考研数学-大连理工大学2009年考研试题 数学分析

合集下载

2009考研数学(二)真题及参考答案

2009考研数学(二)真题及参考答案

2009年研究生入学统一考试数学二试题与解析一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为1 ()f x -2 0 2 3x-1O则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . (10)已知+1k xe dx ∞=-∞⎰,则k = .(11)1n lime sin x nxdx -→∞=⎰.(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .(13)函数2x y x =在区间(]01,上的最小值为 .(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,则T =βα .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.(16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂.(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式. (21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3s i n x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C . 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排D .所以本题选A.(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.【答案】 D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂ 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂又在(0,0)处,0,0z zx y∂∂==∂∂ 210AC B -=>故(0,0)为函数(,)z f x y =的一个极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-将其写成一块{}(,)12,14D x y y x y =≤≤≤≤- 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C.(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.【答案】 B【解析】由题意可知,()f x 是一个凸函数,即''()0f x <,且在点(1,1)处的曲率322|''|12(1('))y y ρ==+,而'(1)1f =-,由此可得,''(1)2f =-在[1,2] 上,'()'(1)10f x f ≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)'()1(1,2)f f f ζζ-=<- , ∈ , (拉格朗日中值定理)(2)0f ∴ <而 (1)10f =>由零点定理知,在[1,2] 上,()f x 有零点. 故应选(B ). (6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为( )1 ()f x -2 0 2 3x-1O()A .()B .()C .()D .【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11【答案】 B【解析】根据CC C E *=若111,C C C CC C*--*==分块矩阵00A B ⎛⎫⎪⎝⎭的行列式22012360A AB B⨯=-=⨯=()即分块矩阵可逆 111100066000100B BA A AB B BBAA A**---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10023613002BB AA ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭【答案】 A【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即:12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT T Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . 【答案】2y x =【解析】221222ln(2)22t dy t t t t dt t ==--⋅=--2(1)1(1)1t t dxe dt --==⋅-=- 所以 2dy dx= 所以 切线方程为2y x =.(10)已知+1k xe dx ∞=-∞⎰,则k = .【答案】2-【解析】1122lim bk xkxkxb e dx e dx e k +∞+∞-∞→+∞===⎰⎰因为极限存在所以0k <210k=-2k =-(11)1n lime sin x nxdx -→∞=⎰.【答案】0【解析】令sin sin cos x x xn I e nxdx e nx n e nxdx ---==-+⎰⎰2sin cos x xn e nx nenx n I --=---所以2cos sin 1xn n nx nx I e C n -+=-++即11020cos sin lim sin lim()1xx n n n nx nx e nxdx e n --→∞→∞+=-+⎰ 122cos sin lim()110n n n n ne n n -→∞+=-+++= (12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .【答案】3-【解析】对方程xy 1y e x +=+两边关于x 求导有''1y y xy y e ++=,得'1yyy x e -=+ 对''1y y xy y e ++=再次求导可得''''''22()0y y y xy y e y e +++=,得''2''2()yyy y e y x e +=-+ (*)当0x =时,0y =,'(0)0101y e -==,代入(*)得 ''20''032(0)((0))(0)(21)3(0)y y e y e +=-=-+=-+(13)函数2x y x =在区间(]01,上的最小值为 . 【答案】2ee-【解析】因为()22ln 2xy xx '=+,令0y '=得驻点为1x e =.又()22222ln 2xxy x x x x ''=++⋅,得21120e y e e -+⎛⎫''=> ⎪⎝⎭,故1x e=为2xy x =的极小值点,此时2e y e -=,又当10,x e ⎛⎫∈ ⎪⎝⎭时,()0y x '<;1,1x e ⎛⎤∈ ⎥⎝⎦时,()0y x '>,故y 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,1e ⎛⎫ ⎪⎝⎭上递增.而()11y =,()()002022ln limlim11lim 222ln 00lim lim 1x x x xx x xx xxx x x y x e eee++→→+→++--+→→======,所以2xy x =在区间(]01,上的最小值为21ey e e -⎛⎫= ⎪⎝⎭.(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫ ⎪⎪ ⎪⎝⎭,则T =βα .【答案】2【解析】因为T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到T αβ得特征值是2,0,0而T βα是一个常数,是矩阵T αβ的对角元素之和,则T 2002βα=++=三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.【解析】()[][]244001ln(1tan )1cos ln(1tan )2lim limsin sin x x x x x x x x x x→→-+--+= 22201ln(1tan )lim 2sin sin x x x x x x→-+=201ln(1tan )1lim 2sin 4x x x x →-+== (16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. 【解析】 令1x t x+=得22212,1(1)tdtx dx t t -= =-- 22211ln(1)ln(1)1ln(1)11111x dx t d x t t dt t t t ++=+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以221ln(1)111ln(1)ln 1412(1)111ln(1)ln(1)2211111ln(1)ln(1)222x t t dx C x t t t x xx x x C x x x x x x x x x x C x ++++=+-+--++=++++-++++=+++++-++⎰ (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2zx y∂∂∂.【解析】123123zf f yf x zf f xf y∂'''=++∂∂'''=-+∂1231232111213212223331323331122331323()()1(1)1(1)[1(1)]()()z z dz dx dy x yf f yf dx f f xf dyzf f f x f f f x f y f f f x x yf f f xyf x y f x y f ∂∂∴=+∂∂''''''=+++-+∂'''''''''''''''''''=⋅+⋅-+⋅+⋅+⋅-+⋅++⋅+⋅-+⋅∂∂'''''''''''=+-++++-(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. 【解析】解微分方程20xy y '''-+=得其通解212122,y C x C x C C =++其中,为任意常数又因为()y y x =通过原点时与直线1x =及0y =围成平面区域的面积为2,于是可得10C =1112232220002()(2)()133C C y x dx x C x dx x x ==+=+=+⎰⎰从而23C =于是,所求非负函数223(0)y x x x =+ ≥又由223y x x =+ 可得,在第一象限曲线()y f x =表示为1131)3x y =+-(于是D 围绕y 轴旋转所得旋转体的体积为15V V π=-,其中552210051(131)9(23213)93918V x dy y dyy y dy ππππ==⋅+-=+-+=⎰⎰⎰395117518186V ππππ=-==. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰ 3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.【解析】由题意,当0x π-<<时,'xy y =-,即ydy xdx =-,得22y x c =-+, 又()22y ππ-=代入22y x c =-+得2c π=,从而有222x y π+=当0x π≤<时,''0y y x ++=得 ''0y y += 的通解为*12cos sin y c x c x =+ 令解为1y Ax b =+,则有00Ax b x +++=,得1,0A b =-=, 故1y x =-,得''0y y x ++=的通解为12cos sin y c x c x x =+- 由于()y y x =是(,)ππ-内的光滑曲线,故y 在0x =处连续于是由1(0),(0)y y c π-=± += ,故1c π=±时,()y y x =在0x =处连续 又当 0x π-<<时,有22'0x y y +⋅=,得'(0)0xy y-=-=, 当0x π≤<时,有12'sin cos 1y c x c x =-+-,得2'(0)1y c +=- 由'(0)'(0)y y -+=得210c -=,即 21c =故 ()y y x =的表达式为22,0cos sin ,0x x y x x x x ππππ⎧⎪-- -<<=⎨-+-≤<⎪⎩或22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩,又过点,22ππ⎛⎫- ⎪⎝⎭,所以22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足;在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'()(0)x f x f fx ξ-=-……()* 又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====- 故'(0)f +存在,且'(0)f A +=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫ ⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫⎪⎛⎫ ⎪⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)222210k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. 【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.。

