2019年中考数学复习课件第4课时 二次根式
2020河南中考数学考点突破(课件+训练):4二次根式
B. 2 2 =2 2 33
D. 1 = 3 - 2 3 2
随堂检测
栏目索引
随堂检测
栏目索引
3.如果ab>0,a+b<0,那么下列各式:① a = a ,② a · b =1,③ ab ÷ a =-b.其中正
b b ba
b
确的是 ( B )
A.①② B.②③
C.①③ D.①②③
随堂检测
栏目索引
随堂检测
一、选择题
1.(2019山东济宁)下列计算正确的是 ( D )
A. (-3)2 =-3 B. 3 -5= 3 5
C. 36 =±6
D.- 0.36 =-0.6
随堂检测
栏目索引
2.(2019山东聊城)下列各式不成立的是 ( C )
A. 18- 8 = 7 2 93
C. 8 18 = 4 + 9 =5 2
A. 5-1<0.5 2
B.若ab=0,则a=b=0
C. a = a bb
D.若a>0,则3a可以表示边长为a的等边三角形的周长
解析 5-1≈0.6>0.5,故选项A错误;若ab=0,则a=0或b=0,故选项B错误;选项C应 2
加上a≥0,b>0,故选项C错误.故选D.
命题探究
栏目索引
超级总结 方法技巧 二次根式的估值一般有两种方法. 方法一:无限逼近法——①先对根式平方, 找出与平方后所得数字相邻的两个能 开得尽方的整数;②对找出的两个整数开方即可确定这个整式在哪两个整数之间; 方法二:借助无理数的近似值确定.如 2 ≈1.414, 3≈1.732, 5≈2.236等.
栏目索引
命题探究
栏目索引
1-2 (2019郑州外国语中学模拟)若使二次根式 1 有意义,则字母x必须满足 2x 1
数学八年级下《二次根式》复习课件
2
先平方,后开方
想一想:
2.从取值范围来看 2 a≥0 a
a
2
≥0 时, 当a ____
a
2
a
2
a取任何实数
例1、x 取何值时,下列各式在实数范围内 有意义?
x1 1 ; x2
解:(1)由
x 1 0
x 2 0,
得x≥-1且x≠2.
∴当x≥-1且x≠2时,式子 意义.
2 3 11 (2)
解:原式
2
11 2 3 .
2
2
11 12 1.
11 2 3 11 2 3
2
小结一下
求二次根式的值:
先根据题意,列出二次根式, 然后归结为求代数式的值的问题。
?
练习:
1.计算: 1 3 2 (1) 9 45 3 2 ;
1 3
知识巩固
最简二次根式
①被开方数的因数是整数,因式是整式。 ②被开方数中不含能开得尽方的因数或因式。 ③分母中不含有二次根式。
30
2.5x
50
2 x( x y ) 2
x2 y2
首页
上页
下页
知识巩固
同类二次根式
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就叫 做同类二次根式 ①化成最简二次根式后
1 -2 3 (2)( ) - 2 2 - 3 2 8
0
计算:
20 15 2011 (3) 3( 3 ) (1) 5
(4)
( 2 3)(2 2 1)
二次根式的化简求值
先化简,再求值。
(1)2(a 3 )(a 3 ) a(a 6) 6 其中:a 2 1
初三数学复习计划PPT课件
知识技能
数学思考 问题解决 情感态度
知识技能
1.体验从具体情境中抽象出数学符号的过程,理 解有理数、实数、代数式、方程、不等式、函数; 掌握必要的运算(包括估算)技能;探索具体问 题中的数量关系和变化规律,掌握用代数式、方 程、不等式、函数进行表述的方法。 2.探索并掌握相交线、平行线、三角形、四边 形和圆的基本性质与判定,掌握基本的证明方法 和基本的作图技能;探索并理解平面图形的平移、 旋转、轴对称;认识投影与视图;探索并理解平 面直角坐标系,能确定位置。 3.体验数据收集、处理、分析和推断过程,理 解抽样方法,体验用样本估计总体的过程;进一 步认识随机现象,能计算一些简单事件的概率。
情感态度
1.积极参与数学活动,对数学有好奇心和求知 欲。 2.感受成功的快乐,体验独自克服困难、解决 数学问题的过程,有克服困难的勇气,具备学 好数学的信心。 3.在运用数学表述和解决问题的过程中,认识 数学具有抽象、严谨和应用广泛的特点,体会 数学的价值。 4.敢于发表自己的想法、勇于质疑,养成认真 勤奋、独立思考、合作交流等学习习惯,形成 实事求是的科学态度。
