光学谐振腔2
第二章 光学谐振腔基本理论
第二章光学谐振腔基本概念 (1)2.1光学谐振腔 (1)2.2非稳定谐振腔及特点 (1)2.3光学谐振腔的损耗 (2)2.4减小无源稳定腔损耗的途径 (2)反射镜面的种类对损耗的影响 (2)腔的结构不同,损耗不同 (2)第二章光学谐振腔基本概念2.1光学谐振腔光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度,调节和选定激光的波长和方向的装置。
光线在两镜间来回不断反射的腔叫光学谐振腔。
由平面镜、凹面镜、凸面镜的任何两块镜的组合,构成各类型光学谐振腔。
光学谐振腔的分类方式很多。
按照工作物质的状态可分为有源腔和无源腔。
虽有工作物质,但未被激发从而无放大作用的谐振腔称之为无源谐振腔;而有源腔则是指经过激发有放大作用的谐振腔。
2.2非稳定谐振腔及特点非稳定谐振腔的反射镜可以由两个球面镜构成也可由一个球面镜和一个平面镜组合而成。
若R1和R2为两反射镜曲率半径,L为两镜间距离,对于非稳腔则g1,g2:满足g1*g2<O或g1*g2>l 非稳腔中光在谐振腔内经有限次往返后就会逸出腔外,也就是存在着固有的光能量可以横向逸出而损耗掉,所以腔的损耗很大。
在高功率激光器中,为了获得尽可能大的模体积和好的横模鉴别能力,以实现高功率单模运转,稳定腔不能满足这些要求,而非稳腔是最合适的。
与稳定腔相比,非稳腔有如下几个突出优点:1.大的可控模体积在非稳腔中,基模在反射镜上的振幅分布式均匀的,它不仅充满反射镜,而且不可避免地要向外扩展。
非稳腔的损耗与镜的大小无关,这一点是重要的,因此,只要把反射镜扩大到所需的尺寸,总能使模大致充满激光工作物质。
这样即使在腔长很短时也可得到足够大的模体积,故特别适用于高功率激光器的腔型。
2.可控的衍射耦合输出一般稳定球面腔是用部分透射镜作为输出耦合镜使用的,但对非稳腔来说,以反射镜面边缘射出去的部分可作为有用损耗,即从腔中提取有用衍射输出。
3.容易鉴别和控制横模对于非稳腔系统,在几何光学近似下,腔内只存在一组球面波型或球面一平面波型,故可在腔的一端获得单一球面波型或单一平面波型(即基模),从而可提高输出光束的定向性和亮度。
激光原理2.1谐振腔
同心球面腔的优势: 同心球面腔 1)衍射损耗低 2)易于安装调整
同心球面腔的劣势: 1)模体积小 2)腔内产生光辐射聚焦现象
同心球面主要应用于连续工作的染料激光器泵浦激光器
同心球面腔结构示意图
共焦谐振腔 共焦谐振腔的性能介于平行平面腔与球面腔之间, 其特点如下: 1)镜面较易安装、调整; 2)较低的衍射损耗; 3)腔内没有过高的辐射聚焦现象; 4)模体积适度;
典型的激光器谐振腔 模体积
激光模式在腔内所能扩展的空间范围。
模体积大,对该模式的振荡有贡献的激发态粒子数就多 就可能获得大的输出功率;
谐振腔的选择:
衍射损耗 模体积 腔体镜面的安装
平行平面腔 平行平面腔的优势
1) 模体积大、 2)腔内激光辐射没有聚焦现象 平行平面腔的劣势
1)衍射损耗高 2)镜面调整难度高 平行平面腔主要应用于高功率脉冲激光器
q
l3
l2
l1
折叠腔
谐振腔作用:提供光学正反馈,控制光束特征 (模式,功率,光斑)
2.光腔的两种理论方法
• 衍射理论: 不同模式按场分布,损耗, 谐振频率来区分, 给出
不同模式的精细描述, 适用菲涅尔数不大, 衍射效应明显 • 几何光学+干涉仪理论: 忽略反射镜边缘引起的衍射效应,
不同模式按传输方向和谐振频率来区分, 粗略但简单明了
共焦谐振腔一般应用于连续工作的激光器
共焦谐振腔示意图
长半径球面腔
长半径球面谐振腔的性能介于共焦腔与球面腔之间,它的特点 如下: 1) 中等的衍射损耗;2)较易安装调整; 3)模体积很大; 4)腔内没有很高的光辐射聚焦现象;
长半径球面谐振腔适于连续工作的激光器
长半径球面腔示意图
第5章光学谐振腔的基本理论
B sin n
sin