2009年考研数学试题详解及评分参考

2009年考研数学试题详解及评分参考

=
lim
n®0
an2
|
bn
|=
0
,
2009 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2009 年数学试题详解及评分参考
¥
å 于是根据正项级数比较判别法的极限形式,知 an2bn2 收敛,因此应选 (C) .
n=1
注:取 an = bn = (-1)n
1 n
,可排除(A)和(D);取 an
F ¢(x) = 0 ,即 F (x) 恒为常数. 再结合 F (x) 的连续性,即知选项(D)是正确的.
(4)
设有两个数列 {an } , {bn } ,

lim
n®¥
an
= 0 ,则
¥
¥
å å (A) 当 bn 收敛时, anbn 收敛.
n=1
n=1
¥
¥
å å (B) 当 bn 发散时, anbn 发散.
a)x
+
a3 6
x3
- o(x3)

g(x) = x2 ln(1- bx) = x2[(-bx) + o(x)] = -bx3 + o(x3) ,
因此有 lim x®0
(1 -
a)x
+
a3 6
x3
- o(x3)
-bx3 + o(x3 )
=
1 ,于是1-
a
=
0
,且
1 6
a3
=
-b
,即
a
=
1 ,b
=
-
1 6
= 6A-1
=
6
A* A
= 3A*, X4
=

大连理工数学分析试题及解答Word版

大连理工数学分析试题及解答Word版

大连理工数学分析试题及解答Word版2000年大连理工大学硕士生入学考试试题——数学分析一、从以下的第一到第八题中选取6题解答,每题10分1.证明:1()f x x=于区间0(,1)δ(其中001δ<<)一致连续,但是于(0,1)内不一致连续证明:01212(1)0,()[1]2(2)1||()|()()|f x x x f x f x δδδδεδδε<=<-<而由于在,内连续,从而一致连续,第一个命题成立利用定义,取,不存在为定值使得从而不难利用反证法得到第二个命题成立2.证明:若()[,]f x a b 于单调,则()[,]f x a b Riemann 于内可积证明:1101111111111()...[,],max 0(max {()}min {()})(()())(max{()()})(max{()()})i ii in i i i i i nnni i i i i i x x x x x x i ni i i i i nf x a x x x b a b x x f x f x f x f x f x f x f x f x λλλλλλ---≤≤--≤≤≤≤≤≤==-≤≤?=<<<==-=→-=-<--∑∑不妨设单调递增,且:是的一个划分,必然存在一个划分,使得11111(max{()()})lim (max {()}min {()})0i ii i i nni x x x x x x i f x f x f x f x λ---≤≤?≤≤≤≤=→--=∑(由于递增,使用二分法的思想,可以使得小于任何数)所以,,所以可积3.证明:Dirichlet 函数:0,()1,()x f x px q q ??=?=??为无理数有理数在所有无理点连续,在有理点间断,证明:0001000000()010[]1min{||}1(,),|()|()0{,{}},()n N i Zi i x f x iN x n x x x f x Nx f x x y y f x εδδεεεε+≤≤∈=?>=+=-∈-+≤<≠∈为无理数,对于,,取,显然这样的存在当所以,在无理点连续为有理数,。

2009年全国硕士研究生入学统一考试数学一真题及答案

2009年全国硕士研究生入学统一考试数学一真题及答案
在本题中,
当 时,
当 时,
因此函数 仅在 处间断,故选(B).
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)设函数 具有二阶连续偏导数, ,则 .
【答案】
【考点】多元函数的偏导数
【难易度】★★
【详解】本题涉及到的主要知识点:
利用复合函数的链式求导法则求多元函数的偏导数的方法。
在本题中,

(10)若二阶常系数线性齐次微分方程 的通解为 ,则非齐次方程 满足条件 的解为 .
【答案】
【考点】简单的二阶常系数非齐次线性微分方程
【难易度】★★
【详解】本题涉及到的主要知识点:
线性微分方程的解的性质即叠加原理,线性微分方程通解的结构为齐次方程的通解加上特解。
在本题中,
由通解表达式 该二阶线性常系数齐次方程的特征值为 ,于是特征方程为

而在 上, 有连续的一阶偏导数且 ,于是
(在 : 上用高斯公式)
(20)(本题满分11分)
设 , .
(Ⅰ)求满足 的 . 的所有向量 , .
(Ⅱ)对(Ⅰ)中的任意向量 , 证明 , , 线性无关.
【考点】向量组的线性无关,非齐次线性方程组的通解
【难易度】★★★
【详解】本题涉及到的主要知识点:
非齐次线性微分方程的解的性质即叠加原理,非齐次线性微分方程通解的结构为齐次方程的通解加上特解。
收敛级数的和的概念, 称为无穷级数 的前n项的部分和。若部分和数列 的极限存在,即 ,则称级数 收敛。当级数收敛时,其和 。
在本题中,
(Ⅰ)先求 .易求得 与 的交点为 , ,于是曲线 与 所围成区域的面积为
(Ⅱ)按定义求
(Ⅲ)求 .

