苏科版2015-2016学年八年级5月月考数学试题含答案

合集下载

2015-2016八年级数学上册第一次月考试题

2015-2016八年级数学上册第一次月考试题

2015~2016学年度第一学期第一次月考八年级数学一、选择题(每小题3分,共36分)1、下列所给的各组线段,能组成三角形的是:( ) A 、10cm 、20cm 、30cm B 、20cm 、30cm 、40cm C 、10cm 、20cm 、40cm D 、10cm 、40cm 、50cm2、如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:( )A 、带①去,B 、带②去C 、带③去D 、①②③都带去 3、如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是:( )A 、2012边形,B 、2013边形,C 、2014边形D 、2015边形4、一个正多边形的一个内角等于144°,则该多边形的边数为:( ) A .8 B .9 C .10 D .115、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( )A.150°B.80°C.50°或80°D.70° 6、下列说法正确的是 ( )A 、全等三角形是指形状相同大小相等的三角形;B 、全等三角形是指面积相等的三角形C 、周长相等的三角形是全等三角形D 、所有的等边三角形都是全等三角形7、.如图所示,在下列条件中,不能作为判断△ABD ≌△BAC 的条件是 ( )班级 姓名 座号A. ∠D =∠C ,∠BAD =∠ABC B .∠BAD =∠ABC ,∠ABD =∠BAC C .BD =AC ,∠BAD =∠ABC D .AD =BC ,BD =AC8、如图所示,E 、B 、F 、C 四点在一条直线上,EB=CF ,∠A=∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是 ( )A.AB=DEB. DF ∥ACC. ∠E=∠ABCD. AB ∥DE9.如图,已知△ACE ≌△DBF ,下列结论中正确的个数是( ) ①AC=DB ;②AB=DC ;③∠1=∠2;④AE ∥DF ;⑤S △ACE =S △DFB ;⑥BC=AE ;⑦BF ∥EC .A 4B 5C 6D 710.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A . (S 、S 、S )B . (S 、A 、S )C . (A 、S 、A )D . (A 、A 、S ) 11,.小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是( )A . 16B . 17C . 11D . 16或1712、△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是 ( )A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<19 二、填空题(每小题5分,共30分)13、如图,∠1=_____.140801第13题图第16题图第9题图14、小亮截了四根长分别为5cm ,6cm ,10cm ,13cm 的木条,任选其中三条组成一个三角形,这样拼成的三角形共有( )个 15、如图8,已知∠1=∠2,要说明△ABC ≌△BAD , 需再添加一个条件,可能的条件有: 16,工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB 、CD 两根木条),这样做根据的数学原理是 _________ 17,一个多边形的内角和是1980°,则它的边数是 ,它的外角和是 .18,△ABC 中,O 是三条角平分线的交点,∠A=m 度 ,则∠BOC= .三、解答题(共54分)19尺规作图:已知∠AOB ,直线MN (8分) 求作:在MN 上作一点P 使它到∠AOB 的距离相等( 不写作法,保留痕迹 )20、(10分)如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.21、(10分)如图所示,点B 、F 、C 、E 在同一条直线上,AMOBNF DCB E AAB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.22 (12分)如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,请你帮助他说明这个道理.23.(本题满分14分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F。

2015-2016八年级数学第一次月考试卷及答案

2015-2016八年级数学第一次月考试卷及答案

2015-2016学年度第一学期八年级第一次月考数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A .180°B .270°C .360°D .720°2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( )A .35cmB .30cmC .45cmD .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15° B.25° C .30°D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A .5B .6C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( )A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC∥EF8.具备下列条件的三角形ABC 中,不为直角三角形的是( )A .∠A+∠B=∠CB .∠A=∠B=∠C C .∠A=90°﹣∠BD .∠A﹣∠B=90°9.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( )A .2B .4C .6D .8图1 图2 图3 图4 图5 图610.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( )A .4cmB .6cmC .8cmD .9cm二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条__________的交点.12.如图6,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A 的度数为__________.15.如图7,AB=AC ,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).16.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).17.如图9,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=__________.18.如图1是二环三角形,可得S=∠A 1+∠A 2+…+∠A=360°,图2是二环四边形,可得S=∠A 1+∠A 2+…+∠A 7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n 边形(n≥3的整数)中,S=__________.(用含n 的代数式表示最后结果)三、解答题(本大题共8小题,共66分)19.如图,点B 在线段AD 上,BC∥DE,AB=ED ,BC=DB .求证:∠A=∠E.图4图7 图8 图920.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.22.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE 的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.参考答案一、选择题1.:A.2. A.3 B.4.:C.5. A.6. D.7. B.8. D.9. D.10. C.二、填空题(本大题共8个小题,每小题3分,共24分)11:中线.12:三角形的稳定性.13.:20.14.120°.15.∠B=∠C或AE=AD.16①②.17.67°.18. 360(n﹣2)度.三、解答题(本大题共8小题,共66分)19.证明:如图,∵BC∥D E,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.20..解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.21.解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.22.解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF和△ACD.23.(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AE D.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.24.解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC >OB+OC.25.解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.26.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.。

苏科版八年级上册第一次月考数学试题

苏科版八年级上册第一次月考数学试题
1
D;再分别以点 B 和点 D 为圆心,大于 BD 的长为半径作弧,两弧相交于点 E,作射线 CE 交 AB 于点 F,
2
则 AF 的长为_____.
2
16.如图,在 ABC 中, AB AC , D 、 E 分别为 AB 、 AC 上的点, BDE 、 CED 的平分线分别交 BC 于点 F 、 G , EG∥AB .若 BGE 110 ,则 BDF 的度数为__________.
28.如图, ABC 中,∠ABC ACB ,点 D 在 BC 所在的直线上,点 E 在射线 AC 上,且 AD AE , 连接 DE . (1)如图①,若 B C 35 , BAD 80 ,求 CDE 的度数; (2)如图②,若 ABC ACB 75 , CDE 18 ,求 BAD 的度数; (3)当点 D 在直线 BC 上(不与点 B 、C 重合)运动时,试探究 BAD 与 CDE 的数量关系,并说明理由.
y y
1 3,则此等腰三角形的周长为(
)
A. 5
B. 4
6.下列运算正确的是( )
A. 3x3 5x2 15x6
C. 3
D. 5 或 4
B. 4 y 2xy2 8xy3
C. 3x2 4x3 12x5
D. 2a3 3a2 54a5
7.如图, ABC 的两条角平分线 BD、CE 交于 O,且 A 60 ,则下列结论中不正确的是( )
22.如图, ABC 中, AB AC , BD 是 ABC 的平分线,且 BDC 75 ,求 BAC 的度数.
23.如图,在△ABC 中,AB=AC,AD 是 BC 边上的中线,E 是 AC 边上的一点,且∠CBE=∠CAD.求证: BE⊥AC.
4
24.在 ABC 中, AB AC , BAC 120 , AD BC ,垂足为 G ,且 AD AB . EDF 60 ,其 两边分别交边 AB , AC 于点 E , F . (1)求证: △ABD 是等边三角形; (2)求证: BE AF .

八年级数学上学期第一次月考试题(含解析) 新人教版-新人教版初中八年级全册数学试题

八年级数学上学期第一次月考试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省某某市鄂城区汀祖中学2015-2016学年八年级数学上学期第一次月考试题一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.51210.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=度.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC=.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥B C于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.2015-2016学年某某省某某市鄂城区汀祖中学八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】三角形内角和定理.【分析】根据已知及三角形的内角和定理得出.【解答】解:设此三角形的三个内角分别是∠1,∠2,∠3(其中∠3最大),根据题意得∠1=∠3﹣∠2,∴∠1+∠2=∠3,又∵∠1+∠2+∠3=180°,∴2∠3=180°,∴∠3=90°.故选B.2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能【考点】三角形内角和定理.【分析】三角形分锐角,直角,钝角三角形三种.判断种类只需看最大角即可.【解答】解:∵3∠A>5∠B,3∠C≤2∠B,得∠B<∠A,∠C≤∠B,∴∠C<∠A,∴∠B+∠C<∠A.∵∠A+∠B+∠C=180°,∴2(∠B+∠C)<180°,∴∠B+∠C<90°,∴﹣(∠B+∠C)>﹣90°,∴180°﹣(∠B+∠C)>180°﹣90°=90°,即∠A>90°.∴△ABC是钝角三角形,故选A.3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°【考点】三角形的角平分线、中线和高;垂线;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【解答】解:∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD是∠BAC的角平分线,∴∠BAD=∠BAC=30°,∴∠ADE=70°,又∵OE⊥BC,∴∠EOD=20°.故选A.4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°【考点】三角形内角和定理.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠2=60°,∠3=45°,∴∠1=180°﹣∠2﹣∠3=75°.故选:C.5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选A.6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【考点】多边形.【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个四边形,则这X纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°【考点】翻折变换(折叠问题).【分析】根据折叠前后部分是全等的,可知角的关系,再结合三角形内角和定理,即可求∠CFD′的度数.【解答】解:∵折叠前后部分是全等的又∵∠AFC+∠AFD=180°∴∠AFD′=∠AFD=180°﹣∠AFC=180°﹣76°=104°∴∠CFD′=∠AFD′﹣∠AFC=104°﹣76°=28°故选B.8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种【考点】三角形三边关系.【分析】已知三角形的周长,分别假设三角形的最长边,从而利用三角形三边关系进行验证即可求得不同的截法.【解答】解:∵长棒的长度为15cm,即三角形的周长为15cm∴①当三角形的最长边为7时,有4种截法,分别是:7,7,1;7,6,2;7,5,3;7,4,4;②当三角形的最长边为6时,有2种截法,分别是:6,6,3;6,5,4;③当三角形的最长边为5时,有1种截法,是:5,5,5;④当三角形的最长边为4时,有1种截法,是4,3,8,因为4+3<8,所以此截法不可行;∴不同的截法有:4+2+1=7种.故选C.9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.512【考点】平面镶嵌(密铺).【分析】根据正六边形的面积除以一个正三角形的面积,可得答案.【解答】解:正六边形的面积为×4×2×6=24m2,一个正三角形的面积××=m2,需要这种瓷砖24÷=384(块).故选:C.10.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米【考点】多边形内角与外角.【分析】根据题意,小明走过的路程是正多边形,先用360°除以30°求出边数,然后再乘以8米即可.【解答】解:∵小明每次都是沿直线前进8米后向左转30度,∴他走过的图形是正多边形,∴边数n=360°÷30°=12,∴他第一次回到出发点A时,一共走了12×8=96(米).二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=120 度.【考点】多边形内角与外角.【分析】根据高的性质以及四边形内角和定理的相关知识解答.【解答】解:已知∠A=60°,高BD,CE相交于点H,∴∠EHD=360°﹣∠A﹣∠AEC﹣∠ADH=120°,又∵∠EHD=∠BHC,∴∠BHC=120°.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是 5 .【考点】三角形的面积.【分析】设角形三边分别为a,b,c,面积为S,根据三角形面积公式分别用含S的代数式表示出a、b、c,根据三角形三边之间的关系得a﹣b<c<a+b,列出不等式后解不等式可得.【解答】解:设三角形三边分别为a,b,c,面积为S,则a=,b=,c=,∵a﹣b<c<a+b,∴,解得:3<h<6,故h=4或5,又∵三角形是不等边三角形,故答案为:5.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC= 110°.【考点】等腰三角形的性质.【分析】先根据等腰三角形两底角相等求出∠ACB,再求出∠2+∠3,再根据三角形内角和定理列式计算即可得解.【解答】解:∵∠ABC=∠ACB,∠A=40°,∴∠ACB==70°,∵∠1=∠2,∴∠2+∠3=∠1+∠3=∠ACB=70°,在△BPC中,∠BPC=180°﹣(∠2+∠3)=180°﹣70°=110°.故答案为:110°.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为119 .【考点】多边形内角与外角.【分析】设出相应的边数和未知的那个内角度数,利用内角和公式列出相应等式,根据边数为整数求出边数,然后根据对角线的条数的公式进行计算即可求解即可.【解答】解:设这个内角度数为x,边数为n,则(n﹣2)×180°﹣x=2570°,180°•n=2930°+x,∵n为正整数,∴n=17,∴这个多边形的对角线的条数是n×17×(17﹣3)=119.故答案为:119.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围4<c<6 .【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【分析】首先根据非负数的性质计算出a、b的值,再根据三角形两边之和大于第三边,三角形的两边差小于第三边可得c的取值X围.【解答】解:由题意得:,解得,根据三角形的三边关系定理可得5﹣1<c<5+1,即4<c<6.故答案为:4<c<6.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=150°.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.【解答】解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故答案为:150°.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.【考点】三角形的角平分线、中线和高;三角形的外角性质.【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,然后整理即可得到∠A1与∠A的关系,同理得到∠A2与∠A1的关系并依次找出变化规律,从而得解.【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠A BC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为540°.【考点】多边形内角与外角;三角形内角和定理.【分析】如图所示,由三角形外角的性质可知:∠A+∠B+∠C=∠IKD,∠E+∠F+∠G=∠HND,然后由多边形的内角和公式可求得答案.【解答】解:如图所示:由三角形的外角的性质可知:∠A+∠B=∠AJC,∠AJC+∠C=∠IKD,∴∠A+∠B+∠C=∠IKD.同理:∠E+∠F+∠G=∠HND.∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠I+∠H=∠IKD+∠D+∠HND+∠I+∠H=(5﹣2)×180°=3×180°=540°,故答案为:540°.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.【考点】三角形三边关系.【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD 然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理列出等式整理即可得解.【解答】解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠C=36°,∴∠P=(40°+36°)=38°.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥BC于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.【考点】平行线的性质.【分析】先证明四边形ABCD是平行四边形,得出对角相等∠BAD=∠C,再由四边形内角和定理和已知条件求出∠C+∠EAF=180°,即可得出结论.【解答】证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠BAD=∠C,∵AE⊥BC于E,AF⊥CD于F,∴∠AEC=∠AFC=90°,∴∠C+∠EAF=360°﹣90°﹣90°=180°,∴∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.【考点】平行线的性质;多边形内角与外角.【分析】可连接AC,得出AE∥BC,进而利用同旁内角互补求解∠B的大小.【解答】解:如图,连接AC,∵AB∥CD,∴∠DCA=∠BAC,又∠BAE=∠BCD,∴∠EAC=∠ACB,∴AE∥BC,在四边形ACDE中,∠D=130°,∠E=90°,∴∠EAC+∠ACD=140°,即∠EAB=140°,又∵∠B+∠EAB=180°,∴∠B=40°.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.【考点】三角形内角和定理;三角形的外角性质.【分析】先根据三角形外角的性质∠MON+∠OAB=∠ABM,再由角平分线的性质及三角形内角和定理即可得出结论.【解答】解:∠ACB=为一定值.理由:∵∠ABM是△AOB的外角,∴∠MNO+∠OAB=∠ABM,∠MON=α,∴∠ABM﹣∠OAB=∠MON=α.∵AC平分∠OAB,BD平分∠ABM,∴∠BA C=∠OAB,∠ABD=∠ABM=(∠MNO+∠OAB),∵∠ABD是△ABC的外角,∴∠ABD=∠C+∠BAC,即∠C=∠ABD﹣∠BAC=(∠ABM﹣∠OAB)=.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.【考点】三角形内角和定理;多边形内角与外角.【分析】连接PQ,由三角形内角和定理可得出∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP ﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,再根据∠APD、∠AQB的平分线交于点M可知∠AQB=2∠3,∠APD=2∠4,再由三角形外角的性质可得出∠QMP=(∠BCD+∠A),进而得出结论.【解答】证明:连接PQ,∵∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,又∵∠APD、∠AQB的平分线交于点M,∴∠AQB=2∠3,∠APD=2∠4,∴∠QCP+∠A=+=360°﹣2∠1﹣2∠2﹣2∠3﹣2∠4,∴(∠QCP+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠BCD=∠QCP,∴(∠BCD+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠QMP=180°﹣∠MQP﹣∠MPQ=180°﹣∠1﹣∠3﹣∠2﹣∠4,∴∠QMP=(∠BCD+∠A)=×180°=90°,即PM⊥QM.。

