)=f(a2k+1)<f(a2k+2)=a2(k+1)+1.这就是说,当n=k+1时②成立,所以②对一切n∈N*成立.由②得a2n<-2a2n+2)-1,即(a2n+1)2<a-2a2n+2,因此a2n<.③又由①、②及f(x)在(-∞,1]上为减函数,得f(a2n)>f(a2n+1),即a2n+1>a2n +2,所以a2n+1>-2a2n+1+2)-1.解得a2n+1>.④综上,由②、③、④知存在c=使a2n<c<a2n+1对一切n∈N*成立.。
配套K12高考数学一轮总复习第7章不等式推理与证明第五节推理与证明AB卷文1
【大高考】2017版高考数学一轮总复习第7章不等式、推理与证明第五节推理与证明AB卷文新人教A版1.(2016·新课标全国Ⅲ,4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析由题意知,平均最高气温高于20 ℃的六月,七月,八月,故选D.答案 D2.(2016·新课标全国Ⅱ,16)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.答案1和33.(2014·课标Ⅰ,14)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.解析根据甲和丙的回答推测乙没去过B城市,又知乙没去过C城市,故乙去过A城市. 答案A1.(2016·浙江,8)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n+2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( ) A.{S n }是等差数列 B.{S 2n }是等差数列C.{d n }是等差数列D.{d 2n }是等差数列解析 S n 表示点A n 到对面直线的距离(设为h n )乘以|B n B n -1|长度一半,即S n =12h n |B n B n -1|,由题目中条件可知|B n B n -1|的长度为定值,过A 1作垂直得到初始距离h 1,那么A 1,A n 和两个垂足构成等腰梯形,则h n =h 1+|A 1A n |tan θ(其中θ为两条线所成的锐角,为定值), 从而S n =12(h 1+|A 1A n |tan θ)|B n B n +1|,S n +1=12(h 1+|A 1A n +1|)|B n B n +1|,则S n +1-S n =12|A n A n +1||B n B n +1|tan θ,都为定值,所以S n +1-S n 为定值,故选A. 答案 A2.(2016·山东,12)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝⎛⎭⎪⎫sin 2π3-2=43×1×2;⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2=43×4×5; ……照此规律,⎝ ⎛⎭⎪⎫sinπ2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________.解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.答案 43×n ×(n +1)3.(2015·陕西,16)观察下列等式 1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16 ……据此规律,第n 个等式可为________.解析 等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且有前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n. 答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n4.(2013·陕西,13)观察下列等式 (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 ……照此规律,第n 个等式可为____________________________________________. 解析 观察规律,等号左侧为(n +1)(n +2)…(n +n ),等号右侧分两部分,一部分是2n,另一部分是1×3×…×(2n -1).答案 (n +1)(n +2)…(n +n )=2n×1×3×…×(2n -1)5.(2014·福建,16)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个正确,则100a +10b +c 等于________.解析 可分下列三种情形:(1)若只有①正确,则a ≠2,b ≠2,c =0,所以a =b =1与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b =2,a =2,c =0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c ≠0,a =2,b ≠2,所以b =0,c =1,所以100a +10b +c =100×2+10×0+1=201. 答案 2016.(2014·山东,4)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( ) A.方程x 3+ax +b =0没有实根 B.方程x 3+ax +b =0至多有一个实根 C.方程x 3+ax +b =0至多有两个实根 D.方程x 3+ax +b =0恰好有两个实根解析 至少有一个实根的否定是没有实根,故做的假设是“方程x 3+ax +b =0没有实根”. 答案 A7.(2016·浙江,20)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.8.(2015·四川,21)已知函数f (x )=-2x ln x +x 2-2ax +a 2,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.(1)解 由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -1-ln x -a ),所以g ′(x )=2-2x =2(x -1)x,当x ∈(0,1)时,g ′(x )<0,g (x )单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增. (2)证明 由f ′(x )=2(x -1-ln x -a )=0, 解得a =x -1-ln x ,令φ(x )=-2x ln x +x 2-2x (x -1-ln x )+(x -1-ln x )2=(1+ln x )2-2x ln x ,则φ(1)=1>0,φ(e)=2(2-e)<0, 于是,存在x 0∈(1,e),使得φ(x 0)=0, 令a 0=x 0-1-ln x 0=u (x 0), 其中u (x )=x -1-ln x (x ≥1), 由u ′(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增, 故0=u (1)<a 0=u (x 0)<u (e)=e -2<1, 即a 0∈(0,1),当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0, 再由(1)知,f ′(x )在区间(1,+∞)上单调递增, 当x ∈(1,x 0)时,f ′(x )<0, 从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0, 从而f (x )>f (x 0)=0;又当x ∈(0,1]时,f (x )=(x -a 0)2-2x ln x >0, 故x ∈(0,+∞)时,f (x )≥0,综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.9.(2015·江苏,20)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由; (3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k3,a n +3k4依次构成等比数列?并说明理由.(1)证明 因为2a n +12a n =2a n +1-a n =2d(n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列,(2)解 令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0).假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列, 则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =d a ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0,化简得t 3+2t 2-2=0(*),且t 2=t +1. 将t 2=t +1代入(*)式,t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立.因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列. (3)解 假设存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列,则a n1(a 1+2d )n +2k=(a 1+d )2(n +k ),且(a 1+d )n +k(a 1+3d )n +3k=(a 1+2d )2(n +2k ).分别在两个等式的两边同除以a 2(n +k )1及a 2(n +2k )1,并令t =d a 1⎝ ⎛⎭⎪⎫t >-13,t ≠0, 则(1+2t )n +2k=(1+t )2(n +k ),且(1+t )n +k(1+3t )n +3k=(1+2t )2(n +2k ).将上述两个等式两边取对数,得(n +2k )ln(1+2t )=2(n +k )ln(1+t ), 且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ).化简得2k [ln(1+2t )-ln(1+t )] =n [2ln(1+t )-ln(1+2t )],且3k [ln(1+3t )-ln(1+t )]=n [3ln(1+t )-ln(1+3t )]. 再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t ) =4ln(1+3t )ln(1+t )(**).令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ), 则g ′(t )=2[(1+3t )2ln (1+3t )-3(1+2t )2ln (1+2t )+3(1+t )2ln (1+t )](1+t )(1+2t )(1+3t ).令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+3(1+t )2ln(1+t ), 则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ1′(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )]. 令φ2(t )=φ1′(t ),则φ2′(t )=12(1+t )(1+2t )(1+3t )>0.由g (0)=φ(0)=φ1(0)=φ2(0)=0, φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎝ ⎛⎭⎪⎫-13,0和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立. 所以不存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列.10.(2014·天津,20)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ; (2)设s ,t ∈A ,s =a 1+a 2q +…+a n qn -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .(1)解 当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3}.可得,A ={0,1,2,3,4,5,6,7}. (2)证明 由s ,t ∈A ,s =a 1+a 2q +…+a n qn -1,t =b 1+b 2q +…+b n qn -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )qn -1≤(q -1)+(q -1)q +…+(q -1)qn -2-qn -1=(q -1)(1-q n -1)1-q-q n -1=-1<0.所以,s <t .。
人教A版高考总复习一轮理科数学精品课件 第7章 不等式、推理与证明 第5节 数学归纳法
微点拨推证n=k+1时一定要用上n=k时的假设,否则就不是数学归纳法.
微思考数学归纳法证明数学命题时初始值n0一定是1吗?
提示:不一定.要根据题目条件或具体问题确定初始值.
2.数学归纳法的框图表示
增素能 精准突破
考点一
用数学归纳法证明等式
典例突破
例
12
1.用数学归纳法证明:
1×3
证明:(1)当 n=1
,
2
2+1
2
> + 1(n∈N*)成立,
证明如下:
①当 n=1
3
时,左边= ,右边=
2
②假设当 n=k(k∈N
3
2,因为
2
> 2,所以不等式成立.
3
)时不等式成立,即2
*
则当 n=k+1
4 2 +12+9
4(+1)
3
时,2
>
( + 1) + 1,
5
4
7
6
× × ×…×
4 2 +12+8
1
2
右边=2 1 + − 1 =1,左边=右边,等式成立.
(2)假设当n=k(k≥2,k∈N*)时,等式成立,
即f(1)+f(2)+…+f(k-1)=k[f(k)-1],
那么,当n=k+1时,
f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k)
=(k+1)f(k)-k=(k+1) ( + 1) −
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习 第七章 不等式、推理与证明7.4 基本不等式 考试要求 1.掌握基本不等式及常见变型.2.会用基本不等式解决简单的最值问题. 知识梳理1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P .(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2. 注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)不等式ab ≤⎝⎛⎭⎫a +b 22与ab ≤a +b 2等号成立的条件是相同的.( × ) (2)y =x +1x的最小值是2.( × ) (3)若x >0,y >0且x +y =xy ,则xy 的最小值为4.( √ )(4)函数y =sin x +4sin x,x ∈⎝⎛⎭⎫0,π2的最小值为4.( × ) 教材改编题1.已知x >2,则x +1x -2的最小值是( ) A .1 B .2 C .2 2 D .4答案 D解析 ∵x >2,∴x +1x -2=x -2+1x -2+2≥2x -21x -2+2=4, 当且仅当x -2=1x -2,即x =3时,等号成立. 2.函数y =4-x -1x(x <0)( ) A .有最小值2B .有最小值6C .有最大值2D .有最大值6答案 B解析 y =4+(-x )+1-x ≥4+2-x ·⎝⎛⎭⎫-1x =6. 当且仅当-x =1-x,即x =-1时取等号. 3.若a ,b ∈R ,下列不等式成立的是________.①b a +a b ≥2; ②ab ≤a 2+b 22; ③a 2+b 22≥⎝⎛⎭⎫a +b 22;④2ab a +b≤ab . 答案 ②③ 解析 当b a为负时,①不成立. 当ab <0时,④不成立.题型一 利用基本不等式求最值命题点1 配凑法例1 (1)(2022·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为( ) A.94 B .4 C.92D .9 答案 C解析 y =4x (3-2x )=2·2x ·(3-2x )≤2·⎝⎛⎭⎫2x +3-2x 22=92. 当且仅当2x =3-2x ,即x =34时取等号, ∴当x =34时,y max =92. (2)若x <23,则f (x )=3x +1+93x -2有( ) A .最大值0B .最小值9C .最大值-3D .最小值-3解析 ∵x <23, ∴3x -2<0, f (x )=3x -2+93x -2+3=-⎣⎡⎦⎤2-3x +92-3x +3≤-22-3x ·92-3x +3=-3.当且仅当2-3x =92-3x ,即x =-13时取“=”.(3)(2022·绍兴模拟)若-1<x <1,则y =x 2-2x +22x -2的最大值为________.答案 -1解析 因为-1<x <1,则0<1-x <2,于是得y =-12·1-x 2+11-x=-12⎣⎡⎦⎤1-x +11-x≤-12·21-x ·11-x =-1,当且仅当1-x =11-x ,即x =0时取“=”,所以当x =0时,y =x 2-2x +22x -2有最大值-1.命题点2 常数代换法例2 (2022·重庆模拟)已知a >0,b >0,且a +b =2,则2a +12b 的最小值是() A .1 B .2C.94 D.92解析 因为a >0,b >0,且a +b =2,所以a +b 2=1, 所以2a +12b =12(a +b )⎝⎛⎭⎫2a +12b =12⎝⎛⎭⎫2b a +a 2b +52 ≥12×⎝⎛⎭⎫2+52=94, 当且仅当a =43,b =23时,等号成立.命题点3 消元法例3 已知x >0,y >0且x +y +xy =3,则x +y 的最小值为________.答案 2解析 方法一 (换元消元法)∵x +y +xy =3,则3-(x +y )=xy ≤⎝⎛⎭⎫x +y 22,即(x +y )2+4(x +y )-12≥0,令t =x +y ,则t >0,∴t 2+4t -12≥0,解得t ≥2,∴x +y 的最小值为2.方法二 (代入消元法)由x +y +xy =3得y =3-x x +1, ∵x >0,y >0,∴0<x <3,∴x +y =x +3-x x +1=x +4x +1-1=x +1+4x +1-2≥2x +1·4x +1-2=2,当且仅当x +1=4x +1,即x =1时取等号,∴x +y 的最小值为2.延伸探究 本例条件不变,求xy 的最大值.解 ∵x +y +xy =3,∴3-xy =x +y ≥2xy ,当且仅当x =y 时取等号,令t =xy ,则t >0,∴3-t 2≥2t ,即t 2+2t -3≤0, 即0<t ≤1,∴当x =y =1时,xy 最大值为1.教师备选1.(2022·哈尔滨模拟)已知x >0,y >0,且2x +8y -xy =0,则当x +y 取得最小值时,y 等于() A .16 B .6 C .18 D .12答案 B解析 因为x >0,y >0,2x +8y =xy ,所以2y +8x =1,所以x +y =(x +y )⎝⎛⎭⎫2y +8x =10+2xy +8yx≥10+22xy ·8yx =10+2×4=18,当且仅当⎩⎪⎨⎪⎧2x y =8y x ,2x +8y -xy =0,即⎩⎪⎨⎪⎧ x =12,y =6时取等号,所以当x +y 取得最小值时,y =6.2.已知函数f (x )=-x 2x +1(x <-1),则( ) A .f (x )有最小值4B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4 答案 A解析 f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎫x -1+1x +1=-⎝⎛⎭⎫x +1+1x +1-2 =-(x +1)+1-x +1+2. 因为x <-1,所以x +1<0,-(x +1)>0,所以f (x )≥21+2=4,当且仅当-(x +1)=1-x +1,即x =-2时,等号成立. 故f (x )有最小值4.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.跟踪训练1 (1)已知函数f (x )=22x -1+x (2x >1),则f (x )的最小值为________. 答案 52解析 ∵2x >1,∴x -12>0, f (x )=22x -1+x =1x -12+x -12+12 ≥21x -12·⎝⎛⎭⎫x -12+12=2+12=52, 当且仅当1x -12=x -12,即x =32时取“=”. ∴f (x )的最小值为52. (2)已知x >0,y >0且x +y =5,则1x +1+1y +2的最小值为________. 答案 12解析 令x +1=m ,y +2=n ,∵x >0,y >0,∴m >0,n >0,则m +n =x +1+y +2=8,∴1x +1+1y +2=1m +1n =⎝⎛⎭⎫1m +1n ×18(m +n )=18⎝⎛⎭⎫n m +m n +2≥18×(21+2)=12. 当且仅当n m =m n,即m =n =4时等号成立. ∴1x +1+1y +2的最小值为12. 题型二 基本不等式的常见变形应用例4 (1)(2022·宁波模拟)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0) B .a 2+b 2≥2ab (a >0,b >0)C.2ab a +b ≤ab (a >0,b >0)D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知,OF =12AB =12(a +b ),OC =12(a +b )-b =12(a -b ),在Rt △OCF 中,由勾股定理可得,CF =⎝⎛⎭⎫a +b 22+⎝⎛⎭⎫a -b 22=12a 2+b 2,∵CF ≥OF ,∴12a 2+b 2≥12(a +b )(a >0,b >0).(2)(2022·广州模拟)已知0<a <1,b >1,则下列不等式中成立的是() A .a +b <4aba +bB.ab <2aba +bC.2a 2+2b 2<2abD .a +b <2a 2+2b 2答案 D解析 对于选项A ,因为0<a <1,b >1,所以(a +b )2=a 2+2ab +b 2>4ab ,故选项A 错误;对于选项B ,ab >21a +1b=2aba +b,故选项B 错误;对于选项C ,2a 2+b 2>2×2ab =2ab ,故选项C 错误;对于选项D,2a 2+2b 2>a 2+2ab +b 2=(a +b )2,所以a +b <2a 2+2b 2,故选项D 正确.教师备选若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 答案 D解析 a 2+b 2≥2ab ,所以A 错误;ab >0,只能说明两实数同号,同为正数,或同为负数,所以当a <0,b <0时,B 错误;同时C 错误;a b 或b a都是正数,根据基本不等式求最值, a b +b a ≥2a b ×b a =2,故D 正确. 