考研数学一真题解析 2009

考研数学一真题解析 2009

2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当时,与等价无穷小,则(A) (B)(C)(D) 【考点分析】:等价无穷小,洛必达法则,泰勒公式 【求解过程】:⏹ 方法一:利用洛必达法则和等价无穷小0x →时,ln(1)~bx bx --2320000()sin sin 1cos limlim lim lim 1()ln(1)3x x x x f x x ax x ax a axJ g x x bx bx bx→→→→---=====--- 1a ⇒=否则,J =∞⇒2220011cos 12lim lim 1336x x x x J bx bx b→→-====---16b ⇒=-。

选A ⏹ 方法二:利用泰勒公式或者三角函数的幂级数展开式 由三角函数的幂级数展开式:357111sin 3!5!7x x x x x =-+-+ 所以,3331sin ()(0)6ax ax a x o x x =-+→ 由泰勒公式:3331sin ()(0)6ax ax a x o x x =-+→332301(1)()sin 6lim 1ln(1)x a x x o x x ax J x bx bx →-++-⇒===-- 1a ⇒=,否则J =∞⇒116J b ==-16b ⇒=-。

选A(2)如图,正方形{(,)|1,1}x y x y ≤≤被其对角线划分为四个区域(1,2,3,4)k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)(B)(C)(D)0x →()sin f x x ax =-()()2ln 1g x x bx =-11,6a b ==-11,6a b ==11,6a b =-=-11,6a b =-=1I 2I 3I 4I【考点分析】:利用对称性化简二重积分,二重积分的估值 【求解过程】:1234111222331444(,)cos ,cos ,(,)0,0cos ,(,)0,cos ,(,)0,0cos ,(,)0,A D D D D f x y y x I y xdxdy D f x y I I y xdxdy D x f x y y I I y xdxdy D f x y I I y xdxdy D x f x y y I ==≥≥===≤≤==⎰⎰⎰⎰⎰⎰⎰⎰记在上则,关于轴对称,且关于为奇函数,则在上则,关于轴对称,且关于为奇函数,则所以选择。

大连理工大学2009年数学分析考研试题

大连理工大学2009年数学分析考研试题

大连理工大学2009年研究生入学考试数学分析试题一、解答下列问题。

1、 判断下列数列是否收敛222111123n ++++…… 2、 设{}n a1=1= 3、 判断下列函数是否一致连续()1cos n f x e x ⎛⎫= ⎪⎝⎭,(]0,1x ∈ 4、 设,y u f xy x ⎛⎫= ⎪⎝⎭,求:22u x ∂∂,2u x y ∂∂∂ 5、 已知:()f a 存在,求()()lim x a xf a af x x a→-- 6、 设()f x 在[],a b 上可导,且()f a =()f b ,证明:存在(),a b ξ∈,使得()()()22f f a f ξξξ-=7、 求极限()2lim ln n x x x →∞8、 求下列函数的Fourior 级数展开(),0,0x x f x x x ππππ+≤<⎧=⎨+≤≤⎩9、 求())1f x x =-在(),-∞+∞上的极值 10、 设V 是由平面0,0,0x y z ===和1x y z ++=所围成的区域,求2V z dxdydz ⎰⎰⎰完成下列各题。

一、设定义在(),-∞+∞上的()f x 满足:对任意的()0,x ∈-∞+∞,都存在0δ>,使得()()0f x f x ≥,()00,x x x δδ∈-+,证明存在一个区域I 使得()f x 在I 上是一个常数。

二、设()f x 是[],a b 上具有连续的导数,()0a b <<,()()0f a f b ==,()21b a f x dx =⎰,证明()()22'14ba x f x dx >⎰ 三、给定函数列()()()2,3,n xx Inx f x n n α==…试问当α取何值时,(){}n f x 在[0,)+∞上一致连续。

四、设()f x 是[]1,1-上连续,若有()()121100,1,2n x f x dx n +-==⎰,求证()f x 是偶函数。

大连理工大学(已有10试题)

大连理工大学(已有10试题)