【苏科版】八年级数学上册第一章《全等三角形》第一次月考数学试题(含答案)

【苏科版】八年级数学上册第一章《全等三角形》第一次月考数学试题(含答案)

第一学期第一次阶段检测八年级数学阶段测试(试卷满分120分,考试时间100分钟)一.选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有................... ................... ................... ( )A.1个B.2个C.3个D.4个2.点P 与点Q 关于直线m 成轴对称,则PQ 与m 的位置关系................... ......( )A.平行B.垂直C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有............................................................ ................... ..............( )A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是 ........ ...............( )A.两边一角分别相等B.两角一边分别相等C.一直角边和一锐角分别相等D.三边分别相等5.如图,已知点A ,D ,C ,F 在同一条直线上,AB =DE ,BC =EF ,要使△ABC ≌△DEF ,还需要添加一个条件是.................. .................. ................... .................... ................... ....................( )第6题 第7题A.∠BCA =∠FB. ∠B =∠EC.BC ∥EFD. ∠A =∠EDF6.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定...成立的是( ) A.AB =AD B.AC 平分∠BCD ;C.AB =BD D.△BEC ≌△DEC7.如图,在△ABC 中,AD ⊥BC 于点D ,BD =CD ,若BC =5,AD =4,则图中阴影部分的面积为................... ................... ................... ....... .......... ..... .......... ..... ( )A.5B.10C.15D.208.将一正方形纸片按图1中(1).(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的A B C DE F 第5题图 AB C D E纸片打开铺平,所得图案应该是下面图案中的...................()二.填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°¸∠B′=50°,则∠C=____.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3=.第11题第12题12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1.2.3.4的四块),你认为将其中的第块带去,就能配一块与原来一样大小的三角形.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.第13题第14题第15题15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.16.如图,D为Rt△ABC斜边BC上的一点,且BD-AB,过点D作BC的垂线,交AC于点E,若AE=12cm,则DE的长为_______cm.17.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D,E,AD与BE相交于点F,若BF=AC,则∠ABC=_______.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=_______时,△ABC与△QP A全等.三.解答题(本大题共9小题,共76分.)19.作图题:(8分)(1)画出ΔABC关于直线AC对称的ΔAB’C,AB(2)如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路OA .OB 的距离相等,且到两工厂C .D 的距离相等,用直尺和圆规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论)20.(7分)如图,点B .F .C .E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥F D.求证:AC =DF .21.(本题满分8分)如图,AD 是△ABC 一边上的高,AD =BD ,BE =AC ,∠C =75°,求∠ABE 的度数.22. (8分)已知:AB =AD ,BC =DE ,AC =AE ,(1)试说明:∠1=∠2.(2)若∠1=42°,求∠EDC 的度数.23.(7分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.②小聪的作法正确吗?请说明理由.A CD 1 2E B D C B E AF24.(本题8分)如图,把一个Rt △ACB (∠ACB =90°)绕着顶点B 按顺时针方向旋转60°,使得点C 旋转到边AB 上的一点D ,点A 旋转到点E 的位置.F ,G 分别是BD ,BE 上的点,BF =BG ,延长CF 与DG 交于点H .(1)求证:CF =DG ;(2)求∠FHG 的度数.25.(8分)如图,在△ABC 中,BE .CF 分别是AC .AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连结AD .AG .(1)求证:AD =AG ;(2)AD 与AG 的位置关系如何?请说明理由.26(10分).如图1,在△ABC 中,∠BAC 为直角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .如图(1),则=∠BAD ∠_____ (2)若AB =AC ,①当点D 在线段BC 上时(与点B 不重合),如图2,问CF .BD 有怎样的关系?并说明理由.②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.(10分)27.(12分).如图,已知正方形ABCD 中,边长为10cm ,点E 在AB 边上,BE =6cm .(1)如果点P 在线段BC 上以4cm /秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以acm /秒的速度由C 点向D 点运动,设运动的时间为t 秒,①CP 的长为 cm (用含t 的代数式表示);②若以E .B .P 为顶点的三角形和以P .C .Q 为顶点的三角形全等,求a 的值.(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿正G H FE D CB A方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?参考答案25. 解(1)证明:∵BE⊥AC∴∠AEB=90°∴∠ABE+∠BAC=90°∵CF⊥AB∴∠AFC=∠AFG=90°∴∠ACF+∠BAC=90°,∠G+∠BAG=90°∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA(SAS)∴AG=AD(2)∵△ABD≌△GCA∴∠BAD=∠G∴∠GAD=∠BAD+∠BAG=∠G+∠BAG=90°∴AG⊥AD26.证明:(1)①结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90度.即CF⊥B D.当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△F AC,所以CF=B D.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠AB D.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥B D.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°-∠ACB,∴∠AGC=90°-45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥B C.27.。

【解析版】徐州市沛县杨屯中学2015-2016年八年级上第一次月考数学试卷

【解析版】徐州市沛县杨屯中学2015-2016年八年级上第一次月考数学试卷

2015-2016学年江苏省徐州市沛县杨屯中学八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块5.到三角形三边的距离都相等的点是三角形的()A.三条角平分线的交点B.三条边的中线的交点C.三条高的交点 D.三条边的垂直平分线的交点6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点.若GH的长为15cm,则△PAB的周长为()A.5cm B.10cm C.20cm D.15cm8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二、填空题(每题4分,共32分)9.已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=度.10.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=度.11.如图,∠C=90°,∠1=∠2,若BC=9,BD=5,则D到AB的距离为.12.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=70°,则∠CAE=度.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,若AB=6,CD=2,则△ABD的面积是.14.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有个(不含△ABC).15.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=13:3:2,则∠α的度数为度.16.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E 从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动秒时,△DEB与△BCA全等.三、解答题(共64分)17.在下列的图形上补一个小正方形,使它成为一个轴对称图形.18.如图:某通信公司要修建一座信号发射塔,要求发射塔到两城镇P、Q的距离相等,同时到两条高速公路l1、l2的距离也相等.在图上画出发射塔的位置.19.如图,已知AB∥DC,AD∥BC,求证:AB=CD.20.如图,BC=20cm,DE是线段AB的垂直平分线,与BC交于点E,AC=12cm,求△ACE 的周长.21.已知:如图,AC,BD相交,且AC=DB,AB=DC.求证:∠ABD=∠DCA.22.已知:如图,AC平分∠BAD,CE⊥AB于E CF⊥AD于F,且BC=DC.求证:BE=DF.23.(10分)(2012秋•淮南期末)如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.24.(12分)(2014秋•红塔区期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程).2015-2016学年江苏省徐州市沛县杨屯中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:第一个、第二个、第四个图形是轴对称图形,共3个.故选C.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.考点:全等三角形的判定.分析:根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.解答:解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性考点:三角形的稳定性.分析:根据三角形具有稳定性解答.解答:解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.点评:本题考查了三角形具有稳定性在实际生活中的应用,是基础题.4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块考点:全等三角形的应用.分析:本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.解答:解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.点评:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.5.到三角形三边的距离都相等的点是三角形的()A.三条角平分线的交点B.三条边的中线的交点C.三条高的交点 D.三条边的垂直平分线的交点考点:线段垂直平分线的性质.分析:由到三角形三边的距离都相等的点是三角形的三条角平分线的交点;到三角形三个顶点的距离都相等的点是三角形的三条边的垂直平分线的交点.即可求得答案.解答:解:到三角形三边的距离都相等的点是三角形的三条角平分线的交点.故选A.点评:此题考查了线段垂直平分线的性质以及角平分线的性质.此题比较简单,注意熟记定理是解此题的关键.6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS考点:全等三角形的判定与性质.专题:作图题.分析:根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.解答:解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.点评:本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.7.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点.若GH的长为15cm,则△PAB的周长为()A.5cm B.10cm C.20cm D.15cm考点:轴对称的性质.分析:先根据轴对称的性质得出PA=AG,PB=BH,由此可得出结论.解答:解:∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴PA=AG,PB=BH,∴△PAB的周长=AP+PB+AB=AG+AB+BH=GH=15cm.故选:D.点评:本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.考点:剪纸问题.专题:压轴题.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.点评:本题主要考查学生的动手能力及空间想象能力.二、填空题(每题4分,共32分)9.已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=95度.考点:全等三角形的性质.分析:首先根据全等三角形的性质可得∠F=∠A,再根据三角形内角和定理计算出∠A=95°,进而得到答案.解答:解:∵△ABC≌△FED,∴∠F=∠A,∵∠B=45°,∠C=40°,∴∠A=95°,∴∠F=95°,故答案为:95°.点评:此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.10.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=135度.考点:全等三角形的判定与性质.专题:网格型.分析:根据对称性可得∠1+∠3=90°,∠2=45°.解答:解:观察图形可知,∠1所在的三角形与角3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°.点评:主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.11.如图,∠C=90°,∠1=∠2,若BC=9,BD=5,则D到AB的距离为4.考点:角平分线的性质.分析:根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB 的距离=点D到AC的距离=CD,即可得出答案.解答:解:如图:过D作DE⊥AB于E,∵∠C=90°,∠1=∠2,∴DC=DE,∵BC=9,BD=5,∴CD=4,∴DE=4,即D到AB的距离为4,故答案为:4.点评:本题主要考查角平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.12.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=70°,则∠CAE= 35度.考点:全等三角形的性质.分析:根据全等三角形的性质可得∠EAD=∠BAC=70°,根据角平分线的定义可得∠BAD=∠DAC=35°,进而可得答案.解答:解:∵D是∠BAC的平分线上一点,且∠BAC=70°,∴∠BAD=∠DAC=35°,∵△ABC≌△ADE,∴∠EAD=∠BAC=70°,∴∠CAE=70°﹣35°=35°.故答案为:35.点评:此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,若AB=6,CD=2,则△ABD的面积是6.考点:角平分线的性质.专题:探究型.分析:过点D作DE⊥AB,由角平分线的性质可知DE=CD=2,再根据S△ABD=AB•DE即可得出结论.解答:解:过点D作DE⊥AB,∵AD平分∠BAC,∠C=90°,AB=6,CD=2,∴DE=CD=2,∴S△ABD=AB•DE=×6×2=6.故答案为:6.点评:本题考查的是角平分线的性质及三角形的面积公式,根据题意作出辅助线是解答此题的关键.14.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有7个(不含△ABC).考点:全等三角形的判定.专题:网格型.分析:本题考查的是用SSS判定两三角形全等.认真观察图形可得答案.解答:解:如图所示每个大正方形上都可作两个全等的三角形,所以共有八个全等三角形,除去△ABC外有七个与△ABC全等的三角形.故答案为:7.点评:本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.15.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=13:3:2,则∠α的度数为100度.考点:翻折变换(折叠问题).分析:根据题意可得,若∠1:∠2:∠3=13:3:2,则∠1=130°,∠3=20°,根据折叠的性质,翻折变换的特点即可求解.解答:解:∵∠1:∠2:∠3=13:3:2,∴∠1=130°,∠3=20°∴∠DCA=20°,∠EAB=130°∵∠PAC=360°﹣2∠1=100°∴∠EPD=∠APC=180°﹣∠PAC﹣∠DCA=60°.由翻折的性质可知∠E=∠3=20°.∴∠α=180°﹣60°﹣20°=100°.故答案为:100.点评:本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.16.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E 从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动0,2,6,8秒时,△DEB与△BCA全等.考点:直角三角形全等的判定.专题:动点型.分析:此题要分两种情况:①当E在线段AB上时,②当E在BN上,再分别分成两种情况AC=BE,AC=BE进行计算即可.解答:解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4,∴BE=4,∴AE=8﹣4=4,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,∵AC=4,∴BE=4,∴AE=8+4=12,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,AE=8+8=16,点E的运动时间为16÷2=8(秒),故答案为:0,2,6,8.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共64分)17.在下列的图形上补一个小正方形,使它成为一个轴对称图形.考点:利用轴对称设计图案.分析:根据轴对称的性质画出图形即可.解答:解:如图所示.点评:本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.18.如图:某通信公司要修建一座信号发射塔,要求发射塔到两城镇P、Q的距离相等,同时到两条高速公路l1、l2的距离也相等.在图上画出发射塔的位置.考点:作图—应用与设计作图.分析:由角的平分线的性质:在角的平分线上的点到两边距离的相等,中垂线的性质:中垂线上的点到线段两个端点的距离相等知,把工厂建在∠AOB的平分线与PQ的中垂线的交点上就能满足本题的要求.解答:解:如图.它在∠AOB的平分线与线段PQ的垂直平分线的交点处(如图中的E、E′两个点).要到角两边的距离相等,它在该角的平分线上.因为角平分线上的点到角两边的距离相等;要到P,Q的距离相等,它应在该线段的垂直平分线上.因为线段垂直平分线上的点到线段两个端点的距离相等.所以它在∠AOB的平分线与线段PQ的垂直平分线的交点处.如图,满足条件的点有两个,即E、E′.点评:本题利用了角的平分线和中垂线的性质求解.19.如图,已知AB∥DC,AD∥BC,求证:AB=CD.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线的性质得出∠BAC=∠DCA,∠DAC=∠BCA,根据ASA推出△BAC≌△DCA,根据全等三角形的性质得出即可.解答:证明:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△BAC和△DCA中∴△BAC≌△DCA,∴AB=CD.点评:本题考查了全等三角形的性质和判定,平行线的性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.20.如图,BC=20cm,DE是线段AB的垂直平分线,与BC交于点E,AC=12cm,求△ACE 的周长.考点:线段垂直平分线的性质.分析:根据线段的垂直平分线的性质,可得BE=AE,∴△ACE的周长=AE+EC+AC=BE+CE+AC=BC+AC=12+20=32(cm).解答:解:∵DE是AB的垂直平分,∴BE=AE.∴△ACE的周长=AE+EC+AC=BE+CE+AC=BC+AC=12+20=32(cm).点评:此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.21.已知:如图,AC,BD相交,且AC=DB,AB=DC.求证:∠ABD=∠DCA.考点:全等三角形的判定与性质.专题:证明题.分析:连接BC,直接证明△ABC≌△DCB就可以得出∠ABC=∠DCB,∠ACB=∠DBC 由等式的性质就可以得出结论.解答:证明:连接BC,在△ABC和△DCB中,∴△ABC≌△DCB(SSS),∴∠ABC=∠DCB,∠ACB=∠DBC,∴∠ABC﹣∠DBC=∠DCB﹣∠ACB即∠ABD=∠DCA.点评:本题考查了全等三角形的判定及性质的而运用,等式的性质的运用,解答时证明三角形全等是关键.22.已知:如图,AC平分∠BAD,CE⊥AB于E CF⊥AD于F,且BC=DC.求证:BE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:根据角平分线的性质就可以得出CE=CF,再由HL证明△CEB≌△CFD就可以得出结论.解答:证明:∵AC平分∠BAD,CE⊥AB于E CF⊥AD于F,∴∠F=∠CEB=90°,CE=CF.在Rt△CEB和Rt△CFD中,∴△CEB≌△CFD(HL),∴BE=DF.点评:本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明△CEB≌△CFD是关键.23.(10分)(2012秋•淮南期末)如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.考点:全等三角形的应用.分析:首先连接EM、MF,再证明△BEM≌△CFM可得∠BME=∠FMC,再根据∠BME+∠EMC=180°,可得∠FMC+∠EMC=180,进而得到三个小石凳在一条直线上.解答:解:连接EM、MF,∵AB∥CD,∴∠B=∠C,又∵M为BC中点,∴BM=MC.∴在△BEM和△CFM中,∴△BEM≌△CFM(SAS),∴∠BME=∠FMC,∵∠BME+∠EMC=180°,∴∠FMC+∠EMC=180°,∴三个小石凳在一条直线上.点评:此题主要考查了全等三角形的应用,证明△BEM≌△CFM,证明出∠FMC+∠EMC=180°是解决问题的关键.24.(12分)(2014秋•红塔区期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程).考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;(2)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CE﹣CD=AD ﹣BE;(3)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CD﹣CE=BE ﹣AD.解答:(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,AD=CE,∴DE=CE+CD=AD+BE;(2)证明:与(1)一样可证明△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=CE﹣CD=AD﹣BE;(3)解:DE=BE﹣AD.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,全等三角形的对应边相等,找准全等的三角形是解题的关键.。

