初中数学专题-立方根--同步练习2试题及答案

合集下载

人教版数学七年级下册6.2《立方根》同步练习 (含答案)

人教版数学七年级下册6.2《立方根》同步练习 (含答案)

人教版数学七下6.2《立方根》同步练习一、选择题1.下列说法错误的是( )A.1的平方根是1B.﹣1的立方根是﹣1C.是2的平方根D.是的平方根 2.64的立方根是( ) A.8 B.±2 C.4 D.23.32)1(-的立方根是( ) A.-1 B.O C.1 D.±14.下列计算正确的是( )A.4= ±2B.327-= -3C.2)4(-= -4D.39=35.若一个数的平方根是±8,则这个数的立方根是( ).A.2B.±2C.4D.±46.下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是07.如果-b 是a 的立方根,那么下列结论正确的是( ).A.-b 也是-a 的立方根B.b 也是a 的立方根C.b 也是-a 的立方根D.±b 都是a 的立方根8.正方体A 的体积是正方体B 的体积的27倍,那么正方体A 的棱长是正方体B 的棱长的( )A.2倍B.3倍C.4倍D.5倍9.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10二、填空题11.计算: = .12.若x -1是125的立方根,则x -7的立方根是 .13.小马做了一个棱长为6 cm 的正方体礼品盒,小朱说:“我做的礼品盒的体积比你的大127 cm 3”,则小朱的礼品盒的棱长为________cm.14.16的平方根与﹣8的立方根的和是_______.15.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:;(3)根据你发现的规律填空:①已知33=1.442,则33 000=,30.003=;②已知30.000 456=0.076 97,则3456=.三、解答题16.求x的值:(x+3)3+27=0.17.求x的值:(2x﹣1)3﹣125=0.18.求x的值:27(x+1) 3+64=0;19.求x的值:﹣2(7﹣x)3=250.20.已知:2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.参考答案1.答案为:A2.答案为:D.3.答案为:C.4.B5.C6.D7.C8.B9.C10.答案为:D.11.答案为:﹣0.4.12.答案为:-1.13.答案为:714.答案为:2或﹣615.填表:(2)被开方数扩大1_000倍,则立方根扩大10倍;(3)①14.42,0.144_2;②7.697.16.解:(x+3)3=-27,x+3=-3,x=-6.17.答案为:x=3;18.答案为:x=-7/3.19.答案为:x=12.20.解:(1)依题意,解得:;(2)x2+y2=36+64=100,100的平方根是±10.。

七年级数学 立方根 同步练习(含详细答案) (1)

七年级数学 立方根 同步练习(含详细答案) (1)

6.2《立方根》同步测试(第1课时)一、选择题1.-8的立方根为( ).A.2 B.-2 C.±2 D.±4考查目的:考查立方根的概念.答案:B.解析:由于,根据立方根的概念可得-8的立方根为-2.2.下列说法正确的是( ).A.负数没有立方根 B.8的立方根是±2C.立方根等于本身的数只有±1 D.考查目的:考查立方根的概念和性质.答案:D.解析:根据立方根的概念和性质可判断:所有的数都有立方根,且立方根只有一个,所以选项A、B错误;立方根等于本身的数有三个,分别为0,±1,所以选项C错误;由可知,选项D正确.3.的平方根是( ).A.±4 B.4 C.±2 D.不存在考查目的:考查立方根和平方根的概念以及立方根的符号表示.答案:C.解析:表示64的立方根,根据立方根的概念,得=4,再根据平方根的概念,得4的平方根为±2.二、填空题4.如果,则的值是.考查目的:考查立方根的性质.答案:.解析:由已知可知,,根据立方根的性质,.5.的立方根是 (结果用符号表示).考查目的:考查算术平方根与立方根的概念以及算术平方根、立方根符号表示.答案:.解析:=9,9的立方根为.6.-27的立方根与64的平方根的和是.考查目的:考查平方根与立方根的概念和计算.答案:-11或5.解析:根据平方根与立方根的概念,可得:-27的立方根是-3,64的平方根是±8,所以-27的立方根与4的平方根的和是5或-11.三、解答题7.求下列各式的值:(1);(2);(3);(4).答案:(1);(2);(3);(4).解析:本题考查求立方根的方法,需要注意的是:在求带分数的立方根时,必须先把它化成假分数.(1);(2);(3);(4).8.有一棱长为6的正方体容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127才能盛满,求另一正方体容器的棱长.考查目的:考查立方根的实际应用.答案:7.解析:原正方体容器的容积=(),另一正方体容器的容=216+127=343(),其棱长为.。

初中数学冀教版八年级上册第十四章 实数14.2 立方根-章节测试习题(2)

初中数学冀教版八年级上册第十四章 实数14.2 立方根-章节测试习题(2)