思维升华 基本不等式的常见变形(1)ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22. (2)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 跟踪训练2 (1)(2022·浙南名校联盟联考)已知命题p :a >b >0,命题q :a 2+b 22>⎝⎛⎭⎫a +b 22,则p是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 ∵a >b >0,则a 2+b 2>2ab ,∴2(a 2+b 2)>a 2+b 2+2ab ,∴2(a 2+b 2)>(a +b )2, ∴a 2+b 22>⎝⎛⎭⎫a +b 22, ∴由p 可推出q ,当a <0,b <0时,命题q 成立,如a =-1,b =-3时,a 2+b 22=5>⎝⎛⎭⎫a +b 22=4,∴由q 推不出p ,∴p 是q 成立的充分不必要条件.(2)(2022·漳州质检)已知a ,b 为互不相等的正实数,则下列四个式子中最大的是( )A.2a +bB.1a +1bC.2abD.2a 2+b 2答案 B解析 ∵a ,b 为互不相等的正实数,∴1a +1b >2ab, 2a +b <22ab =1ab <2ab, 2a 2+b 2<22ab =1ab <2ab, ∴最大的是1a +1b.柯西不等式是法国著名的数学家、物理学家、天文学家柯西(Cauchy,1789-1857)发现的,故命名为柯西不等式.柯西不等式是数学中一个非常重要的不等式,除了用柯西不等式来证明一些不等式成立外,柯西不等式还常用于选择、填空求最值的问题中,借助柯西不等式的技巧可以达到事半功倍的效果.1.(柯西不等式的代数形式)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.推广一般情形:设a 1,a 2,…,a n ,b 1,b 2,…,b n ∈R ,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2(当且仅当b i=0(i =1,2,…,n )或存在一个实数k ,使得a i =kb i (i =1,2,…,n )时,等号成立).2.(柯西不等式的向量形式)设α,β为平面上的两个向量,则|α||β|≥|α·β|,其中当且仅当β是零向量,或存在实数k ,使α=k β时等号成立.3.(柯西不等式的三角不等式)设x 1,y 1,x 2,y 2,x 3,y 3为任意实数,则: x 1-x 22+y 1-y 22+x 2-x 32+y 2-y 32 ≥x 1-x 32+y 1-y 32.一、利用柯西不等式求最值例1 已知x ,y 满足x +3y =4,则4x 2+y 2的最小值为________.答案 6437 解析 (x +3y )2≤(4x 2+y 2)⎝⎛⎭⎫14+9,所以4x 2+y 2≥16×437=6437, 当且仅当y =12x 时,等号成立,所以4x 2+y 2的最小值为6437. 例2 已知正实数x ,y ,z 满足x 2+y 2+z 2=1,正实数a ,b ,c 满足a 2+b 2+c 2=9,则ax +by +cz 的最大值为________.答案 3解析 (ax +by +cz )2≤(a 2+b 2+c 2)·(x 2+y 2+z 2)=9,∴ax +by +cz ≤3,当且仅当a =3x ,b =3y ,c =3z 时取“=”,∴ax +by +cz 的最大值为3.例3 函数y =5x -1+10-2x 的最大值为________. 答案 6 3 解析 y 2=(5x -1+10-2x )2=(5x -1+2·5-x )2≤(52+2)(x -1+5-x )=108,当且仅当x =12727时等号成立,∴y ≤6 3.二、利用柯西不等式证明不等式例4 已知a 1,a 2,b 1,b 2为正实数,求证:(a 1b 1+a 2b 2)·⎝⎛⎭⎫a 1b 1+a 2b 2≥(a 1+a 2)2. 证明 (a 1b 1+a 2b 2)⎝⎛⎭⎫a 1b 1+a 2b 2=[(a 1b 1)2+(a 2b 2)2]⎣⎡⎦⎤⎝⎛⎭⎫a 1b 12+⎝⎛⎭⎫a 2b 22 ≥⎝⎛⎭⎫a 1b 1·a 1b 1+a 2b 2·a 2b 22 =(a 1+a 2)2.当且仅当b 1=b 2时,等号成立.例5 已知a 1,a 2,…,a n 都是实数,求证:1n(a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n . 证明 根据柯西不等式,有()12+12+…+12n 个 (a 21+a 22+…+a 2n )≥(1×a 1+1×a 2+…+1×a n )2, 所以1n(a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n . 课时精练1.下列函数中,最小值为2的是( )A .y =x +2xB .y =x 2+3x 2+2C .y =e x +e -xD .y =log 3x +log x 3(0<x <1)答案 C解析 当x <0时,y =x +2x<0,故A 错误; y =x 2+3x 2+2=x 2+2+1x 2+2≥2, 当且仅当x 2+2=1x 2+2, 即x 2=-1时取等号,∵x 2≠-1,故B 错误;y =e x +e -x ≥2e x ·e -x =2,当且仅当e x =e -x ,即x =0时取等号,故C 正确;当x ∈(0,1)时,y =log 3x <0,故D 错误.2.(2022·汉中模拟)若a >0,b >0且2a +b =4,则ab 的最大值为( )A .2 B.12 C .4 D.14答案 A解析 4=2a +b ≥22ab ,即2≥2ab ,平方得ab ≤2,当且仅当2a =b ,即a =1,b =2时等号成立,∴ab 的最大值为2.3.(2022·苏州模拟)若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =b y 时取等号.利用以上结论,函数f (x )=2x +91-2x ,x ∈⎝⎛⎭⎫0,12取得最小值时x 的值为( ) A.15 B.14 C.24 D.13答案 A解析 f (x )=2x +91-2x =42x +91-2x ≥2+322x +1-2x =25,当且仅当22x =31-2x ,即x =15时等号成立.4.(2022·重庆模拟)已知x >2,y >1,(x -2)(y -1)=4,则x +y 的最小值是() A .1 B .4C .7D .3+17答案 C解析 ∵x >2,y >1,(x -2)(y -1)=4,∴x +y =(x -2)+(y -1)+3≥2x -2y -1+3=7,当且仅当⎩⎪⎨⎪⎧x =4,y =3时等号成立. 5.已知函数f (x )=14x +9x -1(x <1),下列结论正确的是( )A .f (x )有最大值114B .f (x )有最大值-114C .f (x )有最小值132D .f (x )有最小值74答案 B解析 f (x )=x -14+9x -1+14=-⎝ ⎛⎭⎪⎫1-x 4+91-x +14≤-21-x 4·91-x+14=-114,当且仅当x =-5时等号成立.6.已知函数f (x )=xx 2-x +4(x >0),则( )A .f (x )有最大值3B .f (x )有最小值3C .f (x )有最小值13 D .f (x )有最大值13答案 D解析 f (x )=xx 2-x +4=1x +4x -1≤124-1=13,当且仅当x =4x ,即x =2时等号成立,∴f (x )的最大值为13.7.(2022·济宁模拟)已知a ,b 为正实数,则“aba +b ≤2”是“ab ≤16”的() A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件答案 B解析 由a ,b 为正实数,∴a +b ≥2ab ,当且仅当a =b 时等号成立,若ab ≤16,可得aba +b ≤ab2ab =ab2≤162=2,故必要性成立;当a =2,b =10,此时aba +b ≤2,但ab =20>16,故充分性不成立,因此“ab a +b ≤2”是“ab ≤16”的必要不充分条件. 8.已知正实数a ,b 满足a >0,b >0,且a +b =1,则下列不等式恒成立的有( ) ①2a +2b ≥22;②a 2+b 2<1; ③1a +1b<4; ④a +1a >2. A .①②B .①③C .①②④D .②③④答案 C解析 ∵2a +2b ≥22a ·2b =22a +b =22,当且仅当a =b 时取等号,∴①正确; ∵a 2+b 2<a 2+b 2+2ab =(a +b )2=1,∴②正确;∵1a +1b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b≥2+2b a ×a b =4, 当且仅当a =b 时取等号,∴③错误;∵a >0,b >0,a +b =1,∴0<a <1,∵a +1a ≥2a ·1a=2,当且仅当a =1时取等号, ∴a +1a>2,④正确. 9.若0<x <2,则x 4-x 2的最大值为________.答案 2解析 ∵0<x <2,∴x 4-x 2=x 24-x 2≤x 2+4-x 22=2, 当且仅当x 2=4-x 2,即x =2时取“=”.10.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为________. 答案 4解析 依题意ab =a +b ,∴a +b =ab ≤⎝⎛⎭⎫a +b 22, 即a +b ≤a +b 24,∴a +b ≥4,当且仅当a =b 时取等号,∴a +b 的最小值为4.11.已知x >0,y >0且3x +4y -xy =0,则3x +y 的最小值为________. 答案 27解析 因为x >0,y >0,3x +4y =xy ,所以3y +4x=1, 所以3x +y =(3x +y )⎝⎛⎭⎫3y +4x =15+9x y +4y x ≥15+29x y ·4y x=27, 当且仅当⎩⎪⎨⎪⎧ 9x y =4y x ,3x +4y -xy =0即⎩⎪⎨⎪⎧x =6,y =9时取等号, 所以3x +y 的最小值为27.12.(2021·天津)若a >0,b >0,则1a +a b2+b 的最小值为________. 答案 2 2解析 ∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22b·b =22, 当且仅当1a =a b 2且2b=b ,即a =b =2时等号成立, ∴1a +a b2+b 的最小值为2 2.13.(2022·南京模拟)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的取值范围是( )A.⎣⎡⎦⎤-233,233 B.⎝⎛⎭⎫-233,233 C.⎣⎡⎦⎤-223,223 D.⎝⎛⎭⎫-223,223 答案 A解析 ∵x 2+y 2+xy =1⇔xy =(x +y )2-1,又∵xy ≤⎝⎛⎭⎫x +y 22,∴(x +y )2-1≤⎝⎛⎭⎫x +y 22,令x +y =t , 则4t 2-4≤t 2,∴-233≤t ≤233, 即-233≤x +y ≤233,当且仅当x =y 时,取等号, ∴x +y 的取值范围是⎣⎡⎦⎤-233,233. 14.设a >0,b >0,则下列不等式中一定成立的是________.(填序号)①a +b +1ab ≥22; ②2ab a +b >ab ; ③a 2+b 2ab≥a +b ; ④(a +b )⎝⎛⎭⎫1a +1b ≥4.答案 ①③④解析 因为a >0,b >0,所以a +b +1ab ≥2ab +1ab≥22, 当且仅当a =b 且2ab =1ab ,即a =b =22时取等号,故①正确; 因为a +b ≥2ab >0, 所以2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号, 故②错误;因为2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号, 所以a 2+b 2a +b =a +b 2-2ab a +b =a +b -2ab a +b≥ 2ab -ab =ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b ≥ab ,即a 2+b 2ab≥a +b ,故③正确; 因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b≥ 2+2b a ·a b=4,当且仅当a =b 时取等号,故④正确.15.已知a >0,b >0,且a +b =1,则1a +1b+ab 的最小值为____________. 答案 174解析 因为a >0,b >0,且a +b =1,所以1=a +b ≥2ab ,即0<ab ≤14,当且仅当a =b 时取等号, 令t =ab ,则1a +1b +ab =1ab +ab =1t+t ,t ∈⎝⎛⎦⎤0,14, 因为函数y =1t+t 在⎝⎛⎦⎤0,14上为减函数,所以当t =14时,函数y =1t +t 取得最小值,即y min =14+4=174. 16.(2022·沙坪坝模拟)若x >0,y >0且x +y =xy ,则x x -1+2y y -1的最小值为________. 答案 3+2 2解析 因为x >0,y >0且x +y =xy ,则xy =x +y >y ,即有x >1,同理y >1,由x +y =xy 得,(x -1)(y -1)=1,于是得x x -1+2y y -1=1+1x -1+2+2y -1=3+⎝⎛⎭⎫1x -1+2y -1 ≥3+21x -1·2y -1=3+22, 当且仅当1x -1=2y -1, 即x =1+22,y =1+2时取“=”, 所以x x -1+2y y -1的最小值为3+2 2.。
高考数学一轮总复习:第七章 不等式及推理与证明
高考数学一轮总复习:第七章 不等式及推理与证明目 录第1课时 不等式与不等关系 第2课时 一元二次不等式的解法 第3课时 简单的线性规划 第4课时 基本不等式第5课时 合情推理与演绎推理 第6课时 直接证明与间接证明第1课时 不等式与不等关系1.已知a ,b ,c ,d 均为实数,有下列命题: ①若ab>0,bc -ad>0,则c a -db >0;②若ab>0,c a -db >0,则bc -ad>0;③若bc -ad>0,c a -db >0,则ab>0.其中正确命题的个数是( ) A .0 B .1 C .2 D .3答案 D解析 对于①,∵ab>0,bc -ad>0,c a -d b =bc -adab >0,∴①正确;对于②,∵ab>0,又c a -d b >0,即bc -ad ab >0,∴②正确;对于③,∵bc -ad>0,又c a -db >0,即bc -adab>0,∴ab>0,∴③正确.2.若a ,b 是任意实数,且a>b ,则下列不等式成立的是( )A .a 2>b 2B.b a <1 C .lg(a -b)>0 D .(13)a <(13)b答案 D解析 方法一:利用性质判断.方法二(特值法):令a =-1,b =-2,则a 2<b 2,ba>1,lg(a -b)=0,可排除A ,B ,C 三项.故选D.3.设a∈R ,则a>1是1a <1的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若a>1,则1a <1成立;反之,若1a <1,则a>1或a<0.即a>1⇒1a <1,而1a <1a>1,故选A.4. 设a ,b ∈R ,若a +|b|<0,则下列不等式成立的是( ) A .a -b>0 B .a 3+b 3>0 C .a 2-b 2<0 D .a +b<0 答案 D5.设a ,b 为实数,则“0<ab<1”是“b<1a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 D解析 一方面,若0<ab<1,则当a<0时,0>b>1a ,∴b<1a 不成立;另一方面,若b<1a,则当a<0时,ab>1,∴0<ab<1不成立,故选D.6. 设a ,b ∈R ,则“a>b”是“a|a|>b|b|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,由a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|,故选C.7.已知0<a<b,且a+b=1,下列不等式成立的是( ) A.log2a>0 B.2a-b>1C.2ab>2 D.log2(ab)<-2答案 D解析方法一(特殊值法):取a=14,b=34验证即可.方法二:(直接法)由已知,0<a<1,0<b<1,a-b<0,0<ab<14,log2(ab)<-2,故选D.8.设0<b<a<1,则下列不等式成立的是( )A.ab<b2<1 B.log12b<log12a<0C.2b<2a<2 D.a2<ab<1 答案 C解析方法一(特殊值法):取b=14,a=12.方法二(单调性法):0<b<a⇒b2<ab,A不对;y=log12x在(0,+∞)上为减函数,∴log12b>log12a,B不对;a>b>0⇒a2>ab,D不对,故选C.9.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,若两人步行速度、跑步速度均相同,则( ) A.甲先到教室B.乙先到教室C.两人同时到教室D.谁先到教室不确定答案 B解析设步行速度与跑步速度分别为v1和v2显然0<v1<v2,总路程为2s,则甲用时间为sv 1+sv2,乙用时间为4sv1+v2,而sv1+sv2-4sv1+v2=s(v1+v2)2-4sv1v2v1v2(v1+v2)=s(v1-v2)2v1v2(v1+v2)>0,故sv1+sv2>4sv1+v2,故乙先到教室.10.下列四个数中最大的是( )A.lg2 B.lg 2 C.(lg2)2D.lg(lg2) 答案 A解析因为lg2∈(0,1),所以lg(lg2)<0;lg2-(lg2)2=lg2(12-lg2)>lg2(12-lg10)=0,即lg2>(lg2)2;lg2-lg2=12lg2>0,即lg2>lg 2.所以最大的是lg2.11.设a=log36,b=log510,c=log714,则( )A.c>b>a B.b>c>a C.a>c>b D.a>b>c 答案 D解析a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,则只要比较log32,log52,log72的大小即可,在同一坐标系中作出函数y=log3x,y=log5x,y=log7x的图像,由三个图像的相对位置关系,可知a>b>c,故选D.12.已知实数x,y,z满足x+y+z=0,且xyz>0,设M=1x+1y+1z,则( )A .M>0B .M<0C .M =0D .M 不确定答案 B解析 ∵(x+y +z)2=x 2+y 2+z 2+2(xy +yz +zx)=0,∴xy +yz +zx<0,∴M =1x +1y +1z =yz +zx +xy xyz<0. 13.(1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________. 答案 (-3π2,π2) 解析 ∵-π2<α<β<π2,∴-π<α-β<0.∵2α-β=α+α-β,∴-3π2<2α-β<π2. (2)若1<α<3,-4<β<2,则α-|β|的取值范围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4.∴-4<-|β|≤0.又∵1<α<3,∴-3<α-|β|<3.(3)若-1<a +b<3,2<a -b<4,则2a +3b 的取值范围为________. 答案 (-92,132)解析 设2a +3b =x(a +b)+y(a -b), 则⎩⎨⎧x +y =2,x -y =3,解得⎩⎪⎨⎪⎧x =52,y =-12.又因为-52<52(a +b)<152,-2<-12(a -b)<-1,所以-92<52(a +b)-12(a -b)<132.即-92<2a +3b<132.14.设α∈(0,12),T 1=cos(1+α),T 2=cos(1-α),则T 1与T 2的大小关系为________.答案 T 1<T 2解析 T 1-T 2=(cos1cosα-sin1sinα)-(cos1cosα+sin1sinα)=-2sin1sinα<0.15.(1)若a>1,b<1,则下列两式的大小关系为ab +1________a +b. 答案 <解析 (ab +1)-(a +b) =1-a -b +ab =(1-a)(1-b), ∵a>1,b<1,∴1-a<0,1-b>0, ∴(1-a)(1-b)<0,∴ab +1<a +b.(2)若a>0,b>0,则不等式-b<1x <a 的解集为________.答案 (-∞,-1b )∪(1a ,+∞)解析 由已知,得-b<0,a>0,∴1x ∈(-b ,a)=(-b ,0)∪{0}∪(0,a). ∴x ∈(-∞,-1b )∪(1a,+∞).16.设a>b>c>0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.答案 z>y>x解析 方法一(特值法):取a =3,b =2,c =1验证即可.方法二(比较法):∵a>b>c>0,∴y 2-x 2=b 2+(c +a)2-a 2-(b +c)2=2c(a -b)>0,∴y 2>x 2,即y>x.z 2-y 2=c 2+(a +b)2-b 2-(c +a)2=2a(b -c)>0, 故z 2>y 2,即z>y ,故z>y>x.17.已知a +b>0,比较a b 2+b a 2与1a +1b 的大小.答案 a b 2+b a 2≥1a +1b解析a b 2+b a 2-⎝ ⎛⎭⎪⎫1a +1b =a -b b 2+b -a a2= (a -b)⎝ ⎛⎭⎪⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2.∵a +b>0,(a -b)2≥0,∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b. 18.已知a>0且a≠1,比较log a (a 3+1)和log a (a 2+1)的大小. 答案 log a (a 3+1)>log a (a 2+1) 解析 当a>1时,a 3>a 2,a 3+1>a 2+1. 又y =log a x 为增函数, 所以log a (a 3+1)>log a (a 2+1); 当0<a<1时,a 3<a 2,a 3+1<a 2+1. 又y =log a x 为减函数, 所以log a (a 3+1)>log a (a 2+1).综上,对a>0且a≠1,总有log a (a 3+1)>log a (a 2+1).第2课时 一元二次不等式的解法1.下列不等式中解集为R 的是( ) A .-x 2+2x +1≥0 B .x 2-25x +5>0 C .x 2+6x +10>0 D .2x 2-3x +4<0答案 C解析 在C 项中,Δ=36-40=-4<0,所以不等式解集为R . 2.若0<m <1,则不等式(x -m)(x -1m)<0的解集为( )A .{x|1m <x <m}B .{x|x>1m 或x <m}C .{x|x>m 或x <1m }D .