大连理工大学应用数学系数学分析2001——2005,2009(2005有答案)高等代数2000——2005、2007(2005有答案)物理系数学物理方法2000——2005量子力学2000,2002——2005热力学与统计物理2000,2002——2005电动力学2000,2002——2005普通物理2000——2005光学(几何光学与波动光学)2000晶体管原理2000半导体材料2004——2005半导体器件2004——2005半导体物理2001——2002,2004——2005神经科学基础2004——2005生物统计学2004——2005生物物理学2004——2005工程光学2005微电子技术2003——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005模拟电子技术2001——2005工程力学系材料力学1999——2001,2003——2005,2010(2010为回忆版)理论力学1995,1999——2001,2003——2005理论力学(土)2000土力学1999——2005自动控制原理(含现代20%) 1999——2005杆系结构静力学1998,2000弹性力学(不含板壳)1999——2004流体力学1999——2005流体力学(土)2004——2005流体力学基础2002——2005岩石力学1999——2000钢筋混凝土结构1999——2000工程流体力学2001,2004——2005水力学1999——2000,2002,2004——2005机械工程学院机械设计2001——2005(2001——2005有答案)机械原理1999——2000,2003——2005画法几何及机械制图2003——2005控制工程基础2001,2003——2005微机原理及应用(8086)1999——2000微机原理及应用(机)2004——2005微机接口与通讯及程序设计1999——2000模拟电子技术2001——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005过程控制(含计算机控制)2000杆系结构静力学1998,2000微电子技术2003——2005系统工程概论1999——2002晶体管原理2000系统工程概论1999——2005管理基础知识1999——2001,2003——2005(2003——2005有答案)计算机组成原理(软)2005管理学基础2004——2005(2004——2005有答案)管理学2010(回忆版)材料力学1999——2001,2003——2005,2010(2010为回忆版)自动控制原理(含现代20%) 1999——2005材料科学与工程学院材料科学基础2003——2005,2010(2010为回忆版)机械设计2001——2005(2001——2005有答案)模拟电子技术2001——2005微电子技术2003——2005物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)胶凝材料学2001——2005硅酸盐物理化学2001——2002,2005杆系结构静力学1998,2000金属学2000金属热处理原理2000金属材料学2000钢筋混凝土结构1999——2000晶体管原理2000土木水利学院材料力学(土)2000,2003——2005材料力学1999——2001,2003——2005,2010(2010为回忆版)土力学1999——2005结构力学2000——2001,2003——2005水力学1999——2000,2002,2004——2005杆系结构静力学1998,2000理论力学(土)2000弹性力学(不含板壳)1999——2004流体力学1999——2005流体力学(土)2004——2005流体力学基础2002——2005岩石力学1999——2000钢筋混凝土结构1999——2000工程流体力学2001,2004——2005系统工程概论1999——2005工程经济学2004——2005无机化学2003——2005传热学2002,2004——2005工程力学2004——2005工程项目管理2004——2005建筑材料2005工程热力学2001——2002,2004——2005热工基础(含工程热力学和传热学)2003化工学院无机化学2003——2005物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)有机化学及实验2001,2003——2005高分子化学及物理2002——2005化工原理及化工原理实验2001——2005材料力学1999——2001,2003——2005,2010(2010为回忆版)工程流体力学2001,2004——2005硅酸盐物理化学2001——2002,2005热力学基础2005天然药物化学2005药剂学2005生物化学及生物化学实验1999——2005船舶工程学院船舶动力装置2002——2005船舶设计原理2001——2005水声学原理2002——2005船舶静力学2001——2005杆系结构静力学1998,2000电子与信息工程学院模拟电子技术2001——2005信号与系统(含随机信号20%)1999——2005 自动控制原理(含现代20%) 1999——2005工程光学2005通信原理2004——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005离散数学与计算机组成原理2005离散数学与数据库原理2004——2005数据结构与计算机组成原理2004——2005计算机组成原理与计算机体系结构2004——2005 计算机组成原理与数字逻辑2000计算机组成原理(软)2005编译方法1999——2000操作系统1999——2001高等代数2000——2005过程控制(含计算机控制)2000微电子技术2003——2005微机接口与通讯及程序设计1999——2000系统工程概论1999——2005晶体管原理2000能源与动力学院汽车理论2000——2005机械原理1999——2000,2003——2005自动控制原理(含现代20%) 1999——2005化工原理及化工原理实验2001——2005普通物理2000高等代数2000——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005运筹学基础及应用2004——2005计算机信息管理1999——2001,2004——2005 微电子技术2003——2005杆系结构静力学1998,2000系统工程概论1999——2005晶体管原理2000信息管理与信息系统2010(回忆版)管理学院计算机信息管理1999——2001,2004——2005 运筹学基础及应用2004——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005公共经济学基础2004——2005,2010(2010为回忆版)过程控制(含计算机控制)2000微电子技术2003——2005系统工程概论1999——2002政治学原理2004——2005行政管理学2004——2005,2010(2010为回忆版)经济学基础2001——2005(2001——2005有答案)运筹学基础及应用2004——2005公共管理学2005社会保障学2004——2005管理学2010(回忆版)信息管理与信息系统2010(回忆版)人文社会科学学院经济学基础2001——2005(2001——2005有答案)管理基础知识1999——2001,2003——2005(2003——2005有答案)管理学基础2004——2005(2004——2005有答案)管理学2010(回忆版)系统工程概论1999——2002现代科学技术基础知识1999——2000,2004——2005思想政治教育学2004——2005马克思主义哲学原理2004——2005马克思主义哲学2001——2002西方哲学史2005哲学概论2004——2005科学技术史(含命题作文)2004——2005科学史、技术史、命题作文2001——2003政治学原理2004——2005行政管理学2004——2005,2010(2010为回忆版)传播学2004——2005新闻传播实务2004——2005民法学2004——2005法理学与商法总论2004——2005政治学2004——2005中外教育史2004——2005教育学2005中国近现代史2004——2005世界近现代史2004——2005电气工程及应用电子技术系电路理论2002——2005自动控制原理(含现代20%) 1999——2005过程控制(含计算机控制)2000微电子技术2003——2005系统工程概论1999——2005晶体管原理2000外国语学院二外德语2002,2004二外俄语2002——2004二外法语2004——2005二外日语2002——2004专业基础英语2003英汉翻译2003,2005英汉翻译与写作2004英语水平测试2004——2005二外英语2002——2005日语水平测试2004——2005翻译与写作(日)2004——2005专业基础日语2002——2003外国语言学与应用语言学(日语)专业综合能力测试2002——2003体育教学部运动生物力学2005人体测量与评价2004——2005生物学基础2005体质学2004——2005建筑艺术学院建筑设计(8小时)2000,2004——2005建筑设计原理1999——2000,2003建筑设计理论综合2004——2005城市建设史2002——2003中国与外国建筑史2000建筑构造与建筑结构1999——2000城市规划历史与理论2004——2005城市规划原理2003城市设计2002规划设计(8小时)2004-2005素描(8小时)2005泥塑(8小时)2005色彩(4小时)2005软件学院离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005离散数学与计算机组成原理2005离散数学与数据库原理2004——2005数据结构与计算机组成原理2004——2005计算机组成原理与计算机体系结构2004——2005计算机组成原理与数字逻辑2000计算机组成原理(软)2005编译方法1999——2000操作系统1999——2001环境与生命学院物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)化工原理及化工原理实验2001——2005硅酸盐物理化学2001——2002,2005基因工程原理2004——2005微生物学2004——2005细胞生物学2005环境化学2004——2005环境工程原理2004——2005,2010(2010为回忆版)分子遗传学2004——2005环境微生物2002经济系经济学基础2001——2005(2001——2005有答案)公共经济学基础2004——2005,2010(2010为回忆版)高科技研究院数学分析2001——2005,2009(2005有答案)高等代数2000——2005数学物理方法2000——2005量子力学2000,2002——2005热力学与统计物理2000,2002——2005电动力学2000,2002——2005物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)硅酸盐物理化学2001——2002,2005微电子技术2003——2005。

大连理工大学数学分析考试题

大连理工大学数学分析考试题

µÎ inf Å
n≥1 xn
> 0.
§
¦
lim sup 16. xn yn
Ô¤§ ¦
n→∞
n→∞
xn+1 ≥ 1. xn
(1) lim inf xn lim inf yn ≤ lim inf (xn yn ) ≤ lim inf xn lim sup yn .
n→∞ n→∞ n→∞ n→∞
3
(2) lim inf xn lim sup yn ≤ lim sup(xn yn ) ≤ lim sup xn lim sup yn . 17. 18. xn > xn+k . xn > 0, xn
§¦
b > a, f (x)
(1) lim 4n (1 − an ); (2) lim (a1 . . . an ).
n→∞
Å
15. (HOMEWORK)
¤­ ¥
f (x)
Ë (a, +∞) ŵÀ¤¥¹
n→∞
¶Ë (a, b)
¦
§4
f (x + 1) − f (x) = e. x→∞ xn lim e f (x) . = n +1 →∞ x n+1 lim
20.
{xn }
§ ¦ ˽ º ¿« n, x < x , k = 1, . . . , n . Å Ô¤­¥ lim(x − x ) = 0.a = lim inf x , b = lim sup x . ³Å © © Ì [a, b].
n+1
4
ß ¡ ­ ¥Ëµ f (x) Ë x ¬ ×Ê Å
(iii) an > 0,
¦