章节测试题1.【答题】立方根是-8的数是______,的立方根是______.【答案】-512,2【分析】根据平方根以及立方根的定义即可求解.【解答】根据立方根的意义,由(-8)3=-512,所以立方根是-8的数是-512;根据算术平方根的意义可知=8,然后由23=8,可知8的立方根为2,即求得的立方根为2.故答案为:-512;2.方法总结:此题主要考查了求一个数的立方根,根据立方根的意义,一个数的立方等于a,那么这个数就是a的立方根,关键是判断a是谁的立方.2.【答题】9的平方根是______;的立方根是______.【答案】3,-3;-2【分析】根据平方根以及立方根的定义即可求解.【解答】因为3的平方是9,-3的平方是9,所以9的平方根是,因为-2的立方是-8,所以-8的立方根是-2,故答案为: ,-2.3.【答题】已知,则a和b的关系是______.【答案】互为相反数【分析】已知等式利用立方根定义化简,得出a与b关系即可.【解答】因为,所以与互为相反数,则a与b互为相反数,故答案为互为相反数.4.【答题】的算术平方根是______,-8的立方根是______.【答案】2,-2【分析】根据算术平方根以及立方根的定义即可求解.【解答】=4,4算术平方根是2;-8的立方根是-2.故答案为2,-25.【答题】如果一个数的平方根等于这个数的立方根,那么这个数是______.【答案】0【分析】根据平方根与立方根的定义求解.【解答】根据平方根与立方根的定义,可知0的平方根等于0的立方根.故答案为:0方法总结:本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:,也考查了平方根.6.【答题】若=-7,则a=______.【答案】-343【分析】根据立方根的定义直接计算.【解答】解:∵,∴a=-343故答案为:-3437.【答题】已知2x+1的平方根是±5,则5x+4的立方根是______.【答案】4【分析】根据平方根的定义即可得到一个关于x的方程求得x的值,进而得到5x+4的值,然后根据立方根的定义即可求解.【解答】解:根据题意得:即2x+1=25,解得:x=12.则5x+4=5×12+4=64,64的立方根是4.故答案为:4.8.【题文】求下列各式中的的值:(1);(2);(3);(4);【答案】(1)或;(2)3或-2;(3)-1;(4)-【分析】(1)两边同时除以4后开平方,然后解一元一次方程可得;(2)直接开平方得2x﹣1=±5,然后解该一元一次方程可得;(3)两边同时除以3后,开立方即可;(4)移项后,再开立方后解方程即可.【解答】解:(1)(2-x)2=,∴x-2=或x-2=﹣,解得:x=或x=;(2)2x﹣1=±5,∴2x﹣1=5或2x﹣1=-5,解得:x=3或-2;(3)由得:(x﹣4)3=-125,∴x﹣4=﹣5,解得:x=﹣1;(4)由得:(2x﹣1)3=-8,∴2x﹣1=-2,解得:.9.【题文】(1)已知2a-1的平方根是±3,3a+b-1的立方根是2,求2a-b的平方根.(2)我们知道时,也成立,若将a看成的立方根,b看成的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.①试举一个例子来判断上述猜测结论是否成立;②若与互为相反数,求的值.【答案】(1) ±4;(2) 结论成立;-1【分析】(1)先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值;将a、b的值代入2a-b,进而得到2a-b的平方根.(2)①结合立方根的概念,可用2与-2来验证;②根据题目中的结论可将与互为相反数转化为1-2x与3x-5互为相反数,由此求出x的值后代入计算.【解答】解(1) ∵2a-1的平方根是±3,∴2a-1=9,a=5, ∵3a+b-1的立方根是2,∴3a+b-1=8,∴b=-6, ∴2a-b=16, ∴2a-b的平方根是±4.(2) ①∵2+(-2)=0,而且,有8+(-8)=0,∴若两个数的立方根互为相反数,则这两个数也互为相反数结论成立;②由(1)验证的结果知, 若两个数的立方根互为相反数,则这两个数也互为相反数,∴(1-2x)+(3x-5)=0,∴x=4, ∴1- =1-2= -1.方法总结:本题主要考查了平方根和立方根的定义, ,根据题中的信息:“若两个数的立方根互为相反数,则这两个数也互为相反数.”答题.解答本题的关键是掌握平方根和立方根的定义.10.【题文】求下列各式中的x:(1) (2)【答案】(1) ;(2) x=【分析】(1)由可得,然后根据立方根的定义求解;(2)由可得,然后根据立方根的定义求解.【解答】解:(1)(2)11.【题文】先判断下列等式是否成立:(1)()(2)()(3)()(4)()……….经判断:(1)请你写出用含的等式表示上述各式规律的一般公式.(2)证明你的结论.【答案】四个结论均成立,(1);(2)见解析.【分析】(1)根据立方根的意义,化简判断,然后根据特点列出规律的式子即可;(2)利用立方根的意义,化简变形,得到证明过程.【解答】解:经判断四个结论均成立.(1) .(2).12.【题文】已知A=是n-m+3的算术平方根,B=是m+2n的立方根,求B-A的立方根.【答案】1【分析】根据算术平方根的意义和立方根的意义,得到方程组,然后求解出m、n 的值,代入求出A、B的值,从而求出B-A的立方根.【解答】解:由题意,得,解得∴A∴∴13.【题文】若2x+19的立方根是3,求3x+4的平方根.【答案】【分析】根据题意,由立方根的意义求出x的值,然后再代入求平方根即可. 【解答】解:∴x=4∴14.【题文】求下列各式的值或x.(1);(2);(3);(4)【答案】(1) ;(2) ;(3) ;(4)x=-6【分析】(1)根据题意,先把带分数化为假分数,然后再根据立方根的意义求解即可;(2)先计算被开方数,然后根据立方根的意义求解;(3)通过移项,系数化为1,再利用立方根求解即可;(4)把x+3看做一个整体,然后移项后利用立方根求解.【解答】解:(1)(2)(3)(4)15.【题文】求下列各式中的x .(1) (2)【答案】(1)x=(2)x=0.4【分析】(1)先移项,再系数化为1,最后再求平方根,(2)先求立方根,再移项. 【解答】(1) ,,,所以x=(2) ,,.16.【题文】小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)【答案】这两个正方体纸箱的棱长为31厘米.【分析】根据题意列出方程,再借助于开立方计算方程的解.【解答】设这两个正方体纸箱的棱长为x厘米,根据题意得,所以,所以≈31(cm ).因此,这两个正方体纸箱的棱长为31厘米.方法总结:本题主要考查立方根和近似数和有效数字等知识点,解题关键是根据正方体的体积公式列出方程求出棱长.17.【题文】求下列各式中x的值(1)(2x﹣1)2=9(2)2x3﹣6=.【答案】(1)x1=2,x2=﹣1,(2)x=【分析】(1)根据平方根的意义,把方程转化为一元一次方程可求解;(2)先移项,系数化为1,再根据立方根的意义,把方程转化为一元一次方程可求解.【解答】解:(1)(2x﹣1)2=92x-1=±3即2x-1=3或2x-1=-3解得x1=2,x2=﹣1(2)移项2x3=6+即2x3=x3=解得x=18.【题文】求下列x的值:(1)(3x+2)2=16(2)(2x﹣1)3=﹣27.【答案】(1)x=,2)x=﹣1【分析】(1)根据平方根的意义,把方程转化为一元一次方程可求解;(2)根据立方根的意义,把方程转化为一元一次方程可求解.【解答】解:(1)(3x+2)2=16,3x+2=±4,∴x=或x=2;(2)(2x﹣1)3=﹣27,2x﹣1=﹣3,∴x=﹣1.19.【题文】已知2a﹣1的平方根是±3,3a+b﹣1的立方根是4,求a+b的平方根.【答案】±【分析】根据平方根可求出2a-1=9,根据立方根可求出3a+b-1=64,然后解方程求出a、b的值即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的立方根是4,∴3a+b﹣1=64,∴b=50,∴a+b=55,∴a+b的平方根是.方法总结:此题主要考查了立方根和平方根的意义的应用,关键是根据平方根,求出2a-1=9,根据立方根求出3a+b-1=64,转化为解方程得问题解决.20.【题文】某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米(球的体积V=πr3,π取3.14,结果精确到0.1米)?【答案】这个球罐的半径r约为1.5米.【分析】利用球体的体积公式和立方根的定义计算即可.【解答】解:根据球的体积公式,得:=13.5,解得:r≈1.5.答:这个球罐的半径r为1.5米.方法总结:本题主要考查了立方根在实际生活中的应用,要求学生掌握球的体积公式,熟练进行开立方.。

青岛版初中数学八年级下册《用计算器求平方根和立方根》同步测试练习题卷练习题2

青岛版初中数学八年级下册《用计算器求平方根和立方根》同步测试练习题卷练习题2

B. 0.06758
C. 0.2137
D. 0.6758
TB:小初高题库
青岛版初中数学
二、填空题
1. 3 5 1.710 ,则 3 5000 ___, 3 0.005 ________.
3
2.若
50
3.684 ,则 3
0.05
____.
3
3.若
0.5
0.7937 ,则 3
5105
4.求下列各数的近似值(保留四个有效数字):
3
69, 3
412.8, 3
5.691,,
5
3
TB:小初高题库
青岛版初中数学
5.求下列各数的立方根,保留四个有效数字,并研究一下这些数的立方根有什 么规律,你自己再按这个规律列出一些数,求出它们的立方根,看一看是否符 合你找出的规律:(1)36000,36,0.036;(2)360000,360,0.36;(3) 3600,3.6,0.0036. 6. 求 下 列 各 数 的 算 术 平 方 根 ( 保 留 四 个 有 效 数 字 ) : 438000, 25.964, 0.000512,3.28×104,7.85×106,2.22×10-4. 7. 求 下 列 各 数 的 立 方 根 ( 保 留 四 个 有 效 数 字 ) : 927000, - 42.369, 0.000193,2.81×105,-1.32×106,3.56×10-5. 8.一个面积为 60cm2 的正方形纸片的边长是多少?用四张这样的纸片拼成一个 正方形,拼成的正方形的边长是多少?用一百张这样的纸片拼成一个大正方 形,这个大正方形的边长是多少?(精确到 0.1cm) 9.如图,一个小正方体的体积为 100cm3,这个正方体的棱长是多少 cm,要拼 成一个如图那样的大正方体,需要多少块体积为 100cm3 的小正方体?拼成的大 正方体的棱长是多少 cm?(精确到 0.1cm)