D sin n sin (n 1)
sin
arccos
1 2
(A
D)
1、值是实数(-1<cos<1)时, Tn各元素有界谐
振腔为稳定腔。 2、值有虚部时(-1>cos或者cos>1),旁轴 光线往返有限次后便会逸出谐振腔,谐振腔为非
稳腔。
3、值等于0或者π(cos=±1),Tn各项元素的值
38
§3 谐振腔的衍射理论基础
激光器中所使用的谐振腔是一种开腔, 在这种没有侧面边界的区域内是否存在电磁 场的本征态,即不随时间而变化的稳态场分 布?如何求出这种场分布?这些问题需要用谐 振腔的衍射理论来解决。本节首先给出理想 开腔的模型——孔阑传输线,在此基础上引 入稳态场分布——自再现模的概念。
T
2 R1
10
1 0
L 1
1 2
R2
10
1 0
L 1
1 L 1 L
2 R1
1
2L R1
2 R2
1
2L R2
2L
1 R2
2 R1
2 R2
4L R1R2
2L2
2L R1
2L R2
(1 2L )(1 R1
2L R2
)
=
A C
B
D
15
A
1
2L R2
2(1
L R2
)
1
2g2
1
2L2
L
B 2L R2 2L(1 R2 ) 2Lg2
4L 2 2 2 L L 2L2
C
( )
R1R2 R1 R2
L R1 R2 R1R2
2 光学谐振腔理论
光线能在腔内往返无限多次而不会从侧面横向逸出。
• 反之,若φ值不是实数,由于有虚部,必然导致An、
Bn、Cn、Dn以及rn+1与θn+1的值都随n增大而增大。这
样一来,傍轴光线在腔内往返有限次后便可逸出腔外。
• 由上述分析可知,φ值为实数且不等于0或π时,
谐振腔为稳定腔。φ值有虚部时,谐振腔为非稳 腔。φ等于0或π时,谐振腔是临界腔。由φ的计 算公式(2.2.4)不难得出上述结论的数学描述:
I1 I 0r1r2e
因此:
2a
I 0e
2
(2.2.12)
(2.2.13)
1 当r11,r2 1时有: a 2 1 r1 1 r2
1 a ln r1r2 2
2. 腔内光子平均寿命 R
I (t ) I 0e
t R
N (t )hv
D sin n sinn 1
B sin n
n次往返后的光 线坐标有
1 arccos A D 2
(2.2.4)
rn1 An r1 Bn1
n1 Cn r1 Dn1
(2.2.2)
2 .2.2 光学谐振腔的 稳定性条件
• 如果光线在共轴球面谐振腔内能够往返任意次而
(2.2.1)
• 如果光线在球面谐振腔内往返n次,则它的光学变 换短阵就应该是往返矩阵T的n次方,按照矩阵理 论 • n次往返矩阵
An Tn Cn
Bn Dn
(2.2.3)
1 A sin n sinn 1 C sin n sin
1 I0 i r d t ln 2 I1
光学谐振腔理论
目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。
第二章光学谐振腔
实际情况下,谐振腔的截面是受腔中的其他光阑限制的, 67页的图2-2-5给出了孔阑传输线的自再现模的形成
2009
湖北工大理学院
23
激光模式的测量方法
横模的测量方法:在光路中放置一个光屏;拍照;
小孔或刀口扫描方法获得激光束的强度分布,确定激 光横模的分布形状
纵模的测量方法:法卜里-珀洛F-P扫描干涉仪
1.5803106
q 1.5 10 9 Hz 5 310 8 Hz
2009
湖北工大理学院
28
例:相邻纵模的波长差异
已知:He-Ne激光器谐振腔长50 [cm],若模式m的波长 为 632.8 [nm];计算:纵模 m+1 的波长;
解答: 纵模的频率间隔为:
由:m = 0.6328000*10-6 [m] 可以得到:
2L/ 2L
2 • 2L q • 2
光腔中的驻波
驻波条件(光波波长和平行平面腔腔长):
L
q
•
2
q•
q
2
谐振频率(频率和平行平面腔腔长):
q
q•
C
2L
2009
湖北工大理学院
