2.2.1函数单调性_中职中专_职业教育_教育专区.ppt
17-18版:2.2.1 函数的单调性(一)
2.2.1函数的单调性(一)学习目标 1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一函数的单调性思考画出函数f(x)=x、f(x)=x2的图象,并指出f(x)=x、f(x)=x2的图象的升降情况如何?梳理一般地,单调性是相对于区间来说的,函数图象在某区间上上升,则函数在该区间上为单调增函数,该区间称为单调增区间.反之则为单调减函数,相应区间称为单调减区间.因为很多时候我们不知道函数图象是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义:设函数y=f(x)的定义域为A,区间I⊆A.(1)如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说y=f(x)在区间I上是单调增函数,I称为y=f(x)的单调增区间.(2)如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说y=f(x)在区间I上是单调减函数,I称为y=f(x)的单调减区间.单调增区间和单调减区间统称为单调区间.知识点二函数的单调区间思考 我们已经知道f (x )=x 2的单调减区间为(-∞,0],f (x )=1x 的单调减区间为(-∞,0),这两个单调减区间的书写形式能不能交换?梳理 一般地,有下列常识(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开. (2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大.类型一 求单调区间并判断单调性例1 如图是定义在区间[-5,5]上的函数y =f (x ),根据图象说出函数的单调区间,以及在每一单调区间上,它是单调增函数还是单调减函数?反思与感悟函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D上函数要么是单调增函数,要么是单调减函数,不能二者兼有.跟踪训练1写出函数y=|x2-2x-3|的单调区间,并指出单调性.类型二证明单调性命题角度1证明具体函数的单调性例2证明f(x)=x在其定义域上是单调增函数.反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x 1,x 2且x 1<x 2的条件下,转化为确定f (x 1)与f (x 2)的大小,要牢记五大步骤:取值→作差→变形→定号→小结.跟踪训练2 求证:函数f (x )=x +1x 在[1,+∞)上是单调增函数.命题角度2 证明抽象函数的单调性例3 已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.求证:函数f (x )在R 上是单调增函数.反思与感悟 因为抽象函数不知道解析式,所以不能代入求f (x 1)-f (x 2),但可以借助题目提供的函数性质来确定f (x 1)-f (x 2)的大小,这时就需要根据解题需要对抽象函数进行赋值. 跟踪训练3 已知函数f (x )的定义域是R ,对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.求证:f (x )在R 上是单调减函数.类型三 单调性的应用命题角度1 利用单调性求参数范围例4 若函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的单调减函数,则a 的取值范围为________.反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要保证在接口处不能反超.另外,函数在单调区间上的图象不一定是连续不断的.跟踪训练4 已知函数f (x )=x 2-2ax -3在区间[1,2]上单调,则实数a 的取值范围为________________.命题角度2 用单调性解不等式例5 已知y =f (x )在定义域(-1,1)上是单调减函数,且f (1-a )<f (2a -1),求a 的取值范围.反思与感悟 若已知函数f (x )的单调性,则由x 1,x 2的大小,可得f (x 1),f (x 2)的大小;由f (x 1),f (x 2)的大小,可得x 1,x 2的大小.跟踪训练5 在例5中若函数y =f (x )的定义域为R ,且为单调增函数,f (1-a )<f (2a -1),则a 的取值范围又是什么?1.函数y =f (x )在区间[-2,2]上的图象如图所示,则此函数的单调增区间是________.2.函数y =6x的单调减区间是________.3.在下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是________.(填序号)①f (x )=x 2;②f (x )=1x ;③f (x )=|x |;④f (x )=2x +1. 4.给出下列说法:①若定义在R 上的函数f (x )满足f (3)>f (2),则函数f (x )在R 上为单调增函数; ②若定义在R 上的函数f (x )满足f (3)>f (2),则函数f (x )在R 上不可能为单调减函数;③函数f (x )=-1x 在(-∞,0)∪(0,+∞)上为单调增函数;④函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-x 2+1,x <0在定义域R 上为单调增函数.其中说法正确的是________.(填序号)5.若函数f (x )在R 上是单调减函数,且f (|x |)>f (1),则x 的取值范围是________.1.若f (x )的定义域为D ,A ⊆D ,B ⊆D ,f (x )在A 和B 上都为单调减函数,未必有f (x )在A ∪B 上为单调减函数.2.对单调增函数的判断,对任意x 1<x 2,都有f (x 1)<f (x 2),也可以用一个不等式来替代: (x 1-x 2)[f (x 1)-f (x 2)]>0或f (x 1)-f (x 2)x 1-x 2>0.对单调减函数的判断,对任意x 1<x 2,都有f (x 1)>f (x 2),相应地也可用一个不等式来替代:(x 1-x 2)·[f (x 1)-f (x 2)]<0或f (x 1)-f (x 2)x 1-x 2<0.3.熟悉常见的一些函数的单调性,包括一次函数,二次函数,反比例函数等.4.若f (x ),g (x )都是单调增函数,h (x )是单调减函数,则:①在定义域的交集(非空)上,f (x )+g (x )为单调增函数,f (x )-h (x )为单调增函数,②-f (x )为单调减函数,③1f (x )为单调减函数(f (x )≠0).5.