12课时序号复习内容课时过关测试内容时间第1课时实数第2课时二次根式第3课时代数式整式运算第4课时因式分解分式第5课时一次方程分式方程一次方程组方程与不等式1课时第6课时一元二次方程第7课时一元一次不等式组1第8课时不等式的应用第9课时函数概念一次函数函数及其图像1课时第10课时反比例函数第11课时二次函数第12课时函数的应用第13课时平行线三角形与证图形的性质1课时第14课时特殊三角形第15课时多边形平行四边形与证明第16课时特殊平行四边形梯形与证明第19课时投影与视图图形与变换第20课时图形的变换图形与变换1课时第21课时相似形第22课时解直角三角形图形与坐标第23课时图形变换与坐标图形与坐标1课时14概率与统3课时第24课时统计概率测试1课时第5课时概率151620201217重视模块之间的联系
2019年中考数学《二次根式》复习教案
二次根式复习复习目标:1.了解二次根式的定义,掌握二次根式有意义的条件和性质。
2.会根据公式2)(a =a (a ≥0)∣a ∣进行计算。
3.熟练进行二次根式的乘除法运算。
4.了解最简二次根式的定义,能运用相关性质化简二次根式。
复习重点:二次根式有意义的条件和性质,二次根式的计算和化简。
复习难点:正确依据二次根式相关性质计算和化简。
复习过程:一.知识结构:三个概念:二次根式 最简二次根式 同类二次根式三个性质:二次根式的双重非负性 2)(a =a (a ≥∣a ∣ 四种运算:加.减.乘.除 二.复习过程1.二次根式的概念(1).二次根式的定义: 形如a (a ≥0)的式子叫做二次根式 2.二次根式的识别: (1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?①②③④⑤⑥⑦⑧3.二次根式的性质 (1).双重非负性:a ≥0(a ≥0)(2).2)(a =a (a ≥0)(3)∣a ∣题型1:确定二次根式中被开方数所含字母的取值范围 (1).当X_____时,x-3有意义。
(2).求下列二次根式中字母的取值范围x315x --+说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 题型2.求下列各式的值(1)2(3)2(4)4.二次根式的乘除(1).二次根式的乘法法则)0,0(≥≥=⋅b a ab b a例1.化简8116)1(⨯ 2000)2(例2.计算 721)1(⋅15253)2(⋅)521(154)3(-⋅-xy x 11010)4(-⋅ (2).二次根式的除法法则)0,0(>≥=b a b aba例3、计算4540)1(245653)2(n m n m ÷5.最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;抢答:判断下列二次根式是否是最简二次根式,并说明理由。
2019-2020人教版八年级数学下册第十六章二次根式章末复习课件(共59张)
相关题 4 当 t 取何值时,
35t-3-5 的值最小?最小值是多少?
3
3
解:∵ 5t-3≥0,∴当5t-3=0,即 t=5 时,
最小值是-5.
3 5t-3-5 的值最小,
第十六章 二次根式
专题三 二次根式的混合运算
【要点指导】 进行二次根式的混合运算时, (1)先将二次根式进行适当的化简;(2)二次
第十六章 二次根式
专题五 二次根式的化简
【要点指导】
灵活应用二次根式的性质和公式:( a)2=a(a≥0), a2 =|a|, a·b =
a· b (a≥0, b≥0),
ab=
a b
(a≥0, b>0), 可以将复杂的二次根式进
行化简, 从而帮助我们解决问题.
第十六章 二次根式
例 7 实数 a, b 在数轴上对应点的位置如图 16-Z-1 所示, 则
第十六章 二次根式
(2)比较 5+ 13与 7+ 11的大小
分析 先求出两个式子的平方, 再比较这两个式子的平方的大小.
解:( 5+ 13)2=18+2 65, ( 7+ 11)2=18+2 77. ∵65<77,∴ 65< 77,∴18+2 65<18+2 77, 即( 5+ 13)2<( 7+ 11)2. 又∵ 5+ 13>0, 7+ 11>0, ∴ 5+ 13< 7+ 11.
a ≥0( a≥0 )
a =a( a≥0 )
a2
=|a|=
a(a≥0), -a(a<0)
当a≥0时,( a)2= a2
中考数学一轮复习《二次根式》知识梳理及典型例题讲解课件
1
10,则a- 的值为
±
.
6. (2022·
南通海门模拟)如图,四边形ABCD和CEFG是两个相邻的正
方形,其中B,C,E三点在同一条直线上,点D在CG上,它们的面积分
7
别为27平方米和48平方米,则BE的长为
1
2
3
4
5
6
7
米.