9
纵模-纵向的稳定场分布
激光的纵模(轴模):由整数q所表征的腔内纵向稳定场分布 整数q称为纵模的序数,驻波系统在腔的轴线上零场强度的数目
3
稳定腔和非稳定腔
看在腔内是否存在稳定振荡的高斯光束
2009
湖北工大理学院
4
R1+R2=L
双凹球面镜腔:由两 块相距为L,曲率半 径分别为R1和R2的凹 球面反射镜构成
R1=R2=L
由两块相距09
由两个以上的 反射镜构成 平凹腔和凹凸 与双凸腔图22-1书中58页
新激光ppt课件第二章 光学谐振腔理论02-精选文档32页
图3-1 惠更斯-菲涅耳原理
式中 源点
为源点 P'与观察点
P'处的波面法线 n与
P之间的距离; 为
P'P 的夹角;k2/
为光波矢的大小,为光波长; ds'为源点 P'
处的面元。
二、衍射积分公式在谐振腔中的应用
(3)等相位面的分布 共焦腔行波场相位分布决定于
m(x n ,y,z)k[fz2 z((x f2 2 y z2 2))](m n 1 ) 4 (arz fc)tg
与腔的轴线相交于z0点的等相位面的方程为
φ (x,y,z)= φ (0,0,z)
zz0
x2 y2 2R(z0)
迭代法
所谓迭代法,就是利用迭代公式
uj1(x,y) Kju(x',y')d's
M'
直接进行数值计算。 首先,假设在某一镜面上存在一个初始场分布u1,将它代 人上式,计算在腔内经第一次渡越而在第二个镜面上生成 的场u2,然后再用所得到的场代入,计算在腔内经第二次 渡越而在第一镜上生成的场u3。如此反复运算,在对称 开腔的情况下,当j足够大时,数值计算得出的uj uj+1uj+2满 足
m nar1 m g n k L (m n 1 ) 2
为单程附加相移Δ φ mn
谐振频率: νmnq2cL[q1 2(mn1)]
讨论 共焦腔模在频率上是高度简并的
频率间隔
同横邻纵
qm(n q1)mnq2cL
同纵邻横
m(m1)nqm
uj1(x,y)iL uj(x',y')eikd's M'
第二章 光学谐振腔信息光学 最新
2、其他方向开放导致损耗,限制了模数 (包括扩散、衍射、镜面非完全反射、工 作物质吸收等) 纵模:只有沿轴方向传播的模才能维持 振荡, ...(折射率 1, m, n 0) 满足 q 2 l..........
2
2
V lxl ylz ...... 实空间体积
( 4 )模密度(K空间)
8l xl y l z 1 8V 3 3 模体积 (2 ) (2 )
(5)振荡模总数
km , kn , kq 0
1 N 模 2 (球体积) k空间的模密度 8
因子2:每一个模有两个相互垂直偏振方向
dI 其中 f I
t tc
I I 0e
fc t l
I 0e
l 其中tc 光子在腔内的寿命,也 称腔的时间常数 fc
若只考虑反射损耗R,则 f=1-R l
tc (1 R )c
例如: l=100cm,
R 0.98....... tc 100 0.02 31010 1.7 107
8 2 N总 PmV 3 V c
2 28 | 8 1020 8 6 10 10 10 9 Pm 3 10 1 P 10 3 10 | m 3 1030 33 1030
获得单模振荡
| 该腔激起的模巨大,多模
§2.2 开放式谐振腔的模间距及带宽
l tc (1 R)c
1 (1 R)c (1 R)c c 2t c 2l l
R越大,带宽 越窄。 三种情况: R≈0;R<1; R≈1。
(4)谐振腔的品质因素Q 0 l Q 2 0tc 2l 0 (1 R)c c c(1 R)
第二章光学谐振腔理论
(2n1)((G0 )l / 2ikl )
02 2 12
n0
n0
e(G0 )l / 2ikl E0t1t2 1 r1r2e(G0 )l2ikl
2.1 光学谐振腔概论
FP腔输出光场:E
e(G0 )l / 2ikl E0t1t2 1 r1r2e(G0 )l 2ikl
1
r1r2e(G0
q
q
