多执行元件回路
顺序动作回路实验报告
一、实验目的1. 理解和掌握顺序动作回路的基本原理及工作方式。
2. 学会搭建顺序动作回路,并对其进行调试。
3. 通过实验,了解顺序动作回路在实际应用中的重要性。
二、实验原理顺序动作回路是一种多执行元件动作控制回路,主要用于实现多个液压执行元件(如液压缸或液压马达)按照预定顺序依次动作。
在顺序动作回路中,通过调节电磁阀的工作时间、压力或行程等参数,实现对执行元件动作顺序的控制。
三、实验器材1. 双作用液压缸2个2. 电磁阀2个3. 液压泵1台4. 导线、电源等5. 实验台架四、实验步骤1. 搭建顺序动作回路:- 将液压泵、电磁阀、液压缸和导线等连接起来,搭建顺序动作回路。
- 确保回路连接正确,无短路、断路等现象。
2. 调试顺序动作回路:- 打开液压泵电源,观察液压缸的动作情况。
- 调节电磁阀的工作时间,使两个液压缸按照预定顺序依次动作。
- 调整压力或行程等参数,确保动作顺序正确。
3. 观察和分析实验现象:- 观察液压缸的动作顺序,分析实验结果。
- 记录实验数据,如液压缸的动作时间、压力等。
4. 拆除实验器材:- 实验结束后,拆除实验器材,整理实验台架。
五、实验结果与分析1. 实验结果:- 成功搭建了顺序动作回路,并实现了两个液压缸按照预定顺序依次动作。
- 实验过程中,通过调节电磁阀的工作时间,使液压缸的动作顺序符合预期。
2. 分析:- 顺序动作回路在实际应用中具有重要意义,如自动化机床、液压电梯等设备中,需要多个执行元件按照预定顺序动作,以保证设备的正常运行。
- 通过调节电磁阀的工作时间、压力或行程等参数,可以实现对执行元件动作顺序的控制,从而满足实际应用需求。
六、实验结论1. 顺序动作回路是一种重要的多执行元件动作控制回路,在自动化设备中具有广泛应用。
2. 通过实验,掌握了顺序动作回路的基本原理、搭建方法和调试技巧。
3. 实验结果表明,通过调节电磁阀的工作时间,可以实现对执行元件动作顺序的控制,确保设备正常运行。
第7章液压基本回路(r)解读
第7章液压基本回路不论机械设备的液压传动系统如何复杂,都是由一些液压基本回路组成的。
所谓基本回路,就是由有关的液压元件组成,用来完成特定功能的典型油路。
按其在液压系统中的功用,基本回路可分为:压力控制回路——控制整个系统或局部油路的工作压力;速度控制回路——控制和调节执行元件的速度;方向控制回路——控制执行元件运动方向的变换和锁停;多执行元件控制回路——控制多个执行元件相互间的动作。
本章讨论的是最常见的液压基本回路,熟悉和掌握它们的组成、工作原理及其应用,是分析、设计和使用液压系统的基础。
7.1 压力控制回路压力控制回路是利用压力控制阀来控制系统中液体的压力,以满足执行元件对力或转矩的要求。
这类回路包括调压、减压、卸荷、保压、平衡、增压等回路。
7.1.1调压回路调压回路的功能在于调定或限制液压系统的最高工作压力,或者使执行机构在工作过程的不同阶段实现多级压力变换。
一般是由溢流阀来实现这一功能的。
1.单级调压回路图7.1所示为单级调压回路,这是液压系统中最为常见的回路。
调速阀调节进入液压缸的流量,定量泵提供的多余的油经溢流阀流回油箱,溢流阀起溢流恒压作用,保持系统压力稳定,且不受负载变化的影响。
调节溢流阀可调整系统的工作压力。
当取消系统中的调速阀时,系统压力随液压缸所受负载而变,溢流阀起安全阀作用,限定系统的最高工作压力。
系统过载时,安全阀开启,定量泵泵出的压力油经安全阀流回油箱。
2.多级调压回路图7.2所示为二级调压回路。
先导式溢流阀1的外控口串接二位二通换向阀2和远程调压阀3,构成二级调压回路。
当两个压力阀的调定压力为p3<p1时,系统可通过图7.1单级调压回路换向阀的左位和右位分别获得p3和p1两种压力。
