四川省成都市高三第二次诊断性模拟检测数学(理)试题及答案

合集下载

四川省成都市届高三第二次诊断性检测 数学理

四川省成都市届高三第二次诊断性检测 数学理

高中毕业班第二次诊断性检测 数学〔理工类〕本试卷分选择题和非选择题两局部。

第I 卷〔选择题〕1至2页,第二卷〔非选择题〕3至 4页,共4页,总分值150分,考试时间120分钟。

第I 卷〔选择题,共50分〕一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项 是符合题目要求的.1.集合A={x|y=24x x -}.B={x||x|≤2),那么A B=(A)[一2.2] (B)[一2,4] (C)[0,2] (D)[0,4]2.函数f 〔x 〕=2x +x-2的零点所在区间是(A)〔一∞, -1〕 (B)〔一l ,0〕 (C)(0.1) (D)(1,2)3.复数z=31i i+-(其中i 为虚数单位〕的虚部为 (A) -1 (B)一1 (C) 2i (D)24.某几何体的正视图和侧视图均如右图所示,那么该几何体的俯视图不可能为5.将函数f(x)=cos 〔x+6π〕图象上所有点的横坐标缩短为原来的12倍,纵坐标不变,得 到函数g(x)的图象,那么函数g(x)的一个减区间是(A)[一6π,3π] (B)[一3π,53π] (C)[一6π,116π] (D)[一12π,512π] 6.某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间[loo ,128]内,将该班所有同学的考试分数分为七组:[100,104〕,[104,108〕,[108,112), [112,116), [116,120), [120,124),[124,128].绘制出频率分布直方图如下图,已知分数低于112分的有18人,那么分数不低于120分的人数为(A)10 (B)12(C)20 (D)407.某微信群中甲、乙、丙、丁、戊五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中有两个2元,两个3元〔红包中金额相同视为相同的红包〕,那么甲乙两人都抢到红包的情况有(A)36种(B)24种(C)18种(D)9种8.在三棱锥P-ABC中,PA上底面ABC,AB上BC,E,F分别是线段PB,PC上的动点.那么以下说法错误的选项是(A)当AE⊥PB时,△AEF一定为直角三角形(B)当AF⊥PC时,△AEF一定为直角三角形(C)当EF∥平面ABC时,△AEF一定为直角三角形(D)当PC⊥平面AEF时,△AEF 一定为直角三角形9.函数f(x)=3,031,0x xx x⎧≥⎨+<⎩,那么不等式f(f(x))<4f(x)+1的解集是(A)(一3,0) (B)〔一13,1〕(C)(0,2) (D)〔一13,log32)10.抛物线y=x2的焦点为F,经过y轴正半轴上一点N作直线l与抛物线交于A,B两点,且OA OB⋅=2〔O为坐标原点〕,点F关于直线OA的对称点为C,那么四边形OCAB面积的最小值为(A)3 (B) 3(C)23(D) 3 2第二卷〔非选择题,共100分〕二、填空题:本大题共5小题,每题5分,共25分.11.双曲线2225x ya-=l的一个焦点坐标为(3,0),那么该双曲线的离心率为。

四川省成都市高三数学第二次诊断性检测试题 理

四川省成都市高三数学第二次诊断性检测试题 理

四川省成都市2018届高三数学第二次诊断性检测试题 理第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|11}P x x =-<,{|12}Q x x =-<<,则PQ =( )A .1(1,)2- B .(1,2)- C .(1,2) D .(0,2)2.已知向量(2,1)a =,(3,4)b =,(,2)c k =.若(3)//a b c -,则实数的值为( ) A .8- B .6- C .1- D .3.若复数满足3(1)12i z i +=-,则z 等于( )A .2 B .32 C .2 D .124.设等差数列{}n a 的前项和为n S .若420S =,510a =,则16a =( ) A .32- B .12 C .16 D .325.已知m ,是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=,n m ⊥,则n α⊥6.若6(x-的展开式中含32x 项的系数为160,则实数的值为( )A .B .2-C .D .- 7.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示.现将函数()f x 图象上的所有点向右平移4π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为( )A .()2sin(2)4g x x π=+B .3()2sin(2)4g x x π=+C .()2cos 2g x x =D .()2sin(2)4g x x π=-8.x ≤≤”是“223x x+≤≤”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( )A .3B .CD .24π 10.执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是( )A .7?n ≤B .7?n >C .6?n ≤D .6?n > 11.已知函数()1ln m f x n x x =--(0,0)m n e >≤≤在区间[1,]e 内有唯一零点,则21n m ++的取值范围为( )A .22[,1]12e e e e ++++ B .2[,1]12e e ++C .2[,1]1e +D .[1,1]2e +12.已知双曲线C :22221(0,0)x y a b a b-=>>右支上的一点P ,经过点P 的直线与双曲线C 的两条渐近线分别相交于A ,B 两点.若点A ,B 分别位于第一,四象限,O 为坐标原点.当12AP PB =时,AOB ∆的面积为2b ,则双曲线C 的实轴长为( ) A .329 B .169 C .89 D .49第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知132a =,231()2b =,则2log ()ab = .14.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为 .15.已知抛物线C :22(0)y px p =>的焦点为F ,准线与轴的交点为A ,P 是抛物线C 上的点,且PF x ⊥轴.若以AF 为直径的圆截直线AP 所得的弦长为,则实数p 的值为 .16.已知数列{}n a 共16项,且11a =,84a =.记关于的函数321()3n n f x x a x =-2(1)n a x +-,*n N ∈.若1(115)n x a n +=≤≤是函数()n f x 的极值点,且曲线8()y f x =在点16816(,())a f a 处的切线的斜率为15.则满足条件的数列{}n a 的个数为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()cos 22x x f x =21cos 22x -+. (1)求函数()f x 的单调递减区间;(2)若ABC ∆的内角A ,B ,C 所对的边分别为,,,1()2f A =,a =sin 2sin B C =,求.18.近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP 中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况的优惠活动评价的22⨯列联表如下:(1)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?(2)为了回馈用户,公司通过APP 向用户随机派送每张面额为元,元,元的三种骑行券.用户每次使用APP 扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是12,15,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为X ,求随机变量X 的分布列和数学期望. 参考数据:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,60FBD ∠=,AB BC ⊥,AB BC ==(1)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (2)求平面AEF 与平面BCF 所成的锐二面角的余弦值.20.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,左顶点为A ,离心率为2,点B 是椭圆上的动点,1ABF ∆的面积的最大值为12. (1)求椭圆C 的方程;(2)设经过点1F 的直线与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为'l .若直线'l 与直线相交于点P ,与直线2x =相交于点Q ,求PQMN的最小值. 21.已知函数()ln 1f x x x ax =++,a R ∈.(1)当时0x >,若关于的不等式()0f x ≥恒成立,求的取值范围; (2)当*n N ∈时,证明:223ln 2ln 242n n <++21ln 1n nn n ++⋅⋅⋅+<+. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。

高三第二次诊断性检测数学(理)试题含答案试卷分析详解

高三第二次诊断性检测数学(理)试题含答案试卷分析详解

成都市级高中毕业班第二次诊断性检测数学(理科)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|11}P x x =-<,{|12}Q x x =-<<,则PQ =( )A .1(1,)2- B .(1,2)- C .(1,2) D .(0,2)2.已知向量(2,1)a =,(3,4)b =,(,2)c k =.若(3)//a b c -,则实数的值为( ) A .8- B .6- C .1- D .3.若复数满足3(1)12i z i +=-,则z 等于( )A .102 B .32 C .22 D .124.设等差数列{}n a 的前项和为n S .若420S =,510a =,则16a =( ) A .32- B .12 C .16 D .325.已知m ,是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=,n m ⊥,则n α⊥6.若6(x x的展开式中含32x 项的系数为160,则实数的值为( ) A . B .2- C .22.22- 7.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示.现将函数()f x 图象上的所有点向右平移4π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为( )A .()2sin(2)4g x x π=+B .3()2sin(2)4g x x π=+C .()2cos 2g x x =D .()2sin(2)4g x x π=-8.若为实数,则“2x ≤≤”是“223x x+≤≤”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( )A .3B .CD .24π 10.执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是( )A .7?n ≤B .7?n >C .6?n ≤D .6?n > 11.已知函数()1ln m f x n x x =--(0,0)m n e >≤≤在区间[1,]e 内有唯一零点,则21n m ++的取值范围为( )A .22[,1]12e e e e ++++ B .2[,1]12e e ++ C .2[,1]1e + D .[1,1]2e +12.已知双曲线C :22221(0,0)x y a b a b-=>>右支上的一点P ,经过点P 的直线与双曲线C的两条渐近线分别相交于A ,B 两点.若点A ,B 分别位于第一,四象限,O 为坐标原点.当12AP PB =时,AOB ∆的面积为2b ,则双曲线C 的实轴长为( ) A .329 B .169 C .89 D .49第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知132a =,231()2b =,则2log ()ab = .14.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为 .15.已知抛物线C :22(0)y px p =>的焦点为F ,准线与轴的交点为A ,P 是抛物线C 上的点,且PF x ⊥轴.若以AF 为直径的圆截直线AP 所得的弦长为,则实数p 的值为 .16.已知数列{}n a 共16项,且11a =,84a =.记关于的函数321()3n n f x x a x =-2(1)n a x +-,*n N ∈.若1(115)n x a n +=≤≤是函数()n f x 的极值点,且曲线8()y f x =在点16816(,())a f a 处的切线的斜率为15.则满足条件的数列{}n a 的个数为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()cos 22x x f x =21cos 22x -+. (1)求函数()f x 的单调递减区间;(2)若ABC ∆的内角A ,B ,C 所对的边分别为,,,1()2f A =,a =sin 2sin B C =,求.18.近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP 中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况的优惠活动评价的22⨯列联表如下:(1)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?(2)为了回馈用户,公司通过APP 向用户随机派送每张面额为元,元,元的三种骑行券.用户每次使用APP 扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是12,15,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为X ,求随机变量X 的分布列和数学期望. 参考数据:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,60FBD ∠=,AB BC ⊥,AB BC ==(1)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (2)求平面AEF 与平面BCF 所成的锐二面角的余弦值.20.已知椭圆C :22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,左顶点为A ,离心率为2,点B 是椭圆上的动点,1ABF ∆的面积的最大值为12. (1)求椭圆C 的方程;(2)设经过点1F 的直线与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为'l .若直线'l 与直线相交于点P ,与直线2x =相交于点Q ,求PQ MN的最小值.21.已知函数()ln 1f x x x ax =++,a R ∈.(1)当时0x >,若关于的不等式()0f x ≥恒成立,求的取值范围; (2)当*n N ∈时,证明:223ln 2ln 242n n <++21ln 1n nn n ++⋅⋅⋅+<+. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题含解析