考研数学2009真题及分析

考研数学2009真题及分析

2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。

(1)当0x 时,()sin fxxax 与2()ln(1)gxxbx 等价无穷小,则()(A )11,6ab (B )11,6ab (C )11,6ab (D )11,6ab 【解析与点评】考点:无穷小量比阶的概念与极限运算法则。

参见水木艾迪考研数学春季基础班教材《考研数学通用辅导讲义》(秦华大学出版社)例 4.67,强化班教材《大学数学强化 299》16、17 等例题。

【答案】A22220000sinsin1cossin limlimlimlim ln(1)()36xxxx xaxxaxaxaax xbxxbxbxbx230sin lim166.x aaxa b b axa 36ab 意味选项B ,C 错误。

再由201cos lim 3x aax bx存在,故有1cos0(0)aaxx ,故a=1,D 错误,所以选A 。

(2)如图,正方形{(,)|||1,||1}xyxy 被其对角线划分为四个区域,(1,2,3,4),cos KKKD DkIyxdxdy,则14max{}KK I =()【解析与点评】本题利用二重积分区域的对称性及被积函数的奇偶性。

对称性与轮换对称性在几分钟的应用是水木艾迪考研数学重点打造的技巧之一。

参见水木艾迪考研数学春季班教材《考研数学通用辅导讲义----微积分》例 12.3、12.14、12.16、12.17,强化班教材《大学数学同步强化 299》117 题,以及《考研数学三十六技》例 18-4。

24,DD 关于x 轴对称,而cos yx 即被积函数是关于y 的奇函数,所以2413;,IIDD 两区域关于y 轴对称,cos()cos yxyx即被积函数是关于x 的偶函数,由积分的保号性,13{(,)|,01}{(,)|,01}2cos0,2cos0xyyxxxyyxx IyxdxdyIyxdxdy,所以正确答案为A 。

大连理工大学化工原理2009年考研试题

大连理工大学化工原理2009年考研试题

大连理工大学2009年考研真题及答案一.(40)填空1.推导离心泵基本方程式的两个基本假定是:(1)叶片数目无限多,且无厚度。

P98(2)液体为理想流体,可以不考虑叶轮内运动过程中的能量损失。

2.正位移泵有往复式,转动式;其流量调节采用回流支路或旁路调节法。

P127-1293.多级压缩时,采用各级压缩比相等;原因是所需的总功最小。

P1504.欲高效分离气体中粉尘,当处理量很大时,常采用较小直径旋风分离器组,原因是 为了维持较高的除尘效果。

因为气体速度与进气口宽度及高度呈反比,故临界直径随分离器尺寸增大而增大。

P1835.液体沸腾由核状沸腾变为膜状沸腾时,壁温升高;传热性能下降。

6.某板框压滤机,恒压过滤1小时得到滤液103m ,停止过滤用32m 清水采用横穿法洗涤(清水粘度与滤液粘度相同),为得到最大生产能力,辅助时间应控制在2.6小时(过滤介质阻力忽略不计)。

7.A 材料热导率大于B 材料热导率,且A,B 厚度相同,对于平壁保温A 材料放在内层效果好(参照教材P243);对于圆筒壁保温B 材料放在内层效果好(参照化工原理学习指导P201)。

8.现设计一连续精馏塔,现保持塔顶组成D x 和塔底组成W x 不变,若采用较大的回流比,则理论塔板数将减少,而加热蒸汽的消耗量将增加;若进料中组成变轻,则进料位臵应 能适宜提高以维持D x 、W x 不变;若将进料物流焓增大,则理论板数将增多,塔底再沸器热负荷将减少。

9.若逆流低浓度气体吸收填料塔的填料层高度可无限增加,则当吸收因子1>A 时,在塔 顶 端气相组成趋向极限组成是222mx y y e ==;当1<A 时,则塔底端液相组成趋向极限组成是m y x x e /111==。

10.对不饱和湿空气加热升温,则湿球温度将升高,相对湿度将减小。

露点温度将 维持不变,空气的湿度将维持不变11.在萃取计算中,物系中溶质A 在两相中的的分配系数可表示为A A A x y k /=。

2009大连理工大学数学分析

2009大连理工大学数学分析
性无关组。 7、已知 r ( A) = 1 ,证明:存在数 k ,使得 A2 = kA 8、设 A = (aij )n×n ,且对于 ∀i, j ,有 aij ≤ k ,设 Am = (bij ) n×n ,证明对于 ∀i, j ,有
bij ≤ n m −1k m 。
9、设 A, B 为复数域上的 n 阶矩阵,且 AB = BA 求证: A 与 B 具有相同的特征
大连理工大学 09 年专业课高等代数 年专业课高等代数
1、 设多项式
f (x) = x2s+1 + x2t+1 +a
,讨论 f ( x) 的实根个数.
s, t 均为正整数。 均为正整数。
2、 实系数多项式 f ( x) = x 4 − 6 x3 + ax 2 + bx + 2 有 4 个实根, 个实根,证明: 证明:至少有一个根 小于 1 3、 证明: 证明: f ' ( x) | f ( x) 的充要条件是 f ( x) 可以表示成 f ( x) = k ( x − a )n 4、 证明下面的行列式: 证明下面的行列式:
βTc = 0
12、 证明 ai xi = 0 与 bi xi = 0 同解的充分必要条件是系数对应成比例。
i =1 i =1 n n
6 , 已 知 α1 , α 2 , α 3 为 α1 , α 2 LL , α n 的 极 大 线 性 无 关 组 , 且 α1 = β1 + β 2 + β3 ,
α 2 = β1 + 2β 2 + β3 ,α 3 = β1 + 2β 2 + 3β3 ,求证 β1 , β 2 , β3 也为 α1 , α 2 LL , α n 的极大线

大连理工大学数值分析历年真题与答案(研究生期末卷)

大连理工大学数值分析历年真题与答案(研究生期末卷)


. ,
A 2=
4 2 (3)设 A 2 4 , 则 A 1= 谱半径 ( A) =
,
A =
,
A F=
, .
, 2-条件数 cond 2 ( A) =
, 奇异值为
线
(4)设 A C 44 ,特征值 1 2 2, 3 4 3 ,特征值 2 是半单的,而特征值 3 是 亏损的,则 A 的 Jordan 标准型 J
x 3 ( x [1,1]) 的二次最佳平方逼近多项式, 构造 Gauss 型求积公式 f ( x )dx A0 f ( x0 ) A1 f ( x1 ) , 并验证
1
1
其代数精度.
A-3