8
7. 计算:
(1) 48÷ 3+
1
×
2
解:原式= ÷ +
典例7 (2023·
南通二模)如图,从一个大正方形中恰好可以裁去面积为
2cm2和8cm2的两个小正方形,余下两个全等的矩形(图中涂色部分),
则大正方形的边长为
3
cm.
典例8 (2023·
海安模拟)先化简,再求值:
4+4
+
+2
÷ 2 ,其中m
= 2-2.
++ + (+)
C )
1
的结果是(
3
4. (2022·
青岛)计算( 27- 12)×
A.
3
3
C. 5
B. 1
B )
D. 3
5. 已知2,5,m是某三角形三边的长,则 ( − 3)2 + ( − 7)2 的
值为(
D )
A. 2m-10
B. 10-2m
C. 10
D. 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
6. (2022·
呼伦贝尔)实数a在数轴上的对应点的位置如图所示,则化简
2019年宜宾中考总复习精练第1章数与式第4讲二次根式(含答案)
第四讲 二次根式1.(2019潍坊中考)若代数式x -2x -1有意义,则实数x 的取值范围是( B )A .x ≥1B .x ≥2C .x >1D .x >22.(2019淮安中考) 下列式子为最简二次根式的是( A ) A. 5 B.12 C.a 2D.1a3.(2019十堰中考)下列运算正确的是( C ) A.2+3= 6 B .22×32=6 2 C.8÷2=2 D .32-2=3 4.计算48-913的结果是( B ) A .- 3 B. 3 C .-113 3 D.11335.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C ) A .9 B .±3 C .3 D. 5 6.若x -1+(y +2)2=0,则(x +y)2 018等于( B )A .-1B .1C .32 018 D .-32 0187.(2019徐州中考改编)使x -6有意义的x 的最小整数是__6__.8.计算:(1)(2019长春中考)2×3=;(2)(2019衡阳中考)8-2=.9.已知x 1=3+2,x 2=3-2,则x 21+x 22=__10__.10.已知a(a -3)<0,则|a -3|+a 2=. 11.若20n 是整数,则正整数n 的最小值为__5__.12.将2,3,6按下列方式排列,若规定(m ,n)表示第m 排从左向右第n 个数,则(5,4)与(15,7)表示的两数之积是.13.(2019滨州中考改编)计算: 33+(3-3)0-|-12|-2-1-cos60°.解:原式=3+1-23-12-12=- 3.14.设a =19-1,且a 在两个相邻的整数之间,则这两个整数是( C )A.1和2 B.2和3 C.3和4 D.4和515.若反比例函数y=a-2 018x的图象与正比例函数y=(a-2 016)x的图象没有公共点,则化简(a-2 018)2+(a-2 016)2的结果为( C )A.-2 B.2a-4 034C.2 D.4 03416.将一组数3,6,3,23,15,…,310,按下面的方式进行排列:3,6,3,23,15,32,21,26,33…若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( C )A.(5,2) B.(5,5) C.(6,2) D.(6,5)17.已知a,b为有理数,m,n分别表示5-7的整数部分和小数部分,且amn+bn2=1,则 2a+b=__2.5__.18.若y=x-4+4-x2-2,则(x+y)y=__14__.19.计算:(2-3)2 017(2+3)2 018-2|-32|-(-2)0.解:原式=[(2-3)(2+3)]2 017(2+3)-2×32-1=(2+3)-3-1=2+3-3-1=1.20.解方程:x+2x-1+x-2x-1=x-1.解:方程两边同时平方,得2x+2x2-(2x-1)2=x2-2x+1,变形,得2x+2x2-4x+4=x2-2x+1,2x+2(x-2)2=x2-2x+1,2x+2|x-2|=x2-2x+1,∵x-1≥0,即x≥1.∴①当1≤x<2时,原方程化简为:2x+2(2-x)=x2-2x+1,即x2-2x-3=0,解得x1=-1,x2=3(都不符合题意,舍去),②当x≥2时,原方程化简为:2x+2(x-2)=x2-2x+1,即x2-6x+5=0,解得x1=1,x2=5(x=1不符合题意,舍去),综上,原方程的解为x=5.