使用单纯形法解线性规划问题

合集下载

单纯形法习题详解

单纯形法习题详解

单纯形法应用实例
某工厂生产1,11两种商品,已知生产单位商品所需要的设备台时,A、B两种原材料的消耗、设备使用台时限额以及原材料的限额如下表所示。

该工厂生产一件商品I可获利3元,每生产一件商品II 可获利4元。

写出使该工厂所获利润最大的线性规划模型,并用单纯型法求解。

产品1 产品II 限额设备 2 1 40台时
原材料 1 3 30KG
用单纯形法求解该线性规划问题
maxz 2x 1 x 2
x 1,x 2 0
s.t
5x 2 15
6x 1 2x 2 24
X i X 2
首先列出表格,先确定正检验数最大值所在列为主列,然后用b除以主列上对应的同行数字。

除出来所得值最小的那一行为主行,根据主行和主列可以确定主元(交点)。

接着把主元化为1
并把X4换成X1.
这时进行初等行列变换,把主列换单位向量,主元为1。

也就是X5所在行减去X1所在行。

并且重新计算检验数。

再次确定主元。

为4/6。

然后把X5换成X2。

并且把主元化成1
然后再用X1行减去2/6倍的X2行,X3行减去5倍的X2行并且重新计算检验数。

最后得到的表格中检验数这一行无正数则所得解为最优解。

本题最优解为X=(7/2,3/2,15/2,0,0)
目标函数值Z=8.5。

单纯形法解线性规划问题

单纯形法解线性规划问题

一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题s.t.解:1)、将该线性问题转为标准线性问题一、第一阶段求解初始可行点2)、引入人工变量修改约束集合取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。

2 -2 -1 1 21 1 -1 -1 12 -1 -2 1 25 -2 -4 1 -1 1 50 0 0 0 03)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。

2 -2 -1 1 2 11 1 -1 -1 1 02 -1 -2 1 2 05 -2 -4 1 -1 1 5 10 0 0 0 00 1 0 0 04)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。

同时将以改变的决策变量转换为状态变量。

增加的值使目标函数值更小。

1 -3 1 1 1 01 1 -1 11 -3 1 1 1 00 0 0 00 0 05)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为,二、第二阶段用单纯形法求解最优解-2 2 1 01 1 -1 0-2 1 2 15 1 3要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。

2、求解问题s.t.如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最大值变达成c的函数。

解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。

1)将问题华为标准线性问题s.t.2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解10 -1 -1 -1 10-20 1 5 1 -20-2 -1 -1 00 0 0要使目标函数继续减小,可以增大,增大的限值是10。

10 -1 -1 -1 10 0-20 1 5 1 -20 -10-2 -1 -1 0 -200 0 010 0 03)转轴。

最新单纯形法解线性规划问题

最新单纯形法解线性规划问题

一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题s.t.解:1)、将该线性问题转为标准线性问题一、第一阶段求解初始可行点2)、引入人工变量修改约束集合取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。

2 -2 -1 1 21 1 -1 -1 12 -1 -2 1 25 -2 -4 1 -1 1 50 0 0 0 03)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。

2 -2 -1 1 2 11 1 -1 -1 1 02 -1 -2 1 2 05 -2 -4 1 -1 1 5 10 0 0 0 00 1 0 0 04)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。

同时将以改变的决策变量转换为状态变量。

增加的值使目标函数值更小。

1 -3 1 1 1 01 1 -1 11 -3 1 1 1 00 0 0 00 0 05)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为,二、第二阶段用单纯形法求解最优解-2 2 1 01 1 -1 0-2 1 2 15 1 3要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。

2、求解问题s.t.如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最大值变达成c的函数。

解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。

1)将问题华为标准线性问题s.t.2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解10 -1 -1 -1 10-20 1 5 1 -20-2 -1 -1 00 0 0要使目标函数继续减小,可以增大,增大的限值是10。