2015-2016学年八年级(上)第一次月考数学试卷附答 案

2015-2016学年八年级(上)第一次月考数学试卷附答 案

八年级(上)第一次月考数学试卷一、选择题1.下列长度的三条线段能组成三角形的是()A. 3,4,8 B. 5,6,11 C. 1,2,3 D. 5,6,102.下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形3.过多边形的一个顶点可以引出6条对角线,则多边形的边数是()A. 7 B. 8 C. 9 D. 104.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去 B.带②去 C.带③去 D.带①和②去5.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A. 95° B. 120° C. 135° D.无法确定6.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A. 1个 B. 2个 C. 3个 D. 4个7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A. 20° B. 30° C. 35° D. 40°8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A. 30° B. 20° C. 15° D. 14°二、填空题9.三角形的两条边为2cm和4cm,第三边长是一个偶数,第三边的长是.10.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.12.如图,已知AB=AD,需要条件(用图中的字母表示)可得△ABC≌△ADC,根据是.13.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有处.14.如图,AE=AD,∠B=∠C,BE=6,AD=4,则AC= .15.如图,已知△ABC的∠ABC和∠ACB的角平分线交于P,∠A=50°,则∠P= .16.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.三、解答题17.用一条长为18cm细绳围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4cm的等腰三角形吗?为什么?18.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图,AB=AC,BD=CD.求证:∠B=∠C.20.如图,AD=AE,∠EAB=∠DAC,∠B=∠C.求证:AB=AC.四、解答题21.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,AB=DE.求证:FB=CE.22.如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB、DF⊥AC,垂足为E、F,求证:EB=FC.23.如图,△ABC中,AD⊥BC于D,BF=AC,FD=CD.求证:AC⊥BE.五、解答题24.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且BD=CD.求证:(1)BE=CF;(2)∠ABD+∠ACD=180°.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.26.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?参考答案与试题解析一、选择题1.下列长度的三条线段能组成三角形的是()A. 3,4,8 B. 5,6,11 C. 1,2,3 D. 5,6,10考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,3+4=7<8,不能组成三角形;B中,5+6=11,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,5+6=11>10,能组成三角形.故选D.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形考点:三角形的稳定性.分析:稳定性是三角形的特性.解答:解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.点评:稳定性是三角形的特性,这一点需要记忆.3.过多边形的一个顶点可以引出6条对角线,则多边形的边数是()A. 7 B. 8 C. 9 D. 10考点:多边形的对角线.分析:设多边形的边数是x,根据n边形从一个顶点出发可引出(n﹣3)条对角线可得x ﹣3=6,再解方程即可.解答:解:设多边形的边数是x,由题意得:x﹣3=6,解得:x=9,故选:C.点评:此题主要考查了多边形的对角线,关键是掌握n边形从一个顶点出发可引出(n﹣3)条对角线.4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去 B.带②去 C.带③去 D.带①和②去考点:全等三角形的应用.专题:应用题.分析:此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.解答:解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.点评:主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.5.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A. 95° B. 120° C. 135° D.无法确定考点:三角形内角和定理.专题:探究型.分析:先根据三角形内角和定理求出∠OBC+∠OCB的度数,再根据∠BOC+(∠OBC+∠OCB)=180°即可得出结论.解答:解:∵∠A=80°,∠1=15°,∠2=40°,∴∠OBC+∠OCB=180°﹣∠A﹣∠1﹣∠2=180°﹣80°﹣15°﹣40°=45°,∵∠BOC+(∠OBC+∠OCB)=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣45°=135°.故选C.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.6.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A. 1个 B. 2个 C. 3个 D. 4个考点:直角三角形全等的判定;全等三角形的性质.分析:先运用SAS证明△ABD≌△ACD,再得(1)△ABD≌△ACD正确;(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD(4)AD是△ABC的角平分线.即可找到答案.解答:解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选D.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,及全等三角形性质的运用.7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A. 20° B. 30° C. 35° D. 40°考点:全等三角形的性质.专题:计算题.分析:本题根据全等三角形的性质并找清全等三角形的对应角即可.解答:解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.点评:本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A. 30° B. 20° C. 15° D. 14°考点:平行线的性质.分析:延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:如图,∠2=30°,∠1=∠3﹣∠2=45°﹣30°=15°.故选C.点评:本题考查了平行线的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.二、填空题9.三角形的两条边为2cm和4cm,第三边长是一个偶数,第三边的长是4cm .考点:三角形三边关系.分析:根据三角形的三边关系先确定第三边的范围,进而就可以求出第三边的长.解答:解:设第三边为acm,根据三角形的三边关系可得:4﹣2<a<4+2.即:2<a<6,由于第三边的长为偶数,则a可以为4cm.故答案为:4cm.点评:此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.10.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .考点:多边形内角与外角.专题:计算题.分析:利用多边形的外角和以及多边形的内角和定理即可解决问题.解答:解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.11.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是 3 .考点:角平分线的性质.专题:计算题.分析:根据角平分线的性质可得,点P到AB的距离=PE=3.解答:解:∵P是∠BAC的平分线AD上一点,PE⊥AC于点E,PE=3,∴点P到AB的距离=PE=3.故答案为:3.点评:此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.12.如图,已知AB=AD,需要条件(用图中的字母表示)BC=DC 可得△ABC≌△ADC,根据是SSS .考点:全等三角形的判定.分析:添加条件BC=DC,可直接利用SSS定理判定△ABC≌△ADC.解答:解:添加条件BC=DC,∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),故答案为:BC=DC;SSS.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有 4 处.考点:三角形的内切圆与内心;直线与圆的位置关系.专题:应用题.分析:由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.解答:解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故填4.点评:此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.14.如图,AE=AD,∠B=∠C,BE=6,AD=4,则AC= 10 .考点:全等三角形的判定.分析:先根据已知证得△ABD≌△ACE,得出AB=AC.进而推出BE=DC,那么就可以求得AC=10.解答:解:∵AE=AD,∠B=∠C,∠A=∠A∴△ABD≌△ACE∴AB=AC∵AE=AD∴BE=DC∴AC=AD+BE=10.故填10.点评:此题主要考查全等三角形的判定,常用的判定有SAS,AAS,SSS,HL等.做题时要结合图形得到答案.15.如图,已知△ABC的∠ABC和∠ACB的角平分线交于P,∠A=50°,则∠P= 115°.考点:三角形内角和定理.分析:根据三角形内角和定理求出∠ABC+∠ACB=180°﹣∠A=130°,根据角平分线定义得出∠PBC=∠ABC,∠PCB=∠ACB,求出∠PBC+∠PCB=65°,代入∠P=180°﹣(∠PBC+∠PCB)求出即可.解答:解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵∠ABC和∠ACB的角平分线交于P,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=×130°=65°,∴∠P=180°﹣(∠PBC+∠PCB)=115°,故答案为:115°.点评:本题考查了三角形的内角和定理和角平分线定义的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.16.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.考点:三角形内角和定理;翻折变换(折叠问题).分析:根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.解答:解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.点评:本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.三、解答题17.用一条长为18cm细绳围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4cm的等腰三角形吗?为什么?考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:(1)设底边长为xcm,则腰长为2xcm,根据周长公式列一元一次方程,解方程即可求得各边的长;(2)题中没有指明4cm所在边是底还是腰,故应该分情况进行分析,注意利用三角形三边关系进行检验.解答:解:(1)设底边长为xcm,∵腰长是底边的2倍,∴腰长为2xcm,∴2x+2x+x=18,解得,x=cm,∴2x=2×=cm,∴各边长为:cm,cm,cm.(2)①当4cm为底时,腰长==7cm;当4cm为腰时,底边=18﹣4﹣4=10cm,∵4+4<10,∴不能构成三角形,故舍去;∴能构成有一边长为4cm的等腰三角形,另两边长为7cm,7cm.点评:本题考查的是等腰三角形的性质及三角形的三边关系,在解答此类题目时要注意分类讨论,不要漏解.18.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.考点:三角形内角和定理.专题:数形结合.分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解答:解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.点评:此题主要是三角形内角和定理的运用.三角形的内角和是180°.19.如图,AB=AC,BD=CD.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:连接AD,根据SSS推出△ADC≌△ADB,根据全等三角形的性质得出即可.解答:证明:连接AD,∵在△ADC和△ADB中∴△ADC≌△ADB(SSS),∴∠B=∠C.点评:本题考查了全等三角形的性质和判定的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.20.如图,AD=AE,∠EAB=∠DAC,∠B=∠C.求证:AB=AC.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠EAC=∠DAB,根据AAS推出△EAC≌△DAB,根据全等三角形的性质推出即可.解答:证明:∵∠EAB=∠DAC,∴∠EAB+∠BAC=∠DAC+∠BAC,∴∠EAC=∠DAB,在△EAC和△DAB中∴△EAC≌△DAB(AAS),∴AB=AC.点评:本题考查了全等三角形的性质和判定的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.四、解答题21.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,AB=DE.求证:FB=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线的性质求出∠B=∠E,∠ACB=∠DFE,根据AAS证出△BAC≌△EDF,推出BC=EF即可.解答:证明:∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,在△BAC和△EDF中∴△BAC≌△EDF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,∴FB=CE.点评:本题考查了全等三角形的性质和判定,平行线的性质的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.22.如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB、DF⊥AC,垂足为E、F,求证:EB=FC.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:首先由角平分线的性质可得DE=DF,又有BD=CD,可证Rt△BED≌Rt△DFC(HL),即可得出EB=FC.解答:证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.点评:此题主要考查角平分线的性质和全等三角形的判定和性质,难度不大.23.如图,△ABC中,AD⊥BC于D,BF=AC,FD=CD.求证:AC⊥BE.考点:全等三角形的判定与性质.专题:证明题.分析:根据HL证Rt△BDF≌Rt△ADC,推出∠FBD=∠DAC,根据∠BDF=90°求出∠DBF+∠BFD=90°,推出∠DAC+∠AFE=90°,求出∠AEF=90°即可.解答:证明:∵AD⊥BC,∴∠BDF=∠ADC=90°,在Rt△BDF和Rt△ADC中∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠DAC,∵∠BDF=90°,∴∠DBF+∠BFD=90°,∵∠BFD=∠AFE,∴∠DAC+∠AFE=90°,∴∠AEF=180°﹣90°=90°,∴AC⊥BE.点评:本题考查了全等三角形的性质和判定,三角形内角和定理的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.五、解答题24.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且BD=CD.求证:(1)BE=CF;(2)∠ABD+∠ACD=180°.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:(1)根据角平分线性质可得DE=DF,可证△BDE≌△CDF,可得BE=CF;(2)由△BDE≌△CDF可得∠ACD=∠DBE,即可求得∠ABD+∠ACD=180°.解答:解:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在RT△BDE和RT△CDF中,,∴RT△BDE≌RT△CDF(HL),∴BE=CF;(2)∵RT△BDE≌RT△CDF,∴∠ACD=∠DBE,∵∠DBE+∠ABD=180°,∴∠ABD+∠ACD=180°.点评:本题考查了直角三角形全等的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证RT△BDE≌RT△CDF是解题的关键.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.考点:旋转的性质;全等三角形的判定与性质.专题:探究型.分析:(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.解答:(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.26.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?考点:全等三角形的判定与性质;一元一次方程的应用.专题:几何图形问题.分析:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.解答:解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.点评:此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。

苏科版八年级上册数学第一次月考试卷(含答案解析)

苏科版八年级上册数学第一次月考试卷(含答案解析)

苏科版八年级上册数学第一次月考试卷(考试时间:120分钟满分:150分)一、选择题(每小题3分,共18分)1.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.2.下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形3.如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个第3题第4题第6题4.如图,△ABC≌△DEC,B、C、D在同一直线上,且CE=2cm,CD=4cm,则BD的长为()A.1.5cm B.2cm C.4.5cm D.6cm 5.下列条件中,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,AC=A′C′,∠C=∠C′B.AB=A′B′,∠A=∠A′,BC=B′C′C.AC=A′C′,∠A=∠A′,BC=B′C′D.AC=A′C′,∠C=∠C′,BC=B′C′6.如图,点C为线段ABC上一点,△ACM和△CBN是等边三角形.下列结论:①AN=BM;②CD=CE;③△CDE是等边三角形;④∠AFM=60°.其中正确的是()A.①B.①②C.①②③D.①②③④二、填空题(每小题3分,共30分)7.在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是.8.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有种.9.如图,BC=EF,AC∥DF,请你添加一个适当的条件,使得△ABC≌△DEF.(只需填一个答案即可)EDCAFEDMCNB第8题第9题第11题第12题10.若△ABC的三边长分别为5,7,8,△DEF的三边分别为5,2x,3x−5,若这两个三角形全等,则x的长为.11.在如图所示的3×3的正方形网格中,∠1+∠2+∠3的度数为.12.如图,AB∥FC,E是DF的中点,若AB=30,CF=17,则BD=.13.如图,AB=12cm,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB 全等.第13题第14题第15题第16题14.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB 的周长为.15.如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.16.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF=12AB;②∠BAF=∠CAF;③S四边形ADFE=12AF×DE;④∠BDF+∠FEC=2∠BAC,其中正确的是(填序号)三、答案题(本大题共10小题,102分)17.(本题12分)如图所示,每个小正方形的边长为1,△ABC,△DEF的顶点都在小正方形的顶点处.(1)将△ABC平移,使点A平移到点F,点B,C的对应点分别是点B',C,画出△FB'C;(2)画出△DEF关于DF所在直线对称的△DE'F;(3)直接写出四边形B'C'FE'的面积是.18.(本题8分)在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.19.(本题10分)如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,求证:BC=EF.20.(本题10分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.。

2015-2016学年高一上学期第一次月考数学试题_Word版含答案

2015-2016学年高一上学期第一次月考数学试题_Word版含答案

2015--2016学年度高一第一学期第一次月考数学试题(时间:90分钟,总分100分)一、选择题(共10小题,每小题4分)1、已知集合P={x ∈N | 1≤x ≤10},Q={x ∈R| x 2+x -6=0},则P ∩Q=( )A. { 1, 2, 3 }B. { 2, 3}C. { 1, 2 }D. { 2 }2、已知集合U={ 1, 2, 3, 4, 5, 6, 7 },A={ 2, 4, 5, 7 },B={ 3, 4, 5 }则(C ∪A )∪(C ∪B )=( )A. { 1, 6 }B. { 4, 5}C. { 2, 3, 4, 5, 7 }D. { 1, 2, 3, 6, 7 }3、设集合A={ 1, 2 },则满足A ∪B = { 1, 2, 3 }的集合B 的个数是( )A. 1B. 3C. 4D. 84、函数f(x)=x 2+mx+1的图象关于直线x=1对称,则( )A. m=-2B. m=2C. m=-1D. m=15、设f(x)是定义在R 上的奇函数,当x ≤0时,f(x)=2x 2-x, 则f(1)等于( )A. -3B. -1C. 1D. 36、在区间(-∞,0)上为增函数的是( )A. y=1B. y=2x1x +- C. 1x 2x y 2---= D. y=1+x 27、若函数y=f(x)的定义域[-2,4],则函数g(x) = f(x) + f(-x)的定义域是( )A. [-4,4]B. [-2,2]C. [-4,-2]D. [2,4]8、设abc>0,二次函数f(x) = ax 2 + bx + c 的图象可能是( )A. B. C. D.9、函数x2y =的单调减区间为( ) A. R B. (-∞, 0)∪(0, +∞)C. (-∞, 0), (0, +∞)D. (0,+∞)10、已知定义在R 上的奇函数f(x)在(-∞, -1)上是单调减函数,则f(0), f(-3)+f(2)的大小关系是( )A. f(0)<f(-3)+f(2)B. f(0)=f(-3)+f(2)C. f(0)> f(-3) +f(2)D. 不确定二、填空题(本大题共5小题,每小题4分)11、已知集合A={-1, 1, 2, 4}, B={-1, 0, 2},则A ∩B= 。

八年级数学下学期5月月考试卷(含解析) 新人教版(2021-2022学年)

八年级数学下学期5月月考试卷(含解析) 新人教版(2021-2022学年)