理 工
计算方法 数学系

学 2006 年试题
试卷: A 考试形式: 闭卷 试卷共 8 页
A-5
1 3 四、 (4 分)求 Householder 变换矩阵将向量 x 2 化为向量 y 0 . 2 0
五、 (12 分)写出解线性方程组的 Jacobi 法,G-S 法和超松弛(SOR)法的矩阵表示形式, 并根据迭代法 x ( k 1) Bx ( k ) f 对任意 x ( 0) 和 f 均收敛的充要条件为 ( B) 1 , 证明若线性方 程组 Ax b 中的 A 为严格对角占优矩阵, 则超松弛(SOR)法当松弛因子 (0,1] 时收敛.
师:张宏伟
一、填空(每一空 2 分,共 42 分) 1.为了减少运算次数,应将表达式.

16 x 5 17 x 4 18 x 3 14 x 2 13 x 1 x 4 16 x 2 8 x 1

2009考研数学一真题及答案解析

2009考研数学一真题及答案解析

2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则 (A)11,6a b ==- (B)11,6a b == (C)11,6a b =-=- (D)11,6a b =-= (2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)1I (B)2I (C)3I (D)4I(3)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为(A)(B)(C)(D)(4)设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则(A)当1n n b ∞=∑收敛时,1n n n a b ∞=∑收敛.(B)当1n n b ∞=∑发散时,1n n n a b ∞=∑发散.(C)当1n n b ∞=∑收敛时,221n n n a b ∞=∑收敛.(D)当1n n b ∞=∑发散时,221n n n a b ∞=∑发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基122331,,+++αααααα的过渡矩阵为(A)101220033⎛⎫⎪⎪ ⎪⎝⎭(B)120023103⎛⎫⎪⎪ ⎪⎝⎭(C)111246111246111246⎛⎫- ⎪ ⎪ ⎪-⎪ ⎪ ⎪- ⎪⎝⎭(D)111222111444111666⎛⎫-⎪ ⎪⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3==A B ,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为(A)**32O B A O ⎛⎫ ⎪⎝⎭(B)**23OB A O ⎛⎫⎪⎝⎭(C)**32O A BO ⎛⎫ ⎪⎝⎭(D)**23OA B O ⎛⎫⎪⎝⎭(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX =(A)0 (B)0.3(C)0.7 (D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为(A)0 (B)1 (C)2 (D)3二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ . (10)若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12e x y C C x =+,则非齐次方程y ay by x '''++=满足条件()()02,00y y '==的解为y = .(11)已知曲线(2:0L y x x =≤≤,则L xds =⎰ . (12)设(){}222,,1x y z x y z Ω=++≤,则2z dxdydz Ω=⎰⎰⎰ .(13)若3维列向量,αβ满足2T =αβ,其中T α为α的转置,则矩阵Tβα的非零特征值为 .(14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(本题满分9分)设n a 为曲线n y x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ∞∞-====∑∑,求1S 与2S 的值.(17)(本题满分11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成.(1)求1S 及2S 的方程. (2)求1S 与2S 之间的立体体积.(18)(本题满分11分)(1)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-.(2)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=(19)(本题满分10分)计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=∑++⎰⎰,其中∑是曲面222224x y z ++=的外侧.(20)(本题满分11分)设111111042--⎛⎫ ⎪=- ⎪⎪--⎝⎭A ,1112-⎛⎫⎪= ⎪ ⎪-⎝⎭ξ (1)求满足21=A ξξ的2ξ.231=A ξξ的所有向量2ξ,3ξ. (2)对(1)中的任意向量2ξ,3ξ证明123,,ξξξ无关.(21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-.(1)求二次型f 的矩阵的所有特征值; (2)若二次型f 的规范形为2212y y +,求a 的值.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(1) 求{}10p X Z ==. (2)求二维随机变量(),X Y 概率分布(23)(本题满分11 分)设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数(0)λλ>未知,1X ,2X ,…n X 是来自总体X 的简单随机样本.(1)求参数λ的矩估计量.(2)求参数 的最大似然估计量.。

2009年 (辽宁卷)全解全析

2009年 (辽宁卷)全解全析

2009年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P(A+B)=P(A)+P(B) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 V =243R π()(1)(0,1,2,k k n kn n P k C P p k n -=-= 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{|35},{|55}M x x N x x =-<≤=-<<,则集合M N ⋂=(A ){|55}x x -<< (B ){|35}x x -<< (C ) {|55}x x -<≤ (D ) {|35}x x -<≤ (1)B 解析:M N ⋂={|35}x x -<<。

(2) 已知复数12z i =-,那么1z=(A (B 12()55C i + 12()55D i -(2)D 解析:111212,125iz i iz -=+==+。

(3)平面向量a 与b 的夹角为060, (2,0),||1a b == ,则|2|a b +=(B) (C)4 (D)12(3)B 解析:1cos ,2a b <>= ,||2a = ,||1b = ,222(2)44a b a ab b +=++144214122=+⨯⨯⨯+=,|2|a b +=(4) 若圆C 且与直线0x y -=和40x y --=都相切,圆心在直线0x y +=,则圆Cx y23-O 2π712π1112π的方程为(A )()22(1)12x y ++-=(B )22(1)(1)2x y -++=(C )22(1)(1)2x y -+-=(D )()221(1)2x y +++=(4) B 解析:(法一)设圆心为(,)a a -,半径为r ,|r ==,∴1,a r = (法二)由题意知圆心为直线0x y -=、40x y --=分别与直线0x y +=的交点的中点, 交点分别为(0,0)、(2,-2),∴圆心为(1,-1(5) 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求男、女医生都有,则不同的组队方案共有 (A )70种 (B )80种 (C )100种 (D )140种(5)A 解析: 分2男1女、 1男2女两种情况,共有2112545470C C C C +=种不同的组队方案。

2009年考研数学一、二、三真题(含详解)

2009年考研数学一、二、三真题(含详解)