10 -1 -1 -1 10 0-20 1 5 1 -20 -10-2 -1 -1 0 -200 0 010 0 03)转轴。

求解线性规划的方法

求解线性规划的方法

求解线性规划的方法
求解线性规划问题的常用方法有以下几种:
1. 单纯形法(Simplex Method):单纯形法是解线性规划问题的经典方法,通过逐步迭代找到目标函数的最优解。

它适用于小到中等规模的问题。

2. 内点法(Interior Point Method):内点法通过在可行域内的可行点中搜索目标函数最小化的点来解决线性规划问题。

相对于单纯形法,内点法在大规模问题上的计算效率更高。

3. 梯度法(Gradient Method):梯度法是基于目标函数的梯度信息进行搜索的一种方法。

它适用于凸优化问题,其中线性规划问题是一种特殊的凸优化问题。

4. 对偶法(Duality Method):对偶法通过构建原问题和对偶问题之间的关系来求解线性规划问题。

通过求解对偶问题,可以得到原问题的最优解。

5. 分支定界法(Branch and Bound Method):分支定界法通过将原问题划分为更小的子问题,并逐步确定可行域的界限,来搜索目标函数的最优解。

需要根据具体的问题规模、约束条件和问题特点选择合适的方法进行求解。

分布式单纯形法

分布式单纯形法

分布式单纯形法
分布式单纯形法是一种求解线性规划问题的算法,其基本思想是将一个大规模的线性规划问题分解为若干个较小的子问题,然后利用单纯形法分别求解这些子问题,最后将这些子问题的解进行合并,得到原问题的最优解。

具体来说,分布式单纯形法将原问题分解为若干个子问题,每个子问题对应原问题的一个约束条件或一个变量。

然后,每个子问题在一个独立的计算节点上使用单纯形法进行求解。

在每个迭代步骤中,每个计算节点更新自己的变量值,并与其他计算节点交换信息,以便在全局范围内找到最优解。

分布式单纯形法的优点是可以将大规模问题分解为较小的子问题,从而在分布式计算环境中实现高效的求解。

此外,该算法还可以利用并行计算的优势,提高求解速度。

然而,分布式单纯形法也存在一些挑战,例如如何有效地分解问题、如何管理通信和同步等。

总之,分布式单纯形法是一种求解大规模线性规划问题
的有效方法,适用于分布式计算环境。

单纯形法的原理是:先找到一个初始的基可行解,判定其是否为最优解,如为否,则转换到相邻的基可行解,并使目标函数值不断增大,一直找到最优解为止。

单纯形法是一种求解线性规划问题的算法,其基本思想是将一个复杂的线性规划问题转化为一系列简单的线性规划问题,通过不断迭代和变换,最终找到最优解。

单纯形法原理及例题

单纯形法原理及例题

单纯形法原理及例题
单纯形法原理:
单纯形法是求解线性规划问题的一种数学方法,它是由美国数学家卢克·单纯形于1947年发明的。

用单纯形法求解线性规划的过程,往往利用线性规划的对偶形式,将原问题变换为无约束极大化问题,逐步把极大化问题转换为标准型问题,最后利用单纯形法的搜索方法求解满足所有约束条件的最优解。

例题:
问题:求解最小化目标函数z=2x1+x2的线性规划问题,约束条件如下:
x1+2x2≥3
3x1+x2≥6
x1,x2≥0
解:将上述线性规划问题转换为无约束极大化问题,可得:
极大化问题:
Max z=-2x1-x2
s.t. x1+2x2≤3
3x1+x2≤6
x1,x2≥0
将极大化问题转换为标准型问题,可得:
Max z=-2x1-x2
s.t. x1+2x2+s1=3
3x1+x2+s2=6
x1,x2,s1,s2≥0
运用单纯形法的搜索方法求解:
令x1=0,x2=0,则可得s1=3,s2=6,即(0,0,3,6)是单纯形的初始解;
令z=-2x1-x2=0,代入约束条件,可得x1=3,x2=3,则可得s1=0,s2=0,即(3,3,0,0)是新的单纯形解。