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题含解析

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题一、选择题(本大题共12小题,共60.0分)1.设全集U=R,集合A={x|-1<x<3},B={x|x≤-2或x≥1},则A∩(∁U B)=()A. B.C. D. 或2.已知双曲线C:>的焦距为4,则双曲线C的渐近线方程为()A. B. C. D.3.已知向量=(,),=(-3,),则向量在向量方向上的投影为()A. B. C. D. 14.条件甲:a>b>0,条件乙:<,则甲是乙成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A. B. C. D.6.若,,,且,,则sinβ=()A. B. C. D.7.已知a,b是两条异面直线,直线c与a,b都垂直,则下列说法正确的是()A. 若平面,则B. 若平面,则,C. 存在平面,使得,,D. 存在平面,使得,,8.将函数f(x)的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,若函数g(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.9.已知定义域R的奇函数f(x)的图象关于直线x=1对称,且当0≤x≤1时,f(x)=x3,则f()=()A. B. C. D.10.已知a R且为常数,圆C:x2+2x+y2-2ay=0,过圆C内一点(1,2)的直线l与圆C相切交于A,B两点,当弦AB最短时,直线l的方程为2x-y=0,则a的值为()A. 2B. 3C. 4D. 511.用数字0,2,4,7,8,9组成没有重复数字的六位数,其中大于420789的正整数个数为()A. 479B. 480C. 455D. 45612.某小区打算将如图的一直三角形ABC区域进行改建,在三边上各选一点连成等边三角形DEF,在其内建造文化景观.已知AB=20m,AC=10m,则△DEF区域内面积(单位:m2)的最小值为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知复数z=,a R,若z为纯虚数,则|z|=______.14.已知三棱锥A-BCD的四个顶点都在球O的表面上,若AB=AC=AD=1,BC=CD=BD=,则球O的表面积为______.15.在平面直角坐标系xOy中,定义两点A(x1,y1),B(x2,y2)间的折线距离为d(A,B)=|x1-x2|+|y1-y2|.已知点O(0,0),C(x,y),d(O,C)=1,则的取值范围是______.16.已知F为抛物线C:x2=4y的焦点,过点F的直线l与抛物线C相交于不同的两点A,B,抛物线C在A,B两点处的切线分别是l1,l2,且l1,l2相交于点P,则|PF|+的最小值是______.三、解答题(本大题共7小题,共82.0分)17.已知等比数列{a n}的前n项和为S,公比q>1,且a2+1为a1,a3的等差中项,S3=14.(Ⅰ)求数列{a n}的通项公式(Ⅱ)记b n=a n•log2a n,求数列{b n}的前n项和T n.18.为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得2×2()根据列联表,能否有的把握认为满意程度与年龄有关?(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分x(单位:分)给予相应的住房补贴y(单位:元),现有两种补贴方案,方案甲:y=1000+700x;方案乙:,<,<.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,,>12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“A类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“A类员工”的概率.附:,其中n=a+b+c+d.参考数据:19.如图①,在等腰梯形ABCD中,AB∥CD,E,F分别为AB,CD的中点,CD=2AB=2EF=4,M为DF中点.现将四边形BEFC沿EF折起,使平面BEFC平面AEFD,得到如图②所示的多面体.在图②中,(Ⅰ)证明:EF MC;(Ⅱ)求二面角M-AB-D的余弦值.20.已知椭圆C:(a>b>0)的短轴长为4,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设椭圆C的左,右焦点分别为F1,F2,左,右顶点分别为A,B,点M,N为椭圆C上位于x轴上方的两点,且F1M∥F2N,记直线AM,BN的斜率分别为k1,k2,若3k1+2k2=0,求直线F1M的方程.21.已知函数,a R.(Ⅰ)若f(x)≥0,求实数a取值的集合;(Ⅱ)证明:e x+≥2-ln x+x2+(e-2)x.22.在直角坐标系xOy中,直线l的参数方程为(t为参数,α倾斜角),曲线C的参数方程为(β为参数,β[0,π]),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)写出曲线C的普通方程和直线的极坐标方程;(Ⅱ)若直线与曲线C恰有一个公共点P,求点P的极坐标.23.已知函数f(x)=|x-m|-|x+2m|的最大值为3,其中m>0.(Ⅰ)求m的值;(Ⅱ)若a,b R,ab>0,a2+b2=m2,求证:.答案和解析1.【答案】A【解析】解:∁U B={x|-2<x<1};∴A∩(∁U B)={x|-1<x<1}.故选:A.进行交集、补集的运算即可.考查描述法的定义,以及交集、补集的运算.2.【答案】D【解析】解:双曲线C:的焦距为4,则2c=4,即c=2,∵1+b2=c2=4,∴b=,∴双曲线C的渐近线方程为y=x,故选:D.先求出c=2,再根据1+b2=c2=4,可得b,即可求出双曲线C的渐近线方程本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题3.【答案】A【解析】解:由投影的定义可知:向量在向量方向上的投影为:,又∵,∴=.故选:A.本题可根据投影的向量定义式和两个向量的数量积公式来计算.本题主要考查投影的向量定义以及根据两个向量的数量积公式来计算一个向量在另一个向量上的投影,本题属基础题.4.【答案】A【解析】解:条件乙:,即为⇔若条件甲:a>b>0成立则条件乙一定成立;反之,当条件乙成立不一定有条件甲:a>b>0成立所以甲是乙成立的充分非必要条件故选:A.先通过解分式不等式化简条件乙,再判断甲成立是否推出乙成立;条件乙成立是否推出甲成立,利用充要条件的定义判断出甲是乙成立的什么条件.判断一个条件是另一个条件的什么条件,应该先化简两个条件,再利用充要条件的定义进行判断.5.【答案】C【解析】解:甲的中位数为29,乙的中位数为30,故不正确;甲的平均数为29,乙的平均数为30,故正确;从比分来看,乙的高分集中度比甲的高分集中度高,故正确,不正确.故选:C.根据中位数,平均数,方差的概念计算比较可得.本题考查了茎叶图,属基础题.6.【答案】B【解析】解:,且,可得cosα=-=-.,可得sinαcosβ-cosαsinβ=-,可得cosβ+sinβ=-,即2cosβ+sinβ=-,sin 2β+cos 2β=1,解得sinβ=.故选:B .利用同角三角函数基本关系式求出cosα,通过两角和与差的三角函数化简已知条件,转化求解sinβ即可.本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,是基本知识的考查. 7.【答案】C【解析】解:由a ,b 是两条异面直线,直线c 与a ,b 都垂直,知: 在A 中,若c 平面α,则a 与α相交、平行或a α,故A 错误;在B 中,若c 平面α,则a ,b 与平面α平行或a ,b 在平面α内,故B 错误; 在C 中,由线面垂直的性质得:存在平面α,使得c α,a α,b ∥α,故C 正确;在D 中,若存在平面α,使得c ∥α,a α,b α,则a ∥b ,与已知a ,b 是两条异面直线矛盾,故D 错误. 故选:C .在A 中,a 与α相交、平行或a α;在B 中,a ,b 与平面α平行或a ,b 在平面α内;在C 中,由线面垂直的性质得:存在平面α,使得c α,a α,b ∥α;在D 中,a ∥b ,与已知a ,b 是两条异面直线矛盾.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 8.【答案】C【解析】解:由图象知A=1,=-(-)=,即函数的周期T=π,则=π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2×+φ=π,得φ=,则g(x)=sin(2x+),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x+)+]=sin(2x+)=sin(2x++)=cos(2x+),故选:C.根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.9.【答案】B【解析】解:∵f(x)是奇函数,且图象关于x=1对称;∴f(2-x)=f(x);又0≤x≤1时,f(x)=x3;∴.故选:B.根据f(x)的图象关于直线x=1对称,即可得出f(2-x)=f(x),从而得出,再根据f(x)是奇函数,且当0≤x≤1时,f(x)=x3,从而得出.考查奇函数的定义,函数f(x)的图象关于x=a对称时,满足f(2a-x)=f(x),以及已知函数求值的方法.10.【答案】B【解析】解:化圆C:x2+2x+y2-2ay=0为(x+1)2+(y-a)2=a2+1,圆心坐标为C(-1,a),半径为.如图,由题意可得,过圆心与点(1,2)的直线与直线2x-y=0垂直.则,即a=3.故选:B.由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x-y=0垂直,再由斜率的关系列式求解.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.11.【答案】C【解析】解:根据题意,分3种情况讨论:,六位数的首位数字为7、8、9时,有3种情况,将剩下的5个数字全排列,安排在后面的5个数位,此时有3×A55=360种情况,即有360个大于420789的正整数,,六位数的首位数字为4,其万位数字可以为7、8、9时,有3种情况,将剩下的4个数字全排列,安排在后面的4个数位,此时有3×A44=72种情况,即有72个大于420789的正整数,,六位数的首位数字为4,其万位数字为2,将剩下的4个数字全排列,安排在后面的4个数位,此时有A44=24种情况,其中有420789不符合题意,有24-1=23个大于420789的正整数,则其中大于420789的正整数个数有360+72+23=455个;故选:C.根据题意,分3种情况讨论:,六位数的首位数字为7、8、9时,,六位数的首位数字为4,其万位数字可以为7、8、9时,,六位数的首位数字为4,其万位数字为2,分别求出每种情况下的六位数的数目,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理的应用,属于基础题.12.【答案】D【解析】解:△ABC是直三角形,AB=20m,AC=10m,可得CB=,DEF是等边三角形,设∠CED=θ;DE=x,那么∠BFE=30°+θ;则CE=xcosθ,△BFE中由正弦定理,可得可得x=,其中tanα=;∴x≥;则△DEF面积S=故选:D.△ABC是直三角形,DEF是等边三角形,AB=20m,AC=10m,CB=,可得∠A=60°,∠B=30°;设∠CED=θ;DE=x,那么∠BFE=30°+θ;则CE=xcosθ,在三角形△BFE中利用正弦定理求解x的最小值,即可求解△DEF区域内面积的最小值.本题考查三角形的面积的求法,考查DEF边长的求法,角的表示求解最值问题,是中档题,解题时要注意正弦定理的合理运用.13.【答案】1【解析】解:∵z==是纯虚数,∴,即a=-1.∴z=i,则|z|=1.故答案为:1.利用复数代数形式的乘除运算化简,由实部为0且虚部不为0求得a值,得到复数z,则答案可求.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.14.【答案】3π【解析】解:如图,取CD中点E,连接BE,可得BE=,设等边三角形BCD的中心为G,则BG=,∴AG=,设三棱锥A-BCD的外接球的半径为R,则R2=BG2+OG2,即,解得R=.∴球O的表面积为.故答案为:3π.由题意画出图形,解三角形求得三棱锥外接球的半径,代入棱锥体积公式求解.本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.15.【答案】【解析】解:d(O,C)=|x|+|y|=1,则≥=,.故答案为:.d(O,C)=|x|+|y|=1,利用≥即可得出.本题考查了基本不等式的性质、折线距离,考查了推理能力与计算能力,属于基础题.16.【答案】6【解析】解:设直线l的方程为:y=kx+1,A(x1,y1),B(x2,y2).联立,化为:x2-4kx-4=0,可得:x1+x2=4k,x1x2=-4,|AB|=y1+y2+p=k(x1+x2)+2+2=4k2+4.对x2=4y两边求导可得:y′=,可得切线PA的方程为:y-y1=(x-x1),切线PB的方程为:y-y2=(x-x2),联立解得:x=(x1+x2)=2k,y=x1x2=-1.∴P(2k,-1).∴|PF|=.∴|PF|+=+,令=t≥2.则|PF|+=t+=f(t),f′(t)=1-=,可得t=4时,函数f(t)取得极小值即最小值f(4)=6.当且仅当k=时取等号.故答案为:6.设直线l的方程为:y=kx+1,A(x1,y1),B(x2,y2).联立化为:x2-4kx-4=0,利用根与系数的关系可得|AB|=y1+y2+p=k(x1+x2)+4.对x2=4y两边求导可得:y′=,可得切线PA的方程为:y-y1=(x-x1),切线PB的方程为:y-y2=(x-x2),联立解得P点坐标,可得代入|PF|+,利用导数研究函数的单调性极值即可得出.本题考查了抛物线的定义标准方程及其性质、利用导数研究函数的单调性极值、切线方程、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.17.【答案】解:(I)∵a2+1是a1,a3的等差中项,∴2(a2+1)=a1+a3,∴a1(q2+1)=2a1q+2,=14,化为2q2-5q+2=0,q>1,解得q=2,∴a1=2.∴a n=2n.(II)b n=a n•log2a n=n•2n.∴数列{b n}的前n项和T n=2+2•22+3•23+……+n•2n.2T n=2×2+2•23+……+(n-1)•2n+n•2n+1.∴-T n=2+22+23+……+2n-n•2n+1=-n•2n+1.解得:T n=(n-1)•2n+1+2.【解析】(I)由a2+1是a1,a3的等差中项,可得2(a2+1)=a1+a3,又a1(q2+1)=2a1q+2,=14,联立解得,即可得出.(II)b n=a n•log2a n=n•2n.利用错位相减法即可得出.本题考查了等差数列与等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.18.【答案】解:(1)根据列联表可以求得K2的观测值:k==≈11.42>6.635,故有99%的把握认为满意程度与年龄有关.(2)据题意,该8名员工的贡献积分及按甲乙两种方案所获补贴情况为:设从这8名员工中随机抽取4名进行面谈,恰好抽到3名”A类员工“的概率为P,则P==.【解析】(1)根据列联表可以求得K2的观测值,结合临界值可得;(2)先得积分表可得A类员工的人数,再根据古典概型的概率公式可得.本题考查了独立性检验,属中档题.19.【答案】证明:(Ⅰ)由题意知在等腰梯形ABCD中,AB∥CD,∵E,F分别为AB,CD的中点,∴EF AB,EF CD,∴折叠后,EF DF,EF CF,∵DF∩CF=F,∴EF平面DCF,又MC平面DCF,∴EF MC.解:(Ⅱ)∵平面BEFC平面AEFD,平面BEFC∩平面AEFD=EF,且EF DF,∴DF平面BEFC,∴DF CF,∴DF,CF,EF两两垂直,以F为坐标原点,分别以FD,FC,FE所在直线为x,y,z轴,建立空间直角坐标系,∵DM=1,∴FM=1,∴M(1,0,0),D(2,0,0),A(1,0,2),B(0,1,2),∴=(0,0,2),=(-1,1,0),=(-1,0,2),设平面MAB的法向量=(x,y,z),则,取x=1,得=(1,1,0),设平面ABD的法向量=(x,y,z),则,取z=1,得=(2,2,1),∴cos<,>===,∴二面角M-AB-D的余弦值为.【解析】(Ⅰ)推导出EF AB,EF CD,折叠后,EF DF,EF CF,从而EF平面DCF,由此能证明EF MC.(Ⅱ)以F为坐标原点,分别以FD,FC,FE所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角M-AB-D的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【答案】解:(I)由题意可得:2b=4,=,a2=b2+c2.联立解得:b=2,c=1,a=3.∴椭圆C的标准方程为:+=1.(II)A(-3,0),B(3,0),F1(-1,0),F2(1,0),设F1M的方程为:x=my-1,M(x1,y1),(y1>0),直线F1M与椭圆的另一个交点为M′(x2,y2).∵F1M∥F2N,根据对称性可得:N(-x2,-y2).联立,化为:(8m2+9)y2-16my-64=0,∴y1+y2=,y1y2=,∵3k1+2k2=0,∴+=0,即5my1y2+6y1+4y2=0,联立解得:y1=,y2=,∵y1>0,y2<0,∴m>0.∴y1y2=•=,∴m=.∴直线F1M的方程为x=y-1,即2x-y+2=0.【解析】(I)由题意可得:2b=4,=,a2=b2+c2.联立解出即可得出椭圆C的标准方程.(II)A(-3,0),B(3,0),F1(-1,0),F2(1,0),设F1M的方程为:x=my-1,M(x1,y1),(y1>0),直线F1M与椭圆的另一个交点为M′(x2,y2).由F1M∥F2N,根据对称性可得:N(-x2,-y2).直线方程与椭圆方程联立化为:(8m2+9)y2-16my-64=0,根据根与系数的关系及其3k1+2k2=0,+=0,联立解得m.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.21.【答案】(I)解:f′(x)=-=.(x>0).当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上单调递增,又f(1)=0.因此0<x<1时,f(x)<0.当a>0时,可得函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,∴x=a时,函数f(x)取得极小值即最小值,则f(a)=ln a+1-a≥0.令g(a)=ln a+1-a,g(1)=0.g′(a)=-1=,可知:a=1时,函数g(a)取得极大值即最大值,而g(1)=).因此只有a=1时满足f(a)=ln a+1-a≥0.故a=1.∴实数a取值的集合是{1}.(II)证明:由(I)可知:a=1时,f(x)≥0,即ln x≥1-在x>0时恒成立.要证明:e x+≥2-ln x+x2+(e-2)x,即证明:e x≥1+x2+(e-2)x,即e x-1-x2-(e-2)x≥0.令h(x)=e x-1-x2-(e-2)x,x>0.h′(x)=e x-2x-(e-2),令u(x)=e x-2x-(e-2),u′(x)=e x-2,令u′(x)=e x-2=0,解得x=ln2.可得:x=ln2时,函数u(x)在(0,ln2)内单调递减,在(ln2,+∞)上单调递增.即函数h′(x)在(0,ln2)内单调递减,在(ln2,+∞)上单调递增.而h′(0)=1-(e-2)=3-e>0.h′(ln2)<h′(1)=0.∴存在x0(0,ln2),使得h′(x0)=0,当x(0,x0)时,h′(x)>0,h(x)单调递增;当x(x0,1)时,h′(x)<0,h(x)单调递减.当x(1,+∞)时,h′(x)>0,h(x)单调递增.又h(0)=1-1=0,h(1)=e-1-1-(e-2)=0,∴对∀x>0,h(x)≥0恒成立,即e x-1-x2-(e-2)x≥0.综上可得:e x+≥2-ln x+x2+(e-2)x,成立.【解析】(I)f′(x)=-=.(x>0).对a分类讨论即可得出单调性与极值,进而得出结论.(II)由(I)可知:a=1时,f(x)≥0,即lnx≥1-在x>0时恒成立.要证明:e x+≥2-lnx+x2+(e-2)x,即证明:e x≥1+x2+(e-2)x,即e x-1-x2-(e-2)x≥0.令h(x)=e x-1-x2-(e-2)x,x>0.利用导数研究其单调性极值与最值即可得出.本题考查了利用导数研究函数的单调性极值与最值、等价转化方法、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.22.【答案】解:(1)曲线C的参数方程为(β为参数,β[0,π]),转换为直角坐标方程为:(x-4)2+y2=4(y≥0).直线l的参数方程为(t为参数,α倾斜角),转换为极坐标方程为:θ=α.(2)由(1)可知:曲线C为半圆弧,若直线l与曲线C恰有一个公共点P,则直线l与半圆弧相切.设P(ρ,θ),由题意知:,故:,故:ρ2+22=42,解得:.所以:点P(,).【解析】1(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用一元二次方程根和系数的关系求出结果.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.【答案】解:(Ⅰ)∵m>0,∴f(x)=|x-m|-|x+2m|=,,<<,,∴当x≤-2m时,f(x)取得最大值3m.∴m=1.(Ⅱ)证明:由(Ⅰ)得,a2+b2=1,∴+===-2ab.∵a2+b2=1≥2ab,当且仅当a=b时等号成立.∴0<ab,令h(t)=-2t,0<t,则h(t)在(0,]上单调递减,∴h(t)≥h()=1,∴当0<ab时,-2ab≥1,∴+≥1.【解析】(Ⅰ)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(Ⅱ)将所证不等式转化为-2ab≥1,再构造函数利用导数判断单调性求出最小值可证.本题考查了绝对值不等式的解法,属中档题.。