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A.AC=EFB.BC=DFC.AB=DED.∠B=∠E2.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( ) A .众数是2.3 B .平均数是2.4 C .中位数是2.5D .方差是0.013.如图,OA 在x 轴上,OB 在y 轴上,OA =4,OB =3,点C 在边OA 上,AC =1,⊙P 的圆心P 在线段BC 上,且⊙P 与边AB ,AO 都相切.若反比例函数y =kx(k≠0)的图象经过圆心P ,则k 的值是( )A.54-B.53-C.52-D.﹣24.在平面直角坐标系中,点P(3,-5)关于原点对称的点的坐标是( ) A .(3,5)B .(3,-5)C .(-3,-5)D .(-3,5)5.下列计算正确的是( ) A .224a a a += B .()2326a a =C .()23533a aa -=-gD .623422a a a ÷=6.国家统计局统计资料显示,2018年第一季度我国国内生产总值为31355.55亿元,用科学记数法表示为( )元.(用四舍五入法保留3个有效数字) A .831355.510⨯B .133.1410⨯C .123.1410⨯D .123.1310⨯7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.某同学做了四道题:①3m+4n=7mn ;②(﹣2a 2)3=﹣8a 6;③6x 6÷2x 2=3x 3;④y 3•xy 2=xy 5,其中正确的题号是( ) A .②④B .①③C .①②D .③④9.如图,平面上有两个全等的正八边形ABCDEFGH 、A′B′C′D′E′F′G′H′,若点B 与点B′重合,点H 与点H′重合,则∠ABA′的度数为( )A.15°B.30°C.45°D.60°10.如图,ABCDEF 为⊙O 的内接正六边形,AB =m ,则图中阴影部分的面积是( )A .6πm 2B m 2C .3π⎛- ⎝⎭m 2D .6π⎛- ⎝⎭m 211.如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A.AE=EFB.AB=2DEC.△ADF 和△ADE 的面积相等D.△ADE 和△FDE 的面积相等12.下列计算正确的是( ) A .(a 2b )2=a 2b 2 B .a 6÷a 2=a 3C .(3xy 2)2=6x 2y 4D .(﹣m )7÷(﹣m )2=﹣m 5二、填空题13.如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O、B、C是格点,则扇形OBC的面积等于___(结果保留π)14.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是_____度.15.分解因式:ab4-4ab3+4ab2=______________。
中考数学第一轮复习(第4讲--数的开方与二次根式)
【例题1】 (2012·浙江宁波)下列计算正确的是( ). A.a6÷a2=a3 B.(a3)2=a5
解析 根据同底数幂的除法,幂的乘方,算术平方根,立方根运算
法则逐一计算作出判断:
A.a6÷a2=a6-2=a4≠a3,故本选项错误; B.(a3)2=a3×2=a6≠a5,故本选项错误;
第三十五 ,共44 。
【预测1】 下列计算:
答案 C
第三十六 ,共44 。
【预测2】 下列运算正确的是
( ).
答案 C
第三十七 ,共44 。
易 错防 范
第三十八 ,共44 。
数的开方、二次根式常见错误
第三十九 ,共44 。
【典型例题】
第四十 ,共44 。
第四十一 ,共44 。
第二十八 ,共44 。
A.a≠0
C.a>-2或a≠0
B.a>-2且a≠0 D.a≥-2且a≠0
答案 D
第二十九 ,共44 。
【预测3】 下列二次根式中,最简二次根式是( ).
答案 B
第三十 ,共44 。
答案 C
第三十一 ,共44 。
解析 考查二次根式和绝对值等非负数的性质,由已知得,x= -3,y=2 013,所以x+y=-3+2 013=2 010.
(3)混合运算:与实数的混合运算顺序相同.
状元笔记 (1)加减运算:需先化简,再合并;
(2)乘除运算:可先乘除,后化简.
第十四 ,共44 。
对 接中 考
第十五 ,共44 。
对接点一:平方根、立方根及算数平方根
常考角度
1. 平方根、算术平方根与立方根的概念; 2. 求一个数的平方根、算术平方根与立方根.