由于s1=s2=0,说明x1=3,x2=3是线性规划问题的最优解,且最小值为z=2*3+3=9。

单纯形法原理

单纯形法原理

单纯形法原理
单纯形法是线性规划中常用的一种方法,用于求解极值问题。

它的基本思想是通过不断迭代的方式,逐渐接近最优解。

单纯形法的基本步骤如下:
1. 将线性规划问题转化为标准型。

标准型的约束条件为≤,目标函数为最大化,且所有变量的取值范围为非负数。

2. 利用人为变量引入的方法,将标准型问题转化为初始单纯形表。

3. 选择合适的初始基变量,并计算出对应的基变量解。

4. 计算单纯形表中的评价函数。

如果所有评价函数中的系数都为非负数,则当前基变量解为最优解,过程结束。

否则,继续进行下一步。

5. 选择进入变量和离开变量。

进入变量是指取值为负的评价函数系数对应的变量,离开变量是指进入变量在当前基变量解中最先达到0的变量。

6. 迭代计算,通过变换基变量,逐渐接近最优解。

具体的计算方式为将进入变量对应列调整为单位向量,同时更新初始单纯形表中其它列的数值。

7. 重复步骤4至步骤6,直至得到最优解为止。

值得注意的是,单纯形法的执行依赖于初始基变量的选择,不同的初始基变量可能会得到不同的最优解。

因此,在实际应用中,需要通过灵活选择初始基变量来提高求解效果。

求解线性规划的单纯形法(1)

求解线性规划的单纯形法(1)
Q3:如何找下一个相邻的基本可行解?
◦ 确定移动的方向 ◦ 确定在何处停下 ◦ 确定新的基本可行解
求解线性规划的单纯形法
例:用单纯形法求解以下线性规划问题
求解线性规划的单纯形法 首先将模型转化成标准形式
求解线性规划的单纯形法
Q1:确定初始的基本可行解
• 选择原点:
– 令决策变量 x1= x2 = 0得:X0 = ( 0,0,3,4)T
xx33 = 1 -x2 ≥=0 → x2 ≤ 1/1
x4 = 2 -x2 ≥ 0 → x2 ≤ 2/1
离基(最小比值规则) :
x2 ≤ min {1/1,2/1 } = 1 x2 = min {1/1,2/1 } = 1
x3为离基变量
X1 = ( 0, 1, 0, 1)T
求解线性规划的单纯形法
3
x1 + 2x2
+ x4 =4
初等数学 变换
新的BF解 x1 =0,x4 =0 x3 =?1 ,x2 =2
新方程
Z x1/2
+ 3x4 /2 =6
x1/2 + x3 - x4 / 2 1
x1/2 + 2x2 + x4 /2 =2
非最优解!
• 寻找新的基本可行解:
– 初等数学变换
非基变量 x1的系数 X*=(0, 2, 1, 0) 是正数!
x1 2
x1 2

x1 4
初等行变换
x3

0
确定x3为离基变量
Z*=7,X*=(2,1,0,0)
非基变量系 数>0,最优!
Z x1/2
+ 3x4 /2 =6
x1/2 + x3 - x4 / 2 1