如果在溢流阀的外控口,通过多位换向阀的不同通油口,并联多个调压阀,即可构成多级调压回路。
图7.3为三级调压回路。
主溢流阀1的遥控口通过三位四通换向阀4分别接具有不同调定压力的远程调压阀2和3,当换向阀左位时,压力由阀2调定;换向阀右位时,压力由阀3调定;换向阀中位时,由主溢流阀1来调定系统最高的压力。
液压传动-第7章液压基本回路
第7章液压基本回路•液压基本回路是为了实现特定的功能把有关的液压元件组合起来的典型油路结构;•液压基本回路是组成液压系统的基础。
液压基本回路包括:*压力控制回路*速度控制回路*方向控制回路*多执行元件回路7.1 压力控制回路功能:控制液压系统整体或局部的压力,主要包括:▪调压回路▪减压回路▪增压回路▪卸荷回路▪平衡回路▪保压回路1、调压回路•功能:调定和限制液压系统的压力恒定或不超过某个数值。
•一般用溢流阀来实现这一功能。
•调压回路的分类:•单级调压回路•多级调压回路•无级调压回路先导式溢流阀电液比例溢流阀2、减压回路•功能:使液压系统中某一部分油路的压力低于主油路的压力设定值。
•一般用减压阀来实现这一功能。
•减压回路的分类:•单级减压回路•多级减压回路•无级减压回路3、增压回路•功能:提高系统中局部油路中的压力,使局部压力远高于系统油源的压力。
•单作用增压回路:只能间歇增压。
4、卸荷回路•功能:在执行元件短时间不工作时,不需要频繁启、停原动机,而是使泵源在很小的输出功率下运转。
•卸荷的实质:使液压泵的输出流量或者压力接近于零,分别称为流量卸荷与压力卸荷。
•卸荷方式:•用换向阀中位机能的卸荷回路(压力卸荷)•用先导型溢流阀的卸荷回路(压力卸荷)•限压式变量泵的卸荷回路(流量卸荷)•采用蓄能器的保压卸荷回路换向阀M、H、K型中位机能均可实现压力卸荷限压式变量泵可实现保压卸荷用先导型溢流阀实现的压力卸荷卸荷时采用蓄能器补充泄漏保持液压缸大腔的压力限压式变量泵工作原理及特性曲线5、平衡回路•功能:使承受重力作用的执行元件的回油路保持一定背压,以防止运动部件在悬空停止期间因自重而自行下落,或因自重而超速失控。
采用单向顺序阀不可长时间定位采用液控单向阀定位可靠单向节流阀用于平稳下行6、保压回路•功能:使系统在执行元件不动或仅有微小位移的工况下保持稳定的压力。
•保压性能有两个指标:保压时间和压力稳定性。
电接触式压力表4监视预设压力的上下限值,控制换向阀2动作,液控单向阀3实现保压蓄能器保压卸荷回路7.2 速度控制回路控制与调节液压执行元件的速度。
第四讲多缸动作控制回路
元件才开始动作。在
液压系统中,时间控
制一般可用延迟阀来控制。 Nhomakorabea1
1Y
2Y
8
2.同步回路
同步控制回路是用于保证系统中的两个或 多个执行元件在运动中以相同的位移或速度 运动,也可以按一定的速比运动。它通常用 于多个执行元件同时驱动一个工作部件的场 合。同步运动可分为位置同步和速度同步两 种。
流量同步回路
动画演示
12
比例调速阀控制的同步回路
当两活塞出现位置偏差
3
时,可通过检测装置发
出的电信号,自动调节
电液比例调速阀的开度,
使两个液压缸仍能保持
1
同步。这种回路调节方
便,同步精度高,两活
塞位置的绝对误差可降
至0.5mm。
4 2
13
容积同步回路
流量同步是利用流量控制阀 来控制进入和流出液压缸的流 量,使液压缸活塞运动速相等, 实现速同步。
1.顺序动作回路
功用 使多个执行元件严格按照预定顺
序动作。
分类 压力控制
行程控制 时间控制
1
压力控制顺序动作回路
定义 利用系统工作过程中压力的变化 使执行元件按顺序先后动作。
分类
顺序阀控制 压力继电器控制
2
顺序阀控制
换向阀左位工作时,主压力油 进入缸1实现动作顺序①,当 油压升高到顺序阀3的开启压 力时,主压力油进入缸2,实现 动作顺序②; 换向阀右位工作时,主压力油 进入缸2,实现动作顺序③,当 油压升高到顺序阀5的开启压 力时,主压力油进入缸1,实现 动作顺序④ 。