c 2L
q
c 2L
2 2L q 2 L q q
q
2
L'一定的谐振腔只对一定频率的光波才能提供正反馈,使之谐 振; F-P腔的谐振频率是分立的
2.1 光学谐振腔概论
腔光学长度为半波长的整数倍 L l q q (驻波条件)
2
2.1 光学谐振腔概论
L l q q
2
达到谐振时,腔的光学长度应为半波长的整数倍。满足此 条件的平面驻波场称为平行平面腔的本征模式
2.1 光学谐振腔概论
麦克斯韦方程的本征解的电场分量
Ex
(
x,
y,
z,
t
)
E0
sin
m
a
x
sin
n
b
y
cos
p
l
z
e
im
,n
,
p
t
E y ( x,
y,
z,
t)
E0
cos
m
a
x
sin
n
b
y
sin
p
l
z e im,n,pt
Ez
(
x,
y,
z,
t
)
E0
sin
m
a
x
激光原理 第二章光学谐振腔理论
光学谐振腔一方面具有光学正反馈作用,另一方面 也存在各种损耗。损耗的大小是评价谐振腔质量 的一个重要指标,决定了激光振荡的阈值和激光的 输出能量。本节将分析无源开腔的损耗,并讨论表 征无源腔质量的品质因数Q值及线宽。
一、损耗及其描述 (1)几何偏折损耗: 光线在腔内往返传播时,可能从腔的侧面 偏折出去,我们称这种损耗为几何偏折损 耗。其大小首先取决于腔的类型和几何尺 寸。
概述
3.波动光学分析方法 从波动光学的菲涅耳-基尔霍夫衍射积分理论出发,可以建立 一个描述光学谐振腔模式特性的本征积分方程。 利用该方程原则上可以求得任意光腔的模式,从而得到场的 振幅、相位分布,谐振频率以及衍射损耗等腔模特性。 虽然数学上已严格证明了本征积分方程解的存在性,但只有在 腔镜几何尺寸趋于无穷大的情况下,该积分方程的解析求解 才是可能的。 对于腔镜几何尺寸有限的情况,迄今只对对称共焦腔求出了 解析解。 多数情况下,需要使用近似方法求数值解。虽然衍射积分方 程理论使用了标量场近似,也不涉及电磁波的偏振特性,但与 其他理论相比,仍可认为是一种比较普遍和严格的理论。
第一节 光学谐振腔的基本知识
本节主要讨论光学谐振腔的构成、分类、作用,以及 腔模的概念
光学谐振腔的构成和分类
根据结构、性能和机理等方面的不同,谐振腔有不同 的分类方式。
按能否忽略侧面边界,可将其分为
开腔、 闭腔 气体波导腔
第一节 光学谐振腔的基本知识
开腔而言: 1. 根据腔内傍轴光线几何逸出损耗的高低,又可分为 稳定腔、非稳腔及临界腔; 2. 按照腔镜的形状和结构,可分为球面腔和非球面腔; 3. 就腔内是否插入透镜之类的光学元件,或者是否考 虑腔镜以外的反射表面,可分为简单腔和复合腔; 4. 根据腔中辐射场的特点,可分为驻波腔和行波腔; 5. 从反馈机理的不同,可分为端面反馈腔和分布反馈 腔; 6. 根据构成谐振腔反射镜的个数,可分为两镜腔和多 镜腔等。
新激光第二章 光学谐振腔理论(2)
自由空间的光线变换矩阵:
r2
r1 L1 2 1
TL
1 0
L 1
θ2
r1 θ1
r2
z
L
球面反射镜的光线变换矩阵:
2
r2 r1
2
r1 R
1
凹R>0 凸R<0
TR
1 2
0 1
R
薄透镜的光线变换矩阵:
2
r2 r1
r1 f
1
(r1θ1) (r2θ2)
Tf
1 1
f
0 1
dI I1 I0
Idz I0 2L L dz cdt
ct
I(t)I0e L
I0etR
式中:
R
L c
就为腔的寿命,也叫腔的时间常数。
2. 物理意义:
3.腔内光子的平均寿命就等于腔的时间常数:
证明:
I(t)n(t)hv,I(t)I0etR
t
n(t) n0e R
平均寿命:
1 n0
t(dn)1
腔的具体结构
振荡模的特征
3.模的基本特征
电磁场分布(特别是在腔的横截面内的场分布);
谐振频率; 在腔内往返一次经受的相对功率损耗; 激光束的发散角
4.纵模和横模
腔内电磁场的空间分布
沿传播方向(腔轴方向)的分布