新人教版七年级下册数学《立方根》同步练习及答案

新人教版七年级下册数学《立方根》同步练习及答案

6.2《立方根》同步练习(2)知识点:1.立方根:一般地,如果一个数的立方等于a ,那么这个数是a 的立方根2.立方根性质:正数的立方根是正数 0的立方根是0负数的立方根是负数 3. 3a - = — 3a 同步练习:一、填空题:1.1的立方根是________.2.833-________. 3.2是________的立方根. 4.________的立方根是1.0-. 5.立方根是65的数是________ 6.6427-是________的立方根. 7.=-3)3(________. 8.3)3(-的立方根是________ 9.53-是________的立方根. 10.若a 与b 互为相反数,则它们的立方根的和是________. 11.0的立方根是________. 12.36的平方根的绝对值是________. 13. 的立方根是72914.327=_______.15.立方根等于它本身的数是_______. 16.109)1(-的立方根是______.17.008.0-的立方根是________. 18.103-是________的立方根. 19.当x 为________时,333-+x x 有意义; 当x 为________时,385+-x x有意义.20.6)2(-的平方根是________,立方根是________. 二、判断题:1.81-的立方根是21±;( ) 2.5-没有立方根;( ) 3.2161的立方根是61;( ) 4.92-是7298-的立方根;( )5.负数没有平方根和立方根;( ) 6.a 的三次方根是负数,a 必是负数;( ) 7.立方根等于它本身的数只能是0或1;( ) 8.如果x 的立方根是2-,那么8-=x ;( ) 9.5-的立方根是35-;( ) 10.8的立方根是2±;( ) 11.2161-的立方根是没有意义;( ) 12.271-的立方根是31-;( ) 13.0的立方根是0;( ) 14.53是12527±的立方根;( ) 15.33-是3-立方根;( )16.a 为任意数,式子a ,2a ,3a 都是非负数.( )三、选择题:1.36的平方根是( ).A .6±B .6C .6-D .不存在 2.一个数的平方根与立方根相等,则这个数是( ).A .1B .1±C .0D .1- 3.如果b -是a 的立方根,那么下列结论正确的是( ).A .b -也是a -的立方根B .b 也是a 的立方根C .b 也是a -的立方根D .b ±都是a 的立方根 4.下列语句中,正确的是( ).A .一个实数的平方根有两个,它们互为相反数B .一个实数的立方根不是正数就是负数C .负数没有立方根D .如果一个数的立方根是这个数本身,那么这个数一定是1-或0或15.8的立方根是( ).A .2B .2-C .4D .4-6.设n 是大于1的整数,则等式211=--nn 中的n 必是( ).A .大于1的偶数B .大于1的奇数C .2D .3 7.下列各式中正确的是( ).A .416±=B .3)3(2-=-C .38-2-= D .5)4()3(22-=-+-8.与数轴上的点一一对应的数是( ).A .整数B .有理数C .无理数D .实数 9.下列运算正确的是( ).A .3333--=- B .3333=-C .3333-=- D .3333-=-四、解答题:1.求下列各数的立方根.(1)1- (2)10001(3)343- (4)8515 (5)512 (6)827-(7)0 (8)216.0- 2.求下列各式的值.(1)38- (2)327-(3)3125.0-- (4)33)001.0(--(5)3512 (6)36427--(7)0196.0- (8)22)74()73(+的算术平方根(9)33a - (10)33a(11)327173- (12)34112213⨯ 3.x 取何值时,下面各式有意义?(1)x x -+ (2)31-x(3)31--x x (4)32x4.求下列各式中的x .(1)27000)101.0(3-=+x (2)2523=+x(3)12142=x (4)05121253=+x(5)625164=x (6)19-=x(7)871)2(3=++x5.化简3)1)(1(a a a a +-+.五、计算4332381)21()4()4()2(--⨯-+-⨯-.六、已知01134=+++y x ,其中x ,y 为实数,求3x -1998y-的值.七、一个比例式的两个外项分别是0.294和0.024,两个内项是相等的数,求这两个内项各是多少?八、一个长方体木箱子,它的底是正方形,木箱高1.25米,体积2.718立方米.求这个木箱底边的长.(精确到0.01米)九、一个圆形物体,面积是200平方厘米,半径r 是多少平方厘米?(π 取3.14,r 精确到0.01厘米)十、如果球的半径是r ,则球的体积用公式3π34r V =来计算.当体积500=V 立方厘米,半径r 是多少厘米?(π 取3.14,r 精确到0.01厘米)参考答案 一、 1.1 2.23- 3.8 4.-0.001 5.2161256.43-7.-27 8.-3 9.12527-10.0 11.0 12.6 14.315.-1,0,+1 16.-1 17.-0.2 18.100027-19.3>x ,5≤x 且8-≠x 20.±8,4 二、1.×2.×3.√4.√5.×6.√7.×8.√9.√10.×11.×12.√13.√14.×15.√16.× 三、1.A2.C3.C4.D5.A6.B 7.C 8.D 9.C 四、1.(1)-1 (2)101 (3)-7 (4) 25 (5)8 (6) 23- (7)0 (8)-0.6 2.(1)-2 (3)-3 (3)0.5 (4) 0.001 (5)8 (6)64(7)-0.14 (8)75 (9)-a(10)a (11)34 (12)27 3.(1)0=x (2)x 取全体实数(3) 1≥x 且3≠x (4)x 取任何实数4.(1)-400 (2)23 (3)211± (4)58- (5)25± (6)-1 (7)25- 5.a 五、-33 六、2726-七、084.0± 八、1.47米 九、7.98厘米 十、4.92厘米。

6.2 立方根 人教版数学七年级下册分层作业(含答案)

6.2 立方根 人教版数学七年级下册分层作业(含答案)