专题04 二次根式的核心知识点精讲-备战2024年中考数学一轮复习考点帮 (2)
专题04 二次根式的核心知识点精讲1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.【题型1:二次根式有意义的条件】【典例1】(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠21.(2023•金华)要使有意义,则x的值可以是()A.0B.﹣1C.﹣2D.22.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.3.(2023•湘西州)若二次根式在实数范围内有意义,则x的取值范围是.【题型2:二次根式的性质】【典例2】(2023•泰州)计算等于()A.±2B.2C.4D.1.(2021•苏州)计算()2的结果是()A.B.3C.2D.92.(2023•青岛)下列计算正确的是()A.B.C.D.3.(2021•娄底)2、5、m是某三角形三边的长,则+等于()A.2m﹣10B.10﹣2m C.10D.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【题型3:二次根式的运算】【典例3】(2023•金昌)计算:÷×2﹣6.1.(2023•聊城)计算:(﹣3)÷=.2.(2023•山西)计算:的结果为.3.(2023•兰州)计算:.4.(2023•陕西)计算:.1.(2023秋•福鼎市期中)下列各数不能与合并的是()A.B.C.D.2.(2023秋•云岩区校级期中)下列式子中,属于最简二次根式的是()A.B.C.D.3.(2022秋•泉州期末)若二次根式有意义,则x的取值范围是()A.x<3B.x≠3C.x≤3D.x≥3 4.(2023秋•龙泉驿区期中)下列运算中,正确的是()A.B.C.D.5.(2023秋•锦江区校级期中)若a>b>0,则的结果是()A.a B.2b﹣a C.a﹣2b D.﹣a6.(2023春•河东区期中)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣7.(2023春•铁岭县期末)计算:的结果是()A.2B.0C.﹣2D.﹣8.(2023春•抚顺月考)二次根式的计算结果是()A.B.C.±D.9.(2023春•西丰县期中)已知a=+2,b=﹣2,则a﹣b的值是()A.2B.4C.2+4D.2﹣410.(2023春•工业园区期末)下列各组二次根式中,是同类二次根式的是()A.与B.与C.与D.与11.(2023春•武昌区校级期中)若是整数,则满足条件的最小正整数n的值为.12.(2023春•固镇县月考)计算=.13.(2023春•高安市期中)化简计算:=.14.(2023秋•高新区校级期中)计算:(1)×;(2).15.(2023秋•秦都区校级期中)计算:﹣×.1.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7B.﹣7C.2a﹣15D.无法确定2.(2023春•新郑市校级期末)若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>43.(2023秋•西安校级月考)若x,y都是实数,且,则xy的值是()A.0B.4C.2D.不能确定4.(2023•商水县一模)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦一秦九韶公式.若p=5,c=2,则此三角形面积的最大值为()A.B.C.D.55.(2023秋•闵行区期中)计算:=.6.(2023春•科左中旗校级期末)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=.7.(2023春•中江县月考)已知的值是.8.(2023春•禹州市期中)如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为,宽为,则这个大长方形的周长为.9.(2023春•宿豫区期末)计算的结果为.10.(2023秋•双流区校级期中)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.11.(2023春•双柏县期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.12.(2023秋•二七区校级月考)阅读材料:我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样()2+()2=m,•=.那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,.∴,模型应用1:利用上述解决问题的方法化简下列各式:(1);(2).模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(直接写出结果,结果化成最简).1.(2022•桂林)化简的结果是()A.2B.3C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a3.(2022•河北)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 4.(2022•湖北)下列各式计算正确的是()A.B.C.D.5.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.36.(2022•安顺)估计(+)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(2023•绵阳)若式子在实数范围内有意义,则x的最小值为.8.(2023•丹东)若代数式在实数范围内有意义,则实数x的取值范围是.9.(2022•武汉)计算的结果是.10.(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.11.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.12.(2022•泰安)计算:•﹣3=.13.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.。
中考数学专题复习之二次根式 课件
返回层目录 返回目录
2.[2020 内蒙古呼和浩特,3,3 分]下列运算正确的是( ) A. 72· 2188= 27828=±12 B.(ab2)3=ab5 C.x-y+x4-xyyx+y+2xyy--x2y2=(x+y)2 D.83acb2 ÷-41a5ba2c=-52ac 解析:A. 72· 2188= 27828= 14=12,故本选项错误; B.(ab2)3=a3b6,故本选项错误;
返回层目录 返回目录
3.积商平方根的性质 性质 1: ab=__a_·__b___(a≥0,b≥0);
a 性质 2: ab=____b____(a≥0,b>0). 4.加减运算 二次根式加减时,先将各二次根式化成__最__简__二_次__根__式_____,再将被开方数相同的二次 根式进行合并.
①同号两数相加:取相同的符号,并把绝对值相加;
②异号两数相加:绝对值相等时和为 0;绝对值不相等时,取绝对值较大的数的符号, 并用较大数的绝对值__减__去____较小数的绝对值;
③一个数同___0_____相加,仍得这个数.
(2)减法:减去一个数,等于加上这个数的相反数.
3乘法:两数相乘,同号得正,异号得负,绝对值相乘.任何数与0相乘,积仍为0.
计数单位有:1 亿=108,1 万=104 等.
返回层目录 返回目录
[练习学知] 把下列各数用科学记数法表示出来.
(1)960 000=_9_._6×__1_0_5_; (2)0.000 53=_5_._3_×__1_0_-;4 (3)3 700 万=_3_.7_×__1_0_7_; (4)212 亿=_2_._1_2_×__1_0.10 考点 4 近似数和精确度 1.近似数:把一个数四舍五入以后得到的数. 2.精确度:一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.如: 2.019 精确到 0.1 是 2.0,精确到 0.01 是__2_._0_2___.