垂直于传播方向的横截面内的分布 (1)纵模 ➢ 谐振条件:
以ΔΦ表示均匀平面波在腔内往返 一周时的相位滞后,则
二、共轴球面腔的稳定性条件 1.稳定腔条件
光线在腔内往 返多次不逸出
An、Bn、Cn、Dn 对任意n有限
Φ为实数 且φ≠kπ
引人g参数则得稳定性条件
2.非稳腔条件
光学谐振腔的基本知识
2 临界腔
特别是:R1=R2=R=L/2时,为对称共心腔它对应图中B点。如果 R1和R2异号,且R1+R2=L公共中心在腔外,称为虚共心腔。由于 g1>0,g2>0,g1*g2=1,它对应图中第一象限的 g1*g2=1的双曲线。
c) 半共心腔。由一个平面镜和一个凹面镜组成。凹面镜半径 R=L,因而g1=1,g2=0,它对应图中C点和D点。
优点:是可以连续地改变输出光的功率,在某些特 殊情况下能使光的准直性、均匀性比较好。
二、共轴球面腔的稳定图以及分类
3 非稳腔
区分稳定腔与非稳腔在制造和使用激光器时有很重要的实际 意义,由于在稳定腔内傍轴光线能往返传播任意多次而不逸出腔 外,因此这种腔对光的几何损耗(指因反射而引起的损耗)极小。 一般中小功率的气体激光器(由于增益系数G小)常用稳定腔,它 的优点是容易产生激光。
二、共轴球面腔的稳定图以及分类
稳定图来表示共轴球面腔的稳定条件 • 定义参数:
共轴球面谐振腔的稳定性条件(式5.1.1)可改写为
讨论
非稳腔的条件:
临界腔的条件:
(5.1.2) (5.1.3) (5.1.4)
二、共轴球面腔的稳定图以及分类
备 注:
图中没有斜线的部分是谐振腔的稳定工作区, 其中包括坐标原点;
二、共轴球面腔的稳定图以及分类
2 临界腔
a) 平行平面腔。因g1= g2=1,它对应图中的A点。只有 与腔轴平行的光线才能在腔内往返而不逸出腔外。 b) 共心腔。满足条件R1+R2=L的腔称为共心腔。如果,
公共中心在腔内,称为实共心腔。这时:
它对应图中第三象限的g1*g2=1的双曲线
二、共轴球面腔的稳定图以及分类
以下将会看到,整个激光稳定腔的模式理论是建立在对称共 焦腔的基础上的,因此,对称共焦腔是最重要和最有代表性的一 种稳定腔。
北交大激光原理_第4章_谐振腔部分
.第三章光学谐振腔理论一、学习要求与重点难点学习要求1.了解光学谐振腔的构成、分类和模式等基本知识,及其研究方法。
2.理解腔的损耗和无源腔的单模线宽。
3.掌握传播矩阵和光学谐振腔的稳定条件。
4.理解自再现模积分本征方程,了解针对平行平面腔模的数值迭代解法,理解针对球面对称共焦腔模式积分本征方程的近似方法及其解。
5.掌握等价共焦腔方法,掌握谐振腔的模式概念和光束特性。
6.了解非稳腔的模式理论。
重点1.谐振腔的作用,谐振腔的构成和分类,腔和模的联系;2.传播矩阵分析方法;3.光学谐振腔的稳定条件;4.模自再现概念;5.自再现模积分本征方程的建立,及其近似;6.球面对称共焦腔积分本征方程的近似方法,及其解;7.谐振腔的横纵模式和光束特性;8.稳定谐振腔的等价共焦腔。
难点1.传播矩阵的近似;2.非稳腔;3.模自再现概念;4.自再现模积分本征方程的建立5.球面对称共焦腔积分本征方程的近似方法,及其解;6.谐振腔的横纵模式和光束特性;WORD 专业.二、知识点总结,,mnq TEM m n q ⇔⎧⎧⎫→−−−−→⎪⎪→⎪⎨⎬⎪→→→−−−−→⎪⎪⎨⎩⎭⎪⇔--⎪⎩→驻波条件自再现模分立的本征态有限范围的电磁场形成驻波纵模光的频率(振荡频率,空间分布)模式的形成反映腔内光场的分布谐振腔的作用腔和模的联系衍射筛选横模光场横向能量分布腔内存在的电磁场激光模式模式的表示方法:横模指数,纵模指数衍射理论:不同模式按场分布,损耗,谐振频率来区分,理论方法几何光学+干涉仪理12121212()11)12()10101,1A D A D A D g g or g g L L g g R R ⎧⎨⎩+<+>⇒+±<<==⇒=-=-论:忽略镜边缘引起的衍射效应,不同模式按传输方向和谐振频率区分-粗略但简单明了光腔的损耗-光子的平均寿命-无源腔的Q值-无源腔的线宽1-1<稳定腔2(非稳定腔适用任何形式的腔,只要列出往返矩阵就能判断其稳定与否1共轴球面腔的稳定条件:稳定判据=临界腔2只使用于简单的共轴球面镜腔⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩(直腔)1. 