人教版初中数学七年级下册6.2 立方根同步练习夯实基础篇一、单选题:1.下列说法正确的是( )A.2的平方根是B.3是的一个平方根C.负数没有立方根D.立方根等于它本身的数是【答案】B【分析】根据平方根、算术平方根、立方根的定义逐项进行判断即可.【详解】A.的平方根为,因此选项A不符合题意;B.由于的平方根是,因此是的一个平方根,因此选项B符合题意;C.任意一个实数都有立方根,因此选项C不符合题意;D.立方根等于它本身的数是,因此选项D不符合题意;故选:B.【点睛】本题考查平方根、算术平方根、立方根,理解算术平方根、平方根、立方根的定义是正确判断的前提.2.的立方根是()A.2B.2C.8D.-8【答案】A【详解】先根据算术平方根的意义,求得=8,然后根据立方根的意义,求得其立方根为2.故选A.3.下列计算正确的是()A.B.C.D.【答案】D【分析】本题只要根据算术平方根、平方根以及立方根的计算法则即可得出答案.【详解】解:A、,故该选项不符合题意;B、,故该选项不符合题意;C、,故该选项不符合题意;D、正确,故该选项符合题意;故选:D.【点睛】本题主要考查的就是立方根、平方根、算术平方根的计算,属于基础题型.一个非负数的平方根有两个,他们互为相反数;表示a的算术平方根,表示a的平方根.4.下列各组数中,不相等的一组是()A.和B.和C.和D.和【答案】C【分析】先求出每个式子的值,再比较即可.【详解】解:A、,相等,故此选项不符合题意;B、,,相等,故此选项不符合题意;C、,,不相等,故此选项符合题意;D、,相等,故此选项不符合题意.故选:C.【点睛】此题考查了立方根,算术平方根,有理数的乘方,以及绝对值,熟练掌握相关定义和运算法则是解本题的关键.5.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;②的算术平方根是a;③的立方根是;④的算术平方根是4;其中,不正确的有()A.1个B.2个C.3个D.4个【答案】D【分析】根据立方根和平方根,算术平方根的性质,逐项判断即可求解.【详解】解:①如果一个实数的立方根等于它本身,这个数只有0或1或,故本选项错误;②当时,的算术平方根是a,故本选项错误;③的立方根是,故本选项错误;④因为,所以的算术平方根是2,故本选项错误;所以不正确的有4个.故选:D【点睛】本题主要考查了立方根和平方根,算术平方根的性质,熟练掌握立方根和平方根,算术平方根的性质是解题的关键.6.若,,()A.0.716B.7.16C.1.542D.15.42【答案】D【分析】根据小数点位置移动引起数的大小变化规律可知:一个数的小数点向右移动三位,它的立方根的小数点应向右移动一位,据此解答即可.【详解】解:一个小数的小数点向右移动三位,这个小数就扩大了1000倍,它的立方根的小数点就向右移动一位,,,故选:D.【点睛】本题考查了立方根的性质,熟练掌握和运用求一个数的立方根的方法是解决本题的关键.7.若,则的值为()A.5B.15C.25D.-5【答案】D【分析】直接利用算术平方根以及绝对值的性质得出x,y的值,进而代入得出答案.【详解】解:∵,∴x-5=0,y+25=0,∴x=5,y=-25,∴===-5,故选D.【点睛】此题主要考查了算术平方根以及绝对值的性质,立方根的求法,正确得出x,y的值是解题关键.二、填空题:8.算术平方根是本身的数是_________,平方根是本身的数是_________,立方根是本身的数是________.【答案】 0,1 0 0,±1【分析】根据算术平方根、平方根、立方根的定义即可解答.【详解】解:算术平方根是本身的数是0、1,平方根是其本身的数是0,立方根是其本身的数是0,±1.故答案为0,1;0,1;0,±1.【点睛】本题主要考查了算术平方根、平方根、立方根的定义等知识点,掌握特殊数的算术平方根、平方根、立方根是解答本题的关键.9.计算:(1)________;(2)________;(3)________;(4)________;(5)________;(6)________.【答案】【分析】根据平方根、算术平方根、立方根的定义逐项进行计算即可.【详解】(1),故答案为:;(2),故答案为:;(3),故答案为:;(4),故答案为:;(5),故答案为:;(6).故答案为:本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a 称为被开方数).10.计算________.【答案】-1【分析】根据立方根的定义和有理数的乘方法则进行计算,再相加即可.【详解】解:故答案为:-1.【点睛】本题考查了实数的混合运算,解题的关键是掌握立方根的定义和有理数的乘方运算法则.11.如果一个正数的两个平方根是a+1和2a﹣22,这个正数的立方根是_____.【答案】【分析】根据一个正数的两个平方根互为相反数,可得出关于的方程,解出即可.【详解】解:∵一个正数的两个平方根是和,∴,解得,∴这个正数是,∴这个正数的立方根是,故答案为:.【点睛】本题考查了平方根的定义和性质,立方根的定义,熟练掌握一个正数的两个平方根互为相反数是解题的关键.12.的算术平方根是3,的立方根是2,则的算术平方根为___________.【答案】6【分析】根据算术平方根的定义和立方根的定义,先求出a和b的值,再将a和b的值代入求解即可.【详解】解:∵的算术平方根是3,的立方根是2,∴,,∴,,∴,∴的算数平方根为:.故答案为:6.【点睛】本题主要考查了算术平方根和立方根的定义,解题的关键是熟练掌握算术平方根和立方根的定义.13.已知实数a,b满足,则的立方根是______.【答案】【分析】利用绝对值与算术平方根的非负性求解得到从而可得答案.【详解】解:∵,∴解得:∴∴的立方根是故答案为:【点睛】本题考查的是绝对值与算术平方根的非负性的应用,立方根的含义,掌握“算术平方根的非负性”是解本题的关键.14.如果,则________;,则________;如果,,则________;,则________.【答案】 395.22 1562 0.2872【分析】根据立方根和算术平方根的定义找出他们之间的规律即可得出答案.【详解】解:如果,则,,则;如果,,则;,则;故答案为:①395.22,②1562;③0.2872,④.【点睛】此题考查了立方根和算术平方根,熟练掌握立方根和算术平方根的定义是解题的关键.三、解答题:15.求下列各数的立方根.(1)64(2)(3)(4).【答案】(1)4(2)(3)(4)【分析】(1)根据立方根的定义,求解即可;(2)根据立方根的定义,求解即可;(3)根据立方根的定义,求解即可;(4)根据立方根的定义,求解即可.【详解】(1)解:64的立方根是4;(2)解:,立方根是;(3)解:的立方根是;(4)解:的立方根是.【点睛】本题考查了立方根的知识,解题的关键是掌握开立方的运算.16.求下列各式中x的值.(1);(2).【答案】(1),;(2).【分析】(1)直接利用平方根定义计算即可求出解;(2)方程变形后,利用立方根定义开立方即可求出解.【详解】(1)解:;开方得:,移项得,,系数化1得,,,;(2)解:方程变形得:,开立方得:,解得:.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.17.已知:的平方根是与,且.(1)求,的值;(2)求的值;(3)求的立方根.【答案】(1),(2)(3)2【分析】(1)根据一个数的两个平方根互为相反数可得答案;(2)求出或者的平方即可得出答案;(3)将的值代入中,求其立方根即可.【详解】(1)解:的平方根是与,,解得,,;(2)的平方根是与,;(3).【点睛】本题考查了平方根以及立方根,熟知一个数的两个平方根互为相反数是解本题的关键.18.已知M=是m+12的算术平方根,N=是n-30的立方根,试求的值.【答案】M-N=7【分析】根据算术平方根及立方根的定义,求出m和n的值,进而求出M、N的值,代入可得出M−N的平方根.【详解】解:∵M=是m+12的算术平方根,N=是n−30的立方根,∴5−n=2,m−1=3,解得:m=4,n=3,把m=4,n=3代入m+12=16,n−30=−27,∴M=,N=,把M=4,N=−3代入可得:M−N=7.【点睛】本题考查了立方根、算术平方根的定义,属于基础题,求出M、N的值是解答本题的关键.能力提升篇一、单选题:1.已知x﹣1,则x2﹣1的值为()A.0和1B.0和2C.0、﹣1或3D.0或±1【答案】C【分析】根据立方根的定义,求得的值,代入代数式即可求解.【详解】∵x﹣1的立方根等于它本身,∴x﹣1=±1或0,∴x=0,1或2,∴当x=0时,原式=﹣1;当x=1时,原式=0;当x=2时,原式=3.故选:C.【点睛】本题考查了立方根,掌握立方根的定义与求法是解题的关键.2.若a是的平方根,b是的立方根,则a+b的值是()A.4B.4或0C.6或2D.6【答案】C【分析】由a是的平方根可得a=±2,由b是的立方根可得b=4,由此即可求得a+b的值.【详解】∵a是的平方根,∴a=±2,∵b是的立方根,∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、b=4是解决问题的关键.3.下列各式中,不正确的是()A.B.C.D.【答案】B【分析】根据平方根和立方根的特点求出各数,再根据实数的大小比较的法则进行解答即可.【详解】解:、,,,故本选项正确;B、,,,故本选项错误;C、,,故本选项正确;D、,,,故本选项正确;故选:.【点睛】此题考查了实数的大小比较,掌握实数的大小比较的法则是本题的关键.二、填空题:4.将一个体积为的立方体木块锯成个同样大小的小立方体木块,则每个小立方体木块的表面积_____.【答案】【分析】根据题意求得每个小正方体的体积,继而求得小正方体的棱长为,即可求解.【详解】解:每个小正方体的体积为:∴小正方体的棱长为∴每个小立方体木块的表面积.故答案为:.【点睛】本题考查了立方根的应用,求得小正方体的棱长为是解题的关键.5.已知﹣2x﹣1=0,则x=_____.【答案】0或﹣1或﹣【分析】将原方程变形得到=2x+1,根据一个数的立方根等于它本身得到这个数是0或1或-1,由此化成一元一次方程,解方程即可得到答案.【详解】∵﹣2x﹣1=0,∴=2x+1,∴2x+1=1或2x+1=﹣1或2x+1=0,解得x=0或x=﹣1或x=﹣.故答案为:0或﹣1或﹣.【点睛】此题考查立方根的性质,解一元一次方程,由立方根的性质得到方程是解题的关键.6.观察下列各式:用字母n表示出一般规律是__________.(n为不小于2的整数)【答案】(n为不小于2的整数)【分析】分析被开方数的变换规律即可求得【详解】解:1、观察4个等式左边根号内分数的特点:①整数部分与分数部分的分子相等,即2=2,3=3,4=4,5=5,②整数部分与分数部分的分母有下列关系:,2、观察四个等式右边的立方根前的倍数正好是等式左边被开方数的整数部分,立方根里的分数正好是左边被开方数的分数部分,所以其中的规律可以表示为(n为不小于2的整数)故答案为:(n为不小于2的整数).【点睛】本题考查了立方根的规律探究,分析被开方数的变换规律是解题关键.三、解答题:7.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了,小燕量得小水桶的直径为,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式,r为球的半径.)【答案】3cm.【分析】设球的半径为r,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r,小水桶的直径为,水面下降了,小水桶的半径为6cm,下降的水的体积是π×62×1=36π(cm3),即,解得:,,答:铅球的半径是3cm.【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r的方程.8.已知为有理数,且,求的平方根.【答案】【分析】根据题意得:,解出,代入,求出平方根.【详解】解:,,解得,.【点睛】本题主要考查平方根、立方根,熟练掌握其定义及性质是解题关键.。