{x|m <x <1m}答案 D解析 当0<m<1时,m<1m .3.函数y =ln (x +1)-x 2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案 C解析 由⎩⎨⎧x +1>0,-x 2-3x +4>0,解得-1<x<1.4.关于x 的不等式x 2+px -2<0的解集是(q ,1),则p +q 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 依题意得q ,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1,选B.5.不等式(2x -1)(1-|x|)<0成立的充要条件是( ) A .x>1或x<12B .x>1或-1<x<12C .-1<x<12D .x<-1或x>12答案 B解析 原不等式等价于⎩⎨⎧2x -1>0,1-|x|<0或⎩⎨⎧2x -1<0,1-|x|>0.∴⎩⎨⎧x>12,x>1或x<-1或⎩⎨⎧x<12,-1<x<1.∴x>1或-1<x<12,故选B.6.不等式x 2-x -6x -1>0的解集为( )A.{}x|x<-2或x>3B.{}x|x<-2或1<x<3C.{}x|-2<x<1或x>3D.{}x|-2<x<1或1<x<3答案 C解析 x 2-x -6x -1>0⇒(x -3)(x +2)x -1>0⇒(x +2)·(x-1)(x -3)>0,由数轴标根法,得-2<x<1或x>3.7.已知不等式ax 2+bx +2>0的解集为{x|-1<x<2},则不等式2x 2+bx +a<0的解集为( )A .{x|-1<x<12}B .{x|x<-1或x>12}C .{x|-2<x<1}D .{x|x<-2或x>1} 答案 A解析 由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由韦达定理,得⎩⎪⎨⎪⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎨⎧a =-1,b =1.∴不等式2x 2+bx +a<0,即2x 2+x -1<0. 可知x =-1,x =12是对应方程的根,∴选A.8. 已知一元二次不等式f(x)<0的解集为{x|x<-1或x>13},则f(e x )>0的解集为( )A .{x|x<-1或x>-ln3}B .{x|-1<x<-ln3}C .{x|x>-ln3}D .{x|x<-ln3} 答案 D解析 设-1和13是方程x 2+ax +b =0的两个实数根,∴a =-(-1+13)=23,b=-1×13=-13,∵一元二次不等式f(x)<0的解集为{x|x<-1或x>13 },∴f(x)=-(x2+23x-13)=-x2-23x+13,∴f(x)>0的解集为x∈(-1,13 ).不等式f(e x)>0可化为-1<e x<1 3 .解得x<ln 1 3,∴x<-ln3,即f(e x)>0的解集为{x|x<-ln3}.9.若不等式x2+ax-2>0在区间[1,5]上有解,则a的取值范围是( )A.(-235,+∞) B.[-235,1]C.(1,+∞) D.(-∞,-23 5]答案 A解析由Δ=a2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解,只需满足f(5)>0,即a>-23 5.10.不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图像为( )答案 C解析 由题意得⎩⎪⎨⎪⎧a<0,-2+1=1a ,-2×1=-ca,解得a =-1,c =-2. 则函数y =f(-x)=-x 2+x +2.11.已知a 1>a 2>a 3>0,则使得(1-a i x)2<1(i =1,2,3)都成立的x 的取值范围是( )A .(0,1a 1)B .(0,2a 1)C .(0,1a 3)D .(0,2a 3)答案 B12. 在关于x 的不等式x 2-(a +1)x +a<0的解集中恰有两个整数,则a 的取值范围是( )A .(3,4)B .(-2,-1)∪(3,4)C .(3,4]D .[-2,-1)∪(3,4] 答案 D解析 由题意得,原不等式化为(x -1)(x -a)<0,当a>1时,解得1<x<a ,此时解集中的整数为2,3,则3<a≤4;当a<1时,解得a<x<1,此时解集中的整数为0,-1,则-2≤a<-1,故a∈[-2,-1)∪(3,4].13.不等式2x 2-3|x|-35>0的解集为________. 答案 {x|x<-5或x>5}解析 2x 2-3|x|-35>0⇔2|x|2-3|x|-35>0⇔(|x|-5)(2|x|+7)>0⇔|x|>5或|x|<-72(舍)⇔x>5或x<-5.14.已知-12<1x <2,则实数x 的取值范围是________.答案 x<-2或x>12解析 当x>0时,x>12;当x<0时,x<-2.所以x 的取值范围是x<-2或x>12.15.若不等式a·4x -2x +1>0对一切x∈R 恒成立,则实数a 的取值范围是________.答案 a>14解析 不等式可变形为a>2x -14x =(12)x -(14)x,令(12)x=t ,则t>0.∴y =(12)x -(14)x =t -t 2=-(t -12)2+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a>14.16. 已知关于x 的不等式kx 2-2x +6k<0(k≠0). (1)若不等式的解集为{x|x<-3或x>-2},求k 的值; (2)若不等式的解集为{x|x∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围. 答案 (1)k =-25 (2)k =-66 (3)k<-66(4)k≥66解析 (1)因为不等式的解集为{x|x<-3或x>-2}, 所以k<0,且-3与-2是方程kx 2-2x +6k =0的两根, 所以(-3)+(-2)=2k ,解得k =-25.(2)因为不等式的解集为{x|x∈R ,x ≠1k},所以⎩⎨⎧k<0,Δ=4-24k 2=0,解得k =-66. (3)由题意,得⎩⎨⎧k<0,Δ=4-24k 2<0,解得k<-66. (4)由题意,得⎩⎨⎧k>0,Δ=4-24k 2≤0,解得k≥66. 17.已知不等式组⎩⎨⎧x 2-4x +3<0x 2-6x +8<0的解集是不等式2x 2-9x +a <0的解集的子集,求实数a 的取值范围.答案 (-∞,9]解析 不等式组⎩⎨⎧x 2-4x +3<0x 2-6x +8<0的解集为(2,3),令g(x)=2x 2-9x +a ,其对称轴为x =94,∴只需g(3)=-9+a≤0,∴a ≤9.第3课时 简单的线性规划1.下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C.2. 二元一次不等式组⎩⎨⎧(x -y +3)(x +y )≥0,0≤x ≤4,表示的平面区域是( )A .矩形B .三角形C .直角梯形D .等腰梯形 答案 D解析 由(x -y +3)(x +y)≥0,得⎩⎨⎧x -y +3≥0,x +y≥0或⎩⎨⎧x -y +3≤0,x +y≤0,且0≤x≤4,表示的区域如图阴影部分所示,故所求平面区域为等腰梯形,故选D.3. 设x ,y 满足约束条件⎩⎨⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是()A .-15B .-9C .1D .9答案 A解析 作出可行域如图所示,作出直线l 0:y =-2x ,平移l 0经过点A 时,z 有最小值,此时, 由⎩⎨⎧y +3=0,2x -3y +3=0,得⎩⎨⎧x =-6,y =-3. 即A(-6,-3),∴z min =2×(-6)-3=-15.4. 已知x ,y 满足约束条件⎩⎨⎧x -y≥0,x +y -4≤0,y ≥1,则z =-2x +y 的最大值是()A .-1B .-2C .-5D .1答案 A解析 作出满足条件的可行域,如图中阴影部分所示,易知在点A(1,1)处,z 取得最大值,故z max =-2×1+1=-1.5. 实数x ,y 满足⎩⎨⎧y≥0,x -y≥0,2x -y -2≤0,则使得z =2y -3x 取得最小值的最优解是( )A .(1,0)B .(0,-2)C .(0,0)D .(2,2)答案 A解析 约束条件所表示的可行域为三角形,其三个顶点的坐标分别为(0,0),(1,0),(2,2),将三个顶点的坐标分别代入到目标函数z =2y -3x 中,易得在(1,0)处取得最小值,故取得最小值的最优解为(1,0).6. 已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,x<2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .[53,5]B .[0,5]C .[53,5)D .[-53,5)答案 D解析 画出不等式组所表示的区域,如图中阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z<2×2-2×(-1)-1,即z 的取值范围是[-53,5).7. 设变量x ,y 满足约束条件⎩⎨⎧y≥x,x +3y≤4,x ≥-2,则z =|x -3y|的最大值为()A .10B .8C .6D .4答案 B解析不等式组⎩⎨⎧y≥x,x +3y≤4,x ≥-2,所表示的平面区域如图中阴影部分所示.当平移直线x -3y =0过点A 时,m =x -3y 取最大值; 当平移直线x -3y =0过点C 时,m =x -3y 取最小值.由题意可得A(-2,-2),C(-2,2),所以m max =-2-3×(-2)=4,m min=-2-3×2=-8,所以-8≤m≤4,所以|m|≤8,即z max =8.8. x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1答案 D解析 作出约束条件满足的可行域,根据z =y -ax 取得最大值的最优解不唯一,通过数形结合分析求解.如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a>0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a<0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.9. 已知O 为坐标原点,A(1,2),点P 的坐标(x ,y)满足约束条件⎩⎨⎧x +|y|≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2答案 D解析 作出可行域如图中阴影部分所示,易知B(0,1),z =OA →·OP →=x +2y ,平移直线x +2y =0,显然当直线z =x +2y 经过点B 时,z 取得最大值,且z max =2.故选D.10.已知实数x ,y 满足条件⎩⎨⎧(x -3)2+(y -2)2≤1,x -y -1≥0,则z =yx -2的最小值为( )A .3+ 2B .2+ 2 C.34 D.43答案 C解析 不等式组表示的可行域如图阴影部分所示.目标函数z =y x -2=y -0x -2表示在可行域取一点与点(2,0)连线的斜率,可知过点(2,0)作半圆的切线,切线的斜率为z =yx -2的最小值,设切线方程为y =k(x -2),则A 到切线的距离为1,故1=|k -2|1+k2.解得k =34.11. 设x ,y 满足约束条件⎩⎨⎧y -x≤1,x +y≤3,y ≥m ,若z =x +3y 的最大值与最小值的差为7,则实数m =( )A.32 B .-32C.14 D .-14答案 C解析 作出不等式组表示的平面区域(图略),由图易得目标函数z =x +3y 在点(1,2)处取得最大值;z max =1+3×2=7,在点(m -1,m)处取得最小值,z min =m -1+3m =4m -1.又由题知7-(4m -1)=7,解得m =14,故选C.12. 设实数x ,y 满足⎩⎨⎧x -y≤0,x +y≥0,y ≤a ,若z =x +2y 的最大值为3,则a 的值是________.答案 1解析依题意得a>0,在平面直角坐标系内大致画出不等式组⎩⎨⎧x -y≤0,x +y≥0,y ≤a ,表示的平面区域,结合图形可知,直线z =x +2y 经过直线y =a 与直线x -y =0的交点,即点(a ,a)时,z =x +2y 取得最大值3,因此a +2a =3,a =1.13. 点(x ,y)满足不等式|x|+|y|≤1,Z =(x -2)2+(y -2)2,则Z 的最小值为________.答案92解析 |x|+|y|≤1所确定的平面区域如图中阴影部分所示,目标函数Z =(x -2)2+(y -2)2的几何意义是点(x ,y)到点P(2,2)距离的平方,由图可知Z 的最小值为点P(2,2)到直线x +y =1距离的平方,即为(|2+2-1|2)2=92.14.已知整数x ,y 满足⎩⎨⎧2x -y≤0,x -3y +5≥0,则z =4-x·(12)y 的最小值为________.答案 116解析 z =4-x·(12)y=2-2x ·2-y =2-2x -y .设m =-2x -y ,要使z 最小,则只需m 最小.作出不等式组所表示的平面区域如图中阴影部分所示.由m =-2x -y 得y =-2x -m ,平移可知当直线y =-2x -m 经过点B 时,m 最小,由⎩⎨⎧2x -y =0,x -3y +5=0,解得⎩⎨⎧x =1,y =2,即B(1,2),此时m =-2-2=-4,所以z =4-x ·(12)y的最小值为2-4=116.15.某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A ,B 两种规格金属板,每张面积分别为2 m 2与3 m 2.用A 种规格金属板可造甲种产品3个、乙种产品5个;用B 种规格金属板可造甲、乙两种产品各6个.问A ,B 两种规格金属板各取多少张才能完成计划,并使总用料面积最省?答案 A ,B 两种金属板各取5张.解析 设A ,B 两种金属板各取x 张,y 张,总用料面积为z ,则约束条件为⎩⎨⎧3x +6y≥45,5x +6y≥55,x ,y ∈N ,目标函数z =2x +3y.作出不等式组的可行域,如图所示.将z =2x +3y 化成y =-23x +z 3,得到斜率为-23,在y 轴上截距为z3,且随z变化的一组平行直线.当直线z =2x +3y 经过可行域上点M 时,截距最小,z 取得最小值. 解方程组⎩⎨⎧5x +6y =55,3x +6y =45,得点M 的坐标为(5,5).此时z min =2×5+3×5=25.所以两种金属板各取5张时,总用料面积最省.第4课时 基本不等式1.已知a ,b ∈(0,1)且a≠b,下列各式中最大的是( ) A .a 2+b 2 B .2ab C .2ab D .a +b答案 D解析 只需比较a 2+b 2与a +b.由于a ,b ∈(0,1),∴a 2<a ,b 2<b ,∴a 2+b 2<a +b.2. 设0<a<b ,则下列不等式中正确的是( ) A .a<b<ab<a +b2B .a<ab<a +b2<bC.a<ab<b<a+b2D.ab<a<a+b2<b答案 B解析方法一(特值法):代入a=1,b=2,则有0<a=1<ab=2<a+b 2=1.5<b=2.方法二(直接法):我们知道算术平均数a+b2与几何平均数ab的大小关系,其余各式作差(作商)比较即可,答案为B.3.下列函数中,最小值为4的是( )A.y=x+4xB.y=sinx+4sinx(0<x<π)C.y=4e x+e-x D.y=log3x+logx3(0<x<1)答案 C解析注意基本不等式等号成立的条件是“a=b”,同时考虑函数的定义域,A中x的定义域为{x|x∈R,且x≠0},函数没有最小值;B中若sinx=4sinx取到最小值4,则sin2x=4,显然不成立.D中没有最小值.故选C.4.若2x+2y=1,则x+y的取值范围是( )A.[0,2] B.[-2,0]C.[-2,+∞) D.(-∞,-2]答案 D解析∵2x+2y≥22x·2y=22x+y(当且仅当2x=2y时等号成立),∴2x+y≤1 2,∴2x+y≤14,得x+y≤-2,故选D.5.若x,y是正数,则(x+12y)2+(y+12x)2的最小值是( ) A.3 B.72C.4 D.92答案 C解析原式=x2+xy+14y2+y2+yx+14x2≥4.当且仅当x=y=12时取“=”号.6.已知a>0,且b>0,若2a+b=4,则1ab的最小值为( )A.14B.4C.12D.2答案 C解析∵4=2a+b≥22ab,∴ab≤2,1ab≥12,当且仅当a=1,b=2时取等号.7.若x<0,则函数y=x2+1x2-x-1x的最小值是( )A.-94B.0C.2 D.4 答案 D解析y=x2+1x2-x-1x≥2x2·1x2+2(-x)(-1x)=4,当且仅当x=-1时取等号.8.函数y=x2+2x-1(x>1)的最小值是( )A.23+2 B.23-2 C.2 3 D.2答案 A解析∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2(x-1)+3x-1=(x-1)2+2(x-1)+3x-1=x-1+3x-1+2≥2(x-1)(3x-1)+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.9.已知不等式(x+y)(1x+ay)≥9对任意正实数x,y恒成立,则正实数a的最小值为( )A.2 B.4C.6 D.8答案 B解析(x+y)(1x+ay)=1+a·xy+yx+a≥1+a+2a=(a+1)2,当且仅当a·xy=yx,即ax2=y2时“=”成立.∴(x+y)(1x+ay)的最小值为(a+1)2≥9.∴a≥4.10.设实数x,y,m,n满足x2+y2=1,m2+n2=3,那么mx+ny的最大值是( )A. 3 B.2C. 5D.10 2答案 A解析方法一:设x=sinα,y=cosα,m=3sinβ,n=3cosβ,其中α,β∈R.∴mx+ny=3sinβsinα+3cosβcosα=3cos(α-β).故选A.方法二:由已知(x2+y2)·(m2+n2)=3,即m2x2+n2y2+n2x2+m2y2=3,∴m2x2+n2y2+2(nx)·(my)≤3,即(mx+ny)2≤3,∴mx+ny≤ 3.11.已知x,y,z∈(0,+∞),且满足x-2y+3z=0,则y2xz的最小值为( )A.3 B.6 C.9 D.12 答案 A12.若正数a,b满足1a+1b=1,则1a-1+9b-1的最小值为( )A.16 B.9 C.6 D.1 答案 C解析方法一:因为1a+1b=1,所以a+b=ab,即(a-1)·(b-1)=1,所以1a-1+9b-1≥21a-1×9b-1=2×3=6.方法二:因为1a+1b=1,所以a+b=ab,1a-1+9b-1=b-1+9a-9ab-a-b+1=b+9a-10=(b+9a)(1a+1b)-10≥16-10=6.方法三:因为1a+1b=1,所以a-1=1b-1,所以1a-1+9b-1=(b-1)+9b-1≥29=2×3=6.13.某城镇人口第二年比第一年增长m%,第三年比第二年增长n%,若这两年的平均增长率为p%,则p与m+n2的大小关系为( )A.p>m+n2B.p=m+n2C.p≤m+n2D.p≥m+n2答案 C解析依题意得(1+m%)(1+n%)=(1+p%)2,所以1+p%=(1+m%)(1+n%)≤1+m%+1+n%2=1+m%+n%2,当且仅当m=n时等号成立,所以p≤m+n2,故选C.14.(1)当x>1时,x+4x-1的最小值为________;(2)当x≥4时,x+4x-1的最小值为________.答案(1)5 (2)16 3解析(1)∵x>1,∴x-1>0.∴x+4x-1=x-1+4x-1+1≥24+1=5.(当且仅当x-1=4x-1.即x=3时“=”号成立)∴x+4x-1的最小值为5.(2)∵x≥4,∴x-1≥3.∵函数y=x+4x在[3,+∞)上为增函数,∴当x-1=3时,y=(x-1)+4x-1+1有最小值163.15.若a>0,b>0,a+b=1,则ab+1ab的最小值为________.答案17 4解析ab≤(a+b2)2=14,当且仅当a=b=12时取等号.y=x+1x在x∈(0,14]上为减函数.∴ab+1ab的最小值为14+4=174.16.已知a>b>0,求a2+16b(a-b)的最小值.答案16思路由b(a-b)求出最大值,从而去掉b,再由a2+64a2,求出最小值.解析∵a>b>0,∴a-b>0.∴b(a-b)≤[b+(a-b)2]2=a24.∴a2+16b(a-b)≥a2+64a2≥2a2·64a2=16.当a2=64a2且b=a-b,即a=22,b=2时等号成立.∴a2+16b(a-b)的最小值为16.17.设x,y均为正实数,且12+x+12+y=13,求xy的最小值.答案16解析由12+x+12+y=13,化为3(2+y)+3(2+x)=(2+y)·(2+x),整理为xy=x+y+8.∵x,y均为正实数,∴xy=x+y+8≥2xy+8,∴(xy)2-2xy -8≥0,解得xy≥4,即xy≥16,当且仅当x=y=4时取等号,∴xy的最小值为16.18.某健身器材厂研制了一种足浴气血生机,具体原理是:在足浴盆右侧离中心x(0<x<20)厘米处安装臭氧发生孔,产生的臭氧对双脚起保健作用.根据检测发现,该臭氧发生孔工作时会对泡脚的舒适程度起到干扰作用.已知臭氧发生孔工作时,对左脚的干扰度与x2成反比,比例系数为4;对右脚的干扰度与400-x2成反比,比例系数为k,且当x=102时,对左脚和右脚的干扰度之和为0.065.(1)将臭氧发生孔工作时对左脚和右脚的干扰度之和y表示为x的函数;(2)求臭氧发生孔对左脚和右脚的干扰度之和y的最小值.答案(1)y=4x2+9400-x2(0<x<20) (2)116解析(1)由题意得y=4x2+k400-x2(0<x<20),当x=102时,y=0.065,代入上式,得k=9.所以y=4x2+9400-x2(0<x<20).(2)y=4x2+9400-x2=1400(4x2+9400-x2)[(400-x2)+x2]=1400[4+9+4(400-x2)x2+9x2400-x2]≥1400[13+24(400-x2)x2·9x2400-x2]=116,当且仅当4(400-x2)x2=9x2400-x2,即x=410时取“=”.所以臭氧发生孔对左脚和右脚的干扰度之和y的最小值为1 16 .第5课时合情推理与演绎推理1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如下图),试求第七个三角形数是( )A.27 B.28C.29 D.30答案 B解析观察归纳可知第n个三角形数为1+2+3+4+…+n=n(n+1)2,∴第七个三角形数为7×(7+1)2=28.2.已知a1=3,a2=6,且an+2=an+1-an,则a2 019=( )A.3 B.-3 C.6 D.-6 答案 A解析∵a1=3,a2=6,∴a3=3,a4=-3,a5=-6,a6=-3,a7=3,…,∴{an }是以6为周期的周期数列.又2 019=6×336+3,∴a2 019=a3=3.选A.3.定义一种运算“*”:对于自然数n满足以下运算性质:①1*1=1,②(n+1)*1=n*1+1,则n*1等于( )A.n B.n+1C.n-1 D.n2答案 A解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1*1+(n-1).