4
5
一个活塞杆的液压缸,
在回路中起着配流的
作用,使有效面积相 2
等的两个液压缸4和5
液压与气动传动第七章液压基本回路
图7-13b 调速特性曲线
q1
当进入液压缸的工作流量为 、泵的供油
q q 流量应为
,供油压力p为 ,1 此时
p 液压缸工作腔压力的p正常工作范围是
p2
A2 16)
回路的效率为 :
c
(p1
p2 AA12)q1 ppqp
p1 p2 pp
A2 A1
(7-17)
(2)差压式变量泵和节流阀的调速回路
图7-6a 采用电接触式压力表控制的保压回路
2. 采用蓄能器的保压回路 图7-6b 采用蓄能器的保压回路
3.采用辅助泵的保压回路 图7-6c 采用辅助泵的保压回路
7.2 速度控制回路
7.2.1 速度调节与控制原理 7.2.2 定量泵节流调速回路 7.2.3 容积调速回路 7.2.4 快速运动回路
7.1.5 平衡回路 平衡回路的作用: 1.采用单向顺序阀的平衡回路
图7-5a 采用单向顺序阀的平衡回路
2.采用液控单向阀的平衡回路 图7-5b 采用液控单向阀的平衡回路
3.采用远控平衡阀的平衡口路 图7-5c 采用远控平衡阀的平衡回路
7.1.6 保压回路 保压回路的功能: 1.采用电接触式压力表控制的保压回路
(3)三种调速回路的刚度比较。根据式(7-12),可得速度负载 特性曲线,如图7-9b所示。
(4)三种调速回路功率损失的比较。旁路节流调速回路只有节流 损失,而无溢流损失,因而功率损失比进油和回油两种节流阀调 速回路小,效率高。
(5)停机后的启动性能。长期停机后,当液压泵重新启动时,回 油节流阀调速回路背压不能立即建立会引起瞬间工作机构的前冲 现象。而在进油节流调速回路中,因为进油路上有节流阀控制流 量,只要在开车时关小节流阀即可避免启动冲击。
控制回路常用电气元件原理介绍
故障现象:控制器无法正常工作显示错误代码
排除方法:检查传感器、检查线路、更换硬件等
原因分析:传感器故障、线路故障等
原因分析:电源故障、程序错误、硬件故障等
故障现象:控制器输出信号异常
排除方法:检查电源、重新启动、更换硬件等
感谢您的观看
汇报人:
排除方法:检查传感器是否安装正确如有错误重新安装
故障现象:传感器输出信号异常 排除方法:检查传感器是否损坏如有损坏更换新的传感器
排除方法:检查传感器是否损坏如有损坏更换新的传感器
故障现象:传感器输出信号为零 排除方法:检查传感器是否损坏如有损坏更换新的传感器
排除方法:检查传感器是否损坏如有损坏更换新的传感器
控制自动化系统:接触器可以控制自动化系统实现自动化控制
控制电机:通过接触器控制电机的启动、停止和反转
保护电路:接触器可以保护电路防止过载、短路等故障
接触器的常见故障及排除方法
接触器无法吸合:检查电源电压是否正常触点是否损坏触点弹簧是否损坏
接触器噪音:检查触点是否粘连触点弹簧是否损坏触点间隙是否过大
信号放大:继电器可以将微弱的信号放大实现信号的放大和传输。
保护电路:继电器可以保护电路防止过载、短路等故障对电路造成损坏。
控制电机:继电器可以控制电机的启动、停止和转速等实现对电机的精确控制。
继电器的常见故障及排除方法
触点烧蚀:检查触点接触是否良好更换损坏的触点
触点接触不良:检查触点是否接触不良更换损坏的触点
接触器无法断开:检查触点是否粘连触点弹簧是否损坏触点间隙是否过大
接触器寿命短:检查触点是否粘连触点弹簧是否损坏触点间隙是否过大
接触器发热:检查触点是否粘连触点弹簧是否损坏触点间隙是否过大
数控技术《2.15.1-顺序动作回路》
2行程控制的顺序动作回路
行程阀控制的顺序动作回路
这种回路动作可靠, 但改变动作顺序难。
行程开关控制的顺序动作回路