初中数学七年级下数学立方根同步专项练习题含答案

初中数学七年级下数学立方根同步专项练习题含答案

初中数学七年级下数学立方根同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 若√a3<−2,则a的值可以是()A.−9B.−4C.4D.92. 若√a3<−2,则a的值可以是()A.4B.−4C.9D.−93. −8的立方根是()A.−2B.2C.±2D.−44. −8的立方根是()A.−2B.2C.12D.−125. 如图,某同学利用计算器中的三个按键设置计算程序,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,程序将按照以下步骤进行,依次按照从第一步到第三步循环计算.若一开始输人的数据为10,那么第2021步之后,显示的结果是( )A.√1010B.100C.0.1D.0.016. 用计算器求√44.86的值为(结果精确到0.01位)( )A.6.69B.6.7C.6.70D.±6.707. 现将体积是125cm 3的正方体木块锯成8块同样大小的小正方体木块,准备从中选取n 个小正方体木块,排放在一块长方形的木板上,已知此长方形木板的长是宽的4倍,面积是36cm 2,若只排放一层,n 的最大值是 ( )A.2B.3C.4D.58. 若√0.3673=0.176,√3.673=1.542,则√3673=( )A.15.42B.7.16C.154.2D.71.69. 如果x 2=2,有x =±√2;当x 3=3时,有x =√33,想一想,从下列各式中,能得出x =±√220的是( )A.x 2=±20B.x 20=2C.x ±20=20D.x 3=±2010. 已知√5.283=1.738,√a 3=0.1738,则a 的值为( )A.0.528B.0.0528C.0.00528D.0.000528 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 一个数的立方根是−32,这个数是________.12. 一个数的立方根是,那么这个数的平方根是________.13. 若√0.36703=0.7160,√3.6703=1.542,则√3673=________,√−0.0036703=________.14. 用计算器计算:√13−3.142≈________(结果保留三个有效数字).15. 利用计算器,在求√273时,正确的按键顺序应为________.16. 若√0.36703=0.7160,√3.6703=1.542,则√3673=________,√−0.00036703=________.17. −8的立方根是________.18. 已知x 满足(x +3)3+27=0,则x 等于________.19. 已知√8.9663=2.078,√y 3=0.2708,则y =________.20. 已知√103=a ,则√−100003=________.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 , )21. 计算:(1)|−5|+√16−32;(2)√4+√225−√−273.22. 计算:√303403(结果精确到1)23. 计算:(1)−22+√25+√643÷2;(2)√−273+|√3−6|−(−√3).24. 已知第一个正方体玩具的棱长是6cm ,第二个正方体玩具的体积要比第一个玩具的体积大127cm ,试求第二个正方体玩具的棱长.25. 已知√x −23+2=x ,且√3y −13与√1−2x 3互为相反数,求x ,y 的值.26. 求x 的值:64(x +1)3−27=0.27. 观察下列各式,然后探索下列问题:∵ √13=1,√−13=−1∴ √−13=√13∵ √83=2,√−83=−2∴ √−83=−√83∵ √273=3,√−273=−3∴ √−273=−√273…∵ √n 33=(________),√−n 33=(________)∴ (________)=(________)(1)在上面的“( )上填空,并猜测互为相反数的两个数的立方根有何关系;(2)计算√−13+√−83+√−273+...+√(−n)33(其中n =100)28. 解方程:(3x −1)3+64=0.29. 用计算器求下列各式的值(结果保留四个有效数字)(1)−√39.2473(2)√41.834(3)√12.4(4)√71800330. 已知球的半径为rcm ,球的体积为850cm 3,根据球的体积公式V 球=43πr 3,求r 的值(精确到0.01).31. 求x 的值:14x 3+3=5.32. 已知√x 3−73=x 2,求x 3−√7.33. 已知2x −1的平方根是±5,3x +y −1的平方根是±3,求x +y 的值.34. 解方程:(1)(2)35. 求下式中x的值:8(x−1)3=27 .36. (1)计算:; 36.(2)已知=4,求x的值.37. 有一正方体盒子的容积是27cm3,问做这样一个正方体盒子(无盖)需要多少平方厘米的纸板?38. 利用计算器计算:√32−355113+2π−√2(精确到0.01)39. 一个正数的平方根分别是2a+5和2a−1,b−30的立方根是−3,求:(1)求a,b的值,(2)求a+b的算术平方根.40. 已知x的立方根是3,求2x−5的平方根.参考答案与试题解析初中数学七年级下数学立方根同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】立方根【解析】根据立方根的概念解答即可.【解答】3<−2,解:因为√a所以a<−8,所以a的值可以是−9.故选A.2.【答案】D【考点】立方根【解析】根据立方根的概念解答即可.【解答】3<−2,解:因为√a所以a<−8,所以a的值可以是−9.故选D.3.【答案】A【考点】立方根的性质立方根的实际应用立方根的应用【解析】根据立方根的定义:若x3=a,那么x叫做a的立方根,即可得出答案【解答】解:.(−23=−8−8的立方根是−2.故答案为:A.4.【答案】A【考点】立方根的性质立方根的实际应用立方根的应用【解析】根据题意先求出−8的立方根,即可得出结果【解答】解:.√83=−2∴ 8的立方根是−2.故答案为:A .5.【答案】B【考点】计算器—数的开方【解析】根据题中的按键顺序确定出显示的数的规律,即可得出结论.【解答】解:根据题意,得102=100,1100=0.01,√0.01=0.1; 0.12=0.01,10.01=100,√100=10;⋯,∵ 2021=6×336+5,∴ 按了第2021下后荧幕显示的数是100.故选B .6.【答案】C【考点】计算器—数的开方【解析】根据计算器的使用方法进行计算即可得解.【解答】解:√44.86≈6.69776≈6.70.故选C .7.【答案】C【考点】立方根的应用【解析】1【解答】解:√12583=52,∴ 立方体棱长为52cm ,设长方形宽为x ,可得 4x 2=36,∴ x 2=9.∵ x >0,∴ x =3,12÷52=245,横排可放4个,竖排只能放1个,4×1=4个,∴ 所以最多可放4个.故选C .8.【答案】B【考点】立方根的实际应用立方根的应用【解析】根据立方根,即可解答.【解答】解:∵ √0.3673=0.176,√3.673=1.542,∴ √3673=7.16,故选B .9.【答案】B【考点】立方根的实际应用【解析】结合题意,可知x =±√220,即x 的指数是20,x 20的结果是2,即可解决问题.【解答】解:根据题意,可知x 20=2,能得出x =±√220.故选B .10.【答案】C【考点】立方根的实际应用【解析】根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案.【解答】解:∵ √5.283=1.738,√a 3=0.1738,∴ a =0.00528;故选C .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】−278【考点】立方根解析:因为−278立方根是−32,所以这个数是−278. 【解答】解:因为−278立方根是−32, 所以这个数是−278.故答案为:−278.12.【答案】±1【考点】立方根的性质【解析】根据立方跟乘方运算,可得被开方数,根据开方运算,可得平方根.【解答】13=1,±√1=±1故答案为:±13.【答案】7.160,−0.1542【考点】立方根的实际应用立方根的应用立方根的性质【解析】利用立方根性质判断即可得到结果.【解答】解:∴ √0.36703=0.7160 √3.6703=1.542√3673=7.160 √−0.0036703=−0.154 故答案为:7.160;−0.154214.【答案】0.464【考点】计算器—数的开方【解析】用计算器计算出√13的值后,再来计算所求代数式的值即可.【解答】解:原式=3.6056−3.142≈0.464.故答案是:0.464.15.【答案】2,÷,7,2nd 键,√x 3,=计算器—数的开方【解析】是2÷7,切换三次根号时需要用到切换键2nd.一般使用科学型的计算器,注意27【解答】3,=.解:按键顺序依次为2,÷,7,2nd键,√x(由于计算器的类型很多,可根据计算器的说明书使用)16.