谐振腔衍射积分方程推导⎧⎧⎫→−−−−−−→−−−−→→⎨⎬⎨⎩⎭⎩自再现模的概念求解方法引进复常数因子解析解:特殊腔(对称共焦腔)本征函数-振幅和相位分布(等相位面)菲涅尔基尔霍夫积分公式推广到谐振腔自再现模积分方程数值求解(数值迭代法)本征值-模的损耗、相移和谐振频率WORD 专业.⎧⎧22/0000(1)(1)2(,)N 11[4(,1)(,1)]arg (1)2x y L mn mn om on mn mn mn x y c e NR C R C kL m n λπμδγπφγφ+-⎧⎪=⎪→→⎨⎪⎪⎩=-=-→→∆==-+++∆基模:角向长椭球函数;本征函数振幅和相位高阶横模不是很小时,厄密~高斯函数相位分布:反射镜构成等相位面方形镜:对单程损耗:称本征值径向长椭球函数单程相移:共焦谐振频率:谐振条件2=-腔的自再现模2/0000[2(1)]4(,)N arg (21)2mnq r L mn mn mn c q m n L x y c e kL m n λππνμπφγφ-⎧⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋅→=+++⎪⎪⎩⎩⎧⎪=⎪→→⎨⎪⎪⎩→∆==-+++∆q 2基模:超椭球函数;本征函数振幅和相位高阶横模不是很小时,拉盖尔~高斯函数相位分布:反射镜构成等相位面圆形镜:单程损耗:只有精确解能够给出。
光学谐振腔的稳定条件
临界腔: 临界腔:
或
三、共轴球面腔稳定性图 1.共轴球面腔稳定性图 共轴球面腔稳定性图 根据几何损耗的高低, 根据几何损耗的高低,常将共轴球面腔分 为三大类, 稳定腔、非稳定腔和临界腔。 为三大类,即稳定腔、非稳定腔和临界腔。 为了直观起见,常引入谐振腔参数 谐振腔参数g来讨论 为了直观起见,常引入谐振腔参数 来讨论 其稳定性。 其稳定性。
(a )
(b)
Ⅳ: 第四类非对称稳定腔。 第四类非对称稳定腔。腔的结构特点是由 一块曲率半径R 一块曲率半径R<L的凸面镜和一块曲率半 的凹面镜构成。在稳定性图中, 径R>L的凹面镜构成。在稳定性图中,它 处于g 处于g1>1,0<g2<1和g2>1,0<g1<1的 区域。 区域。
这里还要指出的另一个问题是, 这里还要指出的另一个问题是,对于任何 一个具体的共轴球面腔(给定R 一个具体的共轴球面腔(给定R1、R2和L) ,在稳定性图上都有一个惟一的对应点, 在稳定性图上都有一个惟一的对应点, 但是在稳定性图上的任意一个点并不单值 地代表一个具体的共轴球面腔。 地代表一个具体的共轴球面腔。
(a)
(b)Βιβλιοθήκη (c)二、共轴球面腔的稳定条件 1. 傍轴光线的条件 傍轴光:在腔轴附近沿着轴向传播的光。 傍轴光:在腔轴附近沿着轴向传播的光。 条件: 条件: r2≈0,θ<<1 , 2. 稳定腔:几何损耗低。 稳定腔:几何损耗低。 如果谐振腔能够保证沿着谐振腔轴向传播 的光(傍轴光线) 的光(傍轴光线)在腔内往返无限次而不 会从侧面逸出,称这类腔为稳定腔 稳定腔。 会从侧面逸出,称这类腔为稳定腔。 非稳定腔:几何损耗高。 非稳定腔:几何损耗高。 如果光在腔内往返有限次后就横向逸出腔外, 如果光在腔内往返有限次后就横向逸出腔外, 称这类腔为非稳定腔 非稳定腔。 称这类腔为非稳定腔。
光学谐振腔的模式
作业:
思考题: P57 6、7、9、10、14 习 题: P57 8、11、 预 习: P43---P52 §3.3 共焦腔中基模的光束特性
再
见
n q 2 2
q
q =1,2,...