四川省成都市高三数学第二次诊断性检测(理)

四川省成都市高三数学第二次诊断性检测(理)

四川省成都市2008届高中毕业班第二次诊断性检测数学试题(理科)注意事项:本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。

全卷满分为150分,完成时间为120分钟. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式P ,那么n 次独立重复试验中恰好发生k 334R V π=球次的概率k n kk n n P P C k P --=)1()( 其中R 表示球的半径第I 卷(选择题,共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考号、考试科目涂写往答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项足符合题目要求的,把正确选项的代号涂在机读卡的相应位置上。

1.设复数)(1R ∈+=b bi z 在复平面内的对应点为Z ,若2||=(O 为复平面原点),则复数z 的虚部为( )A .3B .i 3±C .3±D .1±2.化简sin(60)cos120sin cos θθθ++的结果为( )A .BC .tan θD 3.当前,国家正分批修建经济适用房以解决低收人家庭住房紧张的问题。

已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收人家庭的住房问题。

先采用分层抽样的方法决定各社区户数,则应从甲社区中抽取低收人家庭的户数为 ( ) A .40 B .30 C .20 D .364.夹在两条平行直线1:340l x y -=与2:34200l x y --=之间的圆的最大面积为( )A .2πB .4πC .8πD .16π5.若等比数列m n m S n a nn n 则实数项和为的前),()21(3}{*N ∈+=的取值为 ( )A .32-B .1-C .3-D .一切实数6.已知a 、b 表示两条不同的直线,α、β表示两个不同的平面,则下列命题正确的是( ) A .若b a b a //,//,//,//则βαβα, B .若βαβα//,//,,则b a b a ⊂⊂C .若βαβα////,//,b b b a a 或则=D .若b a P b a b a ===⊂⊂βαβαβα 或则,,, 7.在△ABC 中,若1=⋅BC AC ,AB ·2BC =-,则BC 的值为 ( )A .lB .3CD8.已知函数()log )a f x bx =(a>0且a≠1),则下列叙述正确的是( ) A .若12a =,1b =-,则函数f (x )为R 上的增函数 B .若12a =,1b =-,则函数f (x )为R 上的减函数C .若函数f (x )为定义在R 上的偶函数,则1b =±D .若函数f (x )为定义在R 上的奇函数,则1b =9.如图,已知边长为2的正三角形ABC 的中线AF 与中位线DE 相交于点G ,将此三角形沿DE 折成二面角 A 1—DE —B ,设二面角A l —DE —B 的大小为θ,则当 异面直线A l E 与BD 的夹角为60°时,cos θ的值为( )A .12-B .12C .13-D .13 10.已知函数()cos()f x x θ=+,θ∈R .若0()()lim1x f x f x xπ→+-=,则函数f (x )的解析式为( )A .()sin f x x =-B .()cos f x x =-C .()sin f x x =D .()cos f x x =11.已知P 是椭圆22143x y +=上的一点,F 1、F 2是该椭圆的两个焦点,若△PF 1F 2的内切圆半径为12,则21PF ⋅的值为 ( )A .32B .94C .94-D .012.已知全集U ,集合A 、B 为U 的非空真子集,若“x ∈A”与“x ∈B”是一对互斥事件,则称A 与B 为一组U (A ,B )。

2023_2024学年四川省成都市高三二诊数学(理)模拟测试卷(附答案)

2023_2024学年四川省成都市高三二诊数学(理)模拟测试卷(附答案)