对于函数值恒正(或恒负)的函数f (x ),证明单调性时,也可以作商f (x 1)f (x 2)与1比较.答案精析问题导学 知识点一思考 两函数的图象如下:函数f (x )=x 的图象由左到右是上升的;函数f (x )=x 2的图象在y 轴左侧是下降的,在y 轴右侧是上升的. 知识点二思考 f (x )=x 2的单调减区间可以写成(-∞,0),而f (x )=1x 的单调减区间(-∞,0)不能写成(-∞,0],因为0不属于f (x )=1x 的定义域.题型探究例1 解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是单调减函数,在区间[-2,1],[3,5]上是单调增函数.跟踪训练1 解 先画出f (x )=⎩⎪⎨⎪⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图象,如图.所以y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调减区间是(-∞,-1],[1,3];单调增区间是[-1,1],[3,+∞). 例2 证明 f (x )=x 的定义域为[0,+∞).设x 1,x 2是定义域[0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1-x 2 =(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2x 1+x 2.∵0≤x 1<x 2,∴x 1-x 2<0,x 1+x 2>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )=x 在定义域[0,+∞)上是单调增函数.跟踪训练2 证明 设x 1,x 2是实数集R 上的任意实数,且1≤x 1<x 2, 则f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2)=(x 1-x 2)+(1x 1-1x 2)=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-1x 1x 2)=(x 1-x 2)(x 1x 2-1x 1x 2).∵1≤x 1<x 2,∴x 1-x 2<0,1<x 1x 2, ∴x 1x 2-1x 1x 2>0,故(x 1-x 2)(x 1x 2-1x 1x 2)<0,即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )=x +1x在区间[1,+∞)上是单调增函数.例3 证明 方法一 设x 1,x 2是实数集上的任意两个实数,且x 1>x 2.令x +y =x 1,y =x 2,则x =x 1-x 2>0.f (x 1)-f (x 2)=f (x +y )-f (y )=f (x )+f (y )-1-f (y )=f (x )-1. ∵x >0,∴f (x )>1,f (x )-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴函数f (x )在R 上是单调增函数.方法二 设x 1>x 2,则x 1-x 2>0,从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0.f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是单调增函数.跟踪训练3 证明 ∵对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),令m =1,n =0,可得f (1)=f (1)·f (0),∵当x >0时,0<f (x )<1,∴f (1)≠0,∴f (0)=1.令m =x <0,n =-x >0,则f (m +n )=f (0)=f (-x )·f (x )=1,∴f (x )f (-x )=1,又∵-x >0时,0<f (-x )<1,∴f (x )=1f (-x )>1. ∴对任意实数x ,f (x )恒大于0.设任意x 1<x 2,则x 2-x 1>0,∴0<f (x 2-x 1)<1,∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)f (x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0,∴f (x )在R 上是单调减函数.例4 [18,13) 解析 要使f (x )在R 上是单调减函数,需满足:⎩⎪⎨⎪⎧ 3a -1<0,-a <0,(3a -1)·1+4a ≥-a ·1,解得18≤a <13. 跟踪训练4 (-∞,1]∪[2,+∞)解析 由于二次函数开口向上,故其单调增区间为[a ,+∞),单调减区间为(-∞,a ],而f (x )在区间[1,2]上单调,所以[1,2]⊆[a ,+∞)或[1,2]⊆(-∞,a ],即a ≤1或a ≥2.例5 解 f (1-a )<f (2a -1)等价于⎩⎪⎨⎪⎧ -1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23, 即所求a 的取值范围是0<a <23. 跟踪训练5 解 ∵y =f (x )的定义域为R ,且为单调增函数,f (1-a )<f (2a -1),∴1-a <2a -1,即a >23, ∴所求a 的取值范围是(23,+∞). 当堂训练1.[-2,1] 2.(-∞,0),(0,+∞)3.②4.②④解析 由单调增函数的定义,可知①错误;由单调减函数的定义,可知②正确;因为函数f (x )=-1x 在(-∞,0)和(0,+∞)上为单调增函数,所以③错误;作出函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-x 2+1,x <0的图象,如图所示,由图象可知④正确.5.(-1,1)。
《函数的单调性》说课PPT精选全文完整版
调区间,判断它们的单调性,并加以证明。
引领探索 建构概念
举例巩固 深化概念
知识应用 形成技能
回顾总结 布置作业
(-∞,0] ,(0,+∞)
和
f (x2 ) f (x1) x22 x12 (x2 x1)( x2 x1)
24
函数的单调性
教材分析 学情分析 教学目标 教学设计 教学过程 教学反思
28
检验 评价
函数的单调性
教材分析 学情分析 教学目标 教学设计 教学过程 教学反思
创设情境 导入新课
利用函数的单调性比较大小
引领探索 建构概念
举例巩固 深化概念
知识应用 形成技能
回顾总结 布置作业
例例55 已已知知函函数数 ff((xx))是是区区间间((00,,++∞∞))上上的 增的函增数函,数判,断判断 ff(1(1))与与ff(的3(3))的大大小小关关系系..