调整挡块可调整缸 的行程,通过电控 系统可改变动作顺 序。
行程阀控制的顺序动作回路
第六页,共九页。
行程开关控制的顺序动作回路
【知识点小结】
本知识点主要是对顺序动作回路的原理进行学习,这些内容是 后面进行液压系统分析的根底。
多缸动作回路包括:
顺序动作回路 同步回路
互不干扰回路
第二页,共九页。
温馨 提示
➢功用: 使几个执行元件严格按照预订的顺序动作的回路
➢分类: 按控制方式不同,顺序动作回路分为压力控制
和行程控制两种方式。
第三页,共九页。
1压力控制的顺序动作回路
压力控制的顺序动作回路是 利用液压系统工作过程中的压 力变化来使执行元件按顺序先 后动作。
第七页,共九页。
THANS
第八页,共九页。
内容总结
在工程液压系统中,一个油源往往要能驱动多个液压缸,从而实现多个动作的同时进行。在工程液压系统中,一个油源往往要能驱动多个液压缸, 从而实现多个动作的同时进行。当一个油源给多个执行元件供油,各执行元件因回路中压力、流量的相互影响而在动作上受到牵制。我们可以通过压力、 流量、行程控制来实现多执行元件预定动作的要求。使几个执行元件严格按照预订的顺序动作的回路。按控制方式不同,顺序动作回路分为压力控制。 ④ 缸1 退回
课程导入
在工程液压系统中,一个油源往往要能驱动多个液压缸,从而实现多个动 作的同时进行。按照系统的要求,这些液压缸或顺序动作,或同步动作, 多缸之间要求能防止在压力和流量上的相互干扰。一个油源需要驱动两个 工作台的动作。请分析,这是如何实现的?
三管制多联机电路控制原理
三管制多联机电路控制原理
三管制多联机电路控制原理是一种用于控制多联机工作的
电路设计。
它基于三管制原理,通过控制电路的开关状态来实现多联机的控制和操作。
在三管制多联机电路中,通常包含三个主要的元件:主控
模块、触发模块和执行模块。
主控模块是整个电路的核心,它负责接收外部指令和信号,并根据需要控制触发模块和执行模块的工作。
触发模块通过逻辑门电路或者微控制器来实现,它接收主控模块的指令,根据指令的要求决定是否触发执行模块的工作。
执行模块则负责控制多联机的具体操作,例如通过继电器控制多联机的开关状态。
三管制多联机电路的工作原理相对简单清晰。
当主控模块
接收到外部指令时,它会将指令传递给触发模块进行判断。
触发模块根据指令的要求和当前的工作状态来判断是否需要触发执行模块的工作。
如果需要触发执行模块工作,触发模块会向执行模块发送触发信号,执行模块接收到信号后会进行相应的操作,例如打开或关闭多联机。
三管制多联机电路的设计可以根据具体需求进行优化和改进。
可以通过增加触发模块的逻辑门电路或者微控制器的功能来实现更复杂的控制模式,例如时间控制、循环控制等。
此外,还可以根据多联机的具体工作特点来设计不同的执行模块,例如针对不同类型的多联机设备选择不同的继电器或开关元件。
三管制多联机电路控制原理是一种基于三管制原理的电路
设计,通过主控模块、触发模块和执行模块之间的配合工作,实现对多联机的控制和操作。
它具有简单可靠的特点,并可以根据需求进行相应的优化和改进。
常用液压基本回路
主讲教师:吴海燕whyfool@常用液压基本回路所谓基本回路,就是由一些液压元件组成的,用来完成特定功能的油路结构。
按基本回路在系统中功能分为压力控制回路、速度控制回路、方向控制回路和多执行元件控制回路。
§7.1 压力控制回路压力控制回路是利用压力控制阀控制整个液压系统或其分支油路的工作压力,以满足执行元件对力或力矩的要求。
主要有调压回路、减压回路、增压回路、卸荷回路、保压回路、平衡回路和释压回路等。
7.1.1 调压回路调压回路的功用是调定或限制液压系统的最高工作压力。
多用溢流阀来实现。
1、单级调压回路(书133页图7.1)溢流阀调定系统压力溢流阀调定系统过载压力图7-11 溢流阀在容积调2、二级调压回路图示位置压力由高压溢流阀3调节。