2023_2024学年四川省成都市高三二诊数学(理)模拟测试卷一、单选题1.已知集合,则( ){}()20|{|2ln 2}3A x x x B x y x =+-≤==+,A B = A .B .C .D .(2,1]--(2,3]-(2,1]-[2,1]-【正确答案】C【分析】先化简集合然后用交集的定义即可求解,,A B 【详解】因为,{}{}23|1|230A x x x x x =+-≤-≤≤=,()}ln 2|2{}{|B x y x x x ===+>-所以(2,1]A B =- 故选:C2.若复数的实部与虚部相等,则的值为( )()1iR 2i b b -∈+b A .B .6-3-C .D .36【正确答案】B【分析】根据复数代数形式的除法运算化简复数,再根据题意得到方程,解得即可.【详解】解:,()()()()()21i 2i 221i1i 2i 2i i 2i 2i 2i 55b b b b b b ----+---+===++-故由题设,解得;221b b -=--3b =-故选:B3.“”是“函数存在零点”的0m <2()log (1)f x m x x =+≥A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【正确答案】A 【详解】显然由于,所以当m<0时,函数f( x)= m+log 2x (x≥1)存在零点;反21,log 0x x ≥≥之不成立,因为当m=0时,函数f(x)也存在零点,其零点为1,故应选A .4.已知,则的值为sin α=0,2a π⎛⎫∈ ⎪⎝⎭cos 26a π⎛⎫+ ⎪⎝⎭ABCD【正确答案】A【详解】分析:根据同角三角函数关系由,于是可得sinα=cos α=,然后再根据两角和的余弦公式求解即可.sin2,cos 2αα详解:∵,sin α=0,2a π⎛⎫∈ ⎪⎝⎭∴cos α==∴,3sin22sin cos 25ααα===.224cos 212sin 125αα=-=-⨯=∴1413cos 22sin 262525πααα⎛⎫+=-=-⨯=⎪⎝⎭故选A .点睛:本题属于给值求值的问题,考查同角三角函数关系、倍角公式、两角和的余弦公式的运用,考查学生的计算能力和公式变形能力.5.的内角所对的边分别为,且,则的值为( )ABC ,,A B C ,,a b c 20tan ,sin 43a B b A ==a A .6B .5C .4D .3【正确答案】B【分析】根据正弦定理可得,再结合同角商数关系,平方关系,最后求得.sin 4a B =a 【详解】由得,又,所以,从而,,sin 4sin sin a b b A A B ==sin 4a B =20tan 3a B =3cos 5B =4sin 5B =所以.5a =故选:B6.已知函数的图象过点,若要得到一个偶函π())cos (03)2f x x x ωωω=--<<π(,0)3P 数的图象,则需将函数的图象()f x A .向左平移个单位长度B .向右平移个单位长度2π32π3C .向左平移个单位长度D .向右平移个单位长度π3π3【正确答案】B【详解】函数.由已知,所π()cos 2sin()6f x x x x ωωω-=-πππ()2sin(0336f ω=⨯-=以,解得.因为,所以,,所以πππ()36k k ω-=∈Z 13()2k k Z ω=+∈03ω<<0k =12ω=.令,得(),所以函数的1π()2sin(26f x x =-1πππ()262x k k -=+∈Z 4π2π3x k =+Z k ∈()f x 图象的对称轴为().时,对称轴方程为;时,对称轴4π2π3x k =+Z k ∈0k =4π3x =1k =-方程为.要得到一个偶函数的图象,可将该函数的图象向左平移个单位长度,或2π3x =-4π3向右平移个单位长度,故选B .2π3点睛:本题主要考查了三角函数式的化简以及三角函数图象的变换,属于基础题;变换过程中三点提醒:(1)要弄清楚是平移哪个函数的图象,得到哪个函数的图象;(2)要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;(3)由的图象得到的图象时,需平移的单位数应为,而不是.sin y A x ω=()sin y A ωx φ=+ϕω||ϕ7.已知,是圆上的两个动点,,,若是线段A B 224+=O: x y ||2AB = 1233OC OA OB =+M 的中点,则的值为( ).AB OC OM ⋅A B .C .2D .3【正确答案】D【分析】判断出是等边三角形,以为基底表示出,由此求得的值.OAB ∆,OA OB OM OC OM ⋅ 【详解】圆圆心为,半径为,而,所以是等边三角形.由于是线段O ()0,02||2AB =OAB ∆M 的中点,所以.所以AB 1122OM OA OB =+ OC OM ⋅ 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭ .22111623OA OA OB OB =+⋅⋅+ 21422cos 603323=+⨯⨯⨯+= 故选:D本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.8.如图为某几何体的三视图(图中网格纸上每个小正方形的边长为),则该几何体的体积1等于A .B .C .D .12π+5123π+4π+543π+【正确答案】A【详解】分析:由题意首先确定该三视图对应的几何体,然后结合几何体的空间结构求解该组合体的体积即可.详解:由三视图可知该几何体是一个组合体,从下到上依次为:长宽高分别为的长方体;半径为的半球;底面半径为,高为的圆锥;2,2,31R =1R =1h =据此可得该几何体的体积为:.3214122311112233V πππ=⨯⨯+⨯⨯+⨯⨯⨯=+本题选择A 选项.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.9.点,,,均在同一球面上,且,,两两垂直,且,,A B C D AB AC AD 1AB =2AC =,则该球的表面积为3AD =A .B .C .D 7π14π72π【正确答案】B【分析】三棱锥的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,A BCD -对角线的长为球的直径,然后解答即可.【详解】解:三棱锥的三条侧棱两两互相垂直,所以把它扩展为长方体,A BCD -它也外接于球,对角线的长为球的直径,d =外接球的表面积是2414ππ=故选:B .10.已知定义在R 上的奇函数满足,且当时,()f x ()()20f x f x +=+[0,1]x ∈,则下列不等式正确的是()21=log ()f x x +A .B .()()2log 756()f f f -<<()()2log 7()65f f f -<<C .D .()()25log (76)f f f <<-()()256o )l g 7(f f f -<<【正确答案】C【分析】先通过已知条件推出函数的最小正周期,然后利用函数的性质计算或估4T =()f x 计、、的值或范围即可比较大小.()2log 7f ()6f (5)f -【详解】由,得,所以,的周期.()()++2=0f x f x ()()=+2f x f x -()+4()f x f x =()f x 4T =又,且有,()()f x f x -=-()()20=0=f f -所以,.()()2551log 2==1()==f f f -----()()620f f ==又,所以,即,22log 73<<20log 721<-<270log 14<<因为时,,[0,1]x ∈()2()[]log 10,1f x x +∈=所以()222log 7log 727()(log )4f f f =--=-222277log (log 1)log (log )42=-+=-又,所以,所以,271log 22<<2270log (log 12<<2271log (log 02-<-<所以.2(5)(log 7)(6)f f f -<<故选:C.本题主要考查根据已知条件推导抽象函数的周期性并利用函数的奇偶性、周期性等性质,再结合函数在指定区间的解析式比较函数值的大小问题,试题综合性强11.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,在抛物线上A 24x y =B P 且满足,当取最大值时,点恰好在以为焦点的双曲线上,则双曲线的||||PA m PB =m P ,A B 离心率为( )A B C D 11【正确答案】C【分析】首先利用两点间距离表示,再结合基本不等式求最值,并且求得点的坐标,根2m P 据双曲线上的点和焦点坐标,即可求得双曲线的离心率.【详解】设,,,则(,),0P x y y ≥()0,1A -()0,1B()()222222222222(1)4(1)4(1)4112(1)(1)141PA x y y y y y y m PB y y x y y y ++++++=====+≤=+++-+-,当且仅当时取等号,此时, ,1y =()2,1P ±22c =所以.1c e a ===故选:C12.已知,,若存在,,使得,{|()0}M f αα=={|()0}N g ββ==M α∈N β∈||n αβ-<则称函数与互为“度零点函数”.若与互为“度零点函数”,()f x ()g x n 2()21x f x -=-2()e xg x x a =-1则实数的取值范围为a A .B .C .D .214(,]e e214(,]e e 242[,e e3242[,e e【正确答案】B【详解】易知函数在上单调递增,且,所以函数只有一个零点()f x R 22(2)210f -=-=()f x 2,故.由题意知,即,由题意,函数在内存在零点,由{2}M =|2|1β-<13β<<()g x (1,3),得,所以,记,则2()e 0x g x x a =-=2e x a x =2e xx a =2()((1,3))e x x h x x =∈,所以当时,,函数单调递增;222e e (2)()((1,3))(e )e x x x xx x x x h x x --==∈'(1,2)x ∈()0h x '>()h x 当时,,函数单调递减.所以.而,(2,3)x ∈()0h x '<()h x 24()(2)e h x h ≤=1(1)e h =,所以,所以的取值范围为.故选B.391(3)e e h =>214()(2)e e h x h <≤=a 214(,]e e 点睛:本题通过新定义满足“度零点函数”考查函数在给定区间内的零点问题,属于难题,遇1到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决,将函数零点问题转化为,即求函2exx a =数的值域问题,通过导数得单调性,得值域.二、填空题13.已知向量满足,则的夹角等于,a b ()cos2018,sin2018,2a a b =+=,a b __________.【正确答案】π3【分析】将两边平方可得,然后利用夹角公式即可求得答案a +1a b ⋅= 【详解】由条件知1,2,a b a b ===+= 则所以,222||27,a b a b a b +=++⋅= 1a b ⋅= 故1cos ,,2a b a b a b ⋅==因为所以0,π,a b ≤≤,3a b π=故π314.若的展开式中的系数为,则常数项为________.()()512x a x ++3x 20【正确答案】14-根据二项展开式的通项公式,写出的系数列方程求出的值,即可求得答案.3x a 【详解】的展开式中的系数为:()()512x a x ++3x 2233552220C a C ⋅+⋅⋅=∴408020a +=解得:14a =-∴()()()55112124x a x x x ⎛⎫++-+ ⎪⎝⎭=的二项式展开通项公式为:()512x +()5152rrr T C x -+=的常数项为:.∴()51124x x ⎛⎫-+ ⎪⎝⎭()550544211x C --=-故答案为:.14-本题主要考查了展开式中的常数项,解题关键是掌握二项式通项公式,考查了分析能力和计算能力,属于中档题.15.点M 是双曲线渐近线上一点,若以M 为圆心的圆与圆C :x 2+y 2-4x +3=0相切,2214y x -=则圆M 的半径的最小值等于________.1【分析】先得到渐近线方程,再根据圆M 的半径最小,得到圆M 与圆C 外切,且直线MC 与直线2x -y =0垂直.此时圆M 的半径的最小值r min =|MC |min -R ,从而可解.【详解】不妨设点M 是渐近线2x -y =0上一点.∵圆C :x 2+y 2-4x +3=0的标准方程为,()2221x y -+=∴圆心C (2,0),半径R =1.若圆M 的半径最小,则圆M 与圆C 外切,且直线MC 与直线2x -y =0垂直.因此圆M 的半径的最小值r min =|MC |min -R .由于,故.min ||MC =min 1r -116.如图所示,在圆内接四边形中,,,,,则四边形ABCD 6AB =3BC =4CD =5AD =的面积为_____________.ABCD【正确答案】【分析】利用余弦定理可求,解得,结合范围0<C <π,利用同角三22477BD =3cos 7C =-角函数基本关系式可求sin C ,利用三角形面积公式即可计算得解.【详解】如图所示,连接,因为为圆内接四边形,BD ABCD所以180°,则,利用余弦定理得,A C +=cos cos A C =-22265cos 265BD A +-=⨯⨯,解得,所以.22234cos 234BD C -+=⨯⨯22477BD =3cos 7C =-由,得22sin cos 1C C +=sin C因为,所以,180A C +=︒sin sin A C ==.11563422ABD BCD ABCD S S S =+=⨯⨯⨯⨯= 四边形故答案为.本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.三、解答题17.已知等比数列的前项和为, ,, 是,{}n a n n S 12a =()*0n a n N >∈66S a +44S a +的等差中项.55S a +(1)求数列的通项公式;{}n a (2)设,数列的前项和为,求.1212log n n b a -=12n n b b+⎧⎫⎨⎬⎩⎭n n T n T 【正确答案】(1) .212n n a -⎛⎫= ⎪⎝⎭(2).221n nT n =--【分析】(1)由是,的等差中项,推出,再根据数列是等比66S a +44S a +55S a +644a a ={}n a 数列,即可求得公比,从而可得数列的通项公式;(2)根据(1)可得数列的通项{}n a {}n b 公式,进而可得数列的通项公式,再根据裂项相消法求和,即可求得.12n n b b +⎧⎫⎨⎬⎩⎭n T 【详解】(1)∵是,的等差中项,66S a +44S a +55S a +∴()6644552S a S a S a+=+++∴,66445566S a S a S a S a +--=+--化简得,,644a a =设等比数列的公比为,则,{}n a q 26414a q a ==∵,∴,∴,()*0n a n N>∈0q >12q =∴.1211222n n n a --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭(2)由(1)得.2n-31211221log log ()232n n b a n -===-设.()()1221123212321n n n C b b n n n n +===-----∴121111111112111133523212121n n n T C C C n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+-+⋅⋅⋅+-=--=- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭.:本题主要考查求等比数列的通项公式以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(3);(4)1k=()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;此外,需注意裂项之后相消的过程中容易出现()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦丢项或多项的问题,导致计算结果错误.18.某高中学校对全体学生进行体育达标测试,每人测试A ,B 两个项目,每个项目满分均为60分.从全体学生中随机抽取了100人,分别统计他们A ,B 两个项目的测试成绩,得到A 项目测试成绩的频率分布直方图和B 项目测试成绩的频数分布表如下:B 项目测试成绩频数分布表分数区间频数[0,10)2[10,20)3[20,30)5[30,40)15[40,50)40[50,60]35将学生的成绩划分为三个等级,如下表:分数[0,30)[30,50)[50,60]等级一般良好优秀(1)在抽取的100人中,求A 项目等级为优秀的人数;(2)已知A 项目等级为优秀的学生中女生有14人,A 项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A 项目等级为优秀”与性别有关?优秀一般或良好总计男生女生总计(3)将样本的概率作为总体的概率,并假设A 项目和B 项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A 项目等级比B 项目等级高的概率.参考数据:P (K 2≥k 0)0.100.0500.0250.0100.001k 02.7063.8415.0246.63510.828参考公式K 2=,其中n =a +b +c +d .()()()()()2n ad bc a b c d a c b d -++++【正确答案】(1)40;(2)详见解析;(3)0.3.(1)根据A 项目测试成绩频率分布直方图,计算出A 项目等级为优秀的频率,由此计算出A 项目等级为优秀的人数.(2)填写好列联表,计算出的值,由此判断有95%以上的把握认为“A 项目等级为优22⨯2K 秀”与性别有关.(3)根据相互独立事件概率计算公式,计算出所求概率.【详解】(1)由A 项目测试成绩频率分布直方图,得A 项目等级为优秀的频率为0.04×10=0.4,所以A 项目等级为优秀的人数为0.4×100=40.(2)由(1)知A 项目等级为优秀的学生中,女生数为14人,男生数为26人.A 项目等级为一般或良好的学生中,女生数为34人,男生数为26人.作出如下2×2列联表:优秀一般或良好总计男生262652女生143448总计4060100则K 2=≈4.514.1002634261440604852⨯⨯-⨯⨯⨯⨯由于4.514>3.841,所以有95%以上的把握认为“A 项目等级为优秀”与性别有关.(3)设“A 项目等级比B 项目等级高”为事件C .记“A 项目等级为良好”为事件A 1,“A 项目等级为优秀”为事件A 2,“B 项目等级为一般”为事件B 0,“B 项目等级为良好”为事件B 1.于是P (A 1)=(0.02+0.02)×10=0.4,P (A 2)=0.4.由频率估计概率得P (B 0)==0.1,P (B 1)==0.55.235100++1540100+因为事件Ai 与Bj 相互独立,其中i =1,2,j =0,1,所以P (C )=P (A 1B 0+A 2B 0+A 2B 1)=0.4×0.1+0.4×0.1+0.4×0.55=0.3.所以随机抽取一名学生,其A 项目等级比B 项目等级高的概率为0.3.本小题主要考查根据频率分布直方图计算频数,考查列联表独立性检验,考查相互独立22⨯事件概率乘法公式,考查数据分析与处理能力,属于中档题.19.在斜三棱柱(侧棱不垂直于底面)中,侧面底面,底面111ABC A B C -11AA C C ⊥ABC 是边长为2的正三角形,,.ABC 11A A A C =11⊥A A AC(1)求证:;111A C B C ⊥(2)求二面角的正弦值.111B A C C --【正确答案】(1)证明见解析(2【分析】(1)取的中点,连接,,通过证明,,证得11A C D 1B D CD 11⊥CD A C 111B D A C ^平面,由此证得.11A C ⊥1B CD 111A C B C⊥(2)解法一:利用几何法作出二面角的平面角,解三角形求得二面角的正切值,再求得其正弦值.解法二:建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦11A B C 11A C C 值,再求得其正弦值.【详解】(1)证明:如图,取的中点,连接,,11A C D 1B D CD ∵,111==C C A A A C ∴,11⊥CD A C ∵底面是边长为2的正三角形,ABC ∴,,2AB BC ==11112A B B C ==∴,又,111B D A C ^1⋂=B D CD D ∴平面,且平面,11A C ⊥1B CD 1B C 1B CD ∴.111A C B C ⊥(2)解法一:如上图,过点作于点,连接.D 1DE A C ⊥E 1B E ∵侧面底面,11AA C C ⊥ABC ∴侧面平面,又,侧面平面,11AA C C ⊥111A B C 111B D A C ^11AA C C 11111A B C A C =∴侧面,又平面,1B D ⊥11AA C C 1A C 11AA C C ∴,又且,11B D A C ⊥1DE A C ⊥1⋂=B D DE D ∴平面,∴,1A C ⊥1B DE11⊥B E AC ∴为所求二面角的平面角,1∠B ED ∵,∴,1111112A B B C A C ===1B D =又∴,112==EDCC 11tan ∠===B DB ED ED∴二面角.111B A C C --法二:如图,取的中点,以为坐标原点,射线,,分别为,,轴的AC O O OB OC1OA x y z 正方向建立空间直角坐标系,则,(0,0,0)O ,,,,B 1(0,0,1)A 11,1)-B 1(0,2,1)-C (0,-1,0)C ∴,,111,0)A B =-1(0,1,1)AC =-- 设为平面的法向量,(,,)m xy z =11A B C ∴,11100m A B y m A C y z ⎧⋅=-=⎪⎨⋅=--=⎪⎩令,得,y= m 又为平面的一个法向量,n =11A C C 设二面角的大小为,显然为锐角,111B A C C --θθcos cos ,m θ=〈则∴二面角.sin θ==111B A C C --本小题主要考查线线垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20.已知抛物线和圆的公共弦过抛物线的焦点,且弦长为22(0)x py p =>222(0)x y r r +=>F 4.(1)求抛物线和圆的方程;(2)过点的直线与抛物线相交于两点,抛物线在点处的切线与轴的交点为,求F ,A B A x M 面积的最小值.ABM △【正确答案】(1)225x y +=【分析】(1)由题意可知,求得的值,得到抛物线的方程,进而求得圆的方程. p (2)设直线的方程为:,联立方程组,求的及,利用导数求得切l =+1y kx 1212,x x x x +||AB 线方程,得到,利用点到直线的距离公式,求的距离,表示出面积的表达式,利用导数,M 研究函数的单调性和最值,即可得到结论.【详解】(1)由题意可知,为公共弦长,且,,则EP =4EP (0,)2pF (,2p P p 所以,则,故抛物线的方程为.=2=4EP p =2p 24x y =又,所以, 所以圆的方程为.22222p p OF r ⎛⎫+== ⎪⎝⎭25r =225x y +=(2),设直线的方程为:,并设,(0,1)F l =+1y kx ()()1122,,,A x y B x y 联立,消可得,.2=4=+1x y y kx ⎧⎨⎩y 2440x kx --=所以,12124,4x x k x x +==-.()241k =+由于,则,所以在点的切线的斜率为,切线为,214y x =2x y '=A 12x ()1112x y y x x -=-令,可得,, 所以点到直线的距离=0y 1,02x M ⎛⎫ ⎪⎝⎭M ABd故,(21141222ABM S AB d k =⋅=⨯++ 又,代入上式并整理可得:21111144y x k x x --==,令,可得为偶函数,()22114116ABM x S x +=()()224x f x x+=()f x 当时,,0x >()()2234168x f x x x xx +==++,令,可得()()()222224341638x x f x x x x +-=+'-=()=0f x 'x =当,,单调递减,当,,单调递增,x ⎛∈ ⎝()0f x '<()f x x ∞⎫∈+⎪⎭()0f x '>()f x 所以,因此当的最小值为x =()f x 1x =ABM S .116=本题主要考查抛物线的方程与性质、直线与圆锥曲线的位置关系,解答此类题目,利用题设条件确定圆锥曲线方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,利用函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.已知函数,且.()()()ln ,g x ax a x f x xg x =--=()0g x ≥(1)求实数的值;a (2)证明:存在,且时,.0x ()00f x '=00101x x <<<<,()()0f x f x ≤【正确答案】(1)1(2)证明见解析【分析】(1)要使,即,对求导,得到的单调性和最值,即可()0g x ≥()min 0g x ≥()g x ()g x 求出实数a 的值;(2)对求导,则,设,再对求导,利用导数()f x ()22ln f x x x'=--()22ln h x x x=--()h x 性质推导出是在的唯一极大值点,即可证明.0x x =()f x ()0,1【详解】(1)显然的定义域为,且.()g x ()0,∞+()1,0g x a x x '=->因为,且,故只需.()0g x ≥()10g =()10g '=又,则,∴.()11g a '=-10a -=1a =若,则.显然当时,,此时在上单调递减;1a =()11g x x '=-01x <<()0g x '<()g x ()0,1当,,此时在(1,+∞)上单调递增.1x >()0g x '>()g x 所以是的唯一极小值点,1x =()g x 故.综上,所求的值为1.()()10g x g ≥=a (2)由(1)知.()()2ln ,22ln f x x x x x f x x x=-'--=-设,则()22ln h x x x=--()12h x x'=-当时,;10,2x ⎛⎫∈ ⎪⎝⎭()0h x '<当时,,1,2x ⎛⎫∈+∞ ⎪⎝⎭()0h x '>所以在上单调递减,()h x 10,2⎛⎫⎪⎝⎭在上单调递增.1,2⎛⎫+∞ ⎪⎝⎭()()21e 0,0,10,2h h h -⎛⎫><= ⎪⎝⎭又所以在有唯一零点,在上有唯一零点1,()h x 10,2⎛⎤ ⎝⎦0x 1,2⎡⎫+∞⎪⎢⎣⎭且当时,;当时;()00,x x ∈()0h x >()0,1x x ∈()0h x <因为,所以是的唯一极大值点.()()f x h x '=0x x =()f x 即是在的最大值点,所以成立.0x x =()f x ()0,1()()0f x f x ≤22.在直角坐标系中,直线,圆,以坐标原点为极点,xOy 1:0l x =()(22:111C x y -+-=轴的正半轴为极轴建立极坐标系.x (1)求的极坐标方程;1,l C (2)若直线的极坐标方程为,设与的公共点分别为,求的面积.2l()πR 4θρ=∈12,l l C ,A B OAB 【正确答案】(1)答案见解析;(2)1+【分析】(1)由公式法求出的极坐标方程;1,l C(2)、代入)=0求得、ρ2,由此能求π2θ=π4θ=(22cos 21sin ρρθρθ--1ρ出△OAB 的面积.【详解】(1)∵,cos ,sin x y ρθρθ==∴的极坐标方程为,即,1lcos 0ρθ=()πR 2θρ=∈的极坐标方程为.C (22cos 21sin 30ρρθρθ--++=(2)将代入,π2θ=(22cos 21sin 30ρρθρθ--++=得,解得(22130ρρ-+++=11ρ=+将代入,π4θ=(22cos 21sin 30ρρθρθ--++=得,解得(22130ρρ-+++=21ρ=故△OAB 的面积为.(21π1sin 124⨯⨯=23.已知.()11f x x ax =+--(1)当时,求不等式的解集;=1a ()1f x >(2)若时不等式成立,求的取值范围.()0,1x ∈()f x x>a 【正确答案】(1);(2).1>2x x ⎧⎫⎨⎬⎩⎭(]0,2【分析】(1)方法一:将代入函数解析式,求得,利用零点分段法将=1a ()11f x x x =+--解析式化为,分类讨论即可求得不等式的解集;()2,1,=2,1<<1,2, 1.x f x x x x -≤--≥⎧⎪⎨⎪⎩(2)方法一:根据题中所给的,其中一个绝对值符号可以去掉,不等式可()0,1x ∈()f x x>以化为时,分情况讨论即可求得结果.()0,1x ∈11ax -<【详解】(1)[方法一]:【通性通法】零点分段法当时,,即,所以不等式等价于=1a ()11f x x x =+--()2,1=2,1<<12,1x f x x x x -≤--≥⎧⎪⎨⎪⎩()1f x >或或,解得:.12>1x ≤--⎧⎨⎩1<<12>1x x -⎧⎨⎩12>1x ≥⎧⎨⎩12x >故不等式的解集为.()1f x >1>2x x ⎧⎫⎨⎬⎩⎭[方法二]:【最优解】数形结合法如图,当时,不等式即为.=1a ()1f x >|1||1|1x x +-->由绝对值的几何意义可知,表示x 轴上的点到对应的点的距离减去到1对应|1||1|x x +--1-点的距离.结合数轴可知,当时,,当时,1=2x |1||1|1x x +--=12x >.故不等式的解集为.|1||1|1x x +-->()1f x >1,2⎛⎫+∞ ⎪⎝⎭(2)[方法一]:【通性通法】分类讨论当时,成立等价于当时,成立.()0,1x ∈11x ax x +-->()0,1x ∈11ax -<若,则当时,;0a ≤()0,1x ∈111ax ax -=-≥若,由得,,解得:,所以,故.0a >11ax -<111ax -<-<20x a <<21a ≥02a <≤综上,的取值范围为.a (]0,2[方法二]:平方法当时,不等式成立,等价于时,成立,即(0,1)x ∈|1||1|x ax x +-->(0,1)x ∈11ax -<成立,整理得.2211ax -<(2)0ax ax -<当时,不等式不成立;=0a 当时,,不等式解集为空集;0a <(2)0ax ax ->当时,原不等式等价于,解得.0a >220a x x a ⎛⎫-< ⎪⎝⎭20x a <<由,解得.故a 的取值范围为.>021a a ≥⎧⎪⎨⎪⎩02a <≤(0,2][方法三]:【最优解】分离参数法当时,不等式成立,等价于时,成立,(0,1)x ∈|1||1|x ax x +-->(0,1)x ∈|1|1ax -<即,解得:,而,所以.故a 的取值范围为.111ax -<-<20a x <<22x >02a <≤(0,2]【整体点评】(1)方法一:利用零点分段法是解决含有两个以及以上绝对值不等式的常用解法,是通性通法;方法二:利用绝对值的几何意义解决特殊类型的绝对值不等式,直观简洁,是该题的最优解.(2)方法一:分类讨论解出绝对值不等式,利用是不等式解集的子集求出,是通性通()0,1法;方法二:本题将绝对值不等式平方,转化为解含参的不等式,利用是不等式解集的子集()0,1求出,虽可解出,但是增加了题目的难度;方法三:利用分离参数,将不等式问题转化为恒成立最值问题,思想简单常见,是该题的最优解.。