中考数学一轮教材梳理复习课件:第4课二次根式
首页
下一页
最简二次根式3】(2019·河池)下列式子中,为最简二次根式的 是( B )
1 A. 2
B. 2
C. 4
D. 12
首页
下一页
10.(2020·上海)下列二次根式中,与 3 是同类二 次根式的是( C )
A. 6
B. 9
C. 12
D. 18
首页
下一页
首页
下一页
5.(2020·济宁)下列各式是最简二次根式 的是( A )
A. 13
B. 12
C. a3
D.
5 3
首页
下一页
5.二次根式的性质与运算
(1)双重非负性: a ≥0 且 a≥0;
(2)( a )2=a(a≥0), a2 =|a| (a 取全体实数);
(3) ab = a · b (a≥0,b≥0);
(4)
a b
=
a b
(a≥0,b>0).
首页
下一页
6. (1)计算:
52 =___5___;( 5 )2=___5___;
(-5)2 =__5____.
(2)计算:
1 2
×
8 =___2____.
(3)计算: 63 ÷ 7 =____3____.
首页
下一页
考点精炼
二次根式有意义的条件(7 年 6 考)
【例 1】(2020·武汉)式子 x-2 在实数范围内有
意义,则 x 的取值范围是( D )
A.x≥0
B.x≤2
C.x≥-2
D.x≥2
首页
下一页
7.(2020·常德)若代数式
2 在实数范围内有 2x-6
意义,则 x 的取值范围是___x_>_3___.
人教版初中数学八年级下册《数的开方与二次根式》
回归教材
考点聚焦
考向探究
第4课时┃数的开方与二次根式
考点聚焦 考点1 平方根、算术平方根与立方根 平方
平方
立方
回归教材
考点聚焦
考向探究
第4课时┃ 数的开方与二次根式
考点聚焦
考点1 平方根、算术平方根与立方根
名称
性质
算术平方根
只有_非___负__数__才有算术平方根,而 且算术平方根都是_非__负___数__.
二次根式 1. a • b= ab(a___≥__0___,b__≥__0____);
的乘除
2.
b= a
ba(a___>__0___,b___≥__0___).
二次根式 如:要估算 7在哪两个相邻的整数之间,先对 7进 的估算 行平方,因为 4<7<9,所以 2< 7<3.
回归教材
考点聚焦
考向探究
第4课时┃数的开方与二次根式
乘以分母的有理化因式,达到化去分母中根号的目的,如:1+1
= 2
(
12×+(1)(2-12)-1)=
2-1,
1 3+
2=(
1×( 3- 3+ 2)(
3-
2)=
3
- 2.
回归教材
考点聚焦
考向探究
第4课时┃数的开方与二次根式
考 向 探 究4
二次根式的大小比较
命题角度
1.比较二次根式与有理数的大小、比较两个二次根式的大小;
A B CD
2.二次根式
(1)二次根式、最简二次根式的概念
√
(2)用有理数估计二次根式值的大致范围
√
(3)用二次根式(根号下仅限于数)的加、减、乘、除运
算法则进行简单四则运算
专题05 二次根式(课件)-备战2023年中考数学一轮复习课件(全国通用)
【考点】二次根式的乘除法 【分析】按照二次根式的乘法法则计算即可. 【解答】解:原式 9 3 . 故答案为:3.
知识点4 :二次根式的化简与运算
典型例题
【例18】(2022•青岛)计算 ( 27 12) 1 的结果是(
)
3
A. 3 3
B.1
C. 5
D.3
【考点】二次根式的混合运算
【解答】解:( 27 12) 1 27 1 12 1 9 4=3-2=1,
典型例题
【例21】(3分)(2021•天津6/25)估计 17 的值在( ) A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
【考点】估算无理数的大小. 【分析】本题需先根据 17 的整数部分是多少,即可求出它的范围. 【解答】解:∵ 17 4.12 , ∴ 17 的值在4和5之间. 故选:C. 【点评】本题主要考查了估算无理数的大小,在解题时确定无理数的整数部分即 可解决问题.
(2)若 b3 a ,则b叫做a的立方根.
知识点1 :数的乘方与开方
典型例题
【例1】(2022•宜宾)4的平方根是( )
A.2
B.-2
C.16D.±2
【考点】平方根 【解答】解:∵(±2)2=4, ∴4的平方根是±2, 故选:D. 【点评】本题考查平方根的定义,解题的关键是正确理解平方根 的定义,本题属于基础题型.