【答案】7.160,−0.07160【考点】立方根的实际应用立方根的应用【解析】被开方数367由0.367小数点向右移动3位得到,故开立方的结果向右移动1位即可得到结果;被开方数−0.0003670由0.3670小数点向左移动3位得到,故立方的结果向左移动1为即可得到结果.【解答】3=0.7160,解:∵√0.3670被开方数367由0.367小数点向右移动3位得到3=7.160,∴√367被开方数−0.0003670由−0.3670小数点向左移动3位得到3=−0.07160.∴√−0.0003670故答案为:7.160;−0.07160.17.【答案】−2【考点】立方根的应用立方根的性质【解析】3=−2.√−8【解答】3=−2.解:√−8故答案为:−2.18.【答案】−6【考点】立方根的实际应用【解析】先移项,再用立方根得定义即可得出结论.【解答】解:(x +3)3+27=0,移项得,(x +3)3=−27,开立方得,x +3=−3,移项得,x =−6,故答案为:−6.19.【答案】0.008966【考点】立方根的实际应用【解析】根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.【解答】解:∵ √8.9663=2.078,√y 3=0.2708,∴ y =0.008966,故答案为:0.008966.20.【答案】−10a【考点】立方根的实际应用立方根的应用立方根的性质【解析】根据立方根的性质进行开立方计算得到答案即可.【解答】解:√100003=−103√103=−10a三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:(1)原式=5+4−9=0.(2)原式=2+15+3=20.【考点】绝对值有理数的乘方算术平方根立方根【解析】无无【解答】解:(1)原式=5+4−9(2)原式=2+15+3=20.22.【答案】3≈31.解:√30340【考点】计算器—数的开方【解析】3的值是多少;然后应用四舍首先根据用计算器求一个数的立方根的方法,求出√30340五入法,将结果精确到1即可.【解答】3≈31.解:√3034023.【答案】解:(1)原式=−4+5+4÷2=−4+5+2=3;(2)原式=−3+6−√3+√3=3.【考点】立方根的应用实数的运算算术平方根绝对值【解析】【解答】解:(1)原式=−4+5+4÷2=−4+5+2=3.(2)原式=−3+6−√3+√3=3.24.【答案】第二个正方形玩具的棱长为7cm【考点】立方根的实际应用【解析】先根据正方体的体积公式求出体积,然后得到第二个正方体的体积,然后根据立方根求解即可.【解答】第一个正方体的体积为:6×6×6=216cm3第二个正方体的体积为:216+127=343cm33=7cm.第二个正方体的棱长为:√343【答案】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.【考点】立方根的实际应用立方根的性质【解析】已知第一个等式变形得到立方根等于本身确定出x 的值,再利用相反数之和为0列出等式,将x 的值代入即可求出y 的值.【解答】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.26.【答案】解:∵ 64(x +1)3−27=0,∴ (x +1)3=2764,∴ x +1=34, 解得x =−14.【考点】立方根的应用【解析】(2)根据立方根的含义和求法,求出x 的值是多少即可.【解答】解:∵ 64(x +1)3−27=0,∴ (x +1)3=2764, ∴ x +1=34,解得x =−14.27.【答案】n ;−n ;√n 33;−√n 33(1)互为相反数的两个数的立方根互为相反数;(2)原式=−1−2−3−...−n =−n(n+1)2.【考点】立方根的实际应用【解析】观察各式,填写即可;(1)猜测得到互为相反数的两个数的立方根互为相反数;(2)利用得出的结论化简,计算即可得到结果.【解答】解:∵ √n 33=n ,√−n 33=−n ,∴ √n 33=−√n 33;(2)原式=−1−2−3−...−n =−n(n+1)2.28.【答案】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.【考点】立方根的性质【解析】此题暂无解析【解答】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.29.【答案】解:(1)−39.247开立方得−3.3983556,保留四个有效数字是−3.398.(2)√41.834=2.5431,保留四个有效数字是2.543.(3)√12.4=3.5216,保留四个有效数字是3.522.(4)√718003=41.56312,保留四个有效数字是41.56.【考点】计算器—数的开方【解析】有效数字就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,根据定义即可确定.【解答】解:(1)−39.247开立方得−3.3983556,保留四个有效数字是−3.398.(2)√41.834=2.5431,保留四个有效数字是2.543.(3)√12.4=3.5216,保留四个有效数字是3.522.(4)√718003=41.56312,保留四个有效数字是41.56.30.【答案】解:∵ r 3=34π×850≈203,∴ r =√2033≈5.88cm .【考点】立方根的实际应用【解析】根据球的体积表示出r 3,然后利用立方根的定义解答.【解答】解:∵ r 3=34π×850≈203,∴ r =√2033≈5.88cm .31.【答案】∵ 14x 3+3=5,∴ 14x 3=2,则x 3=8,∴ x =2.【考点】立方根的性质【解析】先移项、合并,再两边都乘以4,最后依据立方根的定义求解可得.【解答】∵ 14x 3+3=5, ∴ 14x 3=2,则x 3=8,∴ x =2.32.【答案】解:∵ √x 3−73=x 2,∴ x 3−7=(x 2)3, ∴ x 3=8,x =2,∴ x 3−√7=23−√7=8−√7.【考点】立方根的实际应用【解析】根据立方根的定义得出方程,求出x 的值,代入求出即可.【解答】解:∵ √x 3−73=x 2, ∴ x 3−7=(x 2)3,∴ x 3=8,x =2,∴ x 3−√7=23−√7=8−√7.33.【答案】解:由题意可得,{2x −1=25,3x +y −1=9,解得{x =13,y =−29.则x +y =13−29=−16.【考点】立方根的应用列代数式求值平方根【解析】根据平方根的定义列方程求出x ,y 的值,然后代入代数式进行计算即可得解.【解答】解:由题意可得,{2x −1=25,3x +y −1=9,解得{x =13,y =−29.则x +y =13−29=−16.34.【答案】(1)x 1=5x 2=−3;(2)x =0【考点】立方根的性质【解析】(1)把16移到方程右边,再两边开平方,最后解一元一次方程即可得答;(2)把含x 的项放在方程的左边,常数项放右边,两边开立方,再解一元一次方程即可.【解答】(1)∴ (x −1)2−16=0(x −1)2=16x −1=±4解得,x 1=5x 2=−3(2)∵ 1−(2x −3)3=28(2x −3)3=−272x −3=−3解得,x =035.【答案】解:(x −1)3=278,x −1=32, x =52.【考点】立方根的实际应用【解析】(1)把(x −1)3看作一个整体并求出其值,再根据立方根的定义解答;【解答】解:(x −1)3=278,x −1=32,x =52.36.【答案】(1)−13; (2)x 1=3,x 2=−1【考点】立方根的性质【解析】(1)根据平方根和立方根的意义,化简求解即可;(2)根据平方根的意义,把方程化为一元一次方程求解.【解答】(1)√(−2)2−√83+√−1273=2−13=31 (2)(x −1)2=4x −1=±2x −1=2,x −1=−2解得:x 1=3,x 2=−137.【答案】解:设正方体的棱长为a ,根据题意得:a 3=27,则a =3,这个正方体盒子(无盖)需要的纸板的面积=5×32=45cm 2.【考点】立方根的实际应用【解析】设正方体的棱长为a ,可求得正方体的棱长,然后再求得5个面的面积即可.【解答】解:设正方体的棱长为a,根据题意得:a3=27,则a=3,这个正方体盒子(无盖)需要的纸板的面积=5×32=45cm2.38.【答案】2.59.【考点】计算器—数的开方【解析】首先熟练应用计算器计算结果,然后对计算器给出的结果,根据有效数字的概念即可求出结果.【解答】解:原式≈0.866−2.669+6.283−1.414≈2.59,故39.【答案】由题意可知:(2a+5)+(3a−1)=0,b−30=(−6)3=−27,解得a=−1,b=8;∵a+b=−1+3=7,∴a+b的算术平方根是.【考点】算术平方根立方根的性质平方根【解析】此题暂无解析【解答】此题暂无解答40.【答案】∵x的立方根是3,∴x=33=27,∴2x−5=2×27−5=49,∴2x−5的平方根是±7.【考点】立方根的性质平方根【解析】首先根据x的立方根是3,求出x的值是多少;然后根据平方根的含义和求法,求出2x−5的平方根是多少即可.【解答】∵x的立方根是3,∴x=33=27,∴2x−5=2×27−5=49,∴2x−5的平方根是±7.。