2015—2016学年云南省临沧市八年级(下)月考数学试卷(5月份)一、选择题(共10小题,每小题4分,满分40分)1.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤22.下列计算正确的是()A.×=4ﻩ B. += C.÷=2ﻩ D. =﹣153.一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是()A.ﻩB. C.ﻩD.4.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BCﻩB.AB=DC,AD=BC C.AO=CO,BO=DOﻩ D.AB∥DC,AD=BC5.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )A.24ﻩ B.16ﻩ C.4ﻩD.26.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD 的长为( )A.B. C. D.7.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B.ﻩC. D.8.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距()A.12海里ﻩ B.16海里C.20海里D.28海里9.如图,在▱ABCD中,CD=3,AD=5,AE平分交∠BAD边于点E,则线段BE,CE的长分别是()A.2和3ﻩB.3和2 C.4和1 D.1和410.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是( )A.ﻩ B.ﻩC. D.二、填空题11.方程组的解是 .12.直角三角形的两直角边长分别为6和8,则斜边中线的长是.13.计算﹣=.14.函数y=的自变量x的取值范围是 .15.已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.16.在一次函数y=(2﹣k)x+1中,y随x的增大而增大,则k的取值范围为 .17.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).18.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=,菱形ABCD的面积S=.三、解答题(共48分)19.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.20.化简求值:÷•,其中a=﹣2.21.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.22.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.23.如图,四边形ABCD中,AB=3cm,BC=4cm,CD=12cm,DA=13cm,且∠ABC=90°.求四边形AB CD的面积.24.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.ﻬ2015—2016学年云南省临沧市永德一中八年级(下)月考数学试卷(5月份)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.下列计算正确的是( )A.×=4B. +=C.÷=2 D. =﹣15【考点】二次根式的乘除法;二次根式的性质与化简;二次根式的加减法.【分析】根据二次根式的乘除法,加法及算术平方根的知识求解即可求得答案.【解答】解:A、×=2,故A选项错误;B、+不能合并,故B选项错误;C、÷=2.故C选项正确;D、=15,故D选项错误.【点评】本题主要考查了二次根式的乘除法,加法及算术平方根,要熟记运算法则是关键.3.一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是( )A.B.C.ﻩD.【考点】一次函数图象与系数的关系.【分析】先根据k<0,b<0判断出一次函数y=kx﹣b的图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=kx﹣b,k<0,b<0,∴函数图象经过一二四象限,故选C.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时的图象在一、二、四象限是解答此题的关键.4.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BCﻩB.AB=DC,AD=BCC.AO=CO,BO=DOﻩD.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC"可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO"可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.5.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()ﻬA.24ﻩB.16 C.4 D.2【考点】菱形的性质;勾股定理.【专题】几何图形问题.【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB==,∴菱形的周长是:4AB=4.故选:C.【点评】此题考查了菱形的性质与勾股定理.此题难度不大,注意掌握数形结合思想的应用.6.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B. C. D.【考点】勾股定理;三角形的外角性质;等腰三角形的性质;等边三角形的性质.【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【解答】解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD==4.故选:D.【点评】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.7.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )A. B.ﻩC.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=x+k的图象经过一、二、三象限,故选A【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.8.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距( )A.12海里ﻩB.16海里ﻩC.20海里ﻩ D.28海里【考点】勾股定理的应用.【分析】因为向东北和东南方向出发,所以两船所走的方向是直角,两船所走的距离是直角边,所求的是斜边的长.【解答】解:16×1=16,12×1=12.=20.两船相距20海里.故选C.ﻬ【点评】本题考查勾股定理的运用,关键是知道两船的所走的方向正好构成的是直角,然后根据勾股定理求出斜边的长.9.如图,在▱ABCD中,CD=3,AD=5,AE平分交∠BAD边于点E,则线段BE,CE的长分别是()A.2和3 B.3和2C.4和1ﻩD.1和4【考点】平行四边形的性质.【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【解答】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2,故选B.【点评】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.10.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A. B. C. D.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等和勾股定理求解.【解答】解:根据折叠的性质知,四边形AFEB与四边形CEFD全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选:D.【点评】本题利用了:1、折叠的性质;2、矩形的性质.二、填空题11.方程组的解是.【考点】解二元一次方程组.【分析】①+②得出3x=6,求出x=2,把x=2代入①得出2+y=5,求出y即可.【解答】解:①+②得:3x=6,解得:x=2,把x=2代入①得:2+y=5,解得:y=3,即原方程组的解为:,故答案为:.【点评】本题考查了解二元一次方程组的应用,关键是能把二元一次方程组转化成一元一次方程.12.直角三角形的两直角边长分别为6和8,则斜边中线的长是 5 .【考点】勾股定理.【专题】计算题.【分析】已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据斜边中线长为斜边长的一半即可解题.【解答】解:已知直角三角形的两直角边为6、8,则斜边长为=10,ﻬ故斜边的中线长为×10=5,故答案为5.【点评】本题考查了勾股定理在直角三角形中的运用,考查了斜边中线长为斜边长的一半的性质,本题中正确的运用勾股定理求斜边的长是解题的关键.13.计算﹣=.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣=.故答案为: .【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.14.函数y=的自变量x的取值范围是x≤3且x≠﹣2 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,3﹣x≥0且x+2≠0,解得x≤3且x≠﹣2.故答案为:x≤3且x≠﹣2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为等腰直角三角形 .【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:算术平方根;等腰直角三角形.【专题】计算题;压轴题.【分析】已知等式左边为两个非负数之和,根据两非负数之和为0,两非负数同时为0,可得出c2=a2+b2,且a=b,利用勾股定理的逆定理可得出∠C为直角,进而确定出三角形ABC为等腰直角三角形.【解答】解:∵+|a﹣b|=0,∴c2﹣a2﹣b2=0,且a﹣b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形【点评】此题考查了勾股定理的逆定理,非负数的性质:绝对值及算术平方根,以及等腰直角三角形的判定,熟练掌握非负数的性质及勾股定理的逆定理是解本题的关键.16.在一次函数y=(2﹣k)x+1中,y随x的增大而增大,则k的取值范围为k<2 .【考点】一次函数图象与系数的关系.【分析】根据一次函数图象的增减性来确定(2﹣k)的符号,从而求得k的取值范围.【解答】解:∵在一次函数y=(2﹣k)x+1中,y随x的增大而增大,∴2﹣k>0,∴k<2.故答案是:k<2.【点评】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.17.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件 AF=CE ,使四边形AECF是平行四边形(只填一个即可).【考点】平行四边形的判定与性质.【专题】开放型.【分析】根据平行四边形性质得出AD∥BC,得出AF∥CE,根据有一组对边相等且平行的四边形是平行四边形推出即可.【解答】解:添加的条件是AF=CE.理由是:ﻬ∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.故答案为:AF=CE.【点评】本题考查了平行四边形的性质和判定的应用,主要考查学生运用性质进行推理的能力,本题题型较好,是一道开放性的题目,答案不唯一.18.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=1:2 ,菱形ABCD的面积S= .【考点】菱形的性质.【分析】先找出AO,BO的关系,再确定出AB,用勾股定理确定出x的平方,最后用菱形的面积公式即可得出结论.【解答】解:∵四边形ABCD是菱形,∴AC=2AO,BD=2BO,∵AC:BD=1:2,∴AO:BO=1:2;设AO=x,(x>0)则BO=2x,∵菱形ABCD的周长为8,∴AB=2,AC⊥BD,在Rt△AOB中,AO2+BO2=AB2,∴x2+(2x)2=4,∴x2=,∵AC=2AO=2x,BD=2BO=4x,∴S菱形ABCD=AC×BD=×2x×4x=4x2=4×=,故答案为:1:2,.【点评】此题是菱形的性质,主要考查的菱形的性质,勾股定理,菱形的面积公式,解本题的关键求出x的平方的值.三、解答题(共48分)19.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.【考点】二次根式的混合运算.【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式和完全平方公式进行计算即可.【解答】解:(1)原式=9+14﹣20+=;(2)原式=12﹣1﹣1+4﹣12=4﹣2.【点评】本题考查了二次根式的混合运算,掌握平方差公式、完全平方公式以及化二次根视为最简二次根式是解题的关键.20.化简求值:÷•,其中a=﹣2.【考点】分式的化简求值.【专题】计算题.【分析】原式利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=••=,当a=﹣2时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)由BF=DE,可得BE=DF,由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由AB=CD,在直角三角形中利用HL即可证得:△ABE≌△CDF;(2)由△ABE≌△CDF,即可得∠ABE=∠CDF,根据内错角相等,两直线平行,即可得AB∥CD,又由AB =CD,根据有一组对边平行且相等的四边形是平行四边形,即即可证得四边形ABCD是平行四边形,则可得AO=CO.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,∴Rt△ABE≌Rt△CDF(HL);(2)连接AC,交BD于点O,∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.【点评】此题考查了全等三角形的判定与性质与平行四边形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用.22.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;ﻬ(2)若AB=4,AD=8,求MD的长.【考点】矩形的性质;线段垂直平分线的性质;勾股定理;平行四边形的判定;菱形的性质;菱形的判定.【专题】计算题;证明题.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2﹣16x+64+16,求出即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.ﻬ【点评】本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用,对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.23.如图,四边形ABCD中,AB=3cm,BC=4cm,CD=12cm,DA=13cm,且∠ABC=90°.求四边形ABCD的面积.【考点】勾股定理;三角形的面积;勾股定理的逆定理.【分析】连接AC,得到直角三角形△ABC,利用勾股定理可以求出AC,根据数据特点,再利用勾股定理逆定理可以得到△ACD也是直角三角形,这样四边形的面积就被分解成了两个直角三角形的面积,代入面积公式就可以求出答案.【解答】解:连接AC,∵∠ABC=90°,AB=4,BC=3,∴根据勾股定理AC==5(cm),又∵CD=12cm,AD=13cm,∴AC2+DC2=52+122=169,AD2=132=169,根据勾股定理的逆定理:∠ACD=90°.∴四边形ABCD的面积=S△ABC+S△ACD=×3×4+×5×12=36(cm2).【点评】本题主要考查勾股定理和勾股定理的逆定理.24.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.【考点】一次函数的应用.【专题】压轴题.【分析】从图象可以知道,2分钟时小文返回家,在家一段时间后,5分钟又开始回学校,10分钟到达学校.【解答】解:(1)200米(1分);(2)设直线AB的解析式为:y=kx+b(2分)由图可知:A(5,0),B(10,1000)∴解得∴直线AB的解析式为:y=200x﹣1000;(3)当x=8时,y=200×8﹣1000=600(米)即x=8分钟时,小文离家600米.(9分)【点评】正确认识图象和熟练运用待定系数法是解好本题的关键.ﻬ。

2015-2016学年第二学期八年级第一次月考成绩录入表

2015-2016学年第二学期八年级第一次月考成绩录入表

2015-2016学年第二学期八年级第一次月考成绩录入表 跟踪编号 姓名 语文 数学 英语 物理 qz2014013 王钘钼 77 qz2014002 叶茂青 83 qz2014009 文苗 90 qz2014001 陈曼婷 87 qz2014027 朱晓颖 75 qz2014255 陈稣鹏 97 qz2014003 谢燕怡 87 qz2014166 陈俊铭 81 qz2014240 李文森 68 qz2014596 樊琳灵 86 qz2014068 陈丽丽 74 qz2014018 方增悦 70 qz2014084 杨欣欣 81 qz2014096 杨灏 84 qz2014193 海杰全 89 qz2014050 蒋骥 86 qz2014031 樊彦君 85 qz2014005 吕玉娜 65 qz2014024 刘淑坪 83 qz2014144 薛文娇 83 qz2014134 刘嘉誉 89 qz2014073 陈桂秀 95 qz2014020 谷显雪 92 qz2014114 吴晨康 82 qz2014025 汪艳纯 76 qz2014641 孙嘉芬 70 qz2014164 许世民 75 qz2014054 张连宜 83 qz2014659 曾津 58 qz2014016 黄嘉敏 78 qz2014023 叶菲 80 qz2014233 王业 73 qz2014008 李婷婷 74 qz2014161 王思琪 78 qz2014169 李丹明 83 qz2014019 赖慧珊 87 qz2014041 钟文婷 73 qz2014028 李在文 82 qz2014011 肖潜龙 85 qz2014239 方季声 80 qz2014197 廖佳伟 85 qz2014067 庄心怡 71 qz2014601 代芳 90 qz2014030 林格格 76 qz2014021 陈秋婷 70

苏科版八年级上数学月考试卷

苏科版八年级上数学月考试卷

八年级(上)数学月考试卷(时间:100分钟) 第一部分(满分100分)一、选择题.(每题3分,计24分)将正确答案填入下表中。

1、以下四家银行行标中,是轴对称图形的有A 、1个B 、2个C 、3个D 、4个2、下列图形中对称轴最多的是 A 、圆 B 、正方形 C 、角 D 、线段3、如果一个三角形成轴对称图形,且有一个内角为60°,则这个三角形一定是 A 、直角三角形 B 、等腰直角三角形 C 、等边三角形 D 、上述三种情形都有可能4、已知:a 、b 、c 是△ABC 的三边.⑴a=4、b =5、c =6;⑵a =6、b =8、c =10;⑶a =12,b =5、c =13;⑷a =1、b =2、c = 5 .上述四个三角形中,直角三角形的个数有 A 、1个 B 、2个 C 、3个 D 、4个5、已知等腰三角形的两边长分别为6cm 、3cm ,则该等腰三角形的周长是A 、9cmB 、12cmC 、12cm 或15cmD 、15cm6、下列说法中:(1)有两个角相等的梯形是等腰梯形;(2)有两边相等的梯形是等腰梯形;(3)两条对角线相等的梯形是等腰梯形;(4)等腰梯形上、下底中点连线,把梯形分成面积相等的两部分,正确的有A .1个B .2个C .3个D .4个7.下列说法不正确的是A 、14的平方根是±0.5 B、a2的算术平方根是a C 、1625 的算术平方根是45D 、-(-a)2(a≠0)无平方根 8、如图,在△ABC 中,AB =AC ,∠A =36°,AB 垂直平分线交AC 于D ,交AB 于E ,给出下列结论:⑴∠C =72°,⑵BD 是△ABC 的平分线,⑶BC =AD ,⑷△ABC 是等腰三角形,其中正确的结论有A 、1个B 、2个C 、3个D 、4个EOPDC BA(第8题) (第9题) (第10题)题号 1 2 3 4 5 6 7 8 答案二、填空题(每空2分,计36分)9、如图,OC 平分∠AOB ,点P 在OC 上,PE ⊥OB 于E ,PD ⊥OA 于D ,PD =1cm ,则PE = cm ,根据是 . 10、如图,正方形A 的面积是 . 11、在Rt△ABC 中,∠C=90°,若a =3,b =4,则c = .若b=1,c=2,则a= .12、已知等腰梯形的一个锐角为75°,则其他三个内角分别是 .13、若等腰△ABC 的底角是40°,则它的顶角是 度;若等腰△ABC 的一个角是110°,则它的另两个角分别是 度.14、△ABC 中,AC=6,BC=8,AB=10,则∠C= ,它的面积为 .15、某人骑自行车从A 地出发,向南行了8km 到达B 地,再从B 地向西行了15km 到达C 地.此时C 、A 两地的距离是16、64的平方根是 , 64 的算术平方根是 .17、如图,△AMN 的周长为18cm ,∠B、∠C 的平分线相交于点O ,过O 点的直线MN∥BC 交AB 、AC 于点M 、N.则图中等腰三角形有 ,AB+AC= cm. O ACBN M D18、如图,CD 平分∠ACB ,AE ∥DC ,与BC 的延长线相交于E ,若∠ACE=80°,则∠CAE= .19、若一个正数的两个平方根分别为a+2与3a -1,则这个正数是 . 20、若y-1 +(x+2)2=0,则x +y= .三、画图题(每题5分,共10分)21、已知右边方格纸中的每个小方格是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图所示.请在小方格的顶点上确定一点C ,连结AB 、AC 、BC ,使△ABC 为等腰三角形且它的面积为4个平方单位.BA22、用直尺和量角器在图中的直线MN 上找一点P ,使点P 到射线OA 和OB 的距离相等.NMOBA四、解答题(共32分)23、(本题5分)如图,从高8米的电杆AC 的顶部A 处,向地面的固定点B 处拉一根铁丝,若B 点距电杆底部的距离为6米.现在准备一根长为9.9米长的铁丝,够用吗?24、(本题6分)一个零件的形状如图所示,按规定这个零件中∠A 与∠DBC 都应为直角.工人师傅量的这个零件各边的尺寸如图所示,这个零件符合要求吗?并求这个四边形的面积D ABC121334525.(本题5分)如图在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F ,试找出图中的等腰三角形,并说明理由.26.(本题6分)如图,在△ABC 中,∠ACB=90°,DE 是AB 的垂直平分线,∠CAE=4∠EAB.求∠B 的度数.ABECD27.(本题8分)如图,△ABC是等腰直角三角形,∠BAC=90°,BE是角平分线,ED⊥BC 于D.(1)请你写出图中所有的等腰三角形(△ABC除外)(2分)(2)你认为AD与BE垂直吗?请说明理由.(3分)(3)若BC=10,求AB+AE的长.(3分)DECBA第二部分(满分30分)一、填空题(每空2分,共14分)1.面积为120cm2的直角三角形,它的一条直角边为10cm,则这个直角三角形的斜边长为 cm.2、以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是;3、如图,梯形ABCD中,DC//AB,∠D=90°,AD=4cm,AC=5cm,S梯形ABCD=18cm2,那么AB=_________.4.如图,在∠MON的两边上顺次取点,使DE=CD=BC=AB=OA,若∠MON=22°,则∠NDE= .5、等腰梯形高4cm,上底4cm,下底6cm,则对角线长 cm.6、如图,边长为1的正方体中,一只蚂蚁从A顶点出发沿着正方体的外表面爬到B顶点的最短路程是 .BA7、如图,小明同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,CE= .8、如图,一个梯子AB长2.5 米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?(本题5分)9、(本题6分)如图,已知△ABC中,AB=AC,AB边上的垂直平分线DE交BA于点D,交AC 于点E.(1)若AB=8cm,△BCE的周长是14cm,求BC的长;(2)若∠ABE:∠EBC=2:1,求∠A的度数.10、如图,在梯形ABCD中,AD∥BC,AB⊥BC,E是CD的中点,且AB=AD+BC,判断△ABE 的形状,并简述你的理由.(本题5分)ADEC。