4通电,压力由远程调压阀5调节。
先导溢流阀实现远程调压的条件:5的调定压力低于3的调定压力。
动画演示图7-15 二级调压回路低压图7-16 二级调压回路远程调压阀3、多级调压回路图示,由阀1调压,压力较高。
YA+,由阀2或3调压,压力较低。
为获得多级压力,阀2或3的调定压力必须小于阀1的调定压力,否则,阀1将不起作用。
动画演示3级调压4、无极调压回路采用比例溢流阀7.1.2 减压回路减压回路的功用是单独调节系统中某一分油路的压力,使其低于系统压力的调定值。
单级减压——用一个减压阀即可分类< 多级减压——减压阀+远程调压阀即可无级减压——比例减压阀即可动画演示二级减压回路动画演示无极减压回路7.1.3 增压回路增压回路用来使系统某一分油路获得比系统压力高但流量不大的油液。
1、单作用增压缸的增压回路原理:p2 = p1A1/ A2=p1D2/d2特点:只能断续增压。
动画演示2、双作用增压缸的增压回路特点:能实现连续增压动画演示7.1.4 卸荷回路当系统中执行元件短时间工作时,常使液压泵在很小的功率下作空运转,而不是频繁启动驱动液压泵的原动机。
因为泵的输出功率为其输出压力与输出流量之积,当其中的一项数值等于或接近于零时,即为液压泵卸荷。
多缸工作控制回路及其他回路
进口节流阀4和背压阀5配合,实现马达转速的预选。
这种回路也能使多个并联的执行元件在同一供压的回路中互不干扰地按自己需要的转速和转矩工作。
图为组合机床液压系统原理图。该系统具有夹紧和进给两个液压缸,要求完成的动作循环如左图,读懂该系统,并完成如下工作:
当阀4、8的右侧电磁铁通电,实现快退。
这种回路是利用顺序阀实现互不干扰的。顺序阀的开启压力决定于液压缸的工作压力。
当有快进转变成工进时,节流顺序阀打开,系统由高压小流量的泵1供油。由于高压油的作用,单向阀关闭。
当阀4、8的电磁铁均断电,液压缸停止运动。
特点:可靠性较高。主要用于组合机床的液压系统。
05
三.多缸快慢速互不干扰回路
多缸快慢速互不干扰回路的功用是防止液压系统中几个液压缸因速度快慢的不同而在动作上的相互干扰。
1.双泵供油实现的多缸快慢速互不干扰回路
当阀5、阀6 均通电,液压缸A、B均差动联接,并由大流量泵2供油,实现快进。
若当缸A完成快进动作,由挡块或行程开关使阀7通电,阀6断电,此时由高压小流量泵1供油,实现工进。而此时缸B仍作快进,互不影响。
顺序动作回路
1.行程控制的顺序动作回路
行程阀
行程开关
行程开关
图a)为行程阀控制的顺序动作回路,回路工作可靠,但动作顺序一经确定,再改变比较困难,同时管路较长,布置比较麻烦。 图b)为行程开关控制的顺序动作回路,该回路控制灵活方便,但其可靠程度主要取决于电器元件的质量。
2.压力控制的顺序动作回路
图中,缸1有肝腔的有效作用面积等于缸2无肝腔的有效作用面积。
补偿原理为:若缸1的活塞先运动到缸底,压下行程开关a使阀5得电。
气动基本回路 气动常用回路
气动基本回路气动常用回路气动基本回路是指通过气动元件和管路构成的气动系统中的基本回路。
气动常用回路是指在工业自动化控制系统中经常使用的一些气动回路。
本文将介绍气动基本回路和气动常用回路的一些概念和应用。
气动基本回路主要包括气源回路、执行回路和控制回路。
气源回路是指气动系统中提供压缩空气的部分,通常包括压缩空气发生器、气源处理装置和储气设备。
执行回路是指通过气动执行元件来实现机械运动的部分,通常包括气缸和气动执行阀等。
控制回路是指用来控制执行元件的控制系统,通常包括开关、传感器和控制阀等。
气动常用回路包括单向气缸回路、双向气缸回路、速度控制回路、位置控制回路、压力控制回路等。
单向气缸回路是指通过一个气缸来实现单个工作机构的运动控制,常用于一些简单的工作场合。