O
A
O
A O
A
1
O B1
B
O
B
O
B
O
6
A1
O
O
6
1 A
A
1 B
B
6
O
O
1 2
A
1 B 3 O
O 3A
6
6
(D) a 1,b 1 6
【解析】 f x x sin ax 与 g x x2 ln 1 bx 是 x 0 时的等价无穷小,则
lim
x0
f (x) g(x)
lim
x0
x sin ax x2 ln(1 bx)
lim
x0
x sin ax x2 (bx)
lim
x0
x
sin ax bx3
,且单调递减;
0
(定积分对应的图像位于 x 轴下方)
③ x 1, 2 时, F(x) x f (t)dt 0 单调递增; 0
④ x 2,3 时, F '(x) f (x) 0 为常函数;
⑤ F (x) 为连续函数. 结合这些特点,可见正确选项为(D)
(4)
设有两个数列
an
,
bn
,若
lim
n
则 max 1k 4
Ik
(
)
D1
D2
D4
-1
D3
1
x
(A) I1
(B) I2 (C) I3 (D) I4
-1
【答案】(A)
【解析】本题利用二重积分区域的对称性及被积函数的奇偶性.令 f (x, y) y cos x ,
D2, D4 两区域关于 x 轴对称, f (x, y) y cos x f (x, y) ,即被积函数是关于 y 的奇函数, 所以 I2 I4 0 ;

2009年考研数一真题及答案

2009年考研数一真题及答案

2009年全国硕士研究生入学统一考试数学一试题答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】 A【解析】2()sin ,()ln(1)f x x ax g x x bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a ax g x x bx x bx bx bx →→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C 。

另外201cos lim 3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排D 。

所以本题选A 。

(2)如图,正方形(){},1,1x y x y ≤≤四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=()A 1I .()B 2I . ()C 3I .()D 4I .【答案】A【解析】本题利用二重积分区域的对称性及被积函数的奇偶性。

24,D D 两区域关于x 轴对称,而(,)cos (,)f x y y x f x y -=-=-,即被积函数是关于y 的奇函数,所以240I I ==;13,D D 两区域关于y 轴对称,而(,)cos()cos (,)f x y y x y x f x y -=-==,即被积函x数是关于x 的偶函数,所以{}1(,),012cos 0x y y x x I y xdxdy ≥≤≤=>⎰⎰;{}3(,),012cos 0x y y x x I y xdxdy ≤-≤≤=<⎰⎰.所以正确答案为A.(3)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为()A ()B()C ()D【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征:①[]0,1x ∈时,()0F x ≤,且单调递减。

大连理工数学分析试题及解答

大连理工数学分析试题及解答

大连理工数学分析试题及解答大连理工大学硕士生入学考试数学分析试题一. 从以下的1到8题中选答6题1. 证明:2()f x x =在区间[0,]M 内一致连续(M 为任意正数),但是在[0,)+∞不一致连续2. 证明:若()f x 在[,]a b 内连续,那么()f x 在[,]a b 内Riemann 可积.3. 证明:若1α>,那么广义积分1sin x dx α+∞收敛4. 证明:若()f x ,()g x 为区间(,)a b 上的连续函数,对任意的(,)(,)a b αβ?有:()()f x dx g x dx ββαα=??,那么, ()()f x g x ≡于(,)a b5. 证明:若1nn a∞=∑收敛,那么1nxn n a e∞-=∑在[0,)+∞一致收敛6. 已知:2,0()0,0x e x f x x -?≠?=?=??,求"(0)f7. 已知:()()1(,)()22x atx at x at x at u x t d aφφψαα+-++-=+. 其中, ψ和φ分别是可以求导一次和求导两次的已知函数,计算22222(,)(,)u x t u x t a t x ??-??8. 计算,半径为R 的球的表面积二. 从9到14题中选取6题9.已知: lim '()0x f x →∞=,求证: ()lim0x f x x→∞=10.证明: ()af x dx +∞收敛,且lim ()x f x λ→+∞=,那么0λ=11.计算曲面积分: 333SI x dydz y dzdx z dxdy =++??, 其中S 为旋转椭球面2222221x y z a b c++=的外侧12.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: ()()n n S x f x =对于任意小于1的正数δ,在区间(0,1]δ-一致收敛,但是不在(0,1)一致收敛13.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: 1lim ()0n n f x dx →∞=?14.证明:若()[,]n u x C a b ∈,1,2,...,...n =且1()n n u b ∞=∑发散,那么1()n n u x ∞=∑不在[,)a b 一致收敛大连理工大学2001年硕士生入学考试数学分析试题解答一.1. 证利用定义证明(1) 对于0ε?>,21M εδ?=+,12||x x δ?-<,那么12121212|()()||()()|2||2f x f x x x x x M x x M δε-=-+<-<<(2) 任取1ε=,0δ?>,1211,22x x δδδ==+, 1212121|()()||()()|1f x f x x x x x δδ-=-+>=,推出矛盾,从而命题得证■2. 证利用一致连续的定义和Riemann 可积的定义来做因为函数在闭区间内连续,所以一致连续. 根据一致连续的定义对0ε?>,δ?,12||x x δ?-<,12|()()|f x f x ε-<考虑可积的定义,对于一个[,]a b 分割112:...n a a a a b ?=<<<=,11max ||i i i na a λ+≤<=-下面证明:振幅函数121110,[,]1()limmax {()}()i i n i i x x a a i w x f x a a λ+-+→∈==-∑=0当λδ<时,12111110,[,]110()limmax {()}()()i i n n i i i i x x a a i i w x f x a a a a b λεε+--++→∈==≤=-≤-=∑∑.根据夹逼定理,不难得到()0w x =. 从而,命题得证■3. 证利用莱布尼兹交错级数:假设;n a n π=,1sin nn a n a s x dx α-=?考虑:111|||||sin ||sin |n nnn a a n n a a s s x dx x dx αα+-+-=-?1111[|sin ||sin |]n n n n x x dx xx dx ππππααππα--+-=+??1111[|sin |(2)|sin |]n n n n xx dx n x x dx ππππααππαπ--++=--??1111[(2)]|sin |0n n x n x x dx ππααπαπ--+=--<?11lim |||sin |||lim ||0nnn n a a n n a a n n s x dx dx n n s αααπππ--→∞→∞=≤=--?=??如此,不难看出1sin x dx α+∞是一个莱布尼兹交错级数,从而命题得证■4. 证不妨设:2a bc +=()()x c F x f t dt =?,那么()()F x G x =于(,)x a b ∈因为()f x ()g x 都是(,)x a b ∈上的连续函数,所以()'()()()f x F x G xg x ===■5. 证利用A-D 判别法做,也可以通过Abel 求和公式出发推导1nxn n a e∞-=∑中nxn b e-=,现在,根据原题:1n n a∞=∑收敛,1nxnb e -=≤一致有界所以,根据Abel 判别法,知该函数项级数在定义域一致收敛. ■6. 解题目有问题,在零点不连续■7. 解不断利用链式求导法则()()1(,)()22x atx at x at x at u x t d aφφψαα+-++-=+(,)()()()()()()()()()()22'()'()'()'()22u x t xx at x at x at x at x at x at x at x at x at x x at x x x ax at x at x at x at aφφψψφφψψ+?+?-?-?+?-++--?+??-=+++-+--=+22'()'()()()(,)()()()()22"()"()'()'()22x at x at x at x at u x t x at x at x at x at x ax at x at x at x at aφφψψφφψψ?+?-?+?-+-+?-?+?-=+++-+--=+同理:(,)()()()()()()()()()()22'()'()'()'()22u x t tx at x at x at x at x at x at x at x at x at t x at t t t aa x at a x at x at x at φφψψφφψψ+?+?-?-?+?-++--?+??-=++--++-=+222'()'()()()(,)()()()()"()"()'()'()22x at x at x at x at aa u x t x at x at x at x at x x at x at x at x at a aφφψψφφψψ?+?-?+?--++?-?+?-=+++-+--=+22222(,)(,)0u x t u x t a t x ??-=??■8. 解方法很多,此处介绍一种比较简单的假设:()V R 为半径R 为的球的体积2234()()3R R V R R x dx R ππ-=-=?假设: ()S R 为半径R 为的球的表面积20()()()'()4RV R S x dx S R V R R π=?==?■二9. 证L ’Hosptial 法则因为x →+∞,()'()lim lim lim '()0'x x x f x f x f x x x →∞→∞→∞===■10. 证反证法如果命题不成立,即0λ≠,那么,根据极限的定义,G ?,当x G >的时候, |()|||2f x λ>()Gf x dx +∞→∞?和收敛矛盾,从而命题得证■11. 解利用Gauss 定理加换元3332223()VSI x dydz y dzdx z dxdy x y z dxdydz =++=++换元sin cos sin sin ,[0,1],[0,2),[0,]cos x ar y br r z cr ?θ?θθπ?π?=??=∈∈∈??=?4222222223sin (sin sin sin cos cos )VI abc r a b c drd d ??θ?θ?θ?=++22322322200033(sin sin sin cos )cos sin 55abc abc a b d d c d πππ?θ?θ?θ=++332232203646()sin ()5555abc abc abc abc a b d a b πππ??=++=++?■12. 证首先由于在闭区间内连续,所以函数在闭区间内一致连续(1)(0,1]x δ?∈-,根据确界存在定理,存在上确界,且上确界不等于1,否则和题意矛盾不妨设:(0,1]sup ()1x f x m δ∈-=<根据定义,对于0ε?>,ln ln N mε=,当n N >,|()||()|n n n S x f x m ε=≤< 从而知一致收敛于0(2)首先,根据前半题,显然()n S x 于(0,1)x ?∈收敛于0由于(1)1f =,且函数一致收敛,存在一组数列:12...a a <<,1()1i fa n=- 如此,考虑11lim ()lim ()lim(1)0nnn n n n n n S a f a ne→∞→∞→∞==-=≠,从而不是一致收敛的. ■13. 证利用前一小题的结论因为()nf x 内闭一致收敛,对于0ε?>,2εδ?=,当n 足够大的时候:10()2n f x dx δε-<又1111|()|||2n f x dx dx δδε--<=所以,1111()()()n n n f x dx f x dx f x dx δδε--=+<?从而命题得证. ■14. 证反证法:假设命题不成立,那么1()n n u x ∞=∑在[,)a b 一致收敛.即0ε?>,N ?,,m n N ?>,(,)x a b ?∈,|()|m n nu x ε<∑因为|()|lim |()|m mn n x bnnu b u b ε→=≤∑∑,否则与()[,]n u x C a b ∈矛盾而1|()|n n u b ∞=∑发散,所以|()|n n Nu b ∞=∑发散,与|()|lim |()|m m n n x bnnu b u b ε→=≤∑∑矛盾从而命题得证. ■。