单纯形法求解题技巧

单纯形法求解题技巧

单纯形法求解题技巧单纯形法是一种基于线性规划的求解方法,通过迭代的方式不断优化目标函数的值,从而找到最优解。

在使用单纯形法求解问题时,可以遵循以下一些技巧和步骤:1. 设置初始基可行解:初始基可行解是指满足所有约束条件的解,可以通过等式约束的方式获得。

初始基可行解对于单纯形法的收敛性和运算次数有重要影响。

2. 检查目标函数:在进行单纯形表的构造前,需要对目标函数进行检查。

对于最小化问题,目标函数的系数一般需要取负号。

3. 构造单纯形表:单纯形表是单纯形法的核心工具,通过将约束条件和目标函数表达成矩阵形式,构造单纯形表可方便进行单纯形法的迭代计算。

4. 选择合适的入基变量:入基变量是表中一列,表示在当前解时需要调整的变量。

选择一个最优的入基变量可以减少迭代次数。

可以通过最小比率法、最大系数法等方法选择入基变量。

5. 选择合适的出基变量:出基变量是表中一行,表示需要退出基变量的数值。

选择一个最优的出基变量可以使目标函数值增加最大。

可以通过最小比率法、Bland法则等方法选择出基变量。

6. 更新单纯形表:通过入基、出基变量的转换,更新单纯形表。

更新表的目的是获得一个新的基可行解,并计算相应的目标函数值。

7. 判断终止条件:在迭代运算中,需要判断是否满足终止条件。

终止条件可以是当目标函数无法继续改善时停止迭代,或者受到约束条件的限制达到最优解时停止。

8. 迭代求解:根据上述步骤进行迭代求解,直到满足终止条件。

9. 检查最优解:在得到最优解后,需要对最优解进行检查。

检查包括检查约束条件是否满足、检查是否有多个最优解等。

10. 整理结果:根据求解结果,整理并表示出最优解的含义。

通常需要将最优解转化为实际问题中的意义,并进行解释和解读。

在实际应用中,还有一些常用的技巧可以进一步提高单纯形法的求解效率:1. 初始基可行解的选择:初始基可行解的选择对于迭代次数和运算效率有重要影响。

可以使用人工算法确定一个初始基可行解,或者利用其他启发式算法辅助选择初始基可行解。

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题
1.将线性规划问题转化为标准形式:将不等式约束转化为等式约束,引入松弛变量等。

2.初始化:选择一个初始可行基。

可行基是指满足约束条件的基本变量的取值,使得其他非基本变量的取值为零。

3.检验最优性:计算当前基本解下的目标函数值。

如果所有非基本变量的系数都是非负的,那么当前基本解就是最优解。

4.寻找进入变量:选择一个进入变量,使得目标函数值能够增加。

进入变量是指非基本变量中的一个,通过增加其值来使得目标函数值增加。

5.寻找离开变量:选择一个离开变量,使得目标函数值能够继续增加。

离开变量是指基本变量中的一个,通过减小其值来使得目标函数值继续增加。

6.更新基本解:通过进入变量和离开变量的变化,更新基本解。

7.重复步骤3到步骤6,直到找到最优解或确定问题无界。

单纯形法大M法求解线性规划问题

单纯形法大M法求解线性规划问题
2

两阶段法
两阶段法引入人工变量的目的和原则与大M法相同,所不同的是
处理人工变量的方法。 两阶段法的步骤: 求解一个辅助线性规划。目标函数取所有人工变量之和,并取极小 化;约束条件为原问题中引入人工变量后包含一个单位矩阵的标准型 的约束条件。 如果辅助线性规划存在一个基本可行解,使目标函数的最小值等于 零,则所有人工变量都已经“离基”。表明原问题已经得了一个初始 的基本可行解,可转入第二阶段继续计算;否则说明原问题没有可行 解,可停止计算。 求原问题的最优解。在第一阶段已求得原问题的一个初始基本可行 解的基础上,继续用单纯形法求原问题的最优解
大M法首先将线性规划问题化为标准型。如果约束方程组中包含 有一个单位矩阵 I ,那么已经得到了一个初始可行基。否则在约束方 程组的左边加上若干个非负的人工变量,使人工变量对应的系数列向 量与其它变量的系数列向量共同构成一个单位矩阵。以单位矩阵为初 始基,即可求得一个初始的基本可行解。 为了求得原问题的初始基本可行解,必须尽快通过迭代过程把人 工变量从基变量中替换出来成为非基变量。为此可以在目标函数中赋 予人工变量一个绝对值很大的负系数-M。这样只要基变量中还存在 人工变量,目标函数就不可能实现极大化。 以后的计算与单纯形表解法相同,M只需认定是一个很大的正数即 可。假如在单纯形最优表的基变量中还包含人工变量,则说明原问题 无可行解。否则最优解中剔除人工变量的剩余部分即为原问题的初始 基本可行解。