苏科版八年级上第一次月考数学试卷含解析

苏科版八年级上第一次月考数学试卷含解析

八年级(上)第一次月考数学试卷一.选择题(每题4分,共40分)1.在下列各组图形中,是全等的图形是()A.B. C.D.2.在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点()A.高B.角平分线 C.中线 D.边的垂直平分3.在下列四个图案中,是轴对称图形的有()个.A.0个B.1个C.2个D.3个4.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.5.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙6.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.117.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或128.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A.B.2 C.3 D.29.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23° B.46° C.67° D.78°10.四个小朋友站成一排,老师按图中的规则数数,数到时对应的小朋友可得一朵红花.那么得红花的小朋友是()A.小沈 B.小叶 C.小李 D.小王二.填空题(共8小题)11.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.12.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC 于点D、E.若AB=5,AC=4,则△ADE的周长是.13.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有个.14.Rt△ABC中,如果斜边上的中线CD=4cm,那么斜边AB= cm.15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=9,则△BDC的面积是.16.如图,在△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,边AC的垂直平分线分别交AC、BC于点F、G.若BC=4cm,则△AEG的周长是cm.17.如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△PAB是等腰三角形,则这样的点P最多能确定个.18.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n= .(用含n的代三.解答题19.已知:如图,△ABC中,AB=AC,点D为BC的中点,连接AD.(1)请你写出两个正确结论:①;②;(2)当∠B=60°时,还可以得出正确结论:;(只需写出一个)20.已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?21.某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点P到边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法,保留作图痕迹).22.如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.23.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列四个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的四个条件(请从其中选择一个):①AB=ED;②∠A=∠D=90°;③∠ACB=∠DFE;④∠A=∠D.24.如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图1~3中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图乙与图丙)25.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.26.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).-学年江苏省连云港市灌云县西片八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题4分,共40分)1.在下列各组图形中,是全等的图形是()A.B. C.D.考点:全等图形.分析:根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.解答:解:根据全等图形的定义可得C是全等图形,故选:C.点评:此题主要考查了全等图形,关键是掌握形状大小完全相同的两个图形是全等形.2.在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点()A.高B.角平分线 C.中线 D.边的垂直平分考点:三角形的内切圆与内心.专题:常规题型.分析:根据到三角形三边距离相等的点是三角形三条角平分线的交点即三角形的内心.解答:解:∵到三角形三边距离相等的点是三角形三条角平分线的交点,∴点P应是△ABC的三条角平分线的交点.故选B.点评:本题考查了三角形内心的定义,是识记的内容.3.在下列四个图案中,是轴对称图形的有()个.A.0个B.1个C.2个D.3个考点:轴对称图形.分析:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.结合定义可得出答案.解答:解:由轴对称图形的定义得,第3、4个图形为轴对称图形,故选C.点评:本题涉及轴对称图形相关知识,难度一般.4.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.考点:剪纸问题.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.点评:此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.5.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.解答:解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.11考点:线段垂直平分线的性质.分析:由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.解答:解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.点评:本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.7.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12考点:等腰三角形的性质;三角形三边关系.分析:分2是腰长与底边长两种情况讨论求解.解答:解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.点评:本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.8.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A.B.2 C.3 D.2考点:角平分线的性质;垂线段最短.分析:首先过点P作PB⊥OM于B,由OP平分∠MON,PA⊥ON,PA=3,根据角平分线的性质,即可求得PB的值,又由垂线段最短,可求得PQ的最小值.解答:解:过点P作PB⊥OM于B,∵OP平分∠MON,PA⊥ON,PA=3,∴PB=PA=3,∴PQ的最小值为3.故选:C.点评:此题考查了角平分线的性质与垂线段最短的知识.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.9.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23° B.46° C.67° D.78°考点:等腰三角形的性质;平行线的性质.分析:首先由题意可得:AB=AC,根据等边对等角的性质,即可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,内错角相等,即可求得∠2的度数,然后根据平角的定义,即可求得∠1的度数.解答:解:根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠1=180°﹣∠2﹣∠ACB=180°﹣67°﹣67°=46°.故选B.点评:此题考查了平行线的性质,等腰三角形的性质.此题难度不大,解题的关键是注意掌握两直线平行,内错角相等与等边对等角定理的应用.10.四个小朋友站成一排,老师按图中的规则数数,数到2015时对应的小朋友可得一朵红花.那么得红花的小朋友是()A.小沈 B.小叶 C.小李 D.小王考点:规律型:数字的变化类.分析:从图上可以看出,去掉第一个数,每6个数一循环,用(2015﹣1)÷6算出余数,再进一步确定2015的位置即可.解答:解:去掉第一个数,每6个数一循环,(2015﹣1)÷6=2014÷6=335…4,则2015时对应的小朋友与5对应的小朋友是同一个.故选:C.点评:此题考查了数字的变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.二.填空题(共8小题)11.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.考点:全等三角形的性质.分析:根据全等三角形对应角相等可得∠C=∠A,再根据四边形的内角和定理列式计算即可得解.解答:解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为:130°.点评:本题考查了全等三角形的性质,四边形的内角和定理,根据对应顶点的字母写在对应位置上确定出∠C=∠A是解题的关键.12.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、A C 于点D、E.若AB=5,AC=4,则△ADE的周长是9 .考点:等腰三角形的判定与性质;平行线的性质.专题:压轴题.分析:由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.解答:解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.点评:此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.13.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有 3 个.考点:轴对称图形.专题:常规题型.分析:根据轴对称图形的概念求解.解答:解:如图所示,有3个使之成为轴对称图形.故答案为:3.点评:此题利用格点图,考查学生轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置,可以有3种画法.14.Rt△ABC中,如果斜边上的中线CD=4cm,那么斜边AB= 8 cm.考点:直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.解答:解:∵Rt△ABC中,斜边上的中线CD=4cm,∴AB=8cm,故答案为:8.点评:此题主要考查了直角三角形的性质,关键是掌握直角三角形中,斜边上的中线等于斜边的一半.15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=9,则△BDC的面积是9 .考点:角平分线的性质.分析:过点D作DE⊥BC于E,根据角平分线上的点到角的两边距离相等可得DE=AD,然后利用三角形的面积公式列式计算即可得解.解答:解:如图,过点D作DE⊥BC于E,∵∠A=90°,BD是∠ABC的平分线,∴DE=AD=2,∴△BDC的面积=BC•DE=×9×2=9.故答案为:9.点评:本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.16.如图,在△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,边AC的垂直平分线分别交AC、BC于点F、G.若BC=4cm,则△AEG的周长是 4 cm.考点:线段垂直平分线的性质.分析:要求周长,首先要求线段的长,利用垂直平分线的性质计算.解答:解:因为AB的垂直平分线分别交AB、BC于点D、E,所以AE=BE,因为AC的垂直平分线分别交AC、BC于点F、G,所以AG=GC,△AEG的周长为AE+EG+AG=BE+EG+CG=BC=4cm.故填4.点评:本题考查了线段垂直平分线的性质;根据垂直平分线的性质,将△AEG的周长转化为线段BC的长来解答是正确解答本题的关键.17.如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△PAB是等腰三角形,则这样的点P最多能确定 4 个.考点:等腰三角形的判定.分析:分为三种情况:①PA=PB,②AB=AP,③AB=BP,求出即可得出答案.解答:解:①作线段AB的垂直平分线,交南北公路有1个点;②第2个点是以A为圆心,以AB长为半径作圆,交南北公路,共2个点;③以B为圆心,以BA长为半径作圆,交南北公路除A外有1点.则满足条件的有4个点.故答案是:4.点评:本题考查了等腰三角形的判定来解决实际问题,主要考查学生的理解能力和动手操作能力.18.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n= 3n+1 .(用含n的代数式表示)个数考点:规律型:图形的变化类.专题:压轴题;规律型.分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n﹣1)=3n+1.解答:解:故剪n次时,共有4+3(n﹣1)=3n+1.点评:此类题的属于找规律,从所给数据中,很容易发现规律,再分析整理,得出结论.三.解答题19.已知:如图,△ABC中,AB=AC,点D为BC的中点,连接AD.(1)请你写出两个正确结论:①AD⊥BC ;②△ABD≌△ACD ;(2)当∠B=60°时,还可以得出正确结论:△ABC是等边三角形;(只需写出一个)考点:等腰三角形的性质;等边三角形的性质.分析:(1)根据中点的性质及全等三角形的判定,写出两个结论即可;(2)根据等边三角形的判定定理可得△ABC是等边三角形.解答:解:(1)①BD=CD;②△ABD≌△ACD;故答案为:BD=CD,△ABD≌△ACD,(2)∵AB=AC,∠B=60°,∴△ABC是等边三角形.故答案为:△ABC是等边三角形.点评:本题考查了等腰三角形的性质,等边三角形的性质,熟练掌握各性质定理是解题的关键.20.已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?考点:等腰三角形的性质;平行线的判定.分析:根据等边对等角可得∠B=∠C,再利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=2∠B,根据角平分线的定义可得∠DAC=2∠DAE,然后求出∠B=∠DAE,最后根据同位角相等,两直线平行证明即可.解答:解:AE∥BC.∵AB=AC,∴∠B=∠C,由三角形的外角性质得,∠DAC=∠B+∠C=2∠B,∵AE平分∠DAC,∴∠DAC=2∠DAE,∴∠B=∠DAE,∴AE∥BC.点评:本题考查了等腰三角形的性质,平行线的判定,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.21.某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点P到边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法,保留作图痕迹).考点:角平分线的性质;线段垂直平分线的性质.专题:作图题;压轴题.分析:分别作出AD的垂直平分线及∠ABC的平分线,两条直线的交点即为P点的位置.解答:解:(1)①分别以A、D为圆心,以大于AD为半径画圆,两圆相交于E、F两点;②连接EF,则EF即为线段AD的垂直平分线.(2)①以B为圆心,以大于任意长为半径画圆,分别交AB、BC为G、H;②分别以G、H为圆心,以大于GH为半径画圆,两圆相交于点I,连接BI,则BI即为∠ABC的平分线.③BI与EF相交于点P,则点P即为所求点.点评:本题考查的是线段垂直平分线及角平分线的作法.熟知线段垂直平分线及角平分线性质是解答此题的关键.22.如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)由正方形的性质得出AB=CB,∠ABC=∠GBE=90°,BG=BE,得出∠ABG=∠CBE,由SAS证明△ABG≌△CBE,得出对应边相等即可;(2)由△ABG≌△CBE,得出对应角相等∠BAG=∠BCE,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可.解答:(1)证明:∵四边形ABCD、BEFG均为正方形,∴AB=CB,∠ABC=∠GBE=90°,BG=BE,∴∠ABG=∠CBE,在△ABG和△CBE中,,∴△ABG≌△CBE(SAS),∴AG=CE;(2)证明:如图所示:∵△ABG≌△CBE,∴∠BAG=∠BCE,∵∠ABC=90°,∴∠BAG+∠AMB=90°,∵∠AMB=∠CMN,∴∠BCE+∠CMN=90°,∴∠CNM=90°,∴AG⊥CE.点评:本题考查了正方形的性质、全等三角形的判定与性质、垂线的证法;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.23.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列四个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的四个条件(请从其中选择一个):①AB=ED;②∠A=∠D=90°;③∠ACB=∠DFE;④∠A=∠D.考点:全等三角形的判定与性质.分析:只有FB=CE,AC=DF.不能证明AB∥ED;可添加:AB=ED,可用SSS证明△ABC≌△DEF.解答:解:不能;选择条件①AE=BE.∵FB=CE,∴FB+FC=CE+FC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SSS),∴∠B=∠E,∴AB∥ED.点评:此题主要考查了全等三角形的判定与性质,以及平行线的判定,关键是掌握证明三角形全等的方法,以及全等三角形的性质定理.24.如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图1~3中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图乙与图丙)考点:利用轴对称设计图案.专题:作图题.分析:根据轴对称图形的性质画图,但要注意本题中的要求涂黑部分的面积是原正方形面积的一半;所以图中一共有16个三角形,那就要涂黑8个,而且这8个要是轴对称图形.解答:解:不同涂法的图案例举如下:点评:本题主要考查了轴对称图形的性质,及通过将四边形的转化为三角形来计算面积.25.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.考点:等边三角形的性质;全等三角形的判定与性质.分析:(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.解答:(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°…(6分)(3)解:点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.(7分)理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.点评:此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.26.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE = DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE = DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).考点:等边三角形的判定与性质;三角形的外角性质;全等三角形的判定与性质;等腰三角形的性质.专题:计算题;压轴题.分析:(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF 即可;(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.解答:解:(1)故答案为:=.(2)过E作EF∥BC交AC于F,∵等边三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,∴△DEB≌△ECF,∴BD=EF=AE,即AE=BD,故答案为:=.(3)解:CD=1或3,理由是:分为两种情况:①如图1过A作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴△AMB∽△ENB,∴=,∴=,∴BN=,∴CN=1+=,∴CD=2CN=3;②如图2,作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴=,∴=,∴MN=1,∴CN=1﹣=,∴CD=2CN=1,即CD=3或1.点评:本题综合考查了等边三角形的性质和判定,等腰三角形的性质,全等三角形的性质和判定,三角形的外角性质等知识点的应用,解(2)小题的关键是构造全等的三角形后求出BD=EF,解(3)小题的关键是确定出有几种情况,求出每种情况的CD值,注意,不要漏解啊.。