中考数学一轮复习
05 二次根式
中考命题说明
考点
课标要求
考查角度
了解平方根、算术平方根、
会用平方运算求百以内整数的平方根,会
立方根的概念,会用根号
乘方与
用立方运算求百以内整数(对应的负整数)
1
表示数的平方根、算术平
中考数学总复习课件(完整版)
第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念
人教版八年级下册数学《二次根式的混合运算》二次根式说课教学复习课件
)
随堂练习
3.已知= − , 则代数式(+ ) + + + 的值是(C
.
A.
4.已知=
-
, =
.+
+
. −
,则 + +=_______.
)
随堂练习
5.计算:
(1) (1+ )(2- );
解: (1+ )(2- )
问卷调查,统计如下表所示:
颜色
学生人数
黄色 绿色 白色 紫色 红色
100
180
220
80
750
学校决定采用红色,可用来解释这一现象的统计知识是( C )
A. 平均数
C. 众数
B. 中位数
D. 方差
课堂检测
基 础 巩 固 题
2.学习了《数据的分析》后,某同学对学习小组内甲、乙、丙、
丁四名同学的数学月考成绩进行了统计,发现他们的平均成绩
这些平均数受这个人的影响,而中位数是210件,众数
是210件,因此我们认为以210件为规定量比较科学.
巩固练习
1.甲、乙两位同学在几次数学测验中,各自的平均分都
是88分,甲的方差为0.61,乙的方差为0.72,则( A
A、甲的成绩比乙的成绩稳定
B、乙的成绩比甲的成绩稳定
C、甲、乙两人的成绩一样好
D、甲、乙两人的成绩无法比较
=( )²+2× ×1+1²
=5-2
=3+2 +1
=3.
=4+2 .
典例精析
例3
计算下列各式:
(1)
;
−
解:
−
+
=
( −)( +)
+
人教版初中数学中考复习 一轮复习-数的开方与二次根式
伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为( )
A. 5
B.4
C.2 5
D.5
知识点四、二次根式-二次根式的运算
解:p a b c a b 4 5
2
2
所以a b 6, a 6 b
s pp ap bp c 55 a5 b5 4
55 (6 b)5 b1 5 b 15 b
3 的结果是______.
3 12
解: 3 1 1 1 3 12 1 4 1 2 3
5. 化简: 1 1 49
解: 1 1 9 4 13 13 4 9 36 36 36 6
知识点三、二次根式-二次根式的性质
D 1.[2019·济宁]下列计算正确的是 ( )
A. 3 2 3
解:原式 9 — 1 8 22
9 2 — 1 2 2 2 22 22
3 2 — 2 2 2 22
3 — 1 2 2 2 2
3 2
知识点四、二次根式-二次根式的运算
2、(2021. 铜仁)计算( 27 — 18)( 3 — 2)
解:原式 (3 3 - 3 2)( 3 - 2) 9-3 6 -3 6 6 15- 6 6
一轮复习
数的开方与二次根式
课标要求
1. 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方 根 、 .立方根。 2. 了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求
百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根. 3. 能用有理数估计一个无理数的大致范围. 4. 了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、
5 4 b3 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.( ������)2=a(a≥0). ������,������ ≥ 0,
2. ������2=|a|= -������,������ < 0.
3. ������������ = ������ · ������(a≥0,b≥0).
4.
������ ������
=
������������(a≥0,b>0).
解析:要使 a - 1������有意义,必须-1������>0,即 a<0.
所以 a
- 1������=a
-
������ ������2
=
������ -������
-������ =-
-������.
答案:B
8
命题点1
命题点2
命题点3
命题点4
基础自主导学
命题点5
规律方法探究
9
基础自主导学
规律方法探究
.
6
命题点1
命题点2
命题点3
命题点4
基础自主导学
命题点5
规律方法探究
命题点 1 二次根式有意义的条件
【例 1】 若使 ������+1有意义,则 x 的取值范围是
.
2-������
解析:x+1 与 2-x 都是二次根式的被开方数,都要大于等于零.由
于
2-x
不能为零,可得不等式组
������ + 2-������
基础自主导学
规律方法探究
2019年中考复习课件 数学复习课件
1
基础自主导学
规律方法探究
第4课时 二次根式
2
考点梳理 自主测试
基础自主导学
规律方法探究
考点一 二次根式
1.概念:形如 ������(������ ≥ 0)的式子叫做二次根式. 2.二次根式有意义的条件:要使二次根式 ������有意义,则 a≥0.