又∵1*1=1,∴n*1=n.4.两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位如图所示,则下列座位号码符合要求的应当是( )A.48,C.75,76 D.84,85答案 D解析由已知图中座位的排序规律可知,被5除余1的数和能被5整除的座位号靠窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号知,只有D项符合条件.5.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x) B.-f(x)C.g(x) D.-g(x)答案 D解析由所给函数及其导数知,偶函数的导函数为奇函数,因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).6.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )C.123 D.199答案 C解析记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.7.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an ,则9a2a3+9a3a4+9a4a5+…+9a2 017a2 018=( )A.2 0152 016B.2 0162 017C.2 0172 018D.2 0182 017答案 B解析由图案可得第n个图案中的点数为3n,则an=3n-3,∴93(n-1)×3n =1n(n-1)=1n-1-1n,∴9a2a3+9a3a4+9a4a5+…+9a2 017a2 018=(11-12)+(12-13)+…+(12 016-12 017)=1-12 017=2 0162 017,故选B. 8.如图,根据图中的数构成的规律,a表示的数是( ) 12 23 4 34 12 12 45 48 a 48 5C .60D .144答案 D9. 已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为( )A .(3,9)B .(4,8)C .(3,10)D .(4,9)答案 D解析 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9).故选D.10.已知a ,b ,c 是△ABC 的内角A ,B ,C 对应的三边,若满足a 2+b 2=c 2,即(a c )2+(bc )2=1,则△ABC 为直角三角形,类比此结论可知,若满足a n +b n =c n (n∈N ,n ≥3),则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能 答案 A解析 由题意知角C 最大,a n +b n =c n (n∈N ,n ≥3)即(a c )n +(bc )n =1(n∈N ,n ≥3),又c>a ,c>b ,所以(a c )2+(b c )2>(a c )n +(bc )n =1,即a 2+b 2>c 2,所以cosC=a 2+b 2-c 22ab >0,所以0<C<π2,故△ABC 为锐角三角形.11.学习合情推理后,甲、乙两位同学各举了一个例子.甲:由“若三角形周长为l ,面积为S ,则其内切圆半径r =2Sl”,类比可得“若三棱锥表面积为S ,体积为V ,则其内切球半径r =3VS ”;乙:由“若直角三角形两直角边长分别为a ,b ,则其外接圆半径r =a 2+b 22”,类比可得“若三棱锥三条侧棱两两垂直,侧棱长分别为a,b,c,则其外接球半径r=a2+b2+c23”.这两位同学类比得出的结论是( )A.两人都对B.甲错、乙对C.甲对、乙错D.两人都错答案 C解析利用等面积与等体积法可推得甲同学类比推理的结论是正确的;把三条侧棱两两垂直的三棱锥补成一个长方体,则此三棱锥的外接球半径等于长方体的外接球半径,可求得其半径r=a2+b2+c22,因此乙同学类比推理的结论是错误的,故选C.12.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放有纵横两种形式,如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推,例如6 613用算筹表示就是,则8 335用算筹可表示为( )答案 B解析由题意得千位和十位用横式表示,百位和个数用纵式表示,所以千位的8表示为,百位的3表示为,十位的3表示为,个位的5表示为,故选B.13.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设确定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),传输信息为h0aa1a2h1,其中h=a⊕a1,h1=h⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )A.11010 B.01100C.10111 D.00011答案 C解析对于选项C,传输信息是10111,对应的原信息是011,由题目中运算规则知h0=0⊕1=1,而h1=h⊕a2=1⊕1=0,故传输信息应是10110.14.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{an}(n∈N*)的前12项,如下表所示:按如此规律下去,则a2 017=( )A.502 B.503C.504 D.505答案 D解析由a1,a3,a5,a7,…组成的数列恰好对应数列{xn},即xn=a2n-1,当n为奇数时,xn =n+12.所以a2 017=x1 009=505.15.有一个游戏:将标有数字1,2,3,4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中; 丁说:甲拿到标有3的卡片.结果显示:甲、乙、丙、丁4个人的预测都不正确,那么甲、乙、丙、丁4个人拿到卡片上的数字依次为______.答案 4,2,1,3解析 由甲、丁的预测不正确可得丁拿到标有3的卡片,由乙的预测不正确可得乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有4的卡片,故丙拿到标有1的卡片,即甲、乙、丙、丁4个人拿到卡片上的数字依次为4,2,1,3.16. 对∀a ,b ∈R ,定义运算:a⊕b=⎩⎨⎧a ,a ≥b ,b ,a<b ;a ⊗b =⎩⎨⎧a -b ,a ≥b ,b -a ,a<b.则下列判断正确的是________.①2 015⊕(2 014⊗2 015)=2 014; ②(a⊕a)⊗a =0; ③(a⊕b)⊗a =a⊕(b ⊗a). 答案 ②解析 对于①,由定义的运算可知,2 014⊗2 015=2 015-2 014=1, 故2 015⊕(2 014⊗2 015)=2 015⊕1=2 015,故①错误. 对于②,因为a⊕a=a ,故(a⊕a)⊗a =a ⊗a =a -a =0,故②正确. 由于③,当a≥b 时,a ⊕b =a ,故(a⊕b)⊗a =a ⊗a =0, 而b ⊗a =a -b ,故a⊕(b ⊗a)=a⊕(a -b). 显然,若b≥0,则a≥a-b ,所以a⊕(a-b)=a , 若b<0,则a<a -b ,所以a⊕(a-b)=a -b. 故(a⊕b)⊗a≠a⊕(b ⊗a).故③错误.17.顾客请一位工艺师把A ,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交给顾客.两件原料每道工序所需时间(单位:工作日)如下:答案42解析最短交货期为先由徒弟完成原料B的粗加工,共需6天,然后工艺师加工该件工艺品,需21天;徒弟可在这几天中完成原料A的粗加工;最后由工艺师完成原料A的精加工,需15个工作日.故交货期为6+21+15=42个工作日.第6课时直接证明与间接证明1.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证:b2-ac<3a”“索”的“因”应是( )A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0答案 C解析b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔a2+2ac+c2-ac-3a2<0⇔-2a2+ac+c2<0⇔2a2-ac-c2>0⇔(a-c)(2a+c)>0⇔(a-c)(a-b)>0.2.要证a2+b2-1-a2b2≤0只要证明( )A.2ab-1-a2b2≤0 B.a2+b2-1-a4+b42≤0C.(a+b)22-1-a2b2≤0 D.(a2-1)(b2-1)≥0答案 D3.下列不等式不成立的是( )A.12<ln2 B.3+1>2 2C.233<322D.sin1>cos1答案 B4.若P=a+a+7,Q=a+3+a+4(a≥0),则P,Q的大小关系是( ) A.P>Q B.P=QC.P<Q D.由a的取值确定答案 C解析要比较P,Q的大小关系,只要比较P2,Q2的大小关系,只要比较2a +7+2a(a+7)与2a+7+2(a+3)(a+4)的大小,只要比较a(a+7)与(a+3)(a+4)的大小,即比较a2+7a与a2+7a+12的大小,只要比较0与12的大小,∵0<12,∴P<Q.5.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A.假设至少有一个钝角B.假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角答案 B解析注意到:“至多有一个”的否定应为“至少有两个”知需选B.6.若a>0,b>0,a+b=1,则下列不等式不成立的是( )A.a2+b2≥12B.ab≤14C.1a+1b≥4 D.a+b≤1答案 D解析a2+b2=(a+b)2-2ab=1-2ab≥1-2·(a+b2)2=12,∴A成立;ab≤(a+b2)2=14,∴B成立;1 a +1b=a+bab=1ab≥1(a+b2)2=4,∴C成立;(a+b)2=a+b+2ab=1+2ab>1,∴a +b>1,故D 不成立.7. 设x ,y ,z ∈R +,a =x +1y ,b =y +1z ,c =z +1x ,则a ,b ,c 三个数( )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2答案 C解析 假设a ,b ,c 三个数都小于2. 则6>a +b +c =x +1y +y +1z +z +1x ≥2x ·1x+2y ·1y+2z ·1z=6, 即6>6,矛盾.所以a ,b ,c 三个数中至少有一个不小于2. 8.设a>0,b>0,求证:lg(1+ab )≤12[lg(1+a)+lg(1+b)].答案 略证明 要证lg(1+ab )≤12[lg(1+a)+lg(1+b)],只需证1+ab ≤(1+a )(1+b ), 即证(1+ab)2≤(1+a)(1+b), 即证2ab ≤a +b , 而2ab ≤a +b 成立,∴lg(1+ab )≤12[lg(1+a)+lg(1+b)].9. 已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 32x 2+x 12x 3≥1.答案 略解析 ∵x 22x 1+x 1+x 32x 2+x 2+x 12x 3+x 3≥2x 22+2x 32+2x 12=2(x 1+x 2+x 3)=2,∴x 22x 1+x 32x 2+x 12x 3≥1. 10.(1)设x 是正实数,求证:(x +1)(x 2+1)(x 3+1)≥8x 3.(2)若x∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值.答案 (1)略 (2)成立,证明略解析 (1)证明:x 是正实数,由均值不等式,得 x +1≥2x ,x 2+1≥2x,x 3+1≥2x 3.故(x +1)(x 2+1)(x 3+1)≥2x ·2x ·2x 3=8x 3(当且仅当x =1时等号成立). (2)解:若x∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3仍然成立. 由(1)知,当x>0时,不等式成立; 当x≤0时,8x 3≤0,而(x +1)(x 2+1)(x 3+1)=(x +1)2(x 2+1)(x 2-x +1)=(x +1)2(x 2+1)[(x -12)2+34]≥0, 此时不等式仍然成立.11. 已知等差数列{a n }的前n 项和为S n ,a 3=5,S 8=64. (1)求数列{a n }的通项公式; (2)求证:1S n -1+1S n +1>2S n (n≥2,n ∈N *). 答案 (1)a n =2n -1 (2)略解析 (1)设等差数列{a n }的公差为d , 则⎩⎨⎧a 3=a 1+2d =5,S 8=8a 1+28d =64,解得⎩⎨⎧a 1=1,d =2. 故所求的通项公式为a n =2n -1. (2)证明:由(1)可知S n =n 2, 要证原不等式成立,只需证1(n -1)2+1(n +1)2>2n2,只需证[(n +1)2+(n -1)2]n 2>2(n 2-1)2. 只需证(n 2+1)n 2>(n 2-1)2. 只需证3n 2>1.而3n 2>1在n≥1时恒成立, 从而不等式1S n -1+1S n +1>2S n (n≥2,n ∈N *)恒成立.。
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习 第七章 不等式、推理与证明7.5 基本不等式的综合应用题型一 基本不等式与其他知识交汇的最值问题例1 (1)(2022·成都模拟)已知直线ax +by -1=0(a >0,b >0)与圆x 2+y 2=4相切,则log 2a +log 2b 的最大值为( )A .3B .2C .-2D .-3答案 D解析 因为直线ax +by -1=0(a >0,b >0)与圆x 2+y 2=4相切, 所以1a 2+b 2=2,即a 2+b 2=14,因为a 2+b 2≥2ab ,所以ab ≤18(当且仅当a =b 时,等号成立),所以log 2a +log 2b =log 2(ab )≤log 218=-3,所以log 2a +log 2b 的最大值为-3.(2)(2022·合肥质检)若△ABC 的内角满足sin B +sin C =2sin A ,则( )A .A 的最大值为π3B .A 的最大值为2π3C .A 的最小值为π3D .A 的最小值为π6答案 A解析 ∵sin B +sin C =2sin A .∴b +c =2a .由余弦定理知cos A =b 2+c 2-a 22bc =b 2+c 2-b +c242bc=3b 2+c 2-2bc 8bc ≥6bc -2bc 8bc =12, 当且仅当b =c 时取等号.又A ∈(0,π), ∴0<A ≤π3,即A 的最大值为π3. 教师备选已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点分别为F 1,F 2.若椭圆上有一点P ,使PF 1⊥PF 2,则b a的取值范围是( )A.⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤0,22 C.⎣⎡⎦⎤12,22 D.⎣⎡⎭⎫22,1 答案 B解析 设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,m 2+n 2=4c 2,∴2mn =4a 2-4c 2=4b 2,又2mn ≤2⎝⎛⎭⎫m +n 22, 即4b 2≤2⎝⎛⎭⎫2a 22,∴2b 2≤a 2,∴0<b a ≤22. 思维升华 基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,一般利用常数代换法求最值,要注意最值成立的条件.跟踪训练1 (1)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则1a +4b 的最小值等于( ) A .2 B.32 C.12D .1 答案 B解析 ∵函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,∴f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,即a +b =6,又a >0,b >0.∴1a +4b =16⎝⎛⎭⎫1a +4b (a +b ) =56+16⎝⎛⎭⎫b a +4a b ≥56+16×2b a ·4a b =32, 当且仅当2a =b =4时,等号成立.此时满足在x =1处有极值.∴1a +4b 的最小值等于32. (2)已知数列{a n }是等比数列,若a 2a 5a 8=-8,则a 9+9a 1的最大值为________.答案 -12解析 ∵a 2a 5a 8=-8,∴a 35=-8,∴a 5=-2,∴a 1<0,a 9<0,a 9+9a 1=-(-a 9-9a 1)≤-2-a 9-9a 1=-29a 1a 9 =-29·a 25=-12,当且仅当-a 9=-9a 1时取等号.题型二 求参数值或取值范围例2 (1)已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a 等于( )A .6B .8C .16D .36答案 D解析 因为f (x )=4x +ax (x >0,a >0),故4x +a x ≥24x ·ax =4a ,当且仅当4x =ax ,即x =a2时取等号,故a2=3,a =36.(2)已知x ,y 属于正实数,若不等式4x +9y ≥mx +y 恒成立,则实数m 的取值范围是() A .(-∞,9] B .(-∞,16]C .(-∞,25]D .(-∞,36]答案 C解析 因为x ,y 属于正实数,所以不等式4x +9y ≥mx +y 恒成立,即m ≤⎣⎡⎦⎤⎝⎛⎭⎫4x +9y x +y min ,因为⎝⎛⎭⎫4x +9y (x +y )=13+4y x +9x y≥13+24y x ·9x y=25, 当且仅当4y x =9x y,即3x =2y 时,等号成立, 所以m ≤25.教师备选(2022·沙坪坝模拟)已知函数f (x )=2x 3+3x (x ∈R ),若不等式f (2m +mt 2)+f (4t )<0对任意实数t ≥1恒成立,则实数m 的取值范围为( )A .(-∞,-2)∪(2,+∞)B.⎝⎛⎭⎫-∞,43 C .(-∞,-2)D .(-2,-2)答案 C解析 ∵f (x )的定义域为R ,且f (-x )=-2x 3-3x =-f (x ),∴f (x )是奇函数,且f (x )在R 上单调递增,则不等式f (2m +mt 2)+f (4t )<0等价于f (2m +mt 2)<-f (4t )=f (-4t ),∴2m +mt 2<-4t ,即m <-4t t 2+2对t ≥1恒成立, ∵-4t t 2+2=-4t +2t ≥-42t ·2t=-2, 当且仅当t =2t,即t =2时等号成立, ∴m <- 2.思维升华 求参数的值或取值范围时,要观察题目的特点.利用基本不等式确定等号成立的条件,从而得到参数的值或范围.跟踪训练2 (1)(2022·杭州模拟)已知k ∈R ,则“对任意a ,b ∈R ,a 2+b 2≥kab ”是“k ≤2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 因为对任意a ,b ∈R ,有a 2+b 2≥2ab ,而对任意a ,b ∈R ,a 2+b 2≥kab ,所以-2≤k ≤2,因为[-2,2]是(-∞,2]的真子集,所以“对任意a ,b ∈R ,a 2+b 2≥kab ”是“k ≤2”的充分不必要条件.(2)(2022·济宁质检)命题p :∃x ∈(0,+∞),x 2-λx +1=0,当p 是真命题时,则λ的取值范围是________.答案 [2,+∞)解析 依题意,方程x 2-λx +1=0有正解,即λ=x +1x有正解, 又x >0时,x +1x≥2, ∴λ≥2.题型三 基本不等式的实际应用例3 小王于年初用50万元购买了一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)解 (1)设大货车运输到第x 年年底,该车运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50=-x 2+20x -50(0<x ≤10,x ∈N *),由-x 2+20x -50>0,可得10-52<x ≤10. 因为2<10-52<3,所以大货车运输到第3年年底,该车运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以二手车出售后,小王的年平均利润为y +25-x x =19-⎝⎛⎭⎫x +25x ≤19-225=9,当且仅当x =25x,即x =5时,等号成立,所以小王应当在第5年年底将大货车出售,能使小王获得的年平均利润最大.教师备选某高级中学高二年级部为了更好的督促本年级学生养成节约用水、珍惜粮食、爱护公物的良好习惯,现要设计如图所示的一张矩形宣传海报,该海报含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60 000 cm 2,四周空白的宽度为10 cm ,栏与栏之间的中缝空白的宽度为 5 cm.怎样确定矩形栏目高与宽的尺寸,能使整个矩形海报面积最小,其最小值是________ cm 2.答案 72 600解析 设矩形栏目的高为a cm ,宽为b cm ,由题意可得3ab =60 000,所以ab =20 000,即b =20 000a, 所以该海报的高为(a +20)cm ,宽为(3b +10×2+5×2)cm ,即(3b +30)cm ,所以整个矩形海报面积S =(a +20)(3b +30)=3ab +30a +60b +600=30(a +2b )+60 600=30⎝⎛⎭⎫a +40 000a +60 600 ≥30×2a ·40 000a+60 600 =30×400+60 600=72 600, 当且仅当a =40 000a,即a =200时等号成立, 所以当广告栏目的高为200 cm ,宽为100 cm 时,能使整个矩形海报面积最小,其最小值是72 600 cm 2.思维升华 利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值. 跟踪训练3 网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2021年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是______万元.答案 37.5解析 由题意知t =23-x -1(1<x <3),设该公司的月利润为y 万元,则y =⎝⎛⎭⎫32×150%+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎡⎦⎤163-x +13-x ≤45.5-216=37.5,当且仅当x =114时取等号, 即最大月利润为37.5万元. 课时精练1.(2022·苏州模拟)设直线l 与曲线y =x 3-2x+1相切,则l 斜率的最小值为( ) A. 6 B .4 C .2 6 D .3 2答案 C解析 因为x ≠0,所以x 2>0,因为y ′=3x 2+2x 2≥26⎝⎛⎭⎫当且仅当3x 2=2x 2,等号成立, 所以l 斜率的最小值为2 6.2.