七年级数学-立方根练习含解析 (2)

七年级数学-立方根练习含解析 (2)

七年级数学-立方根练习含解析一.选择题(共12小题)1.正方体的体积为7,则正方体的棱长为()A.B.C.D.732.的平方根是()A.2 B.﹣2 C.D.±23.用计算器求35值时,需相继按“3”,“y x”,“5”,“=”键,若小颖相继按“”,“4”,“y x”“3”,“=”键,则输出结果是()A.6 B.8 C.16 D.484.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.95.若a满足,则a的值为()A.1 B.0 C.0或1 D.0或1或﹣16.若=a,则a的值不可能是()A.﹣1 B.0 C.1 D.37.﹣8的立方根是()A.2 B.﹣2 C.4 D.﹣0.58.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.19.若a2=16,=﹣2,则a+b的值是()A.12 B.12或4 C.12或±4 D.﹣12或410.若a3=﹣216,则a的相反数是()A.6 B.﹣6 C.36 D.﹣3611.计算的结果为()A.±B.﹣C.D.12.的立方根是()A.2 B.4 C.±2 D.±8二.填空题(共8小题)13.﹣的立方根为.14.已知x的平方根是±8,则x的立方根是.15.用计算器计算:≈(精确到0.01)16.已知2a﹣1的平方根是±3,则7+4a的立方根是.17.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根.18.=.19.﹣0.008的立方根是.20.算术平方根和立方根等于本身的数是.三.解答题(共4小题)21.求下列各式的值:(1)(2)(3)﹣(4).22.已知2x﹣1的算术平方根是3,y+3的立方根是﹣1,求代数式2x+y的平方根.23.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+b的立方根.24.已知﹣8的平方等于a,b立方等于﹣27,c+2的算术平方根为3.(1)写出a,b,c的值;(2)求+5c的平方根.2020年春人教版七年级下册同步练习:6.2 立方根参考答案与试题解析一.选择题(共12小题)1.正方体的体积为7,则正方体的棱长为()A.B.C.D.73【分析】由立方根的定义可得正方体的棱长为.【解答】解:正方体的体积为7,则正方体的棱长为,故选:B.2.的平方根是()A.2 B.﹣2 C.D.±2【分析】利用立方根定义计算即可求出值.【解答】解:=2,2的平方根是±,故选:C.3.用计算器求35值时,需相继按“3”,“y x”,“5”,“=”键,若小颖相继按“”,“4”,“y x”“3”,“=”键,则输出结果是()A.6 B.8 C.16 D.48【分析】计算器按键转为算式,计算即可.【解答】解:计算器按键转为算式=23=8,故选:B.4.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9【分析】利用计算器得到的近似值即可作出判断.【解答】解:∵≈2.646,∴与最接近的是2.6,故选:B.5.若a满足,则a的值为()A.1 B.0 C.0或1 D.0或1或﹣1【分析】只有0和1的算术平方根与立方根相等.【解答】解:∵,∴a为0或1.故选:C.6.若=a,则a的值不可能是()A.﹣1 B.0 C.1 D.3【分析】根据立方根的概念进行解答,可以设这个数为x,根据立方根是它本身,求出这个数.【解答】解:因为=a,所以a=0,﹣1,1,即a的值不可能是3.故选:D.7.﹣8的立方根是()A.2 B.﹣2 C.4 D.﹣0.5【分析】根据立方根的定义即可求出答案.【解答】解:﹣8的立方根为﹣2,故选:B.8.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.1【分析】根据开立方的意义,可得答案.【解答】解:立方根等于它本身的有﹣1,0,1.故选:B.9.若a2=16,=﹣2,则a+b的值是()A.12 B.12或4 C.12或±4 D.﹣12或4【分析】根据a2=16,=﹣2,可得:a=±,﹣b=(﹣2)3,据此分别求出a、b的值各是多少,再把它们相加,求出a+b的值是多少即可.【解答】解:∵a2=16,=﹣2,∴a=±=±4,﹣b=(﹣2)3=﹣8,∴a=±4,b=8,∴a+b=4+8=12或a+b=﹣4+8=4.故选:B.10.若a3=﹣216,则a的相反数是()A.6 B.﹣6 C.36 D.﹣36 【分析】先根据立方根的定义求出a,再根据相反数的定义即可求解.【解答】解:∵a3=﹣216,∴a==﹣6,则a的相反数是6.故选:A.11.计算的结果为()A.±B.﹣C.D.【分析】根据立方根的定义,可得答案.【解答】解:=,故选:C.12.的立方根是()A.2 B.4 C.±2 D.±8 【分析】根据立方根的定义,即可解答.【解答】解:=8,8的立方根的为2.故选:A.二.填空题(共8小题)13.﹣的立方根为﹣.【分析】根据立方根的定义即可求出﹣的立方根.【解答】解:﹣的立方根为﹣.14.已知x的平方根是±8,则x的立方根是 4 .【分析】根据平方根的定义,易求x,再求x的立方根即可.【解答】解:∵x的平方根是±8,∴x=(±8)2,∴x=64,∴==4,故答案是4.15.用计算器计算:≈12.63 (精确到0.01)【分析】在计算器中输入所求式子即可.【解答】解:在计算器中输入所求式子,得到≈12.63,故答案为12.63.16.已知2a﹣1的平方根是±3,则7+4a的立方根是 3 .【分析】利用平方根、立方根定义判断即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,解得:a=5,∴7+4a=7+20=27,则27的立方根是3,故答案为:317.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根±.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到2﹣b的平方根.【解答】解:由题意,有,解得.则a+b=5+6=11,所以a+b的平方根±.18.= 1 .【分析】原式利用立方根定义计算即可求出值.【解答】解:原式=﹣(﹣1)=1,故答案为:119.﹣0.008的立方根是﹣0.2 .【分析】利用立方根定义计算即可求出值.【解答】解:∵(﹣0.2)3=﹣0.008,∴﹣0.008的立方根是﹣0.2,故答案为:﹣0.220.算术平方根和立方根等于本身的数是0,1 .【分析】判断出算术平方根、立方根等于本身的数各有哪些,即可判断出算术平方根和立方根等于本身的数是哪个.【解答】解:∵算术平方根等于本身的数是0,1,立方根等于本身的数是0,1,﹣1,∴算术平方根和立方根等于本身的数是0,1.故答案为:0,1.三.解答题(共4小题)21.求下列各式的值:(1)(2)(3)﹣(4).【分析】各式利用立方根定义计算即可得到结果.【解答】解:(1)原式=﹣;(2)原式=;(3)原式=;(4)原式=.22.已知2x﹣1的算术平方根是3,y+3的立方根是﹣1,求代数式2x+y的平方根.【分析】利用算术平方根、立方根定义求出x与y的值,进而求出2x+y的值,即可求出平方根.【解答】解:∵2x﹣1的算术平方根为3,∴2x﹣1=9,解得:x=5,∵y+3的立方根是﹣1,∴y+3=﹣1,解得:y=﹣8,∴2x+y=2×5﹣8=2,∴2x+y的平方根是±.23.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+b的立方根.【分析】根据平方根的定义,即可得到2a﹣1=32,然后即可求得a的值;同理可以得到3a+b ﹣1=42,即可得到b的值,进而求得a+b的立方根.【解答】解:∵2a﹣1的平方根为±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根为4,∴3a+b﹣1=16.∵a=5,∴3×5+b﹣1=16,∴b=2,∴a+b=5+×2=8,∴a+b的立方根是2.24.已知﹣8的平方等于a,b立方等于﹣27,c+2的算术平方根为3.(1)写出a,b,c的值;(2)求+5c的平方根.【分析】(1)根据平方根与立方根的定义即可求出答案;(2)将a、b、c代入原式即可求出答案.【解答】解:(1)由题意可知:a=(﹣8)2=64,b3=﹣27,c+2=32,a=64,b=﹣3,c=7;(2)当a=64,b=﹣3,c=7时,=﹣2×9+5×7=49,的平方根为±7。