式中的n是谐振腔内介质折射率。
通常把由q值所表示的腔内的纵向场分布称为谐振腔 的纵模,不同的q值相应于不同的纵模。从式中可看 出,q值决定纵模的谐振腔频率。
c q q 2nL
(2)谐振腔内相邻两个纵模频率(共振频率) 差值(纵模间隔)为:
c q 1 (q 1) 2nL c q 2nL
所谓模的基本特征,主要指的是: (1)每一个模的电磁场分布,特别是在腔的横 截面内的分布; (2)每一个模在腔内往返一次经受的相对功率 损耗; (3)与每一个模相对应的激光束的发散角。
原则上说,只要知道了腔的参数,就可以唯一 的确定模的上述特征。
1.光学谐振腔的纵模:
反射镜
光的振幅
反射镜
q 2
基横模在激光光束 的横截面上各点的 位相相同,空间相 干性最好。
输出光的横向分布:
衍射使光的能量受到损失,但却为 激光的空间相干性创造了条件,如开始 时光波是空间不相干的,那么由于衍射 的结果,在多次衍射后,光束截面上一 点的光,不仅与原光束的一个点相联系 ,而是和整个截面有联系,因此截面上 各点是相关联的,建立了光束的空间相 性,光波就成为空间相干的了。
知识丰富人生 科技振兴中华
光学谐振腔
§3.2 光学谐振腔的模式
一、光学谐振腔的作用:
1.产生和维持光放大。
全反射 反射99% . . . . . . 输出激光束 光学谐振腔
..
在谐振腔中,光信号能多次反复地沿着 腔轴的方向通过工作物质,不断获得光放 大,信号越来越强,达到饱和, 形成激光输 出。
第二章 光学谐振腔理论
单程损耗的计算
3、透射损耗
如图所示,初始光强 I 0在腔内往返一周,经两 个镜子 反射后的光强为: I1 I 0r1r2 I 0e 1 r ln r1r2 2
2 r
I0
r1
I1
r2
当 r1 1,r2 r 1时 1 1 T r ln r 1 r 2 2 2 式中, T是输出镜透过率
t
R
式中,n0 表示 t 0 时刻的光子数密度 L' 当t R 时: c n0 n( R ) e
光子在腔内的平均寿命
在 t ~ t dt 时间内减少的光子数密 度为 : dn n0 e
t
R
R
dt
这 dn 个光子在 0 ~ t 时间内它们存在于腔内 , 再经过 dt 时间后 , 它们就不再腔内 ,因此它们的寿命为 t
当损耗由多种因素引起 时,总损耗为 δ δi δ1 δ2
i
单程损耗的计算
1、谐振腔失调时的几何损耗
当平面腔的两个镜 面构成 角时 设腔镜的直径为 D,且光在腔内往返 m次后逸出腔外,则有 L 2 L 6 ... L 2(2m 1) D 2 L[1 3 ... (2m 1)] D 2 Lm2算
吸收损耗
设由于吸收, 光通过长dz的介质, 衰减量为: dI I I' dI 定义吸 收 系 数 : I z I 0 e z dz I
若腔内介质的吸收系数是均匀的, 介质的长度为 l 则光在腔内往返一次后 光强为: I1 I 0e 2 αl 因此,介质吸收引起的 单程损耗为 : 吸 l
I0 I1 L’
I 0-I1 = 2I0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
νq
νq +1
νq + 2
ν
∆ν c : 纵模频带宽度
腔的相邻两个纵模的频率之差为 : c ∆ν q = ν q +1 − ν q = 2 L' ∆ν q 称为纵模间隔,与q无关。
实例
对于 L = 10cm的气体激光器,设η=1,则: ∆ν q = 1.5 × 109 Hz L = 100cm的气体激光器,设η=1,则: ∆ν q = 1.5 × 108 Hz
常用的近似研究方法
波动光学分析方法 出发点:波动光学的菲涅耳—基尔霍夫衍射积分理论 建立一个描述光学谐振腔模式特性的本征积分方程 应用范围:求任意光腔的模式,得到场的振幅、相位分布,谐振频率以 及衍射损耗等腔模特性 优 点:是一种比较普遍和严格的理论