(2021·新高考全国Ⅰ)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A .13B .12C .9D .6答案 C解析 由椭圆C :x 29+y 24=1, 得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝⎛⎭⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立.3.(2022·北京人大附中模拟)数列{a n }是等差数列 ,{b n }是各项均为正数的等比数列,公比q >1,且a 5=b 5,则( )A .a 3+a 7>b 4+b 6B .a 3+a 7≥b 4+b 6C .a 3+a 7<b 4+b 6D .a 3+a 7=b 4+b 6 答案 C解析 因为数列{a n }是等差数列,{b n }是各项均为正数的等比数列,所以a 3+a 7=2a 5=2b 5,b 4+b 6≥2b 4b 6=2b 5,所以a 3+a 7≤b 4+b 6,又因为公比q >1,所以a 3+a 7<b 4+b 6.4.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8答案 B解析 已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎫1x +a y 的最小值大于或等于9,∵(x +y )⎝⎛⎭⎫1x +a y =1+a +y x +ax y≥a +2a +1,当且仅当y =ax 时,等号成立,∴a +2a +1≥9, ∴a ≥2或a ≤-4(舍去),∴a ≥4,即正实数a 的最小值为4.5.(2022·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是( )A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案 B解析 设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则方案一:两次加油平均价格为40x +40y 80=x +y 2>xy , 方案二:两次加油平均价格为400200x +200y=2xy x +y <xy , 故无论油价如何起伏,方案二比方案一更划算.6.已知p :存在实数x ,使4x +2x ·m +1=0成立,若綈p 是假命题,则实数m 的取值范围是( )A .(-∞,-2]B .(-∞,-2)C .(0,+∞)D .(1,+∞)答案 A解析 ∵綈p 为假命题,∴p 为真命题,即关于x 的方程4x +2x ·m +1=0有解.由4x +2x ·m +1=0,得m =-2x -12x =-⎝⎛⎭⎫2x +12x ≤-22x ·12x =-2, 当且仅当2x =12x ,即x =0时,取等号.∴m 的取值范围为(-∞,-2].7.(2022·焦作质检)若数列{a n }满足a 2=9,a n -1+n =a n +1(n ≥2且n ∈N *),则a n n 的最小值为( ) A.72 B.185 C.113 D.92答案 A解析 因为数列{a n }满足a 2=9,a n -1+n =a n +1(n ≥2且n ∈N *),所以a 1+2=a 2+1,解得a 1=8,所以a n =a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1+a 1=1+2+3+…+n -1+8=n 2-n +162, 则a n n =n 2-n +162n=12⎝⎛⎭⎫n +16n -1 ≥12⎝⎛⎭⎫2n ·16n -1=72, 当且仅当n =16n,即n =4时,等号成立, 所以a n n 的最小值为72. 8. 如图,在半径为4(单位:cm)的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点A ,B 在直径上,顶点C ,D 在圆周上,则矩形ABCD 面积的最大值为(单位:cm 2)( )A .8B .10C .16D .20答案 C解析 连接OC ,如图,设BC =x ,则OB =16-x 2,所以AB =216-x 2,所以矩形ABCD 的面积S =2x 16-x 2,x ∈(0,4),S =2x 16-x 2=2x 216-x 2≤x 2+16-x 2=16,当且仅当x 2=16-x 2,即x =22时取等号,此时S max =16.9.已知向量m =(x ,2),n =⎝⎛⎭⎫3,y -12(x >0,y >0),若m ⊥n ,则xy 的最大值为________. 答案 124 解析 因为向量m =(x ,2),n =⎝⎛⎭⎫3,y -12, 且m ⊥n ,所以3x +2⎝⎛⎭⎫y -12=0,即3x +2y =1. 因为x >0,y >0,所以1=3x +2y ≥23x ×2y ,即xy ≤124, 当且仅当3x =2y =12, 即x =16,y =14时取等号. 10.在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于5,则这个直角三角形周长的最大值为________.答案 52+5解析 设直角三角形的两条直角边边长分别为a ,b ,则a 2+b 2=25.因为(a +b )2=25+2ab ≤25+2×a +b 24, 所以(a +b )2≤50,所以5<a +b ≤52,当且仅当a =b =522时,等号成立. 故这个直角三角形周长的最大值为52+5.11.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________. 答案 9解析 因为圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线, 所以两圆相内切,其中C 1(-2a ,0),r 1=2;C 2(0,b ),r 2=1,故|C 1C 2|=4a 2+b 2,由题设可知4a 2+b 2=2-1⇒4a 2+b 2=1,所以(4a 2+b 2)⎝⎛⎭⎫1a 2+1b 2=4a 2b 2+b 2a 2+5 ≥24a 2b 2·b 2a 2+5=9, 当且仅当b 2=2a 2时等号成立.12.(2022·北京朝阳区模拟)李明自主创业,经营一家网店,每售出一件A 商品获利8元.现计划在“五一”期间对A 商品进行广告促销,假设售出A 商品的件数m (单位:万件)与广告费用x (单位:万元)符合函数模型m =3-2x +1.若要使这次促销活动获利最多,则广告费用x 应投入________万元.答案 3解析 设李明获得的利润为f (x )万元,则x ≥0,则f (x )=8m -x =8⎝⎛⎭⎫3-2x +1-x=24-16x +1-x=25-⎣⎡⎦⎤16x +1+x +1≤25-216x +1x +1=25-8=17,当且仅当x +1=16x +1, 因为x ≥0,即当x =3时,等号成立.13.(2022·柳州模拟)已知△ABC 中,a 2+b 2-c 2=ab ≥c 2,则△ABC 一定是() A .等边三角形 B .钝角三角形C .直角三角形D .等腰三角形答案 A解析 由a 2+b 2-c 2=ab ,则cos C =a 2+b 2-c 22ab =ab 2ab =12,又因为0°<C <180°,所以C =60°,因为a 2+b 2-c 2≥2ab -c 2,当且仅当a =b 时取等号,即ab ≥2ab -c 2,解得ab ≤c 2,又因为ab ≥c 2,所以ab =c 2,且a =b 时取等号,因为C =60°,所以△ABC 一定是等边三角形.14.(2022·武汉模拟)已知平面向量OA →,OB →,OC →为三个单位向量,且〈OA →,OB →〉=120°,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y 的取值范围为________.答案 [-2,2]解析 由OC →=xOA →+yOB →,两边同时平方得OC →2=(xOA →+yOB →)2,即OC →2=x 2OA →2+y 2OB →2+2xyOA →·OB →,∵平面向量OA →,OB →,OC →为三个单位向量,且〈OA →,OB →〉=120°,∴x 2+y 2-xy =1,∴(x +y )2=1+3xy ≤1+3⎝⎛⎭⎫x +y 22,即(x +y )2≤4,即-2≤x +y ≤2.15.(2022·大庆模拟)设函数f (x )=|lg x |,若存在实数0<a <b ,满足f (a )=f (b ),则M =log 2a 2+b 28,N =log 2⎝ ⎛⎭⎪⎫1a +b 2,Q =ln 1e 2的关系为( ) A .M >N >Q B .M >Q >NC .N >Q >MD .N >M >Q 答案 B解析 ∵f (a )=f (b ),∴|lg a |=|lg b |,∴lg a +lg b =0,即ab =1, ⎝ ⎛⎭⎪⎫1a +b 2=1a +b +2=1a +1a +2<12+2=14,∴N =log 2⎝ ⎛⎭⎪⎫1a +b 2<-2,又a 2+b 28>ab 4=14,∴a 2+b 28>14,∴M =log 2a 2+b 28>-2,又∵Q =ln 1e 2=-2,∴M >Q >N .16.设0<t <12,若1t +21-2t ≥k 2+2k 恒成立,则k 的取值范围为() A .[-4,2] B .[-2,4]C .[-4,0)∪(0,2]D .[-2,0)∪(0,4] 答案 A解析 依题意k 2+2k ≤1t +21-2t 对∀t ∈⎝⎛⎭⎫0,12恒成立,所以k 2+2k ≤⎝⎛⎭⎫1t +21-2t min ,因为t ∈⎝⎛⎭⎫0,12,所以1-2t >0,所以1t +21-2t =⎝⎛⎭⎫1t +21-2t (2t +1-2t )=2+2+1-2t t +4t1-2t≥4+21-2t t ·4t 1-2t=8, 当且仅当1-2t t =4t 1-2t时取“=”, 即t =14时取得最小值, 所以k 2+2k ≤8,所以(k -2)(k +4)≤0,解得-4≤k ≤2,即k ∈[-4,2].。
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习第七章不等式、推理与证明7.3二元一次不等式(组)与简单的线性规划问题考试要求 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧所有点组成的平面区域不包括边界Ax+By+C≥0包括边界不等式组各个不等式表示的平面区域的公共部分2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.( √ ) (2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,在异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( √ )(4)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × )教材改编题1.某校对高三美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45 C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”, ∴x ≥95,y >380,z >45.2.不等式组⎩⎪⎨⎪⎧x -y +1<0,x +y -3≥0表示的区域(阴影部分)是( )答案 D解析 将点(0,0)代入x -y +1<0不成立,则点(0,0)不在不等式x -y +1<0所表示的平面区域内, 将点(0,0)代入x +y -3≥0不成立,则点(0,0)不在不等式x +y -3≥0所表示的平面区域内, 所以表示的平面区域不包括原点,排除A ,C ;x -y +1<0不包括边界,用虚线表示,x +y -3≥0包括边界,用实线表示,故选D. 3.设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x +y -3≤0,x -y ≥0,y ≥0,则目标函数z =x +2y 的最大值为________.答案 92解析 根据不等式组作出可行域,如图中阴影部分(含边界)所示,当目标函数z =x +2y 经过点⎝⎛⎭⎫32,32时,z 取最大值为92.题型一 二元一次不等式(组)表示的平面区域 例1 (1)(2022·新乡模拟)不等式组⎩⎪⎨⎪⎧x +y ≤2,2x -y ≥1,y +1≥0表示的平面区域的面积为______.答案 3解析 画出可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x +y =2,2x -y =1,解得⎩⎪⎨⎪⎧x =1,y =1,即A (1,1), 联立⎩⎪⎨⎪⎧2x -y =1,y =-1,解得⎩⎪⎨⎪⎧x =0,y =-1,即B (0,-1), 联立⎩⎪⎨⎪⎧ x +y =2,y =-1, 解得⎩⎪⎨⎪⎧x =3,y =-1,即C (3,-1), S △ABC =12×|3-0|×|1-(-1)|=3.(2)已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0,x >m 表示的平面区域为三角形,则实数m 的取值范围为____________. 答案 (-∞,3)解析 根据题意,先作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0表示的平面区域,如图中阴影部分所示,由⎩⎪⎨⎪⎧y =2x -2,y =x +1,可得A (3,4), 要使不等式组表示的平面区域为三角形,只需m <3, 所以m 的取值范围为(-∞,3).教师备选已知点A (3,0),B (-3,2),若直线ax -y -1=0与线段AB 总有公共点,则a 的取值范围是( ) A.⎣⎡⎦⎤-1,13 B .(-∞,-1]∪⎣⎡⎭⎫13,+∞ C.⎣⎡⎦⎤-13,1 D.⎝⎛⎦⎤-∞,-13∪[1,+∞) 答案 B解析 因为直线ax -y -1=0与线段AB 总有公共点, 所以点A 和点B 不同在直线的一侧, 所以(3a -0-1)(-3a -2-1)≤0, 解得a ≤-1或a ≥13.即a 的取值范围是(-∞,-1]∪⎣⎡⎭⎫13,+∞. 思维升华 平面区域的形状问题主要有两种题型(1)确定平面区域的形状,求解时先作出满足条件的平面区域,然后判断其形状.(2)根据平面区域的形状求解参数问题,求解时通常先作出满足条件的平面区域,但要注意对参数进行必要的讨论.跟踪训练1 (2022·西安模拟)若不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≥2,3x +y ≤5所表示的平面区域被直线y =kx +2分成面积相等的两个部分,则实数k 的值为( ) A .1 B .2 C .3 D .4 答案 A解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,B (0,5),因为直线y =kx +2过定点C (0,2), 所以C 点在可行域内,要使直线y =kx +2将可行域分成面积相等的两部分, 则直线y =kx +2必过线段AB 的中点D .由⎩⎪⎨⎪⎧x +y =2,3x +y =5,解得⎝⎛⎭⎫32,12,即A ⎝⎛⎭⎫32,12, 所以AB 的中点D ⎝⎛⎭⎫34,114,将D 的坐标代入直线y =kx +2,得114=34k +2,解得k =1.题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例2 (2021·浙江)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +1≥0,x -y ≤0,2x +3y -1≤0,则z =x -12y 的最小值是( )A .-2B .-32C .-12 D.110答案 B解析 作出可行域如图中阴影部分(含边界)所示,作出直线y =2x 并平移,数形结合可知,当平移后的直线经过点A 时z 取得最小值.由⎩⎪⎨⎪⎧ 2x +3y -1=0,x +1=0,得⎩⎪⎨⎪⎧x =-1,y =1, 所以A (-1,1),z min =-1-12=-32.命题点2 求非线性目标函数的最值例3 (1)如果点P (x ,y )在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0上,则y +1x -2的取值范围是( )A.⎣⎡⎦⎤-2,-13 B.⎣⎡⎦⎤-2,-32 C.⎣⎡⎦⎤-2,13 D.⎣⎡⎦⎤-13,2 答案 A解析 作出点P (x ,y )所在的平面区域,如图中阴影部分(含边界)所示,y +1x -2表示动点P 与定点Q (2,-1)连线的斜率. 联立⎩⎪⎨⎪⎧ x -2y +1=0,x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1.于是k QE =1+11-2=-2,k QF =0+1-1-2=-13.因此-2≤y +1x -2≤-13.(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为( )A .1 B.45 C.255 D .2答案 B解析 结合题意作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,而(x -1)2+y 2的几何意义是可行域内的点与(1,0)的距离的平方, 又(1,0)到直线2x -y =0的距离为25, 故(x -1)2+y 2的最小值为45.命题点3 求参数值或取值范围例4 已知k >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≥0,x +y -3≤0,y ≥k x -3,若z =2x +y 的最小值为1,则k 等于( )A .3B .5 C.12 D.14答案 A解析 由不等式组知可行域只能是图中△ABC 内部阴影部分(含边界)所示,作直线l :2x +y =0,平移直线l ,只有当l 过点B 时,z =2x +y 取得最小值, 易知B (2,-k ), ∴4-k =1,解得k =3. 教师备选1.(2022·六安模拟)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -1≥0,y -2≥0,x +y -5≤0,则z =2x +y 的最大值为( )A .4B .5C .8D .10 答案 C解析 不等式组表示的可行域,如图中阴影部分(含边界)所示,由z =2x +y ,得y =-2x +z , 作出直线y =-2x ,向上平移过点C 时,z =2x +y 取得最大值,由⎩⎪⎨⎪⎧ y -2=0,x +y -5=0,得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 所以z =2x +y 的最大值为2×3+2=8. 2.已知实数x ,y 满足不等式⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,则z =x 2+y 2的最大值为________.答案 10解析 根据约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,画出可行域,如图中阴影部分(含边界)所示,z =x 2+y 2是指可行域内的动点(x ,y )与定点(0,0)之间的距离的平方, 由图可知,点P 到原点O 的距离的平方最大,又因为⎩⎪⎨⎪⎧x -y +2=0,2x +y -5=0,即⎩⎪⎨⎪⎧x =1,y =3,所以P (1,3), 故z max =12+32=10.3.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =________.答案 3解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x -y =-1,x +y =a ,解得⎩⎨⎧x =a -12,y =a +12,∴A ⎝⎛⎭⎫a -12,a +12.①当a =0时,A ⎝⎛⎭⎫-12,12,x =z 无最小值,不满足题意; ②当a <0时,由z =x +ay 得y =-1a x +za,要使z 最小,则直线y =-1a x +za 在y 轴上的截距最大,满足条件的最优解不存在;③当a >0时,由z =x +ay 得y =-1a x +za,由图可知,当直线过点A 时直线在y 轴上的截距最小,z 最小,此时,-1a ≥-1,即a ≥1,此时z =a -12+a ·a +12=a 2+2a -12=7.即a 2+2a -15=0, 解得a =3或a =-5(舍). 思维升华 常见的三类目标函数 (1)截距型:形如z =ax +by . (2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a.跟踪训练2 (1)已知A (1,2),点B (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1,则OA →·OB →的取值范围是________. 答案 [1,5]解析 作不等式组⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1的可行域,如图中阴影部分(含边界)所示.设z =OA →·OB →,则z =x +2y , 将z =x +2y 化为y =-12x +z 2,由图象可得,当直线y =-12x +z2过点A (1,2)时,z 取最大值,最大值为5.当直线y =-12x +z2过点C (1,0)时,z 取最小值,最小值为1.∴OA →·OB →的取值范围是[1,5].(2)(2022·平顶山模拟)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,y -2≥0,x -1≥0,则z =x +2y +3x +1的最小值是______. 答案 52解析 作出可行域,如图中阴影部分(含边界)所示,z =x +2y +3x +1=1+2y +1x +1,其中k =y +1x +1表示可行域内点P (x ,y )与定点Q (-1,-1)连线的斜率,由⎩⎪⎨⎪⎧ x +y -5=0,y =2得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 由图可得k min =k CQ =2+13+1=34, 所以z min =1+2×34=52.(3)(2022·金华模拟)已知x ,y 满足⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则a 的值为________. 答案 -1或2解析 作出可行域,如图中阴影部分(含边界)所示,作直线l :y -ax =0,在z =y -ax 中,y =ax +z ,a 是斜率,z 是纵截距,直线向上平移,z 增大,因此要使最大值的最优解不唯一,则直线l 与AB 或AC 平行, 所以a =-1或a =2.题型三 实际生活中的线性规划问题例5 (2022·新乡模拟)快递行业的高速发展极大地满足了人们的购物需求,也提供了大量的就业岗位,出现了大批快递员.