2020届四川省成都市高三毕业班第二次诊断性检测数学(理)试题(解析版)

2020届四川省成都市高三毕业班第二次诊断性检测数学(理)试题(解析版)

2020届四川省成都市高三毕业班第二次诊断性检测数学(理)试题一、单选题1.设全集,集合,,则()A.B.C.D.【答案】A【解析】进行交集、补集的运算即可.【详解】∁U B={x|﹣2<x<1};∴A∩(∁U B)={x|﹣1<x<1}.故选:A.【点睛】考查描述法的定义,以及交集、补集的运算.2.已知双曲线的焦距为4,则双曲线的渐近线方程为()A.B.C.D.【答案】D【解析】先求出c=2,再根据1+b2=c2=4,可得b,即可求出双曲线C的渐近线方程. 【详解】双曲线C:的焦距为4,则2c=4,即c=2,∵1+b2=c2=4,∴b,∴双曲线C的渐近线方程为y x,故选:D.【点睛】本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.3.已知向量,,则向量在向量方向上的投影为()A.B.C.-1 D.1【答案】A【解析】本题可根据投影的向量定义式和两个向量的数量积公式来计算.【详解】由投影的定义可知:向量在向量方向上的投影为:,又∵,∴.故选:A.【点睛】本题主要考查投影的向量定义以及根据两个向量的数量积公式来计算一个向量在另一个向量上的投影,本题属基础题.4.已知,条件甲:;条件乙:,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】先通过解分式不等式化简条件乙,再判断甲成立是否推出乙成立;条件乙成立是否推出甲成立,利用充要条件的定义判断出甲是乙成立的什么条件.【详解】条件乙:,即为⇔若条件甲:a>b>0成立则条件乙一定成立;反之,当条件乙成立,则也可以,但是此时不满足条件甲:a>b>0,所以甲是乙成立的充分非必要条件故选:A.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q 为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p 与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.5.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定。

2021届四川省成都市高三第二次诊断性检测数学(理)试题(解析版)

2021届四川省成都市高三第二次诊断性检测数学(理)试题(解析版)
【详解】设球的半径为 ,由球体的体积公式有 ,得 .
设圆柱的上底面半径为 ,球的半径与上底面夹角为 ,则 ,圆柱的高为 ,
圆柱的侧面积为 ,
当且仅当 时, 时,圆柱的侧面积最大,
圆柱的侧面积的最大值为 .
故选:B.
【点睛】关键点睛:一是要巧妙的设出变量,二是要写出侧面积的表达式以及求最值.
8.已知 是曲线 上的动点,点 在直线 上运动,则当 取最小值时,点 的横坐标为()
9.已知数列 的前 项和 满足 ,记数列 的前 项和为 , .则使得 成立的 的最大值为()
A.17B.18C.19D.20
【答案】C
【分析】根据 求 通项公式,注意讨论 、 并判断是否可合并,再应用裂项法求 ,最后根据不等式求 的最大值即可.
【详解】当 时, ;当 时, ;而 也符合 ,
∴ , .又 ,
【答案】B
【分析】将正四面体放在正方体中观察
对于①,可根据 分别为正方体前后两个面的中心可得出结论;
对于②, 取为 的中点, 取为 的中点,此时 与 相交;
对于③,计算可得 ,由逼近思想可作出判断;
对于④,空间问题平面化的技巧,将三角形 与 放在同一平面上,可计算出
【详解】
在棱长为 的正方体上取如图所示的四个顶点依次连接,即可得到棱长为 四面体 ,
【答案】D
【分析】对 先化简计算,直接写出虚部.
【详解】 ,所以虚部为1.
故选:D
3.命题“ , ”的否定为()
A. , B. ,
C. , D. ,
【答案】C
【分析】利用全称命题的否定是特称命题,写出结果即可.
【详解】因为全称命题的否定是特称命题,
所以,命题“ , ”的否定是: , .