12
13
9
例3、求解下述线性规划问题:
m a x Z = 3 x 1 -8 0 x 2 + 2 x 3 -2 4 x 4 x 1 -3 2 x 2 -4 x 3 3 6 x 4 0 x -2 4 x - x 6 x 0 1 2 3 4 x3 1 x j 0 ,j 1 ,2 ,3 ,4

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤1>初始化将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示2>最优化测试如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为03>确定输入变量从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列4>确定分离变量对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行5>建立下一张表格将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步为求简单在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式:1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0);2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法)程序中主要的函数以及说明~SimpleMatrix();销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数bool Is_objectLine_All_Positive();其中row2为主元所在的行,col为主元所在的列,row1为要处理的行void PrintAnswer();数不合法"<<endl;}SimpleMatrix::SimpleMatrix(int row,int col){init(row,col);for(int i=0;i<rowLen;i++)cout<<"请输入矩阵中第"<<i+1<<"行的系数"<<endl; for(int j=0;j<colLen;j++)cin>>data[i][j];}?}SimpleMatrix::SimpleMatrix(int row,int col,double **M) {rowLen=row;colLen=col;init(row,col);for (int i=0;i<row;i++)for(int j=0;j<col;j++){data[i][j]=*((double*)M+col*i+j); ;}}SimpleMatrix::~SimpleMatrix(){if(colLen*rowLen != 0 ){for(int i=rowLen-1;i>=0;i--){if (data[i]!=NULL)delete[] data[i];}if (data!=NULL)delete[] data;}?}bool SimpleMatrix::Is_objectLine_All_Positive(){for(int i=0;i<colLen-1;i++)if(data[rowLen-1][i]<0)return false;return true;}bool SimpleMatrix::Is_MainCol_All_Negative(int col) {for(int i=0;i<rowLen;i++)if(data[i][col]>0)return false;return true;}bool SimpleMatrix::Is_column_all_Positive(int col){for(int i=0;i<rowLen-1;i++){return false;}return true;}int SimpleMatrix::InColumn(){int count=0;for(int i=0;i<colLen-1;i++){int temp=GetItem(rowLen-1,i);if(temp>=0){count++;}elsebreak;}double maxItem=fabs(GetItem(rowLen-1,count));int index_col;for(i=0;i<colLen-1;i++){double temp=GetItem(rowLen-1,i);if(temp<0){if(maxItem<=fabs(temp)){maxItem=fabs(temp);index_col=i;}}}return index_col;}int SimpleMatrix::DepartRow(int col){int index_row;int count=0;for(int i=0;i<rowLen;i++){if(data[i][col]<0)count++;elsebreak;}double minItem=data[count][colLen-1]/data[count][col]; index_row=count;double temp;for(i=0;i<rowLen-1;i++)temp=data[i][col];if(temp>0){temp=data[i][colLen-1]/temp;if(temp<minItem){minItem=temp;index_row=i;}}}return index_row;}void SimpleMatrix::MainItem_To_1(int row,int col){double temp=GetItem(row,col);pp#include <iostream>#include ""using namespace std;int main(){double M[4][7]={{5,3,1,1,0,0,9},{-5,6,15,0,1,0,15},{2,-1,1,0,0,-1,5},{-10,-15,-12,0,0,0,}}; SimpleMatrix Matrix(4,7,(double **)M);if(5))//判断是否存在最优解{bool p=();//判断主元列是否全部为正,确定是否已经取得最优解while(!p){int col=();//确定主元所在的行if(col))//确定线性规划的解是否为无解的{cout<<"线性规划问题是无界的,没有最优解"<<endl;exit(EXIT_FAILURE);}else{int mainRow=(col);//确定主元所在的行(mainRow,col);//将主元所在的行做变换,使主元变成1int i=0;while(i<()){if(i!=mainRow){(i,mainRow,col);//处理矩阵中其他的行,使主元列的元素为0i++;}elsei++;}}}for(int i=0;i<();i++)//输出变换以后的矩阵,判断是否正确处理{for (int j=0;j<();j++){cout<<(i,j)<<" ";}cout<<endl;}p=();}();}elsecout<<"线性规划无解"<<endl;return0;}。