某快递公司接到甲、乙两批快件,基本数据如下表:体积(立方分米/件)重量(千克/件)快递员工资(元/件)甲批快件 20108乙批快件102010快递员小马接受派送任务,小马的送货车载货的最大容积为350立方分米,最大载重量为250千克,小马一次送货可获得的最大工资额为( ) A .150元 B .170元 C .180元 D .200元答案 B解析 设一次派送甲批快件x 件、乙批快件y 件,则x ,y 满足⎩⎪⎨⎪⎧20x +10y ≤350,10x +20y ≤250,x ≥0,y ≥0,x ,y ∈N ,即⎩⎪⎨⎪⎧2x +y ≤35,x +2y ≤25,x ≥0,y ≥0,x ,y ∈N ,小马派送完毕获得的工资z =8x +10y (元), 画出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧2x +y =35,x +2y =25,解得x =15,y =5, 所以目标函数在点M (15,5)处取得最大值, 故z max =8×15+10×5=170(元).所以小马一次送货可获得的最大工资额为170元. 教师备选某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为( ) A .180 000元 B .216 000元 C .189 000元 D .256 000元答案 B解析 设生产产品A 为x 件,产品B 为y 件,获利z 元. ∴⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y ,作出可行域,如图中阴影部分(含边界)所示.将z =2 100x +900y 化为y =-73x +z900,由图象可得,当直线y =-73x +z900过点M 时,在y 轴上的截距最大,即z 最大.联立⎩⎪⎨⎪⎧x +0.3y =90,5x +3y =600,得M (60,100),∴z max =2 100×60+900×100=216 000(元), ∴利润最大为216 000元.思维升华 解线性规划应用题的步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解—— 解这个纯数学的线性规划问题;(3)作答——将线性规划问题的答案还原为实际问题的答案.跟踪训练3 某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( ) A .2 400元 B .2 560元 C .2 816元 D .4 576元答案 B解析 设甲型车x 辆,乙型车y 辆,运送这批水果的费用为z 元, 则⎩⎪⎨⎪⎧0≤x ≤8,0≤y ≤4,24x +30y ≥180,x ∈N ,y ∈N目标函数z =320x +504y , 作出不等式组⎩⎪⎨⎪⎧x ∈N ,y ∈N ,0≤x ≤8,0≤y ≤4,24x +30y ≥180所表示的平面区域,如图所示的阴影部分(含边界).作直线320x +504y =0,并平移,结合实际情况分析可得当直线过整点(8,0)时,z 取得最小值, 即z min =8×320+0×504=2 560(元).课时精练1.将不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x +y <0表示的平面区域记为F ,则属于F 的点是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)答案 C解析 将点(1,1)代入方程组得⎩⎪⎨⎪⎧1≥0,2>0,故不在区域F 内,将点(-1,1)代入方程组得⎩⎪⎨⎪⎧-1<0,0=0,故不在区域F 内,将点(-1,-1)代入方程组得⎩⎪⎨⎪⎧3≥0,-2<0,故在区域F 内,将点(1,-1)代入方程组得⎩⎪⎨⎪⎧5≥0,0=0,故不在区域F 内.2.(2022·合肥质检)不等式组⎩⎪⎨⎪⎧x -3≤0,x +y ≥0,x -y ≥0围成的封闭图形的面积是( )A .12B .6C .9D .15 答案 C解析 作出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧ x -3=0,x -y =0得A (3,3), 由⎩⎪⎨⎪⎧x -3=0,x +y =0得B (3,-3), 所以可行域的面积为12×3×6=9.3.(2021·全国乙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥4,x -y ≤2,y ≤3,则z =3x +y 的最小值为( )A .18B .10C .6D .4 答案 C解析 方法一 (数形结合法)作出可行域,如图中阴影部分(含边界)所示,作出直线y =-3x ,并平移,数形结合可知,当平移后的直线经过点A 时,直线y =-3x +z 在y 轴上的截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧ x +y =4,y =3得⎩⎪⎨⎪⎧x =1,y =3,即点A 的坐标为(1,3).从而z =3x +y 的最小值为3×1+3=6.方法二 (代点比较法)画图易知,题设不等式组对应的可行域是封闭的三角形区域,所以只需要比较三角形区域三个顶点处的z 的大小即可.易知直线x +y =4与y =3的交点坐标为(1,3),直线x +y =4与x -y =2的交点坐标为(3,1),直线x -y =2与y =3的交点坐标为(5,3),将这三个顶点的坐标分别代入z =3x +y 可得z 的值分别为6,10,18,所以比较可知z min =6.方法三 (巧用不等式的性质)因为x +y ≥4,所以3x +3y ≥12. ① 因为y ≤3,所以-2y ≥-6.②于是,由①+②可得3x +3y +(-2y )≥12+(-6),即3x +y ≥6,当且仅当x +y =4且y =3,即x =1,y =3时不等式取等号,易知此时不等式x -y ≤2成立. 4.不等式(x -2y +1)(x +y -3)≤0在直角坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )答案 C解析 (x -2y +1)(x +y -3)≤0等价于⎩⎪⎨⎪⎧ x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,即不等式表示的区域是同时在两直线的上方部分或同时在两直线的下方部分,只有选项C 符合题意.5.(2022·长沙模拟)若x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1,则z =2x -y 的取值范围是( )A .[0,3]B .[1,3]C .[-3,0]D .[-3,-1]答案 A解析 作出⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1表示的可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,即B (1,-1),化目标函数z =2x -y 为y =2x -z ,由图可知,当直线y =2x -z 过原点时,直线在y 轴上的截距最大,z 有最小值,为2×0-0=0;当直线y =2x -z 过点B 时,直线在y 轴上的截距最小,z 有最大值,为2×1-(-1)=3, ∴z =2x -y 的取值范围是[0,3].6.一小商贩准备用50元钱在某批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件 C .甲4件,乙5件 D .甲2件,乙6件答案 D解析 设购买甲、乙两种商品的件数应分别x ,y 件,利润为z 元,由题意⎩⎪⎨⎪⎧4x +7y ≤50,x ,y ∈N ,z =x +1.8y ,画出可行域,如图中阴影部分(含边界)所示,结合实际情况,显然当y =-59x +59z 经过整点A (2,6)时,z 最大.7.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -6≤0,x +y -1≥0,2x -y +1≥0,则z =y -1x +1的最大值是( )A.127 B.12 C .1 D .2答案 A解析 作出约束条件表示的可行域,如图中阴影部分(含边界)所示,z =y -1x +1表示可行域中的点(x ,y )与点P (-1,1)的连线的斜率, 由图可知z =y -1x +1的最大值在A 点取得,由⎩⎪⎨⎪⎧x -6=0,2x -y +1=0, 得A (6,13), 所以z max =13-16+1=127.8.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于13,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案 答案 D解析 设获得一等奖和二等奖的人数分别为x ,y (x ,y ∈N *),由题意得⎩⎪⎨⎪⎧20x +10y ≤200,3x ≤y ,x ≥2,作出该不等式组对应的平面区域,如图中阴影部分(含边界)所示,由图可知,2≤x ≤4,6≤y ≤16,故x 可取2,3,4,故最多可以购买4份一等奖奖品,最多可以购买16份二等奖奖品, 购买奖品至少要花费2×20+6×10=100(元),故A ,B ,C 正确; 当x =2时,y 可取6,7,8,9,10,11,12,13,14,15,16,共有11种, 当x =3时,y 可取9,10,11,12,13,14,共6种, 当x =4时,y 可取12,共1种, 故共有11+6+1=18(种),故D 不正确.9.已知点(1,1)在直线x +2y +b =0的下方,则实数b 的取值范围是________. 答案 (-∞,-3)解析 因为点(1,1)在直线x +2y +b =0的下方,所以1+2+b <0,解得b <-3. 10.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y -2≥0,x -3y +6≥0,则2y4x 的最小值为________. 答案 18解析 画出可行域,如图中阴影部分(含边界)所示,2y 4x =2y -2x,若使2y -2x 最小,需y -2x 最小. 令z =y -2x ,则y =2x +z , z 表示直线在y 轴上的截距,根据平移知,当x =3,y =3时,z =y -2x 有最小值为-3, 则2y 4x 的最小值为2-3=18. 11.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y +4≥0,x +y -1≥0,x ≤1,若直线y =k (x -1)将可行域分成面积相等的两部分,则实数k 的值为________. 答案 -4解析 画出可行域,如图中阴影部分(含边界)所示,其中A (1,6),B (1,0),C (-1,2).由于直线y =k (x -1)过定点B (1,0)且将可行域分成面积相等的两部分,所以当直线y =k (x -1)过线段AC 的中点D (0,4)时,△ABD 和△BCD 的面积相等, 此时k =k BD =4-00-1=-4.12.现某小型服装厂锁边车间有锁边工10名,杂工15名,有7台电脑机,每台电脑机每天可给12件衣服锁边;有5台普通机,每台普通机每天可给10件衣服锁边.如果一天至少有100件衣服需要锁边,用电脑机每台需配锁边工1名,杂工2名,用普通机每台需要配锁边工1名,杂工1名,用电脑机给一件衣服锁边可获利8元,用普通机给一件衣服锁边可获利6元,则该服装厂锁边车间一天最多可获利________元. 答案 780解析 设每天安排电脑机和普通机各x ,y 台, 则一天可获利z =12×8x +10×6y =96x +60y , 线性约束条件为⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤15,12x +10y ≥100,0<x ≤7,0<y ≤5,画出可行域(图略),可知当目标函数经过(5,5)时,z max =780.13.(2022·郑州模拟)已知M (x ,y )是不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的平面区域内的任意一点,且M (x ,y )满足x 2+y 2≤a ,则a 的最小值为( ) A .3 B .4 C .9 D .10 答案 D解析 作出不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的可行域,如图中的阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x +y +2=0,y =1,可得⎩⎪⎨⎪⎧x =-3,y =1,即点A (-3,1),同理可得B (3,1),C (0,-2), 且OA =OB =10,OC =2,x 2+y 2的几何意义为原点O 与可行域内的点M (x ,y )的距离的平方,由图可知,当点M 与点A 或点B 重合时,OM 取最大值,故x 2+y 2的最大值为10, ∴a ≥10,即a 的最小值为10.14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -2≤0,x ≥a ,x ≤y ,且z =2x -y 的最大值是最小值的2倍,则a 等于( ) A.34 B.56 C.65 D.43 答案 B解析 根据题中所给的约束条件,画出相应的可行域,如图中阴影部分(含边界)所示,作出直线l :y =2x ,平移直线l ,由图可知,当直线经过点D 时,直线在y 轴上的截距最小, 此时z =2x -y 取得最大值,由⎩⎪⎨⎪⎧x +y -2=0,x =y ,可得D (1,1), 所以z =2x -y 的最大值是1;当直线经过点B 时,直线在y 轴上的截距最大, 此时z =2x -y 取得最小值,由⎩⎪⎨⎪⎧x +y -2=0,x =a ,可得B (a ,2-a ), 所以z =2x -y 的最小值是3a -2, 因为z =2x -y 的最大值是最小值的2倍, 所以6a -4=1,解得a =56.15.实数对(x ,y )满足不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,且目标函数z =kx -y 当且仅当x =3,y =1时取最大值,则k 的取值范围为( ) A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,1 C.⎝⎛⎭⎫-12,1 D .(-∞,1]答案 C解析 作出可行域,如图中阴影部分(含边界)所示,其中A (1,2),B (4,2),C (3,1),由z =kx -y ,将直线l :y =kx -z 进行平移可得直线在y 轴上的截距为-z , 因此直线在y 轴上截距最小时,目标函数z 达到最大值. 因为当且仅当l 经过点C (3,1)时,目标函数z 达到最大值, 所以直线l 的斜率应介于直线AC 的斜率与直线BC 的斜率之间, k AC =1-23-1=-12,k BC =2-14-3=1,所以k 的取值范围是⎝⎛⎭⎫-12,1. 16.(2022·宜春模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -6≥0,x +2y -6≤0,y ≥0,则2y 2-xy x 2的最小值是________. 答案 -18解析 作出不等式组对应的平面区域如图中阴影部分(含边界)所示,k =yx 的几何意义为可行域内的点到原点的斜率, 由图象可知,OA 的斜率最大,由⎩⎪⎨⎪⎧2x +y -6=0,x +2y -6=0得A (2,2), ∴0≤k ≤1,∴2y 2-xy x 2=2⎝⎛⎭⎫y x 2-y x=2k 2-k =2⎝⎛⎭⎫k -142-18≥-18⎝⎛⎭⎫当且仅当k =14时,取到最小值.。
2019高考数学一轮复习第7章不等式及推理与证明第5课时合情推理与演绎推理练习理
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……第5课时 合情推理与演绎推理1.如图是2018年元宵节灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一呈现出来的图形是( )答案 A解析 该五角星对角上的两盏花灯依次按逆时针方向亮一盏,故下一个呈现出来的图形是A.2.如图所示,是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴,……,则第2 016个图形用的火柴根数为( )A .2 014×2 017B .2 015×2 016C .2 015×2 017D .3 024×2 017答案 D解析 由题意,第1个图形需要火柴的根数为3×1; 第2个图形需要火柴的根数为3×(1+2); 第3个图形需要火柴的根数为3×(1+2+3); ……由此,可以推出,第n 个图形需要火柴的根数为3×(1+2+3+…+n).所以第2 016个图形所需火柴的根数为3×(1+2+3+…+2 016)=3×2 016×(1+2 016)2=3 024×2 017,故选D.3.(2018·深圳一摸)已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2 019=( ) A .3 B .-3 C .6 D .-6答案 A解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2 019=6×336+3,∴a 2 019=a 3=3.选A.4.定义一种运算“*”:对于自然数n 满足以下运算性质: ①1*1=1,②(n +1)*1=n*1+1,则n*1等于( ) A .n B .n +1 C .n -1D .n 2答案 A解析 由(n +1)*1=n*1+1,得n*1=(n -1)*1+1=(n -2)*1+2=…=1*1+(n -1).又∵1*1=1,∴n*1=n.5.(2017·邯郸一中月考)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位如图所示,则下列座位号码符合要求的应当是( )A.48,49 C .75,76 D .84,85答案 D解析 由已知图中座位的排序规律可知,被5除余1的数和能被5整除的座位号靠窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号知,只有D 项符合条件.6.(2017·珠海二模)观察(x 2)′=2x ,(x 4)′=4x 3,(cosx)′=-sinx ,由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( ) A .f(x) B .-f(x) C .g(x) D .-g(x)答案 D解析 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x). 7.已知2+23=223, 3+38=338, 4+415=4415,…, 6+a b=6ab(a ,b 均为实数),则可推测a ,b 的值分别为( ) A .6,35 B .6,17 C .5,24 D .5,35答案 A解析 观察发现规律即可得出a =6,b =35,故选A.8.(2018·安徽合肥二模)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) A .甲 B .乙 C .丙 D .丁 答案 D解析 根据题意,6名选手比赛结果甲、乙、丙、丁猜测如下表:的是1,2,3或6号.若乙猜对,则1,2或6号得第一名,那么丙也猜对了,所以乙没有猜对,所以得第一名的是3号,所以丙也没有猜对,只有丁猜对了比赛结果,故选D.9.(2018·广东江门月考)已知a n =2n -1(n∈N *),把数列{a n }的各项排成如图所示的三角形数阵,记S(m ,n)表示该数阵中第m 行中从左到右的第n 个数,则S(8,6)=( )1 3 5 7 9 11 13 15 17 19… …A .67B .69C .73D .75答案 A解析 由数阵可知,S(8,6)是数阵中第1+2+3+…7+6=34个数,也是数列{a n }中的第34项,而a 34=2×34-1=67,所以S(8,6)=67.故选A.10.已知a ,b ,c 是△ABC 的内角A ,B ,C 对应的三边,若满足a 2+b 2=c 2,即(a c )2+(b c )2=1,则△ABC 为直角三角形,类比此结论可知,若满足a n+b n=c n (n∈N ,n ≥3),则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .以上都有可能答案 A解析 由题意知角C 最大,a n +b n =c n(n∈N ,n ≥3)即(a c )n +(b c )n =1(n∈N ,n ≥3),又c>a ,c>b ,所以(a c )2+(b c )2>(a c )n +(b c )n =1,即a 2+b 2>c 2,所以cosC =a 2+b 2-c 22ab >0,所以0<C<π2,故△ABC 为锐角三角形. 11.学习合情推理后,甲、乙两位同学各举了一个例子.甲:由“若三角形周长为l ,面积为S ,则其内切圆半径r =2S l ”,类比可得“若三棱锥表面积为S ,体积为V ,则其内切球半径r =3V S ”;乙:由“若直角三角形两直角边长分别为a ,b ,则其外接圆半径r =a 2+b22”,类比可得“若三棱锥三条侧棱两两垂直,侧棱长分别为a ,b ,c ,则其外接球半径r =a 2+b 2+c23”.这两位同学类比得出的结论是( )A .两人都对B .甲错、乙对C .甲对、乙错D .两人都错答案 C解析利用等面积与等体积法可推得甲同学类比推理的结论是正确的;把三条侧棱两两垂直的三棱锥补成一个长方体,则此三棱锥的外接球半径等于长方体的外接球半径,可求得其半径r=a2+b2+c22,因此乙同学类比推理的结论是错误的,故选C.12.(2017·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( )A.22项B.23项C.24项D.25项答案 C解析两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5是和为8的第3项,所以是第24项.故选C.13.观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为( ) A.76 B.80C.86 D.92答案 B解析由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.故选B.14.(2017·青岛一质检)中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放有纵横两种形式,如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推,例如6 613用算筹表示就是,则8 335用算筹可表示为( )答案 B解析由题意得千位和十位用横式表示,百位和个数用纵式表示,所以千位的8表示为,百位的3表示为,十位的3表示为,个位的5表示为,故选B.15.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设确定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( ) A .11010 B .01100 C .10111 D .00011答案 C解析 对于选项C ,传输信息是10111,对应的原信息是011,由题目中运算规则知h 0=0⊕1=1,而h 1=h 0⊕a 2=1⊕1=0,故传输信息应是10110.16.(2018·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n∈N *)的前12项,如下表所示:按如此规律下去,则a 2 017=( ) A .502 B .503 C .504 D .505答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a 2 017=x 1 009=505.17.