八年级数学上学期第一次月考试卷(含解析)苏科版

八年级数学上学期第一次月考试卷(含解析)苏科版

江苏省扬州市宝应县泰山中学、安宜中学联考2016-2017学年八年级(上)第一次月考数学试卷一、精心选一选:1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②3.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.54.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是()A.SAS B.ASA C.AAS D.SSS5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN6.如图,AC=AD,BC=BD,则有()A.CD垂直平分AB B.AB与CD互相垂直平分C.AB垂直平分CD D.CD平分∠ACB7.如图,已知△ACE≌△DFB,下列结论中正确的个数是()①AC=D B;②AB=DC;③∠1=∠2;④AE∥DF;⑤S△ACE=S△DFB;⑥BC=AE;⑦BF∥EC.A.4个B.5个C.6个D.7个8.如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115° B.130° C.120° D.65°9.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短 B.矩形的对称性C.矩形的四个角都是直角 D.三角形的稳定性10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1 B.2 C.3 D.4二、细心填一填:(3&#215;10=30分)11.线段、角、三角形、圆中,其中轴对称图形有个.12.若△ABC≌△DEF,∠B=40°,∠C=60°,则∠D= °.13.如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是.14.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB 的长为.15.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.16.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=20°,∠E=110°,∠EAB=15°,则∠BAD的度数为.17.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=9,则△BDC的面积是.18.如图,在△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,边AC的垂直平分线分别交AC、BC于点F、G.若BC=4cm,则△AEG的周长是cm.19.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.20.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是.三.解答题或画图题(本大题共有9小题,共90分)21.(8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E.F,AE=CF.求证:DE=BF.22.(10分)已知Rt△ABC中,∠B=90°(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)①作∠BAC的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连接ED.(2)在(1)的基础上写出一对全等三角形:△≌△并加以证明.23.(8分)已知,如图,BC上有两点D、E,且BD=CE,AD=AE,∠1=∠2,求证:AB=AC.24.(8分)如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.25.(10分)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:.证明:.26.(10分)如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.27.(12分)如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?请你作出判断,在下列横线上填写“是”或“否”:①;②.28.(12分)如图,已知点C为线段AB上一点,△ACM、△BCN是等边三角形.(1)求证:AN=BM;(2)求∠NOB的度数.(3)若把原题中“△ACM和△BCN是两个等边三角形”换成两个正方形(如图),AN与BM的数量关系如何?请说明理由.29.(12分)(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.2016-2017学年江苏省扬州市宝应县泰山中学、安宜中学联考八年级(上)第一次月考数学试卷参考答案与试题解析一、精心选一选:1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】此题可以采用排除法进行分析从而确定最后的答案.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.【点评】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.5【考点】全等三角形的性质.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.4.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定.【分析】根据用直尺和圆规画一个角等于已知角的过程很容易看出所得两个三角形三边对应相等.【解答】解:设已知角为∠O,以顶点O为圆心,任意长为半径画弧,交角的两边分别为A,B两点;画一条射线b,端点为M;以M为圆心,OA长为半径画弧,交射线b于C点;以C为圆心,AB长为半径画弧,两弧交于点D;作射线MD.则∠COD就是所求的角.由以上过程不难看出两个三角形中有三条边对应相等,∴证明全等的方法是SSS.故选D.【点评】本题考查的关键是作角的过程,作角过程中所产生的条件就是证明全等的条件.5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.6.如图,AC=AD,BC=BD,则有()A.CD垂直平分AB B.AB与CD互相垂直平分C.AB垂直平分CD D.CD平分∠ACB【考点】线段垂直平分线的性质.【分析】垂直平分线上任意一点,到线段两端点的距离相等.反之,到线段两端距离相等的点在线段的垂直平分线上.【解答】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB垂直平分线CD,故选(C)【点评】本题主要考查了线段垂直平分线的性质定理的逆定理,解题时注意:到线段两端距离相等的点在线段的垂直平分线上.7.如图,已知△ACE≌△DFB,下列结论中正确的个数是()①AC=DB;②AB=DC;③∠1=∠2;④AE∥DF;⑤S△ACE=S△DFB;⑥BC=AE;⑦BF∥EC.A.4个B.5个C.6个D.7个【考点】全等三角形的性质.【分析】运用全等三角形的性质,认真找对对应边和对应角,则该题易求.【解答】解:∵△ACE≌△DFB,∴AC=DB,①正确;∠ECA=∠DBF,∠A=∠D,S△ACE=S△DFB,⑤正确;∵AB+BC=CD+BC,∴AB=CD ②正确;∵∠ECA=∠DBF,∴BF∥EC,⑦正确;∠1=∠2,③正确;∵∠A=∠D,∴AE∥DF,④正确.BC与AE,不是对应边,也没有办法证明二者相等,⑥不正确.故选C.【点评】本题考查了全等三角形性质的运用,做题时结合图形及其它知识要进行综合思考.8.如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115° B.130° C.120° D.65°【考点】翻折变换(折叠问题).【分析】根据折叠前后角相等可知.【解答】解:∵∠1=50°,∴∠AEF=180°﹣∠BFE=180°﹣(180°﹣50°)÷2=115°故选A.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短 B.矩形的对称性C.矩形的四个角都是直角 D.三角形的稳定性【考点】三角形的稳定性.【分析】用木条EF固定矩形门框ABCD,即是组成△AEF,故可用三角形的稳定性解释.【解答】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的△EAF,故这种做法根据的是三角形的稳定性.故选D.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质.【分析】运用割补法把原四边形转化为正方形,求出BE的长.【解答】解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD =S正方形BEDF=4,∴BE==2.故选:B.【点评】此题考查三角形全等的判定与性质,正方形的判定与性质,运用割补法把原四边形转化为正方形,其面积保持不变,所求BE就是正方形的边长了;也可以看作将三角形ABE 绕B点逆时针旋转90°后的图形.二、细心填一填:(3&#215;10=30分)11.线段、角、三角形、圆中,其中轴对称图形有 3 个.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:角,线段,圆均为轴对称图形.故答案为:3.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.若△ABC≌△DEF,∠B=40°,∠C=60°,则∠D= 80 °.【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠A,根据全等三角形的性质得出∠D=∠A,即可得出答案.【解答】解:∵∠B=40°,∠C=60°,∴∠A=180°﹣∠B﹣∠C=80°,∵△ABC≌△DEF,∴∠D=∠A=80°,故答案为:80.【点评】本题考查了全等三角形的性质,三角形内角和定理的应用,能正确运用全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.13.如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是∠C=∠B .【考点】全等三角形的判定.【分析】添加∠C=∠B,再加上公共角∠A=∠A,已知条件AB=AC可利用ASA判定△ABE≌△ACD.【解答】解:添加∠C=∠B,在△ACD和△ABE中,,∴△ABE≌△ACD(ASA).故答案为:∠C=∠B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB 的长为8 .【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.【点评】本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相应线段相等并进行等量代换.15.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为8 cm2.【考点】轴对称的性质.【分析】正方形为轴对称图形,一条对称轴为其对角线;由图形条件可以看出阴影部分的面积为正方形面积的一半.=×4×4=8cm2.【解答】解:依题意有S阴影故答案为:8.【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.16.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=20°,∠E=110°,∠EAB=15°,则∠BAD的度数为65°.【考点】全等三角形的性质.【分析】首先根据全等三角形的性质可得∠D=∠B=20°,再根据三角形内角和定理可得∠EAD 的度数,进而得到答案.【解答】解:∵△ABC≌△ADE,∴∠D=∠B=20°,∵∠E=110°,∴∠EAD=180°﹣110°﹣20°=50°,∵∠EAB=15°,∴∠BAD=50°+15°=65°,故答案为:65°【点评】此题主要考查了全等三角形的性质,以及三角形内角和定理,关键是掌握全等三角形的对应角相等.17.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=9,则△BDC的面积是9 .【考点】角平分线的性质.【分析】过点D作DE⊥BC于E,根据角平分线上的点到角的两边距离相等可得DE=AD,然后利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥BC于E,∵∠A=90°,BD是∠ABC的平分线,∴DE=AD=2,∴△BDC的面积=BC•DE=×9×2=9.故答案为:9.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.18.如图,在△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,边AC的垂直平分线分别交AC、BC于点F、G.若BC=4cm,则△AEG的周长是 4 cm.【考点】线段垂直平分线的性质.【分析】要求周长,首先要求线段的长,利用垂直平分线的性质计算.【解答】解:因为AB的垂直平分线分别交AB、BC于点D、E,所以AE=BE,因为AC的垂直平分线分别交AC、BC于点F、G,所以AG=GC,△AEG的周长为AE+EG+AG=BE+EG+CG=BC=4cm.故填4.【点评】本题考查了线段垂直平分线的性质;根据垂直平分线的性质,将△AEG的周长转化为线段BC的长来解答是正确解答本题的关键.19.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有 4 个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.【点评】本题考察了利用轴对称设计图案的知识,此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.20.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是50 .【考点】全等三角形的判定与性质;勾股定理.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG,故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠FED=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故答案为50.【点评】本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.三.解答题或画图题(本大题共有9小题,共90分)21.已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E.F,AE=CF.求证:DE=BF.【考点】全等三角形的判定与性质.【分析】先由AE=CF根据等式的性质就可以得出AF=CE,再由条件证明△ABF≌△CDE就可以得出结论.【解答】证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE.∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.在Rt△ABF和At△CDE中,,∴Rt△ABF≌At△CDE(HL),∴DE=BF.【点评】本题考查了等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是解答本题的关键.22.(10分)(2016秋•宝应县校级月考)已知Rt△ABC中,∠B=90°(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)①作∠BAC的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连接ED.(2)在(1)的基础上写出一对全等三角形:△AEH ≌△DEH 并加以证明.【考点】作图—复杂作图;全等三角形的判定;线段垂直平分线的性质.【分析】(1)根据角平分线和线段垂直平分线的作法作出图形即可;(2)根据线段垂直平分线的性质可得AE=ED,∠AHE=∠EHD,然后再利用HL定理判定Rt △AEH≌Rt△DEH即可.【解答】解:(1)如图所示:(2)Rt△AEH≌Rt△DEH,∵EF是AD的垂直平分线,∴AE=ED,∠AHE=∠EHD,在Rt△AEH和Rt△DEH中,∴Rt△AEH≌Rt△DEH(HL),故答案为:AEH;DEH.【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握角平分线和线段垂直平分线的作法.23.已知,如图,BC上有两点D、E,且BD=CE,AD=AE,∠1=∠2,求证:AB=AC.【考点】全等三角形的判定与性质.【分析】求出BE=CD,然后利用“边角边”证明△ABE和△ACD全等,根据全等三角形对应边相等证明即可.【解答】证明:∵BD=CE,∴BD+DE=CE+DE,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AB=AC.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据轴对称的性质画出△A1B1C1即可;(2)连接A1C交直线DE于点Q,则点Q即为所求点.【解答】解:(1)如图所示;(2)连接CA1,交直线DE于点Q,则点Q即为所求点.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.25.(10分)(2016•浙江模拟)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC .证明:AC=BD .【考点】全等三角形的判定与性质.【分析】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【解答】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点评】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.26.(10分)(2016秋•宝应县校级月考)如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.【考点】旋转的性质;全等三角形的判定与性质.【分析】(1)根据“ASA”可判断△ABC≌△ADE;(2)先根据全等的性质得到AC=AE,则∠C=∠AEC=75°,再利用三角形内角和定理计算出∠CAE=30°,根据旋转的定义,把△ADE绕着点A逆时针旋转30°后与△ABC重合,于是得到这个旋转角为30°.【解答】(1)证明:在△ABC和△ADE中,∴△ABC≌△ADE;(2)解:∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=75°,∴∠CAE=180°﹣∠C﹣∠AEC=30°,∴△ADE绕着点A逆时针旋转30°后与△ABC重合,∴这个旋转角为30°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质.27.(12分)(2016秋•宝应县校级月考)如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?请你作出判断,在下列横线上填写“是”或“否”:①是;②是.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)先根据SAS定理得出△ABM≌△BCN,故可得出∠1=∠2,再由∠BQM=∠AQN,∠AQN是△ABQ的外角即可得出结论;(2)①根据ASA定理得出△ABM≌△BCN,由全等三角形的性质即可得出结论;②同①可证△ABN≌△CAM,由全等三角形的性质即可得出结论.【解答】(1)证明:如图1,∵△ABC是正三角形,∴AB=BC,∠ABC=∠C=60°,在△ABM与△BCN中,,∴△ABM≌△BCN(SAS),∴∠1=∠2,∵∠BQM=∠AQN,∠AQN是△ABQ的外角,∴∠BQM=∠AQN=∠1+∠3=∠2+∠3=∠ABC=60°,∴∠BQM=60°;(2)①仍为真命题;证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∵∠BQM=∠AQN=60°,∴∠1+∠3=60°,∵∠3+∠2=60°,∴∠1=∠2,在△ABM与△BCN中,,∴△ABM≌△BCN(ASA),∴BM=CN;②解:如图2所示,同①可证△ABN≌△CAM,∴∠N=∠M,∵∠NAQ=∠CAM,∴∠BQM=∠ACB=60°,∴仍能得到∠BQM=60°.【点评】本题考查的是全等三角形的判定与性质,熟知等边三角形的性质、全等三角形的判定与性质等知识是解答此题的关键.28.(12分)(2013秋•集美区校级期中)如图,已知点C为线段AB上一点,△ACM、△BCN是等边三角形.(1)求证:AN=BM;(2)求∠NOB的度数.(3)若把原题中“△ACM和△BCN是两个等边三角形”换成两个正方形(如图),AN与BM的数量关系如何?请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】(1)等边三角形的性质可以得出△ACN,△MCB两边及其夹角分别对应相等,两个三角形全等,得出线段AN与线段BM相等.(2)设BM和AN相交于O,由∠BON=∠AOM=∠NAB+∠ABM=∠CMB+∠CBM=∠ACM而得出结论.(3)若把原题中“△ACM和△BCN是两个等边三角形”换成两个正方形,则AN=BM,证明△ACN≌△MCB即可.【解答】(1)证明:∵△ACM、△CBN都是等边三角形,∴AC=CM,CN=CB,∠ACM=∠BCN=60°,∴∠ACM+∠MCN=∠BCN+∠MCN,∴∠ACN=∠BCM,∵在△ACN和△MCB中,∴△ACN≌△MCB(SAS),∴AN=MB;(2)∵∠BON=∠AOM,且∠AOM=∠NAB+∠ABM,∴∠BON=∠NAB+∠ABM.∴∠BON=∠CMB+∠ABM.∵∠CMB+∠ABM=∠ACM=60°,∴∠BON=60°.(3)AN=BM,理由如下:∵四边形AFMC和四边形NCBF是正方形,∴AC=CM,∠ACN=∠MCB=90°,CN=CB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=BM.【点评】本题考查了正方形的性质的运用,等边三角形的性质的运用,全等三角形的判定与性质的运用,等边三角形的判定与性质的运用,平行线的判定,三角形的外角与内角的关系的运用,解答时证明三角形全等是关键.29.(12分)(2016秋•宝应县校级月考)(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.【考点】几何变换综合题.【分析】(1)先利用等角的余角相等得到∠EAC=∠BCD,则可根据“AAS”证明△AEC≌△CDB;(2)作B′D⊥AC于D,如图2,先证明△B′AD≌△ABD得到B′D=AC=4,然后根据三角形面积公式计算;(3)如图3,利用旋转的性质得∠FOP=120°,OP=OF,再证明△BOF≌△CPO得到PC=OB=1,则BP=BC+PC=4,然后计算点P运动的时间t.【解答】(1)证明:如图1,∵BD⊥l,AE⊥l,∴∠AEC=∠BDC=90°,∵∠EAC+∠ACE=90°,∠BCD+∠ACE=90°,∴∠EAC=∠BCD,在△AEC和△CDB中∴△AEC≌△CDB;(2)作B′D⊥AC于D,如图2,∵斜边AB绕点A逆时针旋转90°至AB′,∴AB′=AB,∠B′AB=90°,即∠B′AC+∠BAC=90°,而∠B+∠CAB=90°,∴∠B=∠B′AC,在△B′AD和△ABD中,∴△B′AD≌△ABD,∴B′D=AC=4,∴△AB′C的面积=×4×4=8;(3)如图3,∵OC=2,∴OB=BC﹣OC=1,∵线段OP绕点O逆时针旋转120°得到线段OF,∴∠FOP=120°,OP=OF,∴∠1+∠2=60°,∵△BCE为等边三角形,∴∠BCE=∠CBE=60°,∴∠FBO=120°,∠PCO=120°,∴∠2+∠3=∠BCE=60°,∴∠1=∠3,在△BOF和△CPO,,∴△BOF≌△CPO,∴PC=OB=1,∴BP=BC+PC=3+1=4,∴点P运动的时间t==4s.【点评】本题考查了几何变换综合题:熟练掌握旋转的性质和等腰直角三角形的性质;会运用全等三角形的知识解决线段相等的问题;解决此题的关键是理解(1)小题的解题方法.。