用单纯形法解决线性规划问题

用单纯形法解决线性规划问题

盐城师范学院运筹学期末论文题目: 用单纯形法解决线性规划问题**: **二级学院: 数学科学学院专业: 数学与应用数学班级: 111 班学号: ********成绩评定:前言线性规划问题是数学以及日常生活中最基本的问题之一,如何快速有效的解决线性规划问题是数学家也在努力研究的科目之一。

以前中学时我们解决线性规划问题一般采用的是图解法,即画出所给条件的可行域,找出目标函数的最优解。

这种方法的优点是直观性强,计算方便,但缺点是只适用于问题中有两个变量的情况。

下面我们介绍另外一种方法—单纯形法,来解决图解法不能解决的问题。

1 单纯形法1.1 单纯形法的基本思路利用求线性规划问题基本可行解的方法求解较大规模的问题是不可行的。

有选择地取基本可行解,即从可行域的一个极点出发,沿着可行域的边界移动到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。

在线性规划的可行域中先找出一个可行解,检验它是否为最优解,如果是最优解,计算停止;如果不是最优解,那么可以判断线性规划无有限最优解,或者根据一定步骤得出使目标函数值接近最优值的另一个基本可行解。

由于基本可行解的个数有限,所以总可以通过有限次迭代,得到线性规划的最优基本可行解或判定线性规划无有限最优解。

1.2 单纯形法的基本步骤第1步求初始基可行解,列出初始单纯形表。

对非标准型的线性规划问题首先要化成标准形式。

由于总可以设法使约束方程的系数矩阵中包含一个单位矩阵(P1,P2,…,Pm),以此作为基求出问题的一个初始基可行解。

为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行比较。

为了书写规范和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表(见表1—1)。

迭代计算中每找出一个新的基可行解时,就重画一张单纯形表。

含初始基可行解的单纯形表称初始单纯形表,含最优解的单纯形表称最终单纯形表。

第2步:最优性检验如表中所有检验数c j−z j≤0,且基变量中不含有人工变量时,表中的基可行解即为最优解,计算结束。

实验2 单纯形法求解线性规划

实验2 单纯形法求解线性规划

实验2 单纯形法求解线性规划一、实验目的1. 理解线性规划的概念和基本形式。

2. 熟悉单纯形法的步骤和实现过程。

3. 学会使用Matlab编程求解线性规划问题。

二、实验原理线性规划是一种优化问题,其目标是在一组约束条件下,使目标函数(通常是一个线性函数)最大或最小化。

线性规划具有以下一般形式:$$\begin{aligned}&\underset{x_{1},x_{2},\cdots,x_{n}}{\max }\quadc_{1}x_{1}+c_{2}x_{2}+\cdots+c_{n}x_{n}\\&\text{s.t.}\quad a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}\leq b_{1}\\&\quad \quad \quad \,\,\,\quada_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}\leq b_{2}\\&\quad \quad \quad\quad \quad \quad \vdots \\&\quad \quad \quad \,\,\,\quada_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}\leq b_{m}\\&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x_{1},x_{2},\cdots,x_{n}\geq 0\end{aligned}$$其中,$x_{1},x_{2},\cdots,x_{n}$表示决策变量;$c_{1},c_{2},\cdots,c_{n}$是目标函数的系数;$a_{i1},a_{i2},\cdots,a_{in}$($i$=1,2,...,m)是限制条件的系数,$b_{1},b_{2},\cdots,b_{m}$是限制条件右侧的常数。