(2018·太原模拟)有一个游戏:将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测: 甲说:乙或丙拿到标有3的卡片; 乙说:甲或丙拿到标有2的卡片; 丙说:标有1的卡片在甲手中; 丁说:甲拿到标有3的卡片.结果显示:甲、乙、丙、丁4个人的预测都不正确,那么甲、乙、丙、丁4个人拿到卡片上的数字依次为______. 答案 4、2、1、3解析 由甲、丁的预测不正确可得丁拿到标有3的卡片,由乙的预测不正确可得乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有4的卡片,故丙拿到标有1的卡片,即甲、乙、丙、丁4个人拿到卡片上的数字依次为4、2、1、3.18.顾客请一位工艺师把A ,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交给顾客.两件原料每道工序所需时间(单位:工作日)如下:则最短交货期为________答案 42解析 最短交货期为先由徒弟完成原料B 的粗加工,共需6天,然后工艺师加工该件工艺品,需21天;徒弟可在这几天中完成原料A 的粗加工;最后由工艺师完成原料A 的精加工,需15个工作日.故交货期为6+21+15=42个工作日.19.(名师原创)将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p×q(p≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们规定函数f(n)=p q ,例如:f(12)=34.关于函数f(n)有下列叙述:①f(7)=17;②f(24)=38;③f(28)=47;④f(144)=916,其中所有正确的序号为________.答案 ①③解析 利用题干中提供的新定义信息可得,对于①:∵7=1×7,∴f(7)=17,①正确;对于②,∵24=1×24=2×12=3×8=4×6,∴f(24)=46=23,②不正确;对于③,∵28=1×28=2×14=4×7,∴f(28)=47,③正确;对于④,∵144=1×144=2×72=3×48=4×36=6×24=8×18=9×16=12×12,∴f(144)=1212=1,④不正确.1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28 B .76 C .123 D .199答案 C解析 记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n∈N *,n ≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123. 2.观察图中各正方形图案,每条边上有n(n≥2)个圆点,第n 个图案中圆点的个数是a n ,按此规律推断出所有圆点总和S n 与n 的关系式为( )A .S n =2n 2-2nB .S n =2n 2C .S n =4n 2-3n D .S n =2n 2+2n答案 A解析 事实上由合情推理的本质:由特殊到一般,当n =2时,有S 2=4,分别代入即可排除B 、C 、D 三项,从而选A.也可以观察各个正方形图案可知圆点个数可视为首项为4,公差为4的等差数列,因此所有圆点总和即为等差数列前(n -1)项和,即S n =(n -1)×4+(n -1)(n -2)2×4=2n 2-2n.3.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为( )A .3 125B .5 625C .0 625D .8 125答案 D解析 ∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…,∴5n(n∈Z ,且n≥5)的末四位数字呈周期性变化,且最小正周期为4,记5n(n∈Z ,且n≥5)的末四位数字为f(n),则f(2 011)=f(501×4+7)=f(7),∴52 011与57的末四位数字相同,均为8 125.故选D.4.(2018·辽宁丹东联考)已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为( ) A .(3,9) B .(4,8) C .(3,10) D .(4,9)答案 D解析 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9).故选D.5.观察下图中图形的规律,在其右下角的空格内画上合适的图形为( )答案 A解析 表格中的图形都是矩形、圆、正三角形的不同排列,规律是每一行中只有一个图形是空心的,其他两个都是填充颜色的,第三行中已经有正三角形是空心的了,因此另外一个应该是阴影矩形. 6.(2015·山东)观察下列各式: C 10=40; C 30+C 31=41; C 50+C 51+C 52=42; C 70+C 71+C 72+C 73=43; ……照此规律,当n∈N *时, C 2n -10+C 2n -11+C 2n -12+…+C 2n -1n -1=________.答案 4n -1解析 由题知C 2n -10+C 2n -11+C 2n -12+…+C 2n -1n -1=4n -1.7.已知数列{a n }为等差数列,则有等式a 1-2a 2+a 3=0,a 1-3a 2+3a 3-a 4=0,a 1-4a 2+6a 3-4a 4+a 5=0. (1)若数列{a n }为等比数列,通过类比,则有等式______;(2)通过归纳,试写出等差数列{a n }的前n +1项a 1,a 2,…,a n ,a n +1之间的关系为________. 答案 (1)a 1a 2-2a 3=1,a 1a 2-3a 33a 4-1=1,a 1a 2-4a 36a 4-4a 5=1 (2)C n 0a 1-C n 1a 2+C n 2a 3-…+(-1)nC n na n +1=0解析 因等差数列与等比数列之间的区别是前者是加法运算,后者是乘法运算,所以类比规律是由低一级运算转化到高一级运算,从而解出第(1)问;通过观察发现,已知等式的系数与二项式系数相同,解出第(2)问.8.对∀a ,b ∈R ,定义运算:a⊕b=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a<b ;a ⊗b =⎩⎪⎨⎪⎧a -b ,a ≥b ,b -a ,a<b.则下列判断正确的是________.①2 015⊕(2 014⊗2 015)=2 014; ②(a⊕a)⊗a =0; ③(a⊕b)⊗a =a⊕(b ⊗a). 答案 ②解析 对于①,由定义的运算可知,2 014⊗2 015=2 015-2 014=1, 故2 015⊕(2 014⊗2 015)=2 015⊕1=2 015,故①错误. 对于②,因为a⊕a=a ,故(a⊕a)⊗a =a ⊗a =a -a =0,故②正确. 由于③,当a≥b 时,a ⊕b =a ,故(a⊕b)⊗a =a ⊗a =0, 而b ⊗a =a -b ,故a⊕(b ⊗a)=a⊕(a-b). 显然,若b≥0,则a≥a-b ,所以a⊕(a-b)=a , 若b<0,则a<a -b ,所以a⊕(a-b)=a -b. 故(a⊕b)⊗a≠a⊕(b ⊗a).故③错误.9.(2015·福建)一个二元码是由0和1组成的数字串x 1x 2…x n (n∈N *),其中x k (k =1,2,…,n)称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0). 已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________. 答案 5解析 由题意得相同的数字运算后结果为0,不同的数字运算后结果为1.若后四位码元为1101,根据定义的运算,则有x 4⊕x 5=1⊕1=0,x 4⊕x 5⊕x 6=0⊕0=0,x 4⊕x 5⊕x 6⊕x 7=0⊕1=1,显然不符合方程x 4⊕x 5⊕x 6⊕x 7=0,所以后四位码元出错.同理,第2,3,6,7位码元依次为1001.假设这四位都正确,则x 2⊕x 3=1⊕0=1, 所以x 2⊕x 3⊕x 6=1⊕0=1, 所以x 2⊕x 3⊕x 6⊕x 7=1⊕1=0,显然满足校验方程组,所以这四位码元正确.故最后两位码元正确,出错的码元只能是第四位或第五位. 同理,第1,3,5,7位的码元依次为1011, 所以x 1⊕x 3=1⊕0=1,x 1⊕x 3⊕x 5=1⊕1=0, x 1⊕x 3⊕x 5⊕x 7=0⊕1=1,显然不满足校验方程组. 所以出错的码元是第5位,即k =5.10.(2014·陕西理)观察分析下表中的数据:猜想一般凸多面体中F ,答案 F +V -E =2解析 三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F +V -E =2. 11.分形几何学是数学家伯努瓦·曼得尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路,按照图甲所示的分形规律可得图乙所示的一个树形图.易知第三行有白圈5个,黑圈4个,我们采用“坐标”来表示各行中的白圈、黑圈的个数.比如第一行记为(1,0),第二行记为(2,1),第三行记为(5,4). (1)第四行的白圈与黑圈的“坐标”为________;(2)照此规律,第n 行中的白圈、黑圈的“坐标”为________. 答案 (1)(14,13) (2)(3n -1+12,3n -1-12)(n∈N *) 解析 (1)从题中的条件易知白圈、黑圈的变化规律:一个白圈的下一行对应两个白圈和一个黑圈,一个黑圈的下一行对应一个白圈和两个黑圈,因此第4行的白圈个数为5×2+4×1=14,黑圈个数为5×1+4×2=13,所以第四行的白圈与黑圈的“坐标”为(14,13). (2)第n 行中的白圈和黑圈总数为3n -1个,设“坐标”为(a n ,3n -1-a n ),则第n +1行中的白圈和黑圈总数为3n个,设“坐标”为(a n +1,3n-a n +1)=(a n +3n -1,2×3n -1-a n ),即a 1=1,a n +1=a n +3n -1⇒a n =3n -1+12,从而得到第n 行中的白圈、黑圈的“坐标”为(3n -1+12,3n -1-12)(n∈N *). 12.(2017·北京,文)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________. ②该小组人数的最小值为________. 答案 ①6 ②12解析 令男学生、女学生、教师人数分别为x ,y ,z ,且x>y>z ,①若教师人数为4,则4<y<x<8,当x =7时,y 取得最大值6.②当z =1时,1=z<y<x<2,不满足条件;当z =2时,2=z<y<x<4,不满足条件;当z =3时,3=z<y<x<6,y =4,x =5,满足条件.所以该小组人数的最小值为3+4+5=12. 13.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论. 答案 (1)34 (2)sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34解析 方法一:(1)选择②式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 方法二:(1)同解法一. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos2α2+1+cos (60°-2α)2-sin α·(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α尚水出品 =12-12cos2α+12+14cos2α+34·sin2α-34sin2α-14(1-cos2α)=1-14cos2α-14+14cos2α=34.。
高考数学一轮总复习 第7章 不等式、推理与证明 第1节 不等关系与不等式高考AB卷 理
【大高考】2017版高考数学一轮总复习 第7章 不等式、推理与证明 第1节 不等关系与不等式高考AB 卷 理不等关系与不等式(2016·全国Ⅰ,8)若a >b >1,0<c <1,则( ) A.a c<b cB.ab c <ba cC.a log b c <b log a cD.log a c <log b c解析 对A :由于0<c <1,∴函数y =x c在R 上单调递增,则a >b >1⇒a c>b c,故A 错; 对B :由于-1<c -1<0,∴函数y =xc -1在(1,+∞)上单调递减,∴a >b >1⇔ac -1<bc -1⇔ba c<ab c,故B 错;对C :要比较a log b c 和b log a c ,只需比较a ln c lnb 和b lnc ln a ,只需比较ln c b ln b 和ln ca ln a,只需比较b ln b 和a ln a .构造函数f (x )=x ln x (x >1),则f ′(x )=ln x +1>1>0,f (x )在(1,+∞)上单调递增,因此f (a )>f (b )>0⇒a ln a >b ln b >0⇒1a ln a <1b ln b,又由0<c <1得ln c <0,∴ln c a ln a >ln cb ln b⇒b log a c >a log b c ,C 正确;对D :要比较log a c 和log b c ,只需比较ln c ln a 和ln cln b ,而函数y =ln x 在(1,+∞)上单调递增,故a >b >1⇔ln a >ln b >0⇔1ln a <1ln b ,又由0<c <1得ln c <0,∴ln c ln a >ln c ln b⇔log a c >log b c ,D 错误,故选C. 答案 C不等关系与不等式1.(2016·北京,5)已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y >0B.sin x -sin y >0C.⎝ ⎛⎭⎪⎫12x-⎝ ⎛⎭⎪⎫12y<0 D.ln x +ln y >0解析 函数y =1x在(0,+∞)上单调递减,所以1x <1y ,即1x -1y<0,A 错;函数y =sin x在(0,+∞)上不是单调函数,B 错;函数y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)上单调递减,所以⎝ ⎛⎭⎪⎫12x<⎝ ⎛⎭⎪⎫12y,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y<0,所以C 正确;ln x +ln y =ln xy ,当x >y >0时,xy 不一定大于1,即不一定有ln xy >0,D 错. 答案 C2.(2014·四川,4)若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b cD.a d <b c解析 由c <d <0⇒-1d >-1c >0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以a d <bc,选D. 答案 D3.(2013·陕西,10)设[x ]表示不大于x 的最大整数,则对任意实数x ,y ,有( ) A.[-x ]=-[x ] B.[2x ]=2[x ] C.[x +y ]≤[x ]+[y ]D.[x -y ]≤[x ]-[y ]解析 (特例法)当x =-1.5时,排除A ,B ;当x =-1.5,y =1.5时,排除C.故选D. 答案 D。
高考数学一轮复习第七章不等式推理与证明7
第七章 不等式、推理与证明7.1 二元一次不等式(组)与简单的线性规划问题必备知识预案自诊知识梳理1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的 .我们把直线画成虚线以表示区域 边界直线.当我们在平面直角坐标系中画不等式Ax+By+C ≥0所表示的平面区域时,此区域应 边界直线,则把边界直线画成 .(2)因为把直线Ax+By+C=0同一侧的所有点(x ,y )代入Ax+By+C ,所得的符号都 ,所以只需在此直线的同一侧取一个特殊点(x 0,y 0)作为测试点,由Ax 0+By 0+C 的 即可判断Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.(3)由几个不等式组成的不等式组所表示的平面区域是各个不等式所表示的平面区域的公共部分.2.线性规划的相关概念名 称 意 义线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式组,是对x ,y 的约束条件 目标函数关于x,y 的解析式 线性目标函数 关于x ,y 的一次解析式可行解 满足 的解(x ,y ) 可行域 所有 组成的集合最优解使目标函数达到 或 的可行解线性规划问题 求线性目标函数在线性约束条件下的 或 的问题1.二元一次不等式表示的平面区域 二元一次 不等式 Ax+By+C ≥0(A>0,B>0) Ax+By+C≤0(A>0,B>0) Ax+By+C ≥0(A>0,B<0) Ax+By+C≤0(A>0,B<0) 平面 区域2.点P 1(x 1,y 1)和P 2(x 2,y 2)位于直线Ax+By+C=0考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”. (1)不等式x-y-1>0表示的平面区域在直线x-y-1=0的上方. ( ) (2)两点(x 1,y 1),(x 2,y 2)在直线Ax+By+C=0异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( )(3)任何一个二元一次不等式组都表示平面上的一个区域. ( ) (4)线性目标函数取得最值的点一定在可行域的顶点或边界上. ( ) (5)在目标函数z=ax+by (b ≠0)中,z 的几何意义是直线ax+by-z=0在y 轴上的截距.( ) 2.不等式组{x -3x +6<0,x -x +2≥0表示的平面区域是( )3.(2020湖南长沙一中第三次调研)在平面直角坐标系xOy 中,M 为不等式组{2x +3x -6≤0,x +x -2≥0,x ≥0所表示的区域上一动点,则|OM|的最小值是( ) A.1B.√2C.2D.2√24.(2020福建漳州二模,文14)若实数x ,y 满足{x +x ≥2,x +3x -3≤0,x ≥0,则xx的最大值是 .5.(2020全国2,文15)若x ,y 满足约束条件{x +x ≥-1,x -x ≥-1,2x -x ≤1,则z=x+2y 的最大值是 .关键能力学案突破考点二元一次不等式(组)表示的平面〖例1〗(1)(2020河南天一大联考)不等式组{x -2≤0,x -2x +4≥0,-x -x +2≤0表示的平面区域的面积为 .(2)已知实数x ,y 满足{x ≥1,x -2x +1≤0,x +x ≤x ,若此不等式组所表示的平面区域形状为三角形,则m 的取值范围为 .思考确定二元一次不等式(组)表示的平面区域的方法是什么?求平面区域的面积的技巧是什么?解题心得1.确定二元一次不等式(组)表示的平面区域的方法(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就表示直线与特殊点异侧的那部分区域.当不等式中带等号时,边界画为实线,不带等号时,边界应画为虚线,特殊点常取原点.(2)也常利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax+By+C>0或Ax+By+C<0,则①当B (Ax+By+C )>0时,区域为直线Ax+By+C=0的上方;②当B (Ax+By+C )<0时,区域为直线Ax+By+C=0的下方.2.求平面区域的面积的方法(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高;若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解;若为不规则四边形,则可分割成几个三角形分别求解再求和.(3)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.对点训练1(1)已知不等式组{x ≥0,x -√3x ≤0,x +√3x -2√3≤0,表示的可行域为D ,则可行域D 的面积为( )A.2√3B.2C.√3D.√32(2)设命题p :实数x ,y 满足{x -x ≤0,x +2x ≤2,x ≥-2,命题q :实数x ,y 满足(x+1)2+y 2≤m ,若p 是q的必要不充分条件,则正实数m 的取值范围是 .考点求目标函数的最值问题(多考向探究)考向1 求线性目标函数的最值〖例2〗(1)(2020全国1,理13)若x ,y 满足约束条件{2x +x -2≤0,x -x -1≥0,x +1≥0,则z=x+7y 的最大值为 .(2)(2020福建福州模拟,理13)设x ,y 满足约束条件{2x +x -2≥0,x -2x +4≥0,x ≤2,则z=x-3y 的最小值为 .思考求线性目标函数的最值的注意事项是什么? 考向2 求非线性目标函数的最值〖例3〗(1)(2020河南郑州质检)已知变量x ,y 满足{x -2x +4≤0,x ≥2,x +x -6≥0,则k=x +1x -3的取值范围是( )A.(-∞,-5〗∪12,+∞B.-5,12 C.(-∞,-5)∪12,+∞D.-5,12(2)(2020安徽马鞍山模拟)已知实数x,y满足{x≤1,x≤x+1,x≥1-x,则x2+y2的最大值与最小值之和为.思考如何利用可行域求非线性目标函数最值?考向3求参数值或取值范围〖例4〗(1)设x,y满足不等式组{x+x-6≤0,2x-x-1≤0,3x-x-2≥0,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为()A.〖-1,2〗B.〖-2,1〗C.〖-3,-2〗D.〖-3,1〗(2)(2020江西南昌十中月考)若实数x,y满足不等式组{x+x-1≥0,x-x+1≥0,x≤x,若目标函数z=ax-2y的最大值为13,则实数a的值是()A.3B.4C.5D.6思考如何利用可行域及最优解求参数及其取值范围?考向4最优解不唯一的条件下求参数的值〖例5〗已知x,y满足约束条件{x+x-2≤0,x-2x-2≤0,2x-x+2≥0.若z=y-ax取得最大值的最优解不唯一,则实数a的值为.思考最优解有无数多个时,目标函数有什么特点?解题心得1.利用可行域求线性目标函数最值的方法:利用约束条件作出可行域,根据目标函数找到最优解时的点,解得点的坐标代入求解即可.2.利用可行域及最优解求参数及其范围的方法:(1)若限制条件中含参数,依据参数的不同范围将各种情况下的可行域画出来,寻求最优解,确定参数的值;(2)若线性目标函数中含有参数,可对线性目标函数的斜率分类讨论,以此来确定线性目标函数经过哪个顶点取得最值,从而求出参数的值;也可以直接求出线性目标函数经过各顶点时对应的参数的值,然后进行检验,找出符合题意的参数值.3.利用可行域求非线性目标函数最值的方法:画出可行域,分析目标函数的几何意义是斜率问题还是距离问题,依据几何意义可求得最值.对点训练2(1)(2020山西太原五中二模,理5)若x,y满足约束条件{x-2x-2≤0,x-x+1≥0, x≤0,则z=3x+2y的最大值为()A.4B.5C.6D.7(2)(2020浙江衢州二中检测)若实数x ,y 满足约束条件{x -x +1≥0,2x +3x ≤6,x +1≥0,则z=2|x |-y 的最小值是( )A.