2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)

2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)

2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。

度八年级数学上学期第一次月考试题(含解析) 苏科版-苏科版初中八年级全册数学试题

度八年级数学上学期第一次月考试题(含解析) 苏科版-苏科版初中八年级全册数学试题

某某省某某市大丰市三圩中学2015-2016学年度八年级数学上学期第一次月考试题一.选择题(每题3分,共24分)1.下列图形中,是轴对称图形的有()A.0个B.1个C.2个D.3个2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙3.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60° B.70° C.80° D.90°4.如图,已知AC=DB,要使△△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCB5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC≌△ADC C.△AOB≌△COB D.△AOD≌△COD7.如图,在Rt△ABC中,∠C=90°,斜边AB的垂直平分线DE交AB于点D,交BC于点E,且AE平分∠BAC,下列关系式不成立的是()A.AC=2EC B.∠B=∠CAE C.∠DEA=2∠B D.BC=3EC8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二.填空题(每题3分,共30分)9.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=5,则AC=.10.长方形是轴对称图形,它有条对称轴.11.已知△ABC和△DEF关于直线l对称,若△ABC的周长为40cm,则△DEF的周长为.12.从地面小水洼观察到一辆小汽车的车牌号为,它的实际号是.13.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.14.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.15.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是36cm2,AB=BC=18cm,则DE=cm.16.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为.17.如图,Rt△AFC和Rt△AEB关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC≌△AMB;③CD=DN.其中正确的结论是.(填序号)18.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.二.解答题:(共9题,共96分)19.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.20.如图,AC与BD交于点E,且AC=DB,AB=DC.求证:∠A=∠D.21.如图,已知OB、OC为△ABC的角平分线,EF∥BC交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.22.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.23.如图所示,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BF=CE.求证:AD平分∠BAC.24.如图所示,已知∠AOB和两点M、N,画一点P,使得点P到∠AOB的两边距离相等,且PM=PN.(保留作图痕迹,不写作法.)25.如图,已知△ABC中,AB=AC=20cm,∠ABC=∠ACB,BC=16cm,点D是AB的中点.点P在线段BC 上以6厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,且点Q的运动速度与点P的运动速度相等.经过1秒后,△BPD与△CQP是否全等,请说明理由.26.已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,求证:①AC=BD;②∠APB=50°.27.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BECF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).某某省某某市大丰市三圩中学2015~2016学年度八年级上学期第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共24分)1.下列图形中,是轴对称图形的有()A.0个B.1个C.2个D.3个【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:(1)是轴对称图形;(2)是轴对称图形;(3)是轴对称图形;(4)不是轴对称图形;(5)不是轴对称图形;故轴对称图形有3个.故选:D.【点评】本题考查轴对称的定义,难度不大,掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60° B.70° C.80° D.90°【考点】轴对称的性质.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故选B.【点评】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.4.如图,已知AC=DB,要使△△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCB【考点】全等三角形的判定.【分析】由已知AC=DB,且BC=CB,故可增加一组边相等,即AB=DC,可增加∠ACB=∠DBC,可得出答案.【解答】解:由已知AC=DB,且AC=CA,故可增加一组边相等,即AB=DC,也可增加一组角相等,但这组角必须是AC和BC、DB和CB的夹角,即∠ACB=∠DBC,故选C.【点评】本题主要考查全等三角形的判定,掌握SSS、SAS、ASA、AAS和HL这几种全等三角形的判定方法是解题的关键.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.6.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC≌△ADC C.△AOB≌△COB D.△AOD≌△COD【考点】全等三角形的判定.【分析】根据轴对称的性质,对折的两部分是完全重合的,结合图形找出全等的三角形,然后即可得解.【解答】解:∵四边形ABCD关于BD所在的直线对称,∴△ABD≌△CBD,△AOB≌△COB,△AOD≌△COD,故A、C、D判断正确;∵AB≠AD,∴△ABC和△ADC不全等,故B判断不正确.故选B.【点评】本题考查了全等三角形的判定,根据对折的两部分是完全重合的找出全等的三角形是解题的关键.7.如图,在Rt△ABC中,∠C=90°,斜边AB的垂直平分线DE交AB于点D,交BC于点E,且AE平分∠BAC,下列关系式不成立的是()A.AC=2EC B.∠B=∠CAE C.∠DEA=2∠B D.BC=3EC【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠BAE=∠B,然后利用直角三角形两锐角互余列式求出∠CAE=∠BAE=∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得AE=2CE,BE=2DE,根据角平分线上的点到角的两边的距离相等可得DE=EC,然后对各选项分析判断后利用排除法求解.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B,∵AE平分∠BAC,∴∠CAE=∠BAE,∵∠C=90°,∴∠CAE=∠BAE=∠B=30°,A、在Rt△ACE中,AE=2CE,故本选项正确;B、∠B=∠CAE正确,故本选项错误;C、∵∠DEA=90°﹣30°=60°,2∠B=2×30°=60°,∴∠DEA=2∠B,故本选项错误;D、在Rt△BDE中,BE=2DE,∵AE平分∠BAC,∠C=90°,DE⊥AB,∴DE=EC,∴BC=EC+BE=EC+2EC=3EC,故本选项错误.故选A.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,角平分线上的点到角的两边的距离相等的性质,等边对等角的性质,以及三角形的内角和定理,熟记各性质是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二.填空题(每题3分,共30分)9.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=5,则AC= 4 .【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形对应边相等求出BC的长度,然后利用△ABC的周长即可求出AC的长.【解答】解:∵△ABC≌△DEF,EF=5,∴BC=EF=5,∵△ABC的周长为12,AB=3,∴AC=12﹣5﹣3=4.故答案为:4.【点评】本题考查了全等三角形对应边相等的性质,求出BC的长是解题的关键.10.长方形是轴对称图形,它有 2 条对称轴.【考点】轴对称的性质.【分析】根据对称轴的定义,结合长方形的性质;可得长方形有2条对称轴,即一组邻边的垂直平分线.【解答】解:长方形是轴对称图形,它有2条对称轴.【点评】本题考查对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.11.已知△ABC和△DEF关于直线l对称,若△ABC的周长为40cm,则△DEF的周长为40cm .【考点】轴对称的性质.【分析】根据关于直线轴对称的两个三角形是全等三角形解答.【解答】解:∵△ABC和△DEF关于直线l对称,∴△ABC≌△DEF,∵△ABC的周长为40cm,∴△DEF的周长为40cm.故答案为:40cm.【点评】本题考查了轴对称的性质,熟记关于直线轴对称的两个三角形是全等三角形是解题的关键.12.从地面小水洼观察到一辆小汽车的车牌号为,它的实际号是GFT2567 .【考点】镜面对称.【分析】关于倒影,相应的数字应看成是关于倒影下边某条水平的线对称.【解答】解:实际车牌号是:GFT2567.故答案为:GFT2567.【点评】本题考查了镜面反射的性质;解决本题的关键是得到对称轴,进而得到相应数字.13.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11 .【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.【点评】本题考查了全等三角形的性质及对应边的找法;根据两个三角形中都有2找对对应边是解决本题的关键.14.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有 3 对全等三角形.【考点】全等三角形的判定.【分析】由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3对.找寻时要由易到难,逐个验证.【解答】解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是36cm2,AB=BC=18cm,则DE= 2 cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵△ABC的面积是36cm2,AB=BC=18cm,∴×BC×DF+×AB×DE=36,∴×18×DE+×18×DE=36,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8 .【考点】线段垂直平分线的性质.【专题】压轴题.【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.【点评】本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相应线段相等并进行等量代换.17.如图,Rt△AFC和Rt△AEB关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC≌△AMB;③CD=DN.其中正确的结论是①②.(填序号)【考点】轴对称的性质.【分析】首先利用轴对称的性质分别判断正误即可.【解答】解:①∵Rt△AFC和Rt△AEB关于虚线成轴对称,∴∠MAD=∠NAD,∠EAD=∠FAD,∴∠EAD﹣∠MAD=∠FAD﹣∠NAD,即:∠1=∠2,故正确;②∵Rt△AFC和Rt△AEB关于虚线成轴对称,∴∠B=∠C,AC=AB,在△ANC与△AMB中,,∴△ANC≌△AMB,故正确;③易得:CD=BD,但在三角形DNB中,DN不一定等于BD,故错误.故答案为:①②.【点评】本题考查轴对称的性质,熟练掌握性质是解题的关键.18.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有 3 个.【考点】轴对称的性质.【专题】网格型.【分析】根据题意画出图形,找出对称轴及相应的三角形即可.【解答】解:如图:共3个,故答案为:3.【点评】本题考查的是轴对称图形,根据题意作出图形是解答此题的关键.二.解答题:(共9题,共96分)19.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.【点评】本题主要考查两直线平行的性质,两直线平行的判定定理的熟练应用,要证明AB∥DE,就得先找出判定的条件,如∠B=∠FED.20.如图,AC与BD交于点E,且AC=DB,AB=DC.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先连接BC,由AC=DB,AB=DC,利用SSS,即可证得△ABC≌△DCB,继而可证得:∠A=∠D.【解答】证明:连接BC,在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),∴∠A=∠D.【点评】此题考查了全等三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.21.如图,已知OB、OC为△ABC的角平分线,EF∥BC交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线的定义可得∠ABO=∠CBO,根据两直线平行,内错角相等可得∠CBO=∠EBO,从而得到∠ABO=∠EOB,根据等角对等边可得BE=OE,同理可证CF=OF,然后求出△AEF的周长=AB+AC,最后根据三角形的周长的定义解答.【解答】解:∵OB平分∠ABC,∴∠ABO=∠CBO,∵EF∥BC,∴∠CBO=∠EBO,∴∠ABO=∠EOB,∴BE=OE,同理可得,CF=OF,∵△AEF的周长为15,∴AE+OE+OF+AF=AE+BE+CF+AF=AB+AC=15,∵BC=7,∴△ABC的周长=15+7=22.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟记性质并求出△AEF的周长=AB+AC是解题的关键,也是本题的难点.22.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AC∥DE,利用平行线的性质可得:∠ACB=∠E,∠ACD=∠D,再根据∠ACD=∠B证出∠D=∠B,再由∠ACB=∠E,AC=CE可根据三角形全等的判定定理AAS证出△ABC≌△CDE.【解答】证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D,∵∠ACD=∠B,∴∠D=∠B,在△ABC和△EDC中,∴△ABC≌△CDE(AAS).【点评】此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS、SAS、ASA、AAS,选用哪一种方法,取决于题目中的已知条件,23.如图所示,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BF=CE.求证:AD平分∠BAC.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据垂直定义求出∠BFD=∠CED=90°,根据AAS推出△BFD≌△CED,根据全等三角形的性质推出DF=DE,根据角平分线性质求出即可.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°,在△BFD和△CED中∴△BFD≌△CED(AAS),∴DF=DE,∵BE⊥AC,CF⊥AB,∴AD平分∠BAC.【点评】本题考查了全等三角形的性质和判定,角平分线性质的应用,能推出DF=DE是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等,角平分线上的点到角的两边的距离相等.24.如图所示,已知∠AOB和两点M、N,画一点P,使得点P到∠AOB的两边距离相等,且PM=PN.(保留作图痕迹,不写作法.)【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】根据题意得出,点P是∠AOB的平分线与线段MN的中垂线的交点,进而得出即可.【解答】解:如图所示,画法如下:(1)作∠AOB的角平线OC;(2)连结MN,画线段MN的垂直平分线,与OC交于点P,则点P为符合题意的点.【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.25.如图,已知△ABC中,AB=AC=20cm,∠ABC=∠ACB,BC=16cm,点D是AB的中点.点P在线段BC 上以6厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,且点Q的运动速度与点P的运动速度相等.经过1秒后,△BPD与△CQP是否全等,请说明理由.【考点】全等三角形的判定;等腰三角形的性质.【专题】动点型.【分析】求出BP=CQ,BD=CP,根据SAS推出两三角形全等即可.【解答】解:经过1秒后,△BPD与△CQP全等,理由是:∵点D是AB的中点,AB=AC=20cm,∴BD=10cm,根据题意得:BP=CQ=6cm,CP=16cm﹣6cm=10cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).【点评】本题考查了全等三角形的性质和判定的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.26.已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,求证:①AC=BD;②∠APB=50°.【考点】全等三角形的判定与性质.【专题】证明题.【分析】①根据已知先证明∠AOC=∠BOD,再由SAS证明△AOC≌△BOD,所以AC=BD.②由△AOC≌△BOD,可得∠OAC=∠OBD,再结合图形,利用角的和差,可得∠APB=50°.【解答】证明:①∵∠AOB=∠COD=50°,∴∠AOB+∠BOC=∠COD+∠BOC,∴∠AOC=∠BOD.在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD;②∵△AOC≌△BOD,∴∠OAC=∠OBD,∴∠OAC+∠AOB=∠OBD+∠APB,∴∠OAC+60°=∠OBD+∠APB,∴∠APB=50°.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.27.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE = CF;EF = |BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【考点】直角三角形全等的判定;三角形内角和定理.【专题】几何综合题;压轴题.【分析】由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CFA=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CFA+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.【点评】本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.。

2015-2016学年人教版八年级上第一次月考数学试题及答案

2015-2016学年人教版八年级上第一次月考数学试题及答案

AC B A 'C 'B '3050(第9题)NM PBAO睢中附属学校2015-2016学年度第一学期第一次月考八 年 级 数 学 试 题命题人:任润水(考试时间:90分钟,满分:120分 )一、 选择题: (每题3分,共30分)请将正确答案填写在下列方框内题 号 1 2 3 4 5 6 7 8 9 10 答 案1、下面有4个汽车标致图案,其中不是轴对称图形的是( ▲ )A .B .C .D .2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为 ( ▲ ) A .2 B.3 C.5 D.2.53、如图,与关于直线对称,则的度数为( ▲ ) A . B . C .D .4、下列说法中,正确的是 ( ▲ ) A.关于某直线对称的两个三角形是全等三角形B.全等三角形一定是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.有一条公共边的两个全等三角形关于公共边所在的直线对称5、下列条件中不能判断两个三角形全等的是 ( ▲ )A.有两边和它们的夹角对应相等.B.有两边和其中一边的对角对应相等.C.有两角和它们的夹边对应相等.D.有两角和其中一角的对边对应相等.6、在ΔABC 和ΔFED 中,∠A=∠F ,∠B=∠E ,要使这两三角形全等,还需要的条件是 ( ▲ ) A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D7、如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有 ( ▲ )A . 2对 B.3 对 C.4对 D.5对 8、工人师傅常用角尺平分一个任意角,如图在∠AOB 的边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,得到∠AOB 的平分线OP ,做法中用到三角形全等的判定方法是. ( ▲ ) A.SAS B.SSS C.ASA D.HL第7题 第9题F EDABCADCBEF 姓名_____________ 班级____________________ 考号:________________________··························密·························封······················线·· (8)9、AD 是的中线, .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ; ④△BDF ≌△CDE .其中正确的有 ( ▲ )A.1个B.2个C.3个D.4个10、△ABC 中,AB=AC=12厘米,∠B=∠C ,BC=8厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q的运动速度为v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为( ▲ ) A.2 B.3 C.2或3 D.1或5 二、填空题:(每题3分,共24分)11、国旗上的一个五角星有 条对称轴.12、如图,已知△ABC 的两条高AD 、BE 交于F ,AE =BE ,若要运用“HL ”说明△AEF ≌△BEC ,还需添加条件: .13、某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第__________块去(填序号)14、如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3 = °.第12题 第14题 第15题 15、如图,方格纸中△ABC 的三个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,则在图中能够作出与△ABC 全等且有一条公共边的格点三角形(不含△ABC )的个数是__________个16、工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB 、CD 两根木条),这样做根据的数学原理是 _______ __ . 17、如图,给出下列四组条件:①AB=DE,BC=EF ,AC=DF ; ②AB=DE,∠B=∠E,BC=EF ; ③∠B=∠E,BC=EF ,∠ACB =∠DFE ;④AB=DE,AC=DF ,∠B=∠E.其中,能使△ABC≌△DEF 的条件是 ;(填序号)18、如图,在△ABC 中,∠B=∠C ,BF=CD ,BD=CE ,∠FDE=α ,则∠B_________α(填“>”“﹦”或“<”)ADC B E F(第18题)αFEDCBA 第16题第17题①②③第13题三、作图题(本大题共2小题,共8分)19、用直尺和圆规按下列要求作图:(不写作法,保留作图痕迹) (1)作出△ABC 关于直线l 对称的△DEF ;CAB l第(1)题 第(2)题(2)如图②:在3×3网格中,已知线段AB 、CD ,以格点为端点再画1条线段,使它与AB 、CD 组成轴对称图形.(画出所有可能情况)四、解答题(本大题共有6小题,共58分,解答时应写出文字说明、推理过程或演算步骤) 20、( 8分)已知: 如图, AC 、BD 相交于点O , ∠A =∠D , AB=CD.求证:△AOB ≌△DOC ,。