2009年考研数学二真题答案解析

2009年考研数学二真题答案解析

2009年全国硕士研究生入学统一考试 数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx -=的可去间断点的个数,则( ) ()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C【解析】()3s i n x x f x x π-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--==故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax=-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=.【答案】 A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则 222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b ax a →==-=-⋅ 36a b ∴=- 故排除,B C 。

另外201cos lim3x a axbx →--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大连理工大学2009年考研试题 数学分析
一,
1,2311123n a =+++…1n n +,判断{}n a 是否收敛。

2,lim 1n n n a →∞=,0n a >,证明12lim 1n n n a a a →∞++=…
6,()f x 在
[],a b 可导,()()f a f b =,证明:(,)a b ξ∃∈'().()()2f s tf a f ξξξ-=。

二,设()f x 定义在(,)-∞+∞上,00(,)0,.()()x s tf x f x δ∀∈-∞+∞∃>≥,
00(,)x x x δδ∈-+,证明存在一个区间I ,.()s tf x 在I 上是常数。

三,()f x 在(,)a +∞有界连续,证明:对任意T ,存在{}n x ,n →+∞使得
lim(()())0n n n f x T f x →∞+-=。

四,设()f x 在[,)a b 上具有连续的导数,且()()0f a f b ==,2()1b a f x dx =⎰, 证明:22221('())(())4b b a a f x dx x f x dx >⎰⎰
五,设()f x 在(,)a +∞单调递增且大于零,{}n a 单调递增且大于零,证明:若
1()a dx xf x +∞
⎰收敛,证明:111
1(1)()n n n n a a f a +∞=++-∑收敛。

六, ()n f x 均在[,)a b 上有原函数,且在[,)a b 上一致收敛于()f x ,证明: ()f x 在[,)a b 上也有原函数.
七,设()[1,1]f x c ∈-,若
1211()0(1,2)n x f x dx n +-<=⎰,求证: ()f x 是偶函数. 八,设1a b >>证明: a b b a a b >
九, 设0a >,20ac b ->,求椭圆2221ax bxy cy ++=的长、短轴长.
十,求: 222222()()()T I y z dx z x dy x y dz =+++++⎰
222222 z 0 , 0<b<a :2 T x y z ax T x y bx ⎧++=≥⎪⎨+=⎪⎩从(b,0,0)看顺方向 十一. 证明101sin p x dx x ⎰,在02p <<非一致收敛,但在02p δ<<-一致收敛, δ为正常数.。

相关文档
最新文档