四川省成都市高三第二次诊断性考试--数学理

四川省成都市高三第二次诊断性考试--数学理

四川省成都市高三第二次诊断性考试数学(理)试题本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

注意事项:1. 答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦擦干净后,再选涂其它答案标号。

3. 答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4. 所有题目必须在答题卡上作答,在试题卷上答题无效。

5. 考试结束后,只将答题卡交回。

第I 卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且 只有一项是符合题目要求的.1. 在复平面内,复数z=i +12(i 为虚数单位)对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2. 已知全集U={x|x>0},M={x|x 2<2x},则MC U =A .{x|x>2}B .{x|x>2}C .{X |x≤0 或 x ≥2}D . {X |0<x<2} 3.若直线(a+l )x+2y=0与直线x 一ay=1互相垂直,则实数a 的值等于 A .-1 B .0 C .1 D .2 4. 已知直线l 和平面a ,若l//a ,P ∈a ,则过点P 且平行于l 的直线 A .只有一条,不在平面a 内 B .只有一条,且在平面a 内 C .有无数条,一定在平面a 内 D .有无数条,不一定在平面a 内 5. —个几何体的三视图如图所示,其中正视图是一个正三角 形,则该几何体的体积为A .33B .1C . 332D .36. 函数f (x )= log 2x+x 1—1的零点的个数为A .0个B .1个C .2个D .3个7. 已知双曲线)0,0(12222>>=-b a b y a x (a>0,b>0)的一条渐近线与曲线12-=x y 相切,则该双曲 线的离心率为A .2B .3C .2D . 228. 若不等式x x m -+≤1221当1∈(0,l )时恒成立,则实数m 的最大值为A .9B . 29C .5D . 259.已知数列{a n }满足 a n+2-a n+1= a n+1-a n ,*N n ∈,且a 5=2π若函数f (x )= sin2x+2cos 22x,记y n =f (a n ),则数列{y n }的前9项和为 A .0 B .-9 C .9 D .110.某算法的程序框图如图所示,则执行该程序后输出的S 等于 A . 24 B . 26 C . 30 D . 32第II 卷(非选择题,共100分)二、填空題:本大题共5小题,每小题5分,共25分.11.已知sina+cosa=32,则sin2a 的值为_______.12.若(1-2x )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则a 1+a 2 +a 3 +a 4 =_______13.设G 为ΔABC 的重心,若ΔABC 所在平面内一点P 满足02=+BP PA =0,则||||AG AP 的值等于_______14. 已知集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≥-≥+≤-+00042),(y x y x y x y x 表示的平面区域为Ω,若在区域Ω内任取一点P (x,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为_______15.对于定义在区间D 上的函数f (x ),若满足对D x x ∈∀21,,且x 1<x 2时都有 )()(21x f x f ≥,则称函数f (x )为区间D 上的“非增函数”.若f (x )为区间[0,1]上的“非增函数”且f (0) = l ,ff (x )+f (l —x ) = l ,又当]41,0[∈x 时,f (x )≤-2x+1恒成立.有下列命题: ①0)(],1,0[≥∈∀x f x ;②当,且2121]1,0[,x x x x ≠∈时,f (x 1)≠f (x ) ③ 2)87()137()115()81(=f f f f +++;④当]41,0[∈x 时,)())((x f x f f ≤. 其中你认为正确的所有命题的序号为________三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)在ΔABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c ,且满足cB a =+)4sin(2π(I )求角A 的大小.,(II )若ΔABC 为锐角三角形,求sinBsinC 的取值范围. 17.(本小题满分12分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:试根据图表中的信息解答下列问题:(I )求全班的学生人数及分数在[70,80)之间的频数;(II )为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和 [90,100]分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中,成绩位于[70,80)分数段的人数X 的分布列和数学期望. 18.(本小题满分12分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABC —A 1B 1C 1中,AC=AA 1=2AB = 2, BAC ∠=900,点D 是侧棱CC 1 延长线上一点,EF 是平面ABD 与平面A 1B 1C 1的交线. (I )求证:EF 丄A 1C;(II时,求DC 1的长.19.(本小题满分12分)设函数f (x )=x 2过点C 1(1,0)作X 轴的垂线l 1交函数f (x )图象于点A 1,以A 1为切 点作函数f (x )图象的切线交X 轴于点C 2,再过C 2作X 轴的垂线l 2交函数f (x )图象于点 A 2,…,以此类推得点A n ,记A n 的横坐标为a n ,*N n ∈.20. (本小题满分13分)0(122>>=+b a b y(I )求椭圆E 的方程;(II )若直线l:y=kx+m 与椭圆E 相交于A 、B 两点,与直线x= -4相交于Q 点,P 是 椭圆E 上一点且满足+= (其中O 为坐标原点),试问在X 轴上是否存在一点T , 使得TQ OP .为定值?若存在,求出点了的坐标及TQ OP .的值;若不存在,请说明理由. 21.(本小题满分14分)已知函数a x x x x g x a x x x f )(ln 1)(,ln 1)(-+=--=,其中x>0,a ∈R(I )若函数f (x )无极值,求a 的取值范围;(I I )当a 取(I )中的最大值时,求函数g (x )的最小值;(III )证明不等式∑=+∈+>+nk n n k k N n 11*)(122ln )12(21.。

(优辅资源)四川省成都市高三第二次诊断性检测数学理试题 Word版含答案

(优辅资源)四川省成都市高三第二次诊断性检测数学理试题 Word版含答案

成都市2014级高中毕业班第二次诊断性检测数学(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合[1,2]A =-,2{,}B y x x A =∈,则AB =( )A .[1,4]B .[1,2]C .[1,0]-D .[0,2] 2.若复数1z a i =+(a R ∈),21z i =-,且12z z 为纯虚数,则1z 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.在等比数列{}n a 中,已知36a =,35778a a a ++=,则5a =( ) A .12 B .18 C .24 D .364.已知平面向量a ,b 夹角为3π,且1a =,12b =,则2a b +与b 的夹角是( )A .6πB .56πC .4πD .34π5.若曲线2ln y x ax =+(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( ) A .1(,)2-+∞ B .1[,)2-+∞ C .(0,)+∞ D .[0,)+∞6.若实数,x y 满足不等式22010x y x y y m ++≥⎧⎪+-≤⎨⎪≥⎩,且x y -的最大值为5,则实数m 的值为( )A .0B .-1C .-2D .-57.已知,m n 是空间中两条不同的直线,,αβ是两个不同的平面,且,m n αβ⊂⊂,有下列命题:①若//αβ,则//m n ;②若//αβ,则//m β;③若l αβ=,且m l ⊥,n l ⊥,则αβ⊥;④若l αβ=,且m l ⊥,m n ⊥,则αβ⊥,其中真命题的个数是( )A .0B .1C .2D .38.已知函数()xf x a =(0,1a a >≠)的反函数的图象经过点1)22,若函数()g x 的定义域为R ,当[2,2]x ∈-时,有()()g x f x =,且函数(2)g x +为偶函数,则下列结论正确的是( )A .()(3)g g g π<<B .()(3)g g g π<<C .(3)()g g g π<<D .()(3)g g g π<<9.执行如图所示的程序框图,若输入的,,a b c 分别为1,2,0.3,则输出的结果为( )A .1.125B .1.25C .1.3125D .1.37510.已知函数()sin(2)2sin cos()f x x x ωϕϕωϕ=+-+(0,R ωϕ>∈)在3(,)2ππ上单调递减,则ω的取值范围是( )A .(0,2]B .1(0,]2C .1[,1]2D .15[,]2411.设双曲线2222:1x y C a b-=(0,0a b >>)的左右焦点分别为12,F F ,以12,F F 为直径的圆与双曲线左支的一个交点为P ,若以1OF (O 为坐标原点)为直径的圆与2PF 相切,则双曲线C 的离心率为( )A B C 12.把平面图形M 上的所有点在一个平面上的射影构成的图形'M 叫做图形M 在这个平面上的射影,如图,在三棱锥A BCD -中,BD CD ⊥,AB DB ⊥,AC DC ⊥,5AB DB ==,4CD =,将围成三棱锥的四个三角形的面积从小到大依次记为1234,,,S S S S ,设面积为2S 的三角形所在的平面为α,则面积为4S 的三角形在平面α上的射影的面积是( )A ..252C .10D .30 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.在二项式25(ax+的展开式中,若常数项为-10,则a = . 14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1,那么这组数据的方差2s 可能的最大值是 .15.如图,抛物线24y x =的一条弦AB 经过焦点F ,取线段OB 的中点D ,延长OA 至点C ,使OA AC =,过点C ,D 作y 轴的垂线,垂足分别为,E G ,则EG 的最小值为 .16.在数列{}n a 中,11a =,2121n n n a a n -=-(2n ≥,*n N ∈),则数列2{}n an 的前n 项和n T = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 如图,在平面四边形ABCD 中,已知2A π∠=,23B π∠=,6AB =,在AB 边上取点E ,使得1BE =,连接,EC ED ,若23CED π∠=,EC =(1)求sin BCE ∠的值; (2)求CD 的长.18. 某项科研活动共进行了5次试验,其数据如下表所示: 特征量第1次 第2次 第3次 第4次 第5次 x555 559 551 563 552 y601605597599598(1)从5次特征量y 的试验数据中随机地抽取两个数据,求至少有一个大于600的概率; (2)求特征量y 关于x 的线性回归方程;并预测当特征量x 为570时特征量y 的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-)19. 如图,已知梯形CDEF 与ADE ∆所在平面垂直,,AD DE CD DE ⊥⊥,////AB CD EF ,28AE DE ==,3AB =,9EF =,12CD =,连接,BC BF .(1)若G 为AD 边上一点,13DG DA =,求证://EG 平面BCF ; (2)求二面角E BF C --的余弦值.20. 在平面直角坐标系xOy 中,已知椭圆2222:1x y E a b+=(0a b >>),圆222:O x y r+=(0r b <<),若圆O 的一条切线:l y kx m =+与椭圆E 相交于,A B 两点. (1)当12k =-,1r =时,若点,A B 都在坐标轴的正半轴上,求椭圆E 的方程; (2)若以AB 为直径的圆经过坐标原点O ,探究,,a b r 之间的等量关系,并说明理由. 21. 已知函数1()ln f x a x x x=-+,其中0a >. (1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设1(0,1)x ∈,2(1,)x ∈+∞,若21()()f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩,(α为参数),直线l 的参数方程为132x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A的极坐标为)θ,其中(,)2πθπ∈.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求AB 的值. 23.选修4-5:不等式选讲 已知函数()43f x x x =---. (1)求不等式3()02f x +≥的解集; (2)若,,p q r 为正实数,且111432p q r++=,求32p q r ++的最小值.成都市2014级高中毕业班第二次诊断性检测数学(理科)试卷答案一、选择题1-5:DABAD 6-10:CBCDC 11、12:DA 二、填空题13. -2 14. 32.8 15. 4 16. 21nn + 三、解答题 17.解:(1)在BEC ∆中,据正弦定理,有sin sin BE CEBCE B=∠. ∵23B π∠=,1BE =,CE =,∴sin sin 14BE B BCE CE ∙∠===. (2)由平面几何知识,可知DEA BCE ∠=∠,在Rt AED ∆中,∵2A π∠=,5AE =,∴cos DEA ∠===.∴cos 14EA ED DEA ===∠在CED ∆中,据余弦定理,有22212cos 7282()492CD CE DE CE DE CED =+-∙∙∠=+--=∴7CD =18.解:(1)记“至少有一个大于600”为事件A .∴23257()110C P A C =-=.(2)5555595515635525565x ++++==,600y =.∴222221135(5)(3)7(1)(4)(2)300.3(1)3(5)7(4)100b -⨯+⨯+-⨯-+⨯-+-⨯-===-++-++- ∵6000.3556433.2a y bx =-=-⨯=, ∴线性回归方程为0.3433.2y x =+. 当570x =时,0.3570433.2604.2y =⨯+= ∴当570x =时,特征量y 的估计值为604.2. 19.解:(1)如图,作//GM CD ,交BC 于点M ,连接MF ,作//BH AD ,交GM 于N ,交DC 于H .∵//EF CD ,//GM EF , ∴3GN AB ==,9HC =. ∵////AB GM DC , ∴23NM BM AG HC BC AD ===. ∴6NM =.∴9GM GN NM =+=.∴GM //=EF . ∴四边形GMFE 为平行四边形, ∴//GE MF .又MF ⊂平面BCF ,GE ⊄平面四边形, ∴//GE 平面BCF.(2)∵平面ADE ⊥平面CDEF ,AD DE ⊥,AD ⊂平面ADE , ∴AD ⊥平面CDEF .以D 为坐标原点,DC 为x 轴,DE 为y 轴,DA 为z 轴建立如图所示的空间直角坐标系xyz D .∴(0,4,0),(9,4,0),(12,0,0),(3,0,E F C B . ∴(9,0,0)EF =,(3,4,EB =-, 设平面EBF 的法向量1111(,,)n x y z =.由1100n EF n EB ⎧∙=⎪⎨∙=⎪⎩,得111190340x x y =⎧⎪⎨-+=⎪⎩.取1y =1n =.同理,(3,4,0)FC =-,(6,4,FB =--. 设平面BCF 的法向量2222(,,)n x y z =.由2200n FC n FB ⎧∙=⎪⎨∙=⎪⎩,得22222340640x y x y -=⎧⎪⎨--+=⎪⎩.取24x =,得2n =.∴121212cos ,n n n n n n ∙====∵二面角E BF C --为钝二面角,∴二面角E BF C --的余弦值为. 20.解: (1)∵直线l 与Or =.由12k =-,1r =,解得2m =.∵点,A B 都在坐标轴正半轴上,∴1:22l y x =-+. ∴切线l与坐标轴的交点为,.∴a =b =. ∴椭圆E 的方程是224155x y +=. (2)设11(,)A x y ,22(,)B x y ∵以AB 为直径的圆经过点O , ∴0OA OB ∙=,即12120x x y y +=. ∵点,A B 在直线l 上,∴1122y kx my kx m =+⎧⎨=+⎩.∴221212(1)()0k x x mk x x m ++++= (*)由222222y kx m b x a y a b =+⎧⎨+-=⎩消去y ,得22222222(2)0b x a k x kmx m a b +++-=. 即222222222()2()0b a k x kma x a m a b +++-= 显然0∆>∴由一元二次方程根与系数的关系,得2122222222122222kma x x b a k a m a b x x b a k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩代入(*)式,得2222222222222222222222a m a m k a b a b k k m a m b a k m b a k+--++++. 整理,得22222222()0m a b a b a b k +--=. 又由(1),有222(1)m k r =+.消去2m ,得2222222(1)()(1)k r a b a b k ++=+ ∴222111a b r +=∴,,a b r 满足等量关系222111a b r+=. 21.解:(1)2'221(1)()1a x ax f x x x x --+=--=,(0,)x ∈+∞.由题意,得210x ax -+=,在(2,)x ∈+∞上有根(不为重根).即1a x x =+在(2,)x ∈+∞上有解. 由1y x x =+在(2,)x ∈+∞上单调递增,得15(,)2x x +∈+∞.检验:当52a >时,()f x 在(2,)x ∈+∞上存在极值点.∴5(,)2a ∈+∞.(2)若02a <≤,∵2'2(1)()x ax f x x--+=在(0,)+∞上满足'()0f x ≤, ∴()f x 在(0,)+∞上单调递减,∴21()()0f x f x -<. ∴21()()f x f x -不存在最大值. 则2a >.∴方程210x ax -+=有两个不相等的正实数根,令其为,m n ,且不妨设01m n <<<则1m n amn +=⎧⎨=⎩.()f x 在(0,)m 上单调递减,在(,)m n 上调递增,在(,)n +∞上单调递减,对1(0,1)x ∀∈,有1()()f x f m ≥;对2(1,)x ∀∈+∞,有2()()f x f n ≤, ∴21max [()()]()()f x f x f n f m -=-.∴11()()()(ln )(ln )M a f n f m a n n a m m n m=-=-+--+11ln()()n a m n m n m =+-+-. 将1a m n n n =+=+,1m n =代入上式,消去,a m 得21111()()ln 2()2[()ln ()]M a n n n n n n n n n n=++-=++-∵12a e e <≤+,∴11n e n e +≤+,1n >.据1y x x =+在(1,)x ∈+∞上单调递增,得(1,]n e ∈.设11()2()ln 2()h x x x x x x =++-,(1,]x e ∈.'22211111()2(1)ln 2()2(1)2(1)ln h x x x x x x x x x=-++++--=-,(1,]x e ∈.∴'()0h x >,即()h x 在(1,]e 上单调递增. ∴max 114[()]()2()2()h x h e e e e e e==++-= ∴()M a 存在最大值为4e. 22.解:(1)曲线C 的普通方程为22(2)4x y +-=, 曲线C 的极坐标方程为22(cos )(sin 2)4ρθρθ+-=. 化简,得4sin ρθ=.由ρ=sin θ=∵(,)2πθπ∈,∴23πθ=. (2)射线OA 的极坐标方程为23πθ=, 直线l的普通方程为0x +-=.∴直线l的极坐标方程为cos sin 0ρθθ+-=.联立23cos sin 0πθρθθ⎧=⎪⎨⎪-=⎩,解得ρ=∴B A AB ρρ=-==.23.解:(1)333()40222f x x x +=-+--≥ 根据绝对值的几何意义,得3322x x ++-表示点(,0)x 到3(,0)2A -,3(,0)2B 两点距离之和.接下来找出到,A B 距离之和为4的点.将点A 向左移动12个单位到点1(2,0)A -,这时有114A A A B +=; 同理,将点B 向右移动12个单位到点1(2,0)B ,这时有114B A B B +=.∴33422x x ++-≤,即3()02f x +≥的解集为[2,2]-. (2)令1a =,2a =3a = 由柯西不等式,得2222222123123123123111111[()()()]()()a a a a a a a a a a a a ++∙++≥∙+∙+∙ 即111()(32)932p q r p q r++++≥ ∵111432p q r++=∴9324p q r ++≥. 上述不等式当且仅当1114323p q r +==,即14p =,38q =,34r =时,取等号. ∴32p q r ++的最小值为94.。