最新苏科版八年级数学第一学期第一次月考测试题及答案解析-精品试题.docx

最新苏科版八年级数学第一学期第一次月考测试题及答案解析-精品试题.docx

苏科版八年级数学上学期第一次月考检测试题(满分:150分测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把正确的答案前的字母填涂到答题卡上)1.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有A.1个B.2个C.3个D.4个2.下列各组数中,不属于...勾股数的是A.1.5,2,2.5 B.7,24,25 C.6,10,8 D.9,12,153.下列线段不能组成直角三角形的是A.a=6,b=8,c=10 B.a=9,b=16,c=25C.a=54,b=1,c=34D.a=2,b=3,c2=134.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数为A.40°B.35°C.30°D.45°5.如图,MS⊥PS,MN⊥SN,PQ⊥SN,垂足分别为S、N、Q,添加下列条件能使△MNS≌△SQP 的是A .∠M=∠QSPB .∠MSN=∠PC .MS=SPD .MN=QN第4题图 第5题图 第6题图 6.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M 、 交AC 于N ,若BM+CN=15,则线段MN 的长为A . 14B . 15C . 16D . 177.如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,∠ACD=2∠ACB .若DG=5,EC=3,则DE 的长为 A .2 B .3 C .4 D .5第8.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为A .110B .121C .144D .169GF EDCB AMNPQSEDCABNCBAE M二、填空题(本大题共10小题,每小题3分,共30分)9.一个等腰三角形的两边长分别是3和7,则它的周长为 ▲ .10.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°, ∠ACB=80°,则∠BCE= ▲ °.11.如图,AC 、BD 相交于点O ,∠A=∠D ,请补充一个条件,使△AOB ≌△DOC ,你补充的条件是 _▲ (填出一个即可).第11题图 第12题图 第13题图12.如图,在Rt △ABC 中,∠ABC=90°,AC=10cm ,点D 为AC 的中点,则BD= ▲ cm.13.如图,在Rt △ABC 中,∠ABC=90°,DE 垂直平分AC ,垂足为点D ,AB=3,EC=5,则BC 的长为 ▲ .14.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是__▲___m.OD CBA DC BAEDCBA(第10题)EDCB A15.如图,已知∠AOB=60°,点P 在边OA 上,OP=12,点M ,N 在边OB 上,PM=PN ,若MN=2,则OM= ___▲____.第15题图 第16题图 第18题图 第17题图16.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 ▲ 种.17.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕5周后其末端恰好到达点B 处.则问题中葛藤的最短长度是 ▲ 尺.18.如图,∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB=6,AC=3,则BE= ▲ .CBA E GDFBA N M OP八年级数学答题纸一、选择题(3分×8=24分)题号 1 2 3 4 5 6 7 8答案二、填空题(3分×10=30分)1. 2. 3. 4. 5.6. 7. 8. 9. 10.三、解答题(共10题,共96分)19.(本题8分)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图....,不写作法,保留作图痕迹,写出结论);(2)如图(2)是一个台球桌,若击球者想通过击打E球,让E球先撞上AB边上的点P,反弹后再撞击F球,请在图(2)中画出这一点P.(不写作法,保留作图痕迹,写出结论)20.(本题8分)如图,梯子AB斜靠在墙上,梯子的顶端A到地面的距离AC为8m, 梯子的底端B距离墙角C为6m,(1)求梯子AB的长.(2)当梯子的顶端A下滑2m到点A′时,底端B向外滑动到点B′,求BB′的长.21.(本题8分)在5×5的正方形网格中,分别以格点为顶点画出三角形,请利用格点作出符合条件的分割线(1)如图1是一个等腰直角三角形,请你画一条直线将它分成两个等腰三角形.(2)如图2是一个直角三角形,请你画一条直线将它分成两个等腰三角形.(3)如图3是一个任意锐角三角形,请你画出分割线将它分成四个等腰三角形.图1 图2 图322. (本题8分)如图,折叠长方形,使点D落在BC边上的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EC的长.23.(本题10分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE .24.(本题10分)如图,△ABC 中,∠BAC =100°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.(1)求∠DAF 的度数.(2)如果BC =12,求△DAF 的周长.ABD FEGC图1图2DC EA B25.(本题10分)在△ABC 中,AB=AC ,点E 、F 分别在AB 、AC 上,AE=AF ,BF 与CE 相交于点P . (1)求证:PB=PC.(2)你发现图中还有其他相等的线段是 .26.(本题10分)如图,∠ABC=90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD=DE ,点F 是AE 的中点,FD 与PFECBAMDFEC BAAB的延长线相交于点M.(1)求证:∠FMC=∠FCM.(2)AD与MC垂直吗?并说明理由.27.(本题12分)如图,在△ABC中,AD是高,(1) 若AB=17,AC=10,BC=21,求AD.(2) 若E、F分别是AB、AC的中点, 试证明EF垂直平分AD.AEFDB C28.(本题12分)(1)如图1,在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°,E 、F 分别是BC 、CD 上的点.且∠EAF=60°.探究图中线段BE 、EF 、FD 之间的数量关系. 小王同学探究此问题的方法是,延长FD 到点G .使DG=BE .连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 .请你根据他的思路完成论证过程.(2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=∠BAD ,上述结论是否仍然成立,并说明理由;GDFECB ADFE CBA八年级数学参考答案一、选择题二、填空题(共10小题,每题3分)9. 17 , 10. 50 11.AB=CD (不唯一) 12. 5 13. 914.__12_____, 15. 5 16. 3 17. 25 18. 1.5三、解答题19.……4分……………………8分 题号1 2 3 4 5 6 7 8 答案 D A B D C B C A20.(1)8,6,90==︒=∠AC BC C ,10682222=+=+=∴BC AC AB ………… 3分(2)6,10,90='=''︒=∠C A A B C ,…………………… 4分8610)()(2222=-='-''='∴C A B A C B ……………………7分 2=-'='∴BC C B B B ……………………… 8分21.图中虚线是分割线,正确完成图1………… 2分,正确完成图2………… 4分 正确完成图3………… 8分22.(1)易得BF=6cm,FC=BC-BF=4cm, ………… 4分(2)设EC=xcm,则EF=DE=(8-x )cm,由x 2+42=(8-x)2得x=3………… 8分23. (1) ⊿ACD ≌⊿ABE ………………1分证明:∵∠BAC=∠DAE∴∠BAC+∠CAE=∠DAE+∠CAE即:∠BAE=∠CAD在⊿ACD 和⊿ABE 中∴⊿ACD ≌⊿ABE …………5分(2)由(1)可知⊿ACD ≌⊿ABE∴∠B=∠ACD=45°又∵∠ACB==45°∴∠DCB=∠ACD+∠ACB=90°∵DC BE ⊥. (10)24.(1)∵DE 、FG 分别为AB 、AC 的垂直平分线,∴AD=BD, AF=CF. ………… 2分∴∠BAD=∠B, ∠CAF=∠C. ………… 4分∵∠BAC =100°,∴∠B+∠C=80°,∴∠BAD+∠CAF=80°,∴∠DAF=20°. ………… 6分(2)△DAF 的周长=AD+DF+AF=BD+DF+CF ………… 9分=BC=12 ………… 10分 ⎪⎩⎪⎨⎧=∠=∠=DA EA CAD BAE AC AB25.(1)解:在△ABF 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE AF A A AC AB ,∴△ABF ≌△ACE (SAS ),∴∠ABF=∠ACE ,……………… 4分∵AB=AC ,∴∠ABC=∠ACB∴∠ABC -∠ABF=∠ACB -∠ACE 即∠PBC=∠PCB ………… 6分∴PB=PC ,………… 8分(2)图中相等的线段为PE=PF ,BE=CF .………… 10分26.解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF=AF=EF ,………… 2分又∵∠ABC=90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF=∠AMF ,在△DFC 和△AFM 中,⎪⎩⎪⎨⎧∠=∠∠=∠=AMF DCF CFD MFA AF DF ,∴△DFC ≌△AFM (AAS ),………… 5分∴CF=MF ,∴∠FMC=∠FCM ;………… 7分(2)AD ⊥MC ,………… 8分理由:由(1)知,∠MFC=90°,FD=EF ,FM=FC ∴∠FDE=∠FMC=45°,∴DE ∥CM ,∴AD ⊥MC .………… 10分27. (1)解:∵AD 是高,∴∠ADB=∠ADC=90°,∴222BD AB AD -=222CD AC AD -=∴22BD AB -=22CD AC -,………… 3分 设BD=x ,则有2222)21(1017x x --=-,∴x=15,∴AD=8. ………… 8分(2) ∵AD 是高,E 、F 分别是AB 、AC 的中点, ∴AE=DE, AF=DF.∴EF 垂直平分AD. ………… 12分28.(1) EF=BE+DF , ……………………1分证明如下:如图,延长FD 到G ,使DG=BE ,连接AG ,在△ABE 和△ADG 中,⎪⎩⎪⎨⎧=∠=∠=AD AB ADG B BE DG ,∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,……………………3分∵∠BAD=120°,∠EAF=60°,∴∠BAE+∠DAF=60°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠EAF ,在△AEF 和△GAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AF GAF EAF AG AE ,∴△AEF ≌△GAF (SAS ),∴EF=FG , ∵FG=DG+DF=BE+DF ,∴EF=BE+DF ;…………………… 6分(2)证明如下:如图,延长FD 到G ,使DG=BE ,连接AG , ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG ,在△ABE 和△ADG 中, ⎪⎩⎪⎨⎧=∠=∠=AD AB ADG B BE DG ,∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,…………………… 9分G∵∠EAF=∠BAD ,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD ﹣∠EAF=∠EAF , ∴∠EAF=∠GAF ,在△AEF 和△GAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AF GAF EAF AG AE ,∴△AEF ≌△GAF (SAS ),∴EF=FG ,∵FG=DG+DF=BE+DF ,∴EF=BE+DF ;……………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学调研试卷2016.05
一.选择题
1、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()
A.B.C.D.
2、下列方程是一元二次方程的是()
A.3x2+=0 B.2x﹣3y+1=0 C.(x﹣3)(x﹣2)=x2D.(3x﹣1)(3x+1)=3
3、如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()
A.不变 B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的
4、若反比例函数的图像经过(1, —6),则它不经过( )
A.(2, —3) B.(—3, 2) C.(1, 6) D.(1.5, —4)
5、下列说法正确的是()
A.四条边都相等的四边形是矩形
B.菱形的对角线相等
C.对角线互相垂直的平行四边形是正方形
D.对角线相等且互相平分的四边形是矩形
6、关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.
7、不解方程,判别方程2x2﹣3x=3的根的情况()
A.有两个相等的实数根B.有两个不相等的实数根
C.有一个实数根D.无实数根
8、关于x的方程=1的解是正数,则a的取值范围是()
A.a>﹣1 B.a>﹣1且a≠0 C.a<﹣1 D.a<﹣1且a≠﹣2
二、填空题
9、将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是.
10、在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=100°,则∠OAB=.
11、如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD 的周长是.
12、2016年扬州体育中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学
生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 位体前屈13、已知(m ﹣1)x ﹣3x+1=0是关于x 的一元二次方程,则m= .
14、已知反比例函数y=
的图象,在同一象限内y 随x 的增大而减小,则n 的取值范围
是 .
15、反比例函数y= —,当y 的值小于—3时,x 的取值范围是 .
16、如图,在平面直角坐标系中,点A 是函数y=(k <0,x <0)图象上的点,过点A 与y 轴垂直的直线交y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD .若四边形ABCD 的面积为3,则k 值为 .
17、已知16)2-b (a 222=+,则a 2+b 2= .
18、在平面直角坐标系中,正方形ABCD 如图摆放,点A 的坐标为(﹣1,0),点B 的坐标为(0,2),点D 在反比例函数y=(k <0)图象上,将正方形沿x 轴正方向平移m 个单位长度后,点C 恰好落在该函数图象上,则m 的值是 .
三、解答题
19、(20分)解方程:(1)x 2
+4x ﹣1=0.
(2)2x 2﹣3x ﹣3=0(配方法)
(3)2x 2﹣7x+3=0
(4)x (x ﹣3)=x ﹣3.
20、(8分)“低碳环保,你我同行”.两年来,扬州市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:A .每天都用;B .经常使用;C .偶尔使用;D .从未使用.将这次调查情况整理并绘制如下两幅统计图如图2:
根据图中的信息,解答下列问题:
(1)本次活动共有位市民参与调查;
(2)补全条形统计图和扇形统计图;
(3)扇形统计图中A项所对应的圆心角的度数为
(4)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?
21、(10分)已知y=y1+y2,其中y1与x成正比例,y2与(x﹣2)成反比例.当x=1时,y=2;x=3时,y=10.求:
(1)y与x的函数关系式;
(2)当x=﹣1时,y的值.
22、(10分)已知x=﹣1是方程x2+mx﹣5=0的一个根,求m的值及方程的另一个根.
23、(10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;
(2)求证:四边形EBFD是平行四边形.
24、(10分)观察下列一元二次方程,并回答问题:
第1个方程:x2+x=0;
第2个方程:x2﹣1=0;
第3个方程:x2﹣x﹣2=0;
第4个方程:x2﹣2x﹣3=0;

(1)第2015个方程是;
(2)直接写出第n个方程,并求出第n个方程的解;
(3)说出这列一元二次方程的解的一个共同特点.
25、(14分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):
(1)求出线段AB,曲线CD的解析式,并写出自变量的取值范围
(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
26、(14分)如图,直线y1=x+2与双曲线y2=交于A(a,4),B(m,n).
(1)求k值和点B的坐标;
(2)求△AOB的面积
(3)当y1>y2时请直接写出x的取值范围;
(4)P为x轴上任意一点,当△ABP为直角三角形时,直接写出P点坐标.
1、C
2、D
3、C
4、C
5、D
6、B
7、B
8、D
9、2 10、40 11、20 12、14 13、-1 14、n >﹣3 15、0< x <1 16、﹣3 17、6 18、1
19、(1), (2)
x 1=,x 2=
(3)
(4)x 1=3,x 2=1
20、(1)200.
(2)条形统计图和扇形统计图如图所示:
(3)18°.
(4)46×5%=2.3(万人).
21、(1)2
-x 1x 3y +=
(2)3
10- 22、m=﹣4;方程的另一根是5
23、略
24、(1)第2015个方程是:x 2
﹣2013x ﹣2014=0;
(2)第n 个方程是:x 2﹣(n ﹣2)x ﹣(n ﹣1)=0,
解得,x 1=﹣1,x 2=n ﹣1;
(3)这列一元二次方程的解的一个共同特点是:有一根是﹣1. 25、(1)AB :y=2x+20 CD :x
1000y = (2)第30分钟注意力更集中
(3)能
26、(1)k=8;(-4,-2)
(2)﹣4<x <0或x >2;
(3)(6,0),(﹣6,0),(﹣1+
,0),(﹣1﹣).。

相关文档
最新文档