第一节 光学谐振腔的基本知识 光学谐振腔的构成
纵模
纵模:腔内的纵向(沿腔轴方向)稳定场分布。 纵模 考察:平面波在平平腔内沿腔轴方向往返传播的情况
λq
相长干涉条件可表示为 2π ∆ϕ = ⋅ 2 L' = q ⋅ 2π λq
2
L
其中,λ0为光在真空中的波长;L'为腔的光学长度;q为正整数
纵模
能在腔内形成稳定振荡的光波长为 2 L' λ0 q = ——腔的谐振波长 q
光学谐振腔的作用
1)提供轴向光波模的正反馈 正反馈 2)控制振荡模式 振荡模式的特性 振荡模式
主要表现为对腔内光波模频率和方向的限制
有效地控制腔内实际振荡的模式数,使大量光子集中在少数 几个模式内,提高光子简并度 可直接控制激光束的横向分布特性、光斑大小、谐振频率以 及光束发散角等 可改变腔内光束的损耗,在增益一定的情况下控制激光束的 输出功率
能在腔内形成稳定振荡的光频率为 c ν q = q ⋅ ——腔的谐振频率 2 L'
将整数q所表征的腔内纵向场分布称为腔的纵模
纵模
λq
2
L
λq
2 L/ = q
νq = q⋅
c 2 L'
对于不同的q存在不同的谐振波长和谐振频率 谐振波长和谐振频率
纵模模谱图
∆ν q
∆ν c
νq − 2
νq −1
光学谐振腔理论
常用的近似研究方法
1.
几何光学分析方法
出发点:将光看成光线用几何光学方法来处理 应用条件:几何损耗远大于衍射损耗 优点:简便、直观 缺点:得不到腔的衍射损耗 不能深入分析腔模特性
常用的近似研究方法
矩阵光学分析方法 出发点:使用矩阵代数的方法研究光学问题 将几何光线和激光束在光腔内的往返传播行为用一个变换矩阵 来描写 应用范围:推导出谐振腔的稳定性条件 优 点:处理问题简明、规范,易于用计算机求解
u 2 , u 4 ,L
u1
u2
u3
uq
uq&次往返能再现的稳态场 分布,也称为横模。
横模的强度花样
(a) TEM00 TEM10 TEM20 TEM11 TEM21
(b) TEM00 TEM10 TEM20 TEM01 TEM02
2.5 谐振腔的横模强度花样 (a)方形镜腔 (b)圆形镜腔
在激活物质两端适当的位置放置两个反射镜片,就 构成了一个光学谐振腔。通常一个是反射镜,一个是部分 透射的输出镜。
谐振腔的分类
1)开腔:由两个反射镜构成,通常认为其侧面没 有光学边界。 a) 稳定腔:光束几何逸出损耗低; b) 非稳腔:光束几何逸出损耗高; c) 临界腔
谐振腔的分类
2)闭腔
3)气体波导腔
腔模的表示
一个激光模对应有三个独立的模序数, 用符号TEMmnq表示。 TEM(Transverse Electromagnetic Mode):横向 电磁模 m、n称为横模序数,取正整数,描述镜面上场的 节线数 TEM00称为基模,其它序数的横模称为高阶横模 不同的纵模和横模具有不同的光场分布和 振荡频率。
Q 腔的L >> λ ⇒ 模阶数q为104 ~106 数量级
对于腔长为L = 100cm的He - Ne激光器,λ=632.8nm 因此,模阶数q = 2L
λ
= 3.2 × 106
谐振腔的横模
横模:腔内电磁场在垂直于其传播方向的横向截 面内的稳定场分布,称为横模。 横模的形成:
u1 , u 3 , L
腔模-光波模式的狭义定义
腔模:
光学谐振腔内可能存在的电磁场的本征态称为腔的模式。是腔 内可能区分的光子的状态。
腔模的基本特征:
每个模的电磁场分布,特别是在腔的横截 面内的场分布; 模的谐振频率; 每个模在腔内往返一次经历的腔内损耗; 每个模所对应的激光束的发散角。
腔与模的关系:
1)不同的腔,模式不同; 2)腔给定,模式确定