四川省成都市高三数学第二次诊断性检测试题 理

四川省成都市高三数学第二次诊断性检测试题 理

四川省成都市2018届高三数学第二次诊断性检测试题 理第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|11}P x x =-<,{|12}Q x x =-<<,则P Q =I ( ) A .1(1,)2- B .(1,2)- C .(1,2) D .(0,2)2.已知向量(2,1)a =r ,(3,4)b =r ,(,2)c k =r .若(3)//a b c -r r r,则实数的值为( ) A .8- B .6- C .1- D . 3.若复数满足3(1)12i z i +=-,则z 等于( )A .2 B .32 C .2 D .124.设等差数列{}n a 的前项和为n S .若420S =,510a =,则16a =( ) A .32- B .12 C .16 D .325.已知m ,是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=I ,n m ⊥,则n α⊥6.若6(x-的展开式中含32x 项的系数为160,则实数的值为( )A .B .2-C .D .- 7.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示.现将函数()f x 图象上的所有点向右平移4π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为( )A .()2sin(2)4g x x π=+B .3()2sin(2)4g x x π=+C .()2cos 2g x x =D .()2sin(2)4g x x π=-8.若为实数,则“2222x ≤≤”是“22223x x+≤≤”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( )A .863π B .86π C .6π D .24π 10.执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是( )A .7?n ≤B .7?n >C .6?n ≤D .6?n > 11.已知函数()1ln m f x n x x =--(0,0)m n e >≤≤在区间[1,]e 内有唯一零点,则21n m ++的取值范围为( )A .22[,1]12e e e e ++++ B .2[,1]12e e ++C .2[,1]1e +D .[1,1]2e +12.已知双曲线C :22221(0,0)x y a b a b-=>>右支上的一点P ,经过点P 的直线与双曲线C 的两条渐近线分别相交于A ,B 两点.若点A ,B 分别位于第一,四象限,O 为坐标原点.当12AP PB =u u u r u u u r时,AOB ∆的面积为2b ,则双曲线C 的实轴长为( )A .329B .169C .89D .49第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知132a =,231()2b =,则2log ()ab = .14.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为 .15.已知抛物线C :22(0)y px p =>的焦点为F ,准线与轴的交点为A ,P 是抛物线C 上的点,且PF x ⊥轴.若以AF 为直径的圆截直线AP 所得的弦长为,则实数p 的值为 .16.已知数列{}n a 共16项,且11a =,84a =.记关于的函数321()3n n f x x a x =-2(1)n a x +-,*n N ∈.若1(115)n x a n +=≤≤是函数()n f x 的极值点,且曲线8()y f x =在点16816(,())a f a 处的切线的斜率为15.则满足条件的数列{}n a 的个数为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()cos 22x x f x =21cos 22x -+. (1)求函数()f x 的单调递减区间;(2)若ABC ∆的内角A ,B ,C 所对的边分别为,,,1()2f A =,a =sin 2sin B C =,求.18.近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP 中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况的优惠活动评价的22⨯列联表如下:(1)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?(2)为了回馈用户,公司通过APP 向用户随机派送每张面额为元,元,元的三种骑行券.用户每次使用APP 扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是12,15,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为X ,求随机变量X 的分布列和数学期望. 参考数据:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,60FBD ∠=o,AB BC ⊥,2AB BC ==.(1)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (2)求平面AEF 与平面BCF 所成的锐二面角的余弦值.20.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,左顶点为A ,离心率为2,点B 是椭圆上的动点,1ABF ∆21-. (1)求椭圆C 的方程;(2)设经过点1F 的直线与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为'l .若直线'l 与直线相交于点P ,与直线2x =相交于点Q ,求PQMN的最小值. 21.已知函数()ln 1f x x x ax =++,a R ∈.(1)当时0x >,若关于的不等式()0f x ≥恒成立,求的取值范围; (2)当*n N ∈时,证明:223ln 2ln 242n n <++21ln 1n nn n ++⋅⋅⋅+<+. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。

四川省成都市高三数学第二次诊断性检测试题理

四川省成都市高三数学第二次诊断性检测试题理

成都市2016级高中毕业班第二次诊断性检测数学(理科)本试卷分选择题和非选择题两部分。

第I 卷(选择题)1至2页,第II 卷(非选择题)3至4页。

共4页。

满分150分,考试时间120分钟。

注意事项:1 •答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2 •考试结束后,只将答题卡交回。

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5个,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1 •设全集 U = R ,集合 A = ・—1v X V 3}, B = ^xE —2 或 x31>,则 M1(C U B)=B .仪一2 辽 X V3:'22•已知双曲线C : x 2¥=1(b >0)的焦距为4,则双曲线C 的渐近线方程为A . y = . 15xB • y = 2xC . y = 3xD . y = 3x3•已知向量a =(、.3,1), b =(-3,山),则向量b 在向量a 方向上的投影为A • -3B3 C . -1 D . 14.已知a,b € R,条件甲: 1 1a >b >0;条件乙:-v ,则甲是乙的a b A .充分不必要条件 B.必要不充分条件 C •充要条件D.既不充分也不必要条件5•为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成「x-2v x v 3^、xx _-2或x >-1z如图所示的茎叶图,有以下结论:① 甲最近五场比赛得分的中位数高于乙最近五场比赛得 分的中位数;② 甲最近五场比赛得分平均数低于乙最近五场比赛得分 的平均数;[]③ 从最近五场比赛的得分看,乙比甲更稳定; ④ 从最近五场比赛的得分看,甲比乙更稳定。

其中所有正确结论的编号为: A. ①③ B .①④ C .②③ D .②④6.若:,卩:=(―,二),且 sin : = 2-5 , sin(: - :)10,则sin :=2 5 10C.存在平面:-,使得c _ :• ,〉 a , b//a D .存在平面〉,使得c//a , a _〉,b _ an&将函数f (x )的图像上的所有点向右平移丁个单位长度,得到函数 g (x )的图像,若函数 4g ( x )= A 6in(cox +®)(A > 0, co >0, f | v 专)的部分图像如图所示,则函数f(x)的解析式为 5 nA. f (x )=sin( x +石)B. f (x )=-cos(2 x+23n )nC. f (x )=cos(2 x+—)3 D f (x )=sin(2 x+7nn )A .7、2 101 107•已知a,b 是两条异面直线,直线c 与a,b 都垂直,则下列说法正确的是A .若c 平面:•,则al =B.若 c _ 平面〉,则〉// a, b // a9.已知定义域35R 的奇函数f (x )的图像关于直线 x -1对称,且当0< x < 1时,f (x )-x ,则f (2)-27 A . -811 27 B.C. — D.—[] 88810•已知a := R 且为常数,圆C : x 2 2x y 2 -2ay = 0 ,过圆C 内一点(1,2)的直线l 与圆C 相切交于A,B 两点,当弦AB 最短时,直线l 的方程为2x -y =0,则a 的值为A . 2 B12 .某小区打算将如图的一直三角形 ABC 区域进行改建,在三边上各选一点连成等边三角形 DEF在其内建造文化景观•已知AB=20m,AC=10m,则厶DEF 区域内面积(单位:吊)的最小值为第22~23题为选考题,考生根据要求做答。