第3章 线性规划的单纯形法《管理运筹学》PPT课件

第3章 线性规划的单纯形法《管理运筹学》PPT课件
当第一阶段求解结果表明问题有可行解时,第二阶段 是在原问题中去除人工变量,并从此可行解(第一阶段的 最优解)出发,继续寻找问题的最优解。
3.3 关于单纯形法的进一步讨论
根据以上思路,我们用二阶段法来求解下面例题: max z=3x1-x2-x3
x1-2x2+x3≤11 s.t. -4x1+x2+2x3≥3
,
C
CB CN
线性规划问题成为 max z=CBTXB+CNTXN+ CIT XI s.t. BXB+NXN+IXI=b XB,XN,XI≥0
3.2 单纯形法原理
这个线性规划问题可以用表3-1来表示:
表3-1称为初始单纯形表。可以看出,单纯形表中 直接包含了单纯形迭代所需要的一切信息。
3.2 单纯形法原理
3.1 线性规划的基本理论
1.可行区域的几何机构 考虑标准的线性规划问题:
min cT x
Ax b
s.t.
x
0
用Rn表示n维的欧式空间,这里x Rn,c Rn ,b Rn
,A Rmn . 不妨设可行区域 D {x Rn | Ax b, x 0} ,因此线性方程组 Ax b 相容,总可以把多余方程去掉,
3.2 单纯形法原理
1. 单纯形表的结构 设线性规划问题为 max z=CTX+CIT XI s.t. AX+XI=b X,XI≥0 设B是线性规划的一个可行基,为了表达简便,不妨
设这个基B包含在矩阵A中,即 A=[B,N]
3.2 单纯形法原理
变量X和目标函数系数向量C也相应写成:
X
XB XN
3.2 单纯形法原理
第三步:在基变量用非基变量表出的表达式中,观 察进基变量增加时各基变量变化情况,在进基变量增加 过程中首先减少到0的基变量成为“离基变量”.当进基 变量的值增加到使离基变量的值降为0时,可行解移动到 相邻的极点。

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题要求:目标函数为:123min 3z x x x =--约束条件为:1231231312321142321,,0x x x x x x x x x x x -+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩ 用单纯形法列表求解,写出计算过程。

解:1) 将线性规划问题标准化如下:目标函数为:123max max()3f z x x x =-=-++s.t.: 123412356137123456721142321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下:表一:最初的单纯形表3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。

迭代后新的单纯形表为:表二:第一种换入换出变量取法迭代后的单纯形表由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。

表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为:表三:第二种换入换出变量取法迭代后的单纯形表4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。

之后的单纯形表为:表四:第二次迭代后的单纯形表5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。

之后的单纯形表为:表五:第三次迭代后的单纯形表可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。

结论:综上所述,本线性规划问题,使用单纯形法得不到最优解。

如有侵权请联系告知删除,感谢你们的配合!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使用单纯形法解线性规划问题
要求:目标函数为:123min 3z x x x =--
约束条件为:
123123
1312321142321,,0
x x x x x x x x x x x -+≤⎧⎪-++≥⎪⎨
-+=⎪⎪≥⎩ 用单纯形法列表求解,写出计算过程。

解:
1) 将线性规划问题标准化如下:
目标函数为:123max max()3f z x x x =-=-++
.: 1234123561371234567211
42321,,,,,,0
x x x x x x x x x x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩
2) :
3) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下:
表一:最初的单纯形表
4) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。

迭代后新的单纯形表为:
·
表二:第一种换入换出变量取法迭代后的单纯形表
由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。

表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为:
>
表三:第二种换入换出变量取法迭代后的单纯形表
5)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。

之后的单纯形表为:
表四:第二次迭代后的单纯形表
6)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。

之后的单纯形表为:
表五:第三次迭代后的单纯形表
可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。

结论:
综上所述,本线性规划问题,使用单纯形法得不到最优解。

相关文档
最新文档