-25B.5C.-1D.-2(3)(2020江西高三月考,文7)已知{x -x +1≥0,7x -x -7≤0,x ≥0,x ≥0表示的平面区域为D ,若“存在(x ,y ),2x+y>a ”为假命题,则实数a 的取值范围是( )A.〖5,+∞)B.〖2,+∞)C.〖1,+∞)D.〖0,+∞)(4)(2020重庆一中模拟,文15)已知实数x ,y 满足{x -x -2≤0,x +2x -5≥0,x -2≤0,则函数z=4x·(18)x 的最小值为 .考点线性规划的实际应用〖例6〗某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少? (2)怎样安排生产可使所得利润最大?思考利用线性规划解决实际应用问题的步骤是什么?其注意事项是什么?解题心得利用线性规划求解实际问题的一般步骤 (1)认真分析并掌握实际问题的背景,收集有关数据; (2)将影响该问题的各项主要因素作为决策量,设未知量; (3)根据问题的特点,写出约束条件;(4)根据问题的特点,写出目标函数,并求出最优解或其他要求的解.对点训练3(2020河北张家口二模,理9)某市政府投入资金帮扶某农户种植蔬菜大棚脱贫致富,若该农户计划种植冬瓜和茄子,总面积不超过15亩,帮扶资金不超过4万元,冬瓜每亩产量10 000斤,成本2 000元,每斤售价0.5元,茄子每亩产量5 000斤,成本3 000元,每斤售价1.4元,则该农户种植冬瓜和茄子利润的最大值为()A.4万元B.5.5万元C.6.5万元D.10万元1.非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.2.线性目标函数最值问题的常见类型及解题策略:(1)求线性目标函数的最值.线性目标函数的最优解一般在平面区域的顶点或边界处取得,因此对于一般的线性规划问题,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.(2)由目标函数的最值求参数.求解线性规划中含参问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参数的式子所满足的条件,确定最优解的位置,从而求出参数的值.第七章不等式、推理与证明7.1二元一次不等式(组)与简单的线性规划问题必备知识·预案自诊知识梳理1.(1)平面区域不包括包括实线(2)相同符号2.线性约束条件可行解最大值最小值最大值最小值考点自诊1.(1)×(2)√(3)×(4)√(5)×2.C3.B作出不等式组表示的可行域,如图中阴影部分所示,因此|OM|的最小值为点O到直线=√2.x+y-2=0的距离,所以|OM|min=|-2|√24.13 作出不等式组表示的可行域,如图阴影部分,设xx =k OP ,P 为可行域上一点,其中O (0,0),P (x ,y ),由{x +x =2,x +3x -3=0,得A32,12,所以由图可知,当P 位于A 时,(xx )max=k OA =13.5.8 作出可行域如图所示(阴影部分).因为z=x+2y ,所以y=-12x+x2.作出直线y=-12x ,平移直线可知,当直线过点A 时,x2最大,即z 最大. 由{2x -x =1,x -x =-1,解得{x =2,x =3,故A (2,3).所以z max =2+2×3=8.关键能力·学案突破例1(1)3 (2)(2,+∞) (1)作出不等式组表示的可行域,如图阴影部分所示,平面区域为△ABC 及其内部,其中A (2,0),B (0,2),C (2,3), 所以所求面积为12×2×|AC|=3.(2)如图所示,{x ≥1,x -2x +1≤0所表示的平面区域为图中的阴影部分,易知直线x=1与x-2y+1=0的交点坐标为A (1,1),不等式组所表示的平面区域形状为三角形,则点A 位于直线x+y=m 下方,据此有1+1<m ,即m 的取值范围为(2,+∞).对点训练1(1)C (2)0,12 (1)作出不等式组{x ≥0,x -√3x ≤0,x +√3x -2√3≤0对应的可行域如图,由{x =0,x -√3x =0,得A (0,0),由{x -√3x =0,x +√3x -2√3=0,得C (√3,1),由{x =0,x +√3x -2√3=0,得B (0,2),则区域D 的面积S=12×2×√3=√3.故选C.(2)根据题意,m 为正实数,所以满足q 的点(x ,y )在以(-1,0)为圆心,以√x 为半径的圆周及其内部,记作Q ,满足条件p 的点构成的集合记作P ,因为p 是q 的必要不充分条件,所以Q ⫋P.如图,设直线x=-2和直线x+2y=2的交点为A ,直线x-y=0和直线x+2y=2的交点为B ,直线x=-2和直线y-x=0的交点为C , 则点(-1,0)到直线AC 的距离d 1=1, 点(-1,0)到直线BC 的距离d 2=1√12+12=√22, 点(-1,0)到直线AB 的距离d 3=|-1+0-2|√12+22=3√55,所以点(-1,0)到三角形ABC 边界的最小距离为√22.所以√x ≤√22, 即m ∈0,12.例2(1)1 (2)-7 (1)画出不等式组表示的平面区域,如图(阴影部分)所示,将目标函数z=x+7y 变形可得y=-17x+17z ,平移直线y=-17x.由图可得直线经过点A 处时,z 取得最大值.由{x -x -1=0,2x +x -2=0,得{x =1,x =0,所以A (1,0),所以z max =1+7×0=1.(2)在坐标系中画出x ,y 满足约束条件{2x +x -2≥0,x -2x +4≥0,x ≤2的可行域,如图所示,由z=x-3y 可得y=13x-13z ,则-13z 表示直线z=x-3y 在y 轴上的截距,截距越大,z 越小,平移直线x-3y=0,经过点A 时,z 最小,由{x =2,x -2x +4=0,可得A (2,3),此时z min =2-3×3=-7.例3(1)A (2)112 (1)作不等式组表示的可行域,如图所示.由于k=x +1x -3表示动点M (x ,y )与定点P (3,-1)连线的斜率. 又k PA =4-(-1)2-3=-5,且直线x-2y+4=0的斜率为12.所以k 的取值范围为(-∞,-5〗∪12,+∞.(2)作出不等式组{x ≤1,x ≤x +1,x ≥1-x表示的可行域,如图阴影部分所示,x 2+y 2的几何意义是原点O 到可行域内点的距离的平方,由图可知,点O 到直线x+y-1=0的距离最小,为√22.可行域内的点B 与坐标原点的距离最大,为√22+12=√5.所以x2+y2的最大值与最小值之和为5+12=112.例4(1)B(2)A(1)由z=ax+y得y=-ax+z,如图,作出不等式组对应的可行域(阴影部分),则A(1,1),B(2,4).由题意和图可知,直线z=ax+y过点B时,取得最大值为2a+4,过点A时,取得最小值为a+1,若a=0,则y=z,此时满足条件,若a>0,k=-a<0,则目标函数的斜率满足-a≥k BC=-1,即0<a≤1,若a<0,k=-a>0,则目标函数的斜率满足-a≤k AC=2,即-2≤a<0.综上,a的取值范围是〖-2,1〗.(2)画出满足条件{x+x-1≥0,x-x+1≥0,x≤x的可行域,如下图所示,根据图像可得a>0,目标函数化为y=x2x-x2,当目标函数过A(a,-a+1)时,z取得最大值,所以a2+2a-2=13,a2+2a-15=0,解得a=3,或a=-5(舍去).故选A.例5-1或2作出不等式组表示的可行域,如图.目标函数z=y-ax可化为y=ax+z,令l0:y=ax,平移l0,则当l0∥AB或l0∥AC时符合题意,故a=-1或a=2.对点训练2(1)C (2)C (3)A (4)116 (1)作出不等式组表示的可行域,如图所示,由z=3x+2y ,得y=-32x+x2,根据图像可知,当过M 点时,z 取最大值, 联立{x -2x -2=0,x =0,解得x=2,y=0,所以M (2,0),则z 的最大值为6.故选C.(2)作不等式组表示的可行域如图,由z=2|x|-y 可得y=2|x|-z ,作y=2|x|图像,由图像可知,当向上平移y=2|x|过点A 时,-z 最大,即z 最小,令x=0,由y=x+1可得A (0,1),所以z min =2×0-1=-1,故选C.(3)作出不等式组表示的可行域如图中阴影部分(含边界)所示,令Z=2x+y ,得y=-2x+Z ,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程{x -x +1=0,7x -x -7=0,得点A 43,73,所以Z=2x+y 的最大值为5,因为“存在(x ,y )∈R ,2x+y>a ”为假命题,所以“任意(x ,y ),2x+y ≤a ”为真命题,所以实数a 的取值范围是〖5,+∞),故选A.(4)作出不等式组所表示的可行域如下,因为z=4x·(18)x=22x-3y,令t=2x-3y ,则y=23x-x3,当直线y=23x-x3过点M 时,在y 轴截距最大,此时t 取最小值,则z=2t最小. 由{x =2,x +2x -5=0,得M (1,2),所以t min =2-3×2=-4,则z min =116.例6解由题意可画表格如下家具方木料/m 3 五合板/m 2 利润/元书桌/个 0.1 2 80 书橱/个0.2 1120(1)设只生产书桌x 个,可获得利润z 元, 则{0.1x ≤90,2x ≤600,解得{x ≤900,x ≤300,则x ≤300. 因为z=80x ,所以当x=300时,z max =80×300=24000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24000元. (2)设生产书桌x 张,书橱y 个,利润总额为z 元.由题可得{x +2x ≤900,2x +x ≤600,x ≥0,x ≥0,z=80x+120y.在直角坐标平面内作出不等式组所表示的可行域,如图.作直线l 0:80x+120y=0,即直线l 0:2x+3y=0.把直线l 0向右上方平移至l 1的位置时,直线经过可行域上的点M (100,400), 此时z=80x+120y 取得最大值.所以当x=100,y=400时,z max =80×100+120×400=56000(元), 即生产书桌100张、书橱400个,可使所得利润最大.对点训练3B 设冬瓜和茄子的种植面积分别为x ,y 亩,总利润z 万元,则目标函数z=(0.5x×10000-2000x )+(1.4y×5000-3000y ) =3000x+4000y=1000(3x+4y ),由题可得{x +x ≤15,2000x +3000x ≤40000,x ≥0,x ≥0,即{x +x ≤15,2x +3x ≤40,x ≥0,x ≥0,作出可行域如图,由{x +x =15,2x +3x =40,可得{x =5,x =10,即A (5,10),平移直线l 0:3x+4y=0,可知直线l 0经过点A (5,10)时,即x=5,y=10时,z 取得最大值5.5万元,即该农户种植冬瓜和茄子利润的最大值为5.5万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【大高考】2017版高考数学一轮总复习第7章不等式、推理与证明第五节推理与证明AB卷文新人教A版1.(2016·新课标全国Ⅲ,4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析由题意知,平均最高气温高于20 ℃的六月,七月,八月,故选D.答案 D2.(2016·新课标全国Ⅱ,16)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.答案1和33.(2014·课标Ⅰ,14)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.解析根据甲和丙的回答推测乙没去过B城市,又知乙没去过C城市,故乙去过A城市. 答案A1.(2016·浙江,8)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n+2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( ) A.{S n }是等差数列 B.{S 2n }是等差数列C.{d n }是等差数列D.{d 2n }是等差数列解析 S n 表示点A n 到对面直线的距离(设为h n )乘以|B n B n -1|长度一半,即S n =12h n |B n B n -1|,由题目中条件可知|B n B n -1|的长度为定值,过A 1作垂直得到初始距离h 1,那么A 1,A n 和两个垂足构成等腰梯形,则h n =h 1+|A 1A n |tan θ(其中θ为两条线所成的锐角,为定值), 从而S n =12(h 1+|A 1A n |tan θ)|B n B n +1|,S n +1=12(h 1+|A 1A n +1|)|B n B n +1|,则S n +1-S n =12|A n A n +1||B n B n +1|tan θ,都为定值,所以S n +1-S n 为定值,故选A. 答案 A2.(2016·山东,12)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝⎛⎭⎪⎫sin 2π3-2=43×1×2;⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2=43×4×5; ……照此规律,⎝ ⎛⎭⎪⎫sinπ2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________.解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.答案 43×n ×(n +1)3.(2015·陕西,16)观察下列等式 1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16 ……据此规律,第n 个等式可为________.解析 等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且有前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n. 答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n4.(2013·陕西,13)观察下列等式 (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 ……照此规律,第n 个等式可为____________________________________________. 解析 观察规律,等号左侧为(n +1)(n +2)…(n +n ),等号右侧分两部分,一部分是2n,另一部分是1×3×…×(2n -1).答案 (n +1)(n +2)…(n +n )=2n×1×3×…×(2n -1)5.(2014·福建,16)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个正确,则100a +10b +c 等于________.解析 可分下列三种情形:(1)若只有①正确,则a ≠2,b ≠2,c =0,所以a =b =1与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b =2,a =2,c =0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c ≠0,a =2,b ≠2,所以b =0,c =1,所以100a +10b +c =100×2+10×0+1=201. 答案 2016.(2014·山东,4)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( ) A.方程x 3+ax +b =0没有实根 B.方程x 3+ax +b =0至多有一个实根 C.方程x 3+ax +b =0至多有两个实根 D.方程x 3+ax +b =0恰好有两个实根解析 至少有一个实根的否定是没有实根,故做的假设是“方程x 3+ax +b =0没有实根”. 答案 A7.(2016·浙江,20)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.8.(2015·四川,21)已知函数f (x )=-2x ln x +x 2-2ax +a 2,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.(1)解 由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -1-ln x -a ),所以g ′(x )=2-2x =2(x -1)x,当x ∈(0,1)时,g ′(x )<0,g (x )单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增. (2)证明 由f ′(x )=2(x -1-ln x -a )=0, 解得a =x -1-ln x ,令φ(x )=-2x ln x +x 2-2x (x -1-ln x )+(x -1-ln x )2=(1+ln x )2-2x ln x ,则φ(1)=1>0,φ(e)=2(2-e)<0, 于是,存在x 0∈(1,e),使得φ(x 0)=0, 令a 0=x 0-1-ln x 0=u (x 0), 其中u (x )=x -1-ln x (x ≥1), 由u ′(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增, 故0=u (1)<a 0=u (x 0)<u (e)=e -2<1, 即a 0∈(0,1),当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0, 再由(1)知,f ′(x )在区间(1,+∞)上单调递增, 当x ∈(1,x 0)时,f ′(x )<0, 从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0, 从而f (x )>f (x 0)=0;又当x ∈(0,1]时,f (x )=(x -a 0)2-2x ln x >0, 故x ∈(0,+∞)时,f (x )≥0,综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.9.(2015·江苏,20)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由; (3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k3,a n +3k4依次构成等比数列?并说明理由.(1)证明 因为2a n +12a n =2a n +1-a n =2d(n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列,(2)解 令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0).假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列, 则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =d a ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0,化简得t 3+2t 2-2=0(*),且t 2=t +1. 将t 2=t +1代入(*)式,t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立.因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列. (3)解 假设存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列,则a n1(a 1+2d )n +2k=(a 1+d )2(n +k ),且(a 1+d )n +k(a 1+3d )n +3k=(a 1+2d )2(n +2k ).分别在两个等式的两边同除以a 2(n +k )1及a 2(n +2k )1,并令t =d a 1⎝ ⎛⎭⎪⎫t >-13,t ≠0, 则(1+2t )n +2k=(1+t )2(n +k ),且(1+t )n +k(1+3t )n +3k=(1+2t )2(n +2k ).将上述两个等式两边取对数,得(n +2k )ln(1+2t )=2(n +k )ln(1+t ), 且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ).化简得2k [ln(1+2t )-ln(1+t )] =n [2ln(1+t )-ln(1+2t )],且3k [ln(1+3t )-ln(1+t )]=n [3ln(1+t )-ln(1+3t )]. 再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t ) =4ln(1+3t )ln(1+t )(**).令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ), 则g ′(t )=2[(1+3t )2ln (1+3t )-3(1+2t )2ln (1+2t )+3(1+t )2ln (1+t )](1+t )(1+2t )(1+3t ).令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+3(1+t )2ln(1+t ), 则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ1′(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )]. 令φ2(t )=φ1′(t ),则φ2′(t )=12(1+t )(1+2t )(1+3t )>0.由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎝ ⎛⎭⎪⎫-13,0和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立. 所以不存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列.10.(2014·天津,20)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ; (2)设s ,t ∈A ,s =a 1+a 2q +…+a n qn -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .(1)解 当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3}.可得,A ={0,1,2,3,4,5,6,7}. (2)证明 由s ,t ∈A ,s =a 1+a 2q +…+a n qn -1,t =b 1+b 2q +…+b n qn -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )qn -1≤(q -1)+(q -1)q +…+(q -1)qn -2-qn -1=(q -1)(1-q n -1)1-q-q n -1=-1<0.所以,s <t .。