四川省成都市高三数学第二次诊断性检测试题理

四川省成都市高三数学第二次诊断性检测试题理

四川省成都市2018届高三数学第二次诊断性检测试题 理第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|11}P x x =-<,{|12}Q x x =-<<,则PQ =( )A .1(1,)2- B .(1,2)- C .(1,2) D .(0,2)2.已知向量(2,1)a =,(3,4)b =,(,2)c k =.若(3)//a b c -,则实数的值为( ) A .8- B .6- C .1- D .3.若复数满足3(1)12i z i +=-,则z 等于( )A .2 B .32 C .2 D .124.设等差数列{}n a 的前项和为n S .若420S =,510a =,则16a =( ) A .32- B .12 C .16 D .325.已知m ,是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=,n m ⊥,则n α⊥6.若6(x-的展开式中含32x 项的系数为160,则实数的值为( )A .B .2-C .D .- 7.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示.现将函数()f x 图象上的所有点向右平移4π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为( )A .()2sin(2)4g x x π=+B .3()2sin(2)4g x x π=+C .()2cos 2g x x =D .()2sin(2)4g x x π=-8.若为实数,则“2222x ≤≤”是“22223x x+≤≤”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( )A .863π B .86π C .6π D .24π 10.执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是( )A .7?n ≤B .7?n >C .6?n ≤D .6?n > 11.已知函数()1ln m f x n x x =--(0,0)m n e >≤≤在区间[1,]e 内有唯一零点,则21n m ++的取值范围为( )A .22[,1]12e e e e ++++ B .2[,1]12e e ++C .2[,1]1e +D .[1,1]2e +12.已知双曲线C :22221(0,0)x y a b a b-=>>右支上的一点P ,经过点P 的直线与双曲线C 的两条渐近线分别相交于A ,B 两点.若点A ,B 分别位于第一,四象限,O 为坐标原点.当12AP PB =时,AOB ∆的面积为2b ,则双曲线C 的实轴长为( ) A .329 B .169 C .89 D .49第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知132a =,231()2b =,则2log ()ab = .14.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为 .15.已知抛物线C :22(0)y px p =>的焦点为F ,准线与轴的交点为A ,P 是抛物线C 上的点,且PF x ⊥轴.若以AF 为直径的圆截直线AP 所得的弦长为,则实数p 的值为 .16.已知数列{}n a 共16项,且11a =,84a =.记关于的函数321()3n n f x x a x =-2(1)n a x +-,*n N ∈.若1(115)n x a n +=≤≤是函数()n f x 的极值点,且曲线8()y f x =在点16816(,())a f a 处的切线的斜率为15.则满足条件的数列{}n a 的个数为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()cos 22x x f x =21cos 22x -+. (1)求函数()f x 的单调递减区间;(2)若ABC ∆的内角A ,B ,C 所对的边分别为,,,1()2f A =,a =sin 2sin B C =,求.18.近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP 中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况的优惠活动评价的22⨯列联表如下:(1)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?(2)为了回馈用户,公司通过APP 向用户随机派送每张面额为元,元,元的三种骑行券.用户每次使用APP 扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是12,15,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为X ,求随机变量X 的分布列和数学期望. 参考数据:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,60FBD ∠=,AB BC ⊥,2AB BC ==.(1)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (2)求平面AEF 与平面BCF 所成的锐二面角的余弦值.20.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,左顶点为A ,离心率为2,点B 是椭圆上的动点,1ABF ∆21-. (1)求椭圆C 的方程;(2)设经过点1F 的直线与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为'l .若直线'l 与直线相交于点P ,与直线2x =相交于点Q ,求PQMN的最小值. 21.已知函数()ln 1f x x x ax =++,a R ∈.(1)当时0x >,若关于的不等式()0f x ≥恒成立,求的取值范围; (2)当*n N ∈时,证明:223ln 2ln 242n n <++21ln 1n nn n ++⋅⋅⋅+<+. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。

四川省成都市2022届高三第二次诊断性检测+理科数学试题+Word版含答案

四川省成都市2022届高三第二次诊断性检测+理科数学试题+Word版含答案
成都市2019级高中毕业班第二次诊断性检测
数学(理科)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知i为虚数单位,则 ()
A.1+iB.1-i
C -1+iD.-1-i
【1题答案】
【答案】B
2.设集合 .若集合 满足 ,则满足条件的集合 的个数为()
A. B. C. D.
【12题答案】
【答案】C
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.
13.某区域有大型城市 个,中型城市 个,小型城市 个.为了解该区域城市空气质量情况,现采用分层抽样的方法抽取 个城市进行调查,则应抽取的大型城市的个数为______.
【13题答案】
【答案】
A. B. C. D.
【5题答案】
【答案】B
6.设经过点 的直线与抛物线 相交于 两点,若线段 中点的横坐标为 ,则 ()
A. B. C. D.
【6题答案】
【答案】C
7.已知数列 的前 项和为 .若 , ,则 ()
A. B. C. D.
【7题答案】
【答案】C
8.若曲线 在点(1,2)处的切线与直线 平行,则实数a的值为()
A. B. C. D.
【2题答案】
【答案】D
3.如图是一个几何体的三视图,其中正视图与侧视图都是边长为 的等边三角形,俯视图是直径为 的圆.则该几何体的表面积为()
A. B. C. D.
【3题答案】
【答案】A
4. 的展开式中 的系数为()
A. B. 160C. D. 80
【4题答案】
【答案】A
5.在区间(-2,4)内随机取一个数x,使得不等式 成立的概率为()

2020届四川省成都市高三第二次诊断性检测数学(理)试卷及解析

2020届四川省成都市高三第二次诊断性检测数学(理)试卷及解析

2020届四川省成都市高三第二次诊断性检测数学(理)试卷★祝考试顺利★(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( )A. iB. i -C. 1-D. 1【答案】C【解析】21i z =+,分子分母同乘以分母的共轭复数即可. 【详解】由已知,22(1i)1i 1i (1i)(1i)z -===-++-,故z 的虚部为1-. 故选:C. 2. 设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()U M N ⋂=( )A. {}|2x x >B. {}|1x x ≥C. {}|12x x <<D. {}|2x x ≥ 【答案】A【解析】先求出U M ,再与集合N 求交集.【详解】由已知,{|1}U M x x =≥,又{}|2N x x =>,所以{|2}U M N x x ⋂=>.故选:A.3. 某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( )A. 20B. 50C. 40D. 60【答案】B【解析】利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【详解】由题意,30=150015001000n ⨯+,解得50n =. 故选:B.4. 曲线3y x x =-在点()1,0处的切线方程为( )A. 20x y -=B. 220x y +-=C. 220x y ++=D. 220x y --= 【答案】D【解析】 只需利用导数的几何意义计算曲线在点1x =处的导数值即可.【详解】由已知,'231y x =-,故切线的斜率为12x y ='=,所以切线方程为2(1)y x =-,即220x y --=.故选:D.5. 已知锐角α满足2sin21cos2 ,αα=-则tan α=( ) A. 12 B. 1 C. 2D. 4【答案】C【解析】利用sin 22sin cos ,ααα=2cos 212sin αα=-代入计算即可.【详解】由已知,24sin cos 2sin ααα=,因α为锐角,所以sin 0α≠,2cos sin αα=, 即tan α=2.故选:C.6. 函数())cos ln f x x x =⋅在[1,1]-的图象大致为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市高三第二次诊断性检测
数学(理科)
本试卷分选择题和非选择题两部分。

第I卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。

注意事项:
1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I卷(选择题,共60分)
一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项
是符合题目要求的.
1.设集合P={x|x-1|<1},Q={x|-1<x<2},则P∩Q=()
(A)(一1,)(B)(一1,2)(C)(1,2) (D)(0.2)
2.已知向量a=(2,1),b=(3,4),c=(k,2).若(3a一b)∥c,则实数k的值为()
(A) -8 (B) -6 (C) -1 (D)6
3.若复数z满足(1+i)z=1—2i3,则|z|等于()
(A) (B) (C) (D)
4.设等差数列{a n}的前n项和为S n.若S4 =20,a5 =10,则a16 =()
(A) - 32 (B) 12 (C) 16 (D) 32
5.已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正
确的是()
(A)若α,则m(B)若α,β,则m n
(C)若mα,m,则m∥α(D)若,则nα
6.若的展开式中含项的系数为160,则实数a的值为()
(A) 2 (B) -2 (C) 2(D) -2
7.已知函数的部分图象如图所
示.现将函数图象上的所有点向右平移个单位长度得到函数的图
象,则函数的解析式为()
(A) (B)
(C) (D)
8.若x为实数,则是成立的()
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
9.《九章算术》中将底面为长方形,且有一条侧
棱与底面垂直的四棱锥称之为“阳马”,现有
一阳马,其正视图和侧视图是如图所示的直
角三角形.若该阳马的顶点都在同一个球面
上,则该球的体积为()
(A) (B) (C) (D)
10.执行如图所示的程序框图,著输出的结果为56,则判断框
中的条件可以是()
(A)n≤77 (B)n>77
(C)n≤67 (D)n>67
11.已知函数在区间[1,e]内有唯一零点,
则的取值范围为()
(A (B) (C (D)
12.已知双曲线C: 右支上的一点P,经过点P的直线与双曲线C的两条渐近线分别相交于A,B两点,若点A,B分别位于第一,四象限,O为坐标原点,当时,△AOB的面积为26,则双曲线C的实轴长为()
(A) (B) (C) (D)
第Ⅱ卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.
13.已知a=,b=,则=
14.如图是调查某学校高三年级男女学生是否喜欢篮球运
动的等高条形图,阴影部分的高表示喜欢该项运动的
频率.已知该年级男生女生各500名(假设所有学生都
参加了调查),现从所有喜欢篮球运动的同学中按分层
抽样的方式抽取32人,则抽取的男生人数为.
15.已知抛物线C:y2 =2px(p >0)的焦点为F,准线l与x轴的交点为A,P是抛物线C上的点,且PF x轴.若以AF为直径的圆截直线AP所得的弦长为2,则实数p的值为____.
16.已知数列共16项,且a1=l,a8=4记关于x的函数
是函数的极值点,且曲线在点处的切线的斜率为15.则满足条件的数列{a n}的个数为。

三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分12分)
已知函数
(I)求函数的单调递减区间;
(Ⅱ)若△ABC的内角A,B,C所对的边分别为a,b,c,f(A)= .a=sinB=2sinC,求c.
近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价,现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况和优惠活动评价的2×2列联表如下:
(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?
(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用APP扫码用车后,都可获得一张骑行券,用户骑行一次获得1元券,获得2元券的概率分别是
,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为X,求随机变量X的分布列和数学期望
参考数据:
如图,D是AC的中点,四边形BDEF是菱形,平面BDEF⊥平面ABC,
∠FBD一60°,AB⊥BC,AB=BC=.
(I)若点M是线段BF的中点,证明:BF⊥平面AMC;
(Ⅱ)求平面AFF与平面BCF所成的锐二面角的余弦值.
20.(本小题满分12分)
已知椭圆C: (a>b>0)的左右焦点分别为F1,F2,左顶点为A,离心率为,点B是椭圆上的动点,△ABF1的面积的最大值为
(I)求椭圆C的方程;
(Ⅱ)设经过点F1的直线l与椭圆C相交于不同的两点M,N,线段MN的中垂线为l'.
若直线l'与直线l相交于点P,与直线x=2相交于点Q,求的最小值.
已知函数f(x) =xlnx+ax+1,a∈R.
(I)当x >0时,若关于x的不等式f (x)≥0恒成立,求a的取值范围;(Ⅱ)当n∈N*时,证明
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.
22.(本小题满分10分)选修4-4:极坐标与参数方程 在平面直角坐标系xOy 中,曲线C 的参数方程为
,其中a 为参数,a ∈(0,π).在以坐
标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点P 的极坐标为,直线l 的极坐标方程

(I)求直线l 的直角坐标方程与曲线C 的普通方程;
(Ⅱ)若Q 是曲线C 上的动点,M 为线段PQ 的中点.求点M 到直线l 的距离的最大值.
23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x)=|2x+l|+ |x -1|. (I)解不等式f (x)≥3;
(Ⅱ)记函数f (x)的最小值为m ,若a ,b ,c 均为正实数,且
2
1
a+b+2c=m ,求a 2+b 2 +c 2的最小值.。

相关文档
最新文档