双向气缸回路是指通过两个气缸来实现工作机构的正反转运动控制,常用于一些需要双向运动的工作场合。
速度控制回路是通过调节气缸的进气量来实现对气缸运动速度的控制,常用于一些对速度要求较高的工作场合。
位置控制回路是通过使用位置传感器来检测工作机构的位置,并通过控制阀来调节气缸的进气量,从而实现对工作机构位置的控制。
压力控制回路是通过使用压力传感器来检测气缸的压力,并通过控制阀来调节气缸的进气量,从而实现对气缸压力的控制。
气动基本回路和气动常用回路在工业自动化控制系统中具有广泛的应用。
其优点包括响应速度快、动力强、结构简单、成本低廉等。
因此,在许多工业领域中,气动系统被广泛应用于各种自动化生产线、机械设备和工艺控制系统中。
气动基本回路和气动常用回路是工业自动化控制系统中常用的回路类型。
通过对气源回路、执行回路和控制回路的合理设计和配置,可以实现对工作机构的运动控制、速度控制、位置控制和压力控制等功能。
气动系统具有快速响应、动力强大、结构简单、成本低廉等优点,因此在工业领域中具有广泛的应用前景。
第三章 基本回路
目录
1 方向控制回路
1.换向回路 2.锁紧回路 3.制动回路
2 压力控制回路
1.调压回路 2.减压回路 3.增压回路 4.卸荷回路 5.平衡回路 6.保压回路和泄压回路 7.缓冲回路
3 速度控制回路
1.调速回路 2.增速回路 3.减速回路 4.同步回路
目录
4 油源控制回路
1.开式液压系统的油源回路 2.闭式液压系统的油源回路及补油泵回路 3.压力箱油源回路
当换向阀在图示位置(中位) 时,系统处于卸荷状态;当换向阀 处于左位时,系统处于正常工作状 态;当换向阀在右位时,液压泵处 于卸荷状态,液压马达处于制动状 态。这时液压马达的出口接溢流阀, 由于回油受到溢流阀阻碍,回油压 力升高,直至打开溢流阀,液压马 达在溢流阀调定背压作用下迅速制 动。
图9 采用溢流阀制动的回路 1-液压泵;2-调速阀;3-液压马达;4-换向阀;5-
1.3 制动回路
基本的制动方法有以下几种: (1)采用换向阀制动; (2)采用溢流阀制动; (3)采用顺序阀制动; (4)其他制动方法。
换向阀制动不仅易产生冲击、振动、噪声,还在执行元件的进油腔产生真 空,出油腔产生高压,对执行元件和管路不利,因此一般不采用这种方式中 制动。
第一节 方向控制回路
(1) 溢流阀制动回路:
图16 增压基本回路
第二节 压力控制回路
1.4 卸荷回路
在不停泵的情况下,常常需要对液压系统卸荷(卸掉压力),可采 用不同液压元件达到目的。
图17 二位二通阀卸荷回路 1-液压泵;2-二位二通电磁换向阀;3-溢流阀
如图所示为二位二通阀卸荷回路。给二位二通阀通电,右位阀芯进入系 统进行溢流卸荷。不通电时,二位二通阀关闭,系统继续进行工作。
液压系统的基本回路
(1) 进油节流调速回路
进油节流调速回路是将节流 阀装在执行机构的进油路上, 调速原理如图6-20所示。
根据进油节流调速回路的特 点,节流阀进油节流调速回路 适用于低速、轻载、负载变化 不大和对速度稳定性要求不高 的场合。
图6-20 进油节流调速回路
(2) 回油节流调速回路
回油节流调速回路将节流阀安装
活塞的液压作用力Fa推动大 小活塞一起向右运动,液压
缸b的油液以压力pb进入工作 液压缸,推动其活塞运动。
其关系如下:
pb
pa
Aa Ab
三、增压回路
2.双作用增压回路
四、保压回路
有些机械设备在工作过程中,常常要求液压执行机构在 工作循环的某一阶段内保持一定压力,这时就需要采用保 压回路。保压回路可在执行元件停止运动或仅仅有工件变 形所产生的微小位移的情况下使系统压力基本保持不变。
一、启停回路
当执行元件需要频繁地启动或停止时,系统中经常采用 启、停回路来实现这一要求。
二、换向回路 1. 简单换向回路