依据: 判断和证明的前提; 提高推理论证的思维能力。
重点难点
难点: 理 增解 、并 减能 函用数符的号定语义言。描述
依据: 学生很难从描述性语言过渡 到严谨的数学符号语言。
7
函数的单调性
教材分析 学情分析 教学目标 教学设计 教学过程 教学反思
设计理念 资源整合 教法学法 教学环节
问题驱动 教师主导 学生主体 合作探究
铺垫
29
迁移能力
函数的单调性
教材分析 学情分析 教学目标 教学设计 教学过程 教学反思
创设情境 导入新课
问题
引领探索 建构概念
举例巩固 深化概念
如何利用函数的单调性比较两个函 数值的大小?
知识应用 形成技能
回顾总结 布置作业
函数单调性说课ppt课件
生归纳,师引导。 类比得出减函数 定义。
设函数y=f(x) 在区间(a,b) 内有意义. 对于任意的 x1,x2∈ (a,b) 当x1<x2时
减函数
有f(x1)>f(x2)成立. 把函数叫做区间 (a,b)内的减函数 区间(a,b)叫做函 数的减区间.
13
3.例题精讲、深化概念
例1.给出函数 y = f (x) 的图象,如图所示,根据图象说出这个函数在
这个区间上是减函数.
15
思考:判断函数 y 1
在 ,0 上的单调性, x
证明你的结论。
分析:法1 图像法。法2 证明 在给定的区间上,任取 x1, x2 ,
当 x1 x2时 f x1 f x2 函数为增函数
f x1 f x2 函数为减函数
16
6
三、教学目标
1、知识与技能目标 : 使学生从形与数两方面理解函数单调性的概念,学会
利用函数图像理解和研究函数的性质,利用函数图象和 单调性定义判断、证明函数单调性。 2、过程与方法目标 :
通过对函数单调性定义的探究,渗透数形结合思想, 培养学生观察、归纳、抽象的能力和语言表达能力;通 过对函数单调性的证明,提高学生的推理论证能力
1.在区间 (-∞, +∞)上,随着x的增 大,f(x)的值 ———— 增大
1
x
-2 -1 0 1 2
1.在区间(-∞,0]上,从左到右,随着x的增大, f(x)值———— 减小
2.在区间(0,+∞)上,从左到右,随着x的增大, f(x)值———— 增大
11
(1) f (x) x1
y
(2) f (xy) x2
4.归纳总结、提高认识
函数单调性课件ppt
导数与函数单调性
01
02
03
导数大于0
函数在对应区间内单调递 增
导数小于0
函数在对应区间内单调递 减
导数等于0
函数可能存在拐点或不可 导点
复合函数的单调性
同增异减
内外层函数单调性相同,则复合 函数单调递增;内外层函数单调 性不同,则复合函数单调递减。
注意拐点
复合函数在拐点处可能改变单调 性。
常见函数的单调性
函数单调性课件
目录
• 函数单调性的定义 • 判断函数单调性的方法 • 函数单调性的应用 • 函数单调性的实例分析 • 函数单调性的综合练习
01
函数单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的 增减性。如果函数在某个区间内单调 递增,那么对于该区间内的任意两个 数$x_1$和$x_2$,当$x_1 < x_2$时 ,有$f(x_1) < f(x_2)$;反之,如果 函数在某个区间内单调递减,那么对 于该区间内的任意两个数$x_1$和 $x_2$,当$x_1 < x_2$时,有 $f(x_1) > f(x_2)$。
03
函数单调性的应用
利用单调性证明不等式
总结词
单调性是证明不等式的一种有效工具 ,通过比较函数在不同区间的增减性 ,可以推导出不等式的正确性。
详细描述
利用单调性证明不等式的基本思路是 ,首先确定函数在指定区间上的单调 性,然后根据单调性定义,比较函数 值的大小,从而证明不等式。