命题点1 命题点2 命题点3 命题点4 命题点5
命题点 3 最简二次根式、同类二次根式
【例 3】 (1)下列二次根式中,最简二次根式是( )
A. 2������2
B. ������2 + 1
C. 4������
D.
1 ������
(2)在下列二次根式中,与 ������是同类二次根式的是( )
A. 3 2a
1 >
≥0,0,解得:-1≤x<2.
答案:-1≤x<2
7
命题点1
命题点2
命题点3
命题点4
基础自主导学
命题点5
规律方法探究
命题点 2 二次根式的性质
【例 2】 把二次根式 a - 1������化简后,结果正确的是 ( )
A. -������
B.- -������
C.- ������
D. ������
答案:(1)B (2)C
10
命题点1
命题点2
命题点3
命题点4
基础自主导学
命题点5
规律方法探究
11
命题点1
命题点2
命题点3
命题点4
基础自主导学
命题点5
规律方法探究
变式训练若最简二次根式������+������ 3a与 a + 2b是同类二次根式,则
ab=
.
答案:1
12
命题点1
命题点2
命题点3
命题点4
(2)二次根式的除法:
������ ������
=
������������(a≥0,b>0).
4
考点梳理 自主测试
基础自主导学
规律方法探究
1.式子
2������+1有意义的
������-1
x
的取值范围是(
A.x≥-12,且 x≠1 B.x≠1
C.x≥-12
D.x>-12,且 x≠1
答案:A
2.下列式子中,属于最简二次根式的是(
A. 9
B. 7
C. 20
答案:B
)
)
D.
1 3
5
考点梳理 自主测试
基础自主导学
规律方法探究
3.下列根式中,不能与 3合并的是( )
A.
1 3
B.
1 3
C.
2 3
D. 12
答案:C
4.计算: 27 ×
8 3
÷
12=
.
答案:12
5.已知 a,b 为两个连续的整数,且 a< 28<b,则 a+b=
答案:11
基础自主导学
命题点5
规律方法探究
命题点 4 二次根式的运算
【例 4】 计算: 18 −
9 2
−
3+ 3
6 +(
3-2)0+
(1-
2)2.
解:原式=3 2 − 322-(1+ 2)+1+( 2-1) =3 2 − 322-1- 2+1+ 2-1=322-1.
13
命题点1
命题点2
命题点3
命题点4
基础自主导学
.
解析:(1)根据算术平方根与绝对值的非负性列式求出 x 和 y 的
值,然后代入代数式计算,根据题意,得 x-1=0,y+3=0,解得:x=1,y=-3,
所以 x+y=-2.
(2)∵ ������-2 ≥0,(n-2 018)2≥0, ������-2+(n-2 018)2=0,
∴ ������-2=0,(n-2 018)2=0,
B. 3a2
C. a3
D. a4
解析:(1)A选项中的被开方数中含开得尽方的因式,C选项中的被
开方数中含开得尽方的因数,D选项中的被开方数中含有分母,故B
选项正确; (2)将各选项中能化简的二次根式分别化简后,可得出 3a2 =
3a, a3=a a, a4=a2,结合同类二次根式的概念,可得出 a3与 a是 同类二次根式.
考点四 二次根式的运算
1.二次根式的加减法 合并同类二次根式:在二次根式的加减运算中,把几个二次根式 化为最简二次根式后,若有同类二次根式,则可把同类二次根式合 并成一个二次根式. 2.二次根式的乘除法
(1)二次根式的乘法: ������ · ������ = ������������(a≥0,b≥0).
解得 m=2,n=2 018.
∴m-1+n0=2-1+2 0180=12+1=32.
答案:(1)A (2)32
15
命题点1
命题点2
命题点3
命题点4
基础自主导学
命题点5
规律方法探究
16
基础自主导学
规律方法探究
谢谢欣赏!
17
命题点5
规律方法探究
14
命题点1
命题点2
命题点3
命题点4
基础自主导学
命题点5
规律方法探究
命题点5 二次根式的非负性
【例 5】 (1)已知实数 x,y 满足 ������-1+|y+3|=0,则 x+y 的值为
()
A.-2
B.2
C.4
D.-4
(2)若实数 m,n 满足 ������-2+(n-2 017)2=0,则 m-1+n0=
3
基础自主导学
规律方法探究
考点梳理 自主测试
考点三 最简二次根式、同类二次根式
1.最简二次根式的概念:我们把满足被开方数不含分母,被开方数 中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
2.同类二次根式的概念:几个二次根式化成最简二次根式以后,如 果被开方数相同,那么这几个二次根式就叫做同类二次根式.