简单换向回路是指在液压泵和执行元件之间加装普通换向 阀,就可实现方向控制的回路。如图6-2、6-3所示。
2.复杂换向回路
采用特殊设计的机液换向阀,以行程挡块推动机动 先导阀,由它控制一个可调式液动换向阀来实现工作 台的换向,既可避免“换向死点”,又可消除换向冲 击。这种换向回路,按换向要求不同可分为 时间控制 制动式 和 行程控制制动式 两种。
图6-19 采用顺序阀的平衡回路
第三节 速度控制回路
速度控制回路是调节和变换执行元件运动速度的回路,它包 括调速回路、快速回路和速度换接回路。
一、调速回路
调速回路主要有以下三种方式: (1)节流调速回路 (2)容积调速回路 (3)容积节流调速回路
HXD3型机车主断路器控制回路分析
HXD3型机车主断路器控制回路分析1. 引言1.1 HXD3型机车主断路器控制回路分析HXD3型机车主断路器控制回路是机车电力系统中的重要部分,它承担着控制机车电路的开关和保护功能。
对于机车的正常运行和安全性具有至关重要的作用。
本文将对HXD3型机车主断路器控制回路进行分析,包括其基本结构、工作原理、故障诊断和维修方法、安全保护措施以及性能优势等方面进行深入探讨。
HXD3型机车主断路器控制回路的基本结构主要包括控制器、断路器、继电器等组件,通过这些组件的协调工作,实现机车电路的稳定运行。
工作原理是指控制回路的电力信号流向和开闭状态的控制,确保机车电路在各种工况下的正常运行。
故障诊断和维修方法是保障机车主断路器控制回路长期稳定运行的关键,必须及时发现并解决问题。
安全保护措施是确保机车电路运行安全的重要措施之一,包括过载保护、短路保护等。
2. 正文2.1 HXD3型机车主断路器控制回路的基本结构HXD3型机车主断路器控制回路的基本结构包括主断路器、控制器、传感器、继电器等组成部分。
主断路器是控制整个系统通断的关键设备,通过操作主断路器可以实现对机车电路的控制。
控制器是控制主断路器动作的核心部件,根据系统的控制逻辑来控制主断路器的状态。
传感器则负责监测系统的工作状态,将监测到的信号传输给控制器,以实现对主断路器的精准控制。
继电器则起到了信号放大和隔离的作用,保证系统的稳定性和可靠性。
在HXD3型机车主断路器控制回路中,各组成部分之间通过电缆和连接器连接起来,构成一个完整的控制回路。
这些组成部分相互配合,通过控制器的指令来控制主断路器的通断,实现对机车电路的精确控制。
整个结构简洁明了,功能齐全,保证了机车电路的安全性和稳定性。
HXD3型机车主断路器控制回路的基本结构经过多次优化和改进,具备了较高的可靠性和稳定性。
通过不断地改进和完善,可以更好地适应不同工况下的需求,为机车的运行提供了保障。
2.2 HXD3型机车主断路器控制回路的工作原理HXD3型机车主断路器控制回路的工作原理是通过控制回路中的各个元件和部件的协调配合,实现对主断路器的开关操作和保护功能。
双作用气缸调速回路工作原理
双作用气缸调速回路工作原理在工业自动化领域,气动技术以其低成本、高效率和易于维护等特点,被广泛应用于各种机械设备中。
双作用气缸作为气动系统中的重要执行元件,其调速回路的设计和工作原理对于整个系统的性能具有重要影响。
本文将深入探讨双作用气缸调速回路的工作原理,并分析其在实际应用中的优化策略。
一、双作用气缸的基本概念双作用气缸是一种能够在两个方向上产生推力和拉力的气动执行元件。
它主要由缸筒、活塞、活塞杆、前后端盖及密封件等组成。
当压缩空气从气缸的一端进入时,推动活塞向另一端移动;反之,当压缩空气从另一端进入时,推动活塞反向移动。
这种双向运动的特点使得双作用气缸在工业自动化领域具有广泛的应用。
二、调速回路的作用与重要性调速回路是气动系统中的关键部分,它负责控制气缸的运动速度。
通过调节进入气缸的压缩空气流量和压力,调速回路可以实现气缸的快速、平稳和精确运动。