利用单调性求函数的极值
VS
单调性是函数的一种固有属性,与函 数的定义域和值域无关,只与函数的 增减性有关。
单调增函数和单调减函数
01
单调增函数是指函数在某个区间 内单调递增的函数。对于任意两 个数$x_1$和$x_2$,当$x_1 < x_2$时,有$f(x_1) < f(x_2)$。
函数的单调性 PPT精品课件
注1. Th.1 表明,讨论可导函数的单调性,只须判别 其导数的符号即可,其步骤是: ⑴ 确定 f ( x) 的定义域; ⑵ 求 f (x) ,令 f(x)0求出分界点; ⑶ 用分界点将定义域分成若干个开区间; ⑷ 判别 f (x) 在每个开区间内的符号,即可
确定 f ( x) 的严格单调性(严格单调区间).
教学方法: 启发式教学法和学生探究式教学法
目录
1 教学内容分析 2 学生情况分析 3 教学目标分析 4 教学重难点分析 5 教学方法分析 6 教学过程设计
六、教学过程设计
创设情境 引入新课
初步探索 概念形成
概念深化 延伸拓展
证法探究 应用定义
小结评价 作业创新
六、教学过程设计
创设情境 引入新课
x
(,1) (1,2) (2,)
y'
+
-
+
y
例2. y(x1)2(x2)3.
解:定义域是 R. 由 y f(x ) (x 1 )x ( 2 )2 (5 x 7 ). 令 f(x)0解x 得 1, 7和 2. 现列表讨论如下: 5
x
(,1)
(1 , 7 ) 5
(7 5
,2 )
(2,)
y'
+
-
+
+
y
可见 f(x), 在(7, )严格单调f(上 2)0 升 . ,但 5
注2. 利用函数的升降性及其导数之间的关系来证明不等式.
Th. 2 (不等式定理)若 f (x) 与 g(x) 满足条件:
(1) 在[a,b]上可导;
( 2 )在 ( a ,b ) 内 ,f( x ) g ( x )( 或 , f( x ) g ( x )); (3 )f(a)g(a),(或 f(b)g(b)),y
中职数学函数的单调性
第1页,本讲稿共19页
3.3函数单调性
学习目标:
1.理解增函数、减函数的定义。 2.能根据函数图像说出函数是增函数还是减函数。
3.学会根据函数图像找出函数的单调区间
第2页,本讲稿共19页
小明家年收入统计图
收入 (万元)
30
33.60
20
19.71
10 4.67 7.56
2012 2013 20142015 年份
x 的 增 大 , f(x) 的 值 随 着 _______增_ .大
第5页,本讲稿共19页
问题
f(x)
2 1
-2 -1 o 1 2 x
(2) f(x)=-x:
①从左至右图象上升还是下降 _下_降_ ? ②在区间(-∞,+∞)上,随着x的增大,
f(x)值随着 __减__小__ .
第6页,本讲稿共19页
▪ 例2:证明函数f(x)=2x+1在(-∞,+∞)上
是增函数。
▪ 证明:设x1,x2是任意两个不相等的实数。 ▪ 因为Δx=x2-x1,而且 ▪ Δy= f(x2)- f(x1) ▪ =(2x2+1)-(2x1+1) ▪ =2(x2-x1) ▪ =2Δx ▪ 所以 Δy =2 Δx/ Δx=2 >0 ▪ 因此函Δx数f(x)=2x+1在( -∞,+∞)上是增函数。
第12页,本讲稿共19页
议一议:
观察下列函数f(x)=x2的图象,说出它是增函数还是 减函数:
① 在 区 间 (-∞ , 0) 上 , 随 着 x 的增大,f(x)的值随之减小.所 以在区间(-∞,0)上是——
②在区间[0 ,+∞)上,随着x的 增大,f(x)的值随着增大 .所 以在区间[0 ,+∞)上是——— —