这对于提高机械设备的生产效率、降低能耗和减少维护成本具有重要意义。
三、双作用气缸调速回路的工作原理双作用气缸调速回路的工作原理主要依赖于对压缩空气流量和压力的控制。
一般来说,调速回路包括以下几个关键部分:1. 气源处理元件:负责提供稳定、干燥的压缩空气,以满足气缸的工作需求。
这包括空气压缩机、储气罐、干燥器和过滤器等。
2. 方向控制阀:用于控制压缩空气进入气缸的方向。
常见的方向控制阀有二位三通阀、二位五通阀等。
通过改变阀芯的位置,可以实现气缸的正向和反向运动。
3. 流量控制阀:负责调节进入气缸的压缩空气流量,从而控制气缸的运动速度。
流量控制阀通常与方向控制阀配合使用,以实现气缸在不同方向上的速度调节。
常用的流量控制阀有节流阀和调速阀等。
节流阀通过改变阀口的通流面积来调节流量,而调速阀则能在负载变化时保持稳定的流量输出。
4. 压力控制元件:用于监测和调节气缸的工作压力。
这包括压力表和压力开关等。
当气缸的工作压力过高或过低时,压力控制元件可以发出信号或切断气源,以保护气缸和整个气动系统免受损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
执行元 件数目 不多, 不多, 负载变 化不大 的场合. 的场合.
适用于
行程控制的顺序动作回路
行程阀控制顺序回路
动作可靠, 动作可靠,但改变动 作顺序难. 作顺序难.
行程开关控制顺序回路
调整挡块可调整缸的行 程,通过电控系统可改 变动作顺序. 变动作顺序.
同步回路
能保证系统中两个或多个执行元件克服负载, 功用 能保证系统中两个或多个执行元件克服负载,摩擦 阻力,泄漏,制造质量和结构变形上的差异, 阻力,泄漏,制造质量和结构变形上的差异,在运动中以 相同的位移或相同的速度运动,前者为位置同步, 相同的位移或相同的速度运动,前者为位置同步,后者为 速度同步.按控制方式分等流量控制和等容积控制. 速度同步.按控制方式分等流量控制和等容积控制. 用流量控制阀的同步回路 用串联液压缸的同步回路
用同步马达或同步缸的同步回路
采用伺服阀的同步回路
互不干扰回路
功用 使系统中几个执行 元件在完成各自工作循环 时彼此互不影响. 时彼此互不影响. 通过双泵供油实现多缸快 慢速互不干扰的回路
缸1 快进 工进 快退 缸2 快进 工进 快退 1Y+ 3Y- 大泵供油 1Y- 3Y+ 小泵供油 1Y+ 3Y+ 大泵供油 2Y+ 4Y- 大泵供油 2Y- 4Y+ 小泵供油 2Y+ 4Y+ 大泵供油
多执行元件控制回路
如果一个油源给多个执行元件供油, 如果一个油源给多个执行元件供油,各执行元 件因回路中压力, 件因回路中压力,流量的相互影响而在动作上 受到牵制.我们可以通过压力,流量, 受到牵制.我们可以通过压力,流量,行程控 制来实现多执行元件预定动作的要求. 制来实现多执行元件预定动作的要求.
– 顺序动作回路 – 同步回路 – 多路换向阀控制回路
顺序动作回路
使几个执行元件严格按照预定顺序动作. 功用 使几个执行元件严格按照预定顺序动作.按控制 方式不同, 方式不同,顺序动作回路分为压力控制和行程控制两种 方式. 方式. 压力控制顺序动作回路 用顺序阀控制的顺序回路 用压力继电器控制的顺序回路
�
多路换向阀控制பைடு நூலகம்路
多路换向阀是若干个手动换向阀及一些配用阀( 多路换向阀是若干个手动换向阀及一些配用阀(如安全溢 流阀,单向阀,补油阀等)组合成的集成阀. 流阀,单向阀,补油阀等)组合成的集成阀.
多路换向阀控制
回路能操纵多个执 行元件运动, 行元件运动,主要 用于工程机械, 用于工程机械,起 重运输机械和其他 要求集中操纵多个 执行元件运动的行 走机械. 走机械. 按连接方式分串 并联, 联,并联,串并联 三种基本油路. 三种基本油路.