(完整版)立方根习题精选及答案(二)

(完整版)立方根习题精选及答案(二)

立方根习题精选(二)1.-35是的立方根。

2.当x3.立方根等于本身的数有。

4.若m是a的立方根,则-m是的立方根。

56.若x3=a,则下列说法正确的是()7.-7的立方根用符号表示应为()ABCD.84a=-成立,那么a的取值范围是()A.a≤4B.-a≤4C.a≥4D.任意实数9.下列四种说法中,正确的是()①1的立方根是1;②127的立方根是±13;③-81无立方根;④互为相反数的两个数的立方根互为相反数。

A.①②B .①③C .①④D .②④10.a <0,那么a 的立方根是()AB .CD11.下列各数有立方根的有()①27,②5,③0,④12,⑤-16,⑥-10-6 A .3个B .4个C .5个D .6个12.求下列各数的立方根:(1)21027; (2)-0.008(3)(-4)314)x 3<的立方根是。

15。

16.下列式子中不正确的是()A 235=B 6=±C0.4=D1 5 =17A.正数B.负数C.非正数D.非负数184=的值是()A.-3B.3C.10D.-1019.当a<0得()A.-1B.1C.0D.±120.求下列各式的值:(1(2(3)21.若x 是64。

22.求下列各式中x 的值。

(1)(x-3)3-64=0(2325x 116=-23x y的值。

(一)新型题24是一个整数,那么最大的负整数a 是多少?252a 1=-,求a 的值.(二)课本习题变式题26.(课本P103第4题变式题)一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,求这个正方体的表面积.(三)易错题27.(2)当x(四)难题巧解题28.若a 、b 互为相反数,c 、d 1的值.(五)一题多变题29的平方根是。

的平方根是±3,则a =。

的立方根是2,则a =。

[数学在学校、家庭、社会生活中的应用]30.要用体积是125cm 3的木块做成八个一样的小正方体,那么这八个小正方体的棱长是多少?[数学在生产、经济、科技中的应用]31.要用铁皮焊制正方体水箱,使其容积为1.728m3,问至少需要多大面积的铁皮?[自主探究]32.(1)观察下表,你能得到什么规律?≈(2) 2.22[潜能开发]33.请分别计算下列各式的值:,.从中你能发现什么规律?能用数学符号表示出来吗??[信息处理]34.在一次设计比赛中,两位参赛者每人得到1m3的可塑性原料,甲把它塑造成一个正方体,乙把它塑造成一个球体(损耗不计).比赛规定作品高度不超过1.1m,请你利用所学知识,分析说明哪一个人的作品符合要求?[开放实践]35.如果A a+3b的算术平方根,B=2a-1-a2的立方根,并且a、b满足关系式a-2b+3=2,求A+B的立方根.[中考链接]36.(2004·山东济宁()A.2B.-2D37.(2004·福州)如果x 3=8,那么x =。

6.2《立方根》同步训练(含答案)

6.2《立方根》同步训练(含答案)

6.2 立方根基础训练知识点1 立方根的概念及性质1.(2018湖北恩施州中考)64的立方根是( )A.8B.-8C.4D.-42.(2018江苏扬州邗江区期末)下列计算正确的是( )5 5( )A.-1B.0C.1D.±14.(2017重庆石柱中学月考)下列说法正确的是( )A.一个数的平方根有两个,它们互为相反数B.一个数的立方根不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1或0或15.(2018辽宁辽阳期末的平方根是( )A.2B.-2C.±2D.±26.=4,则x的平方根是;2,则x= ;的平方根是±3,则x= .7.求下列各式的值;8.求下列各式中x的值.(1)(2018海南琼中期中)(x-1)3=27; (2)x3+1=-98 27;(3)14(2x+3)3=54; (4)(2018贵州遵义期中)27(2x-1)3+2=66.9.互为相反数,求21xy+的值.知识点2 利用计算器求一数的立方根及估算10.用计算器计算下列各式的值.(精确到0.001)≈; ≈.11.的整数部分是a,小数部分是b,则a= ,b= .12.比较下列各组数的大小.2; 与-3.4.参考答案1.C解析:因为43=64,所以64的立方根是4.故选C.2.A解析所以A正确,B,C,D错误.故选A.3.C解析:=1,1的立方根是1, 1.故选C.4.D解析:因为负数没有平方根,所以A错误;因为0的立方根是0,所以B错误;负数的立方根是负数,所以C错误;因为-1的立方根是-1,0的立方根是0,1的立方根是1,所以D正确.故选D. 5.C解析:的平方根是,的平方根是故选C.6.±8; (2)64; (3)729解析:(1)=4,所以x=64,又因为64的平方根是±8,所以x的平方根是±8. (2)因为8的立方根是2,=8,所以x=64. (3)因为9的平方根是±3,=9,所以x=93=729.7.解析=±2 7 .=-(-0.3)=0.3.53.4×(-2)=0.8.8.解析:(1)因为(x-1)3=27,所以x-1=3,所以x=4.(2)因为x3+1=-9827,所以x3=-12527,所以x=-53.(3)因为14(2x+3)3=54,所以(2x+3)3=216,所以2x+3=6,解得x=3 2 .(4)因为27(2x-1)3+2=66,所以27(2x-1)3=64,所以(2x-1)3=6427,所以2x-1=43,解得x=76.9.依题意,=0,∴(1-2x)+(3y-2)=0,∴y=213x+,∴21xy+=3.名师点睛:两个数的立方根互为相反数,则这两个数也互为相反教.10.(1)4.987; (2)-0.44811.1 -1解析:因为<2,所以-1.12.解析:(1)∵3=10,23=8,10>8,(2) 3.4-=3.4,∵)3=42,3.43=39.304,42>39.304,∴> 3.4-,∴技巧点拨:(1)当出现某个数的立方根时,可以用立方法比较大小;(2)当比较两个负数的大小时,绝对值大的反而小.6.2 立方根 提升训练1.(2018天津市南开中学课时作业)给出下列各式43=0.1,其中正确的个数是 ( )A.1B.2C.3D.42.(2018福建福州三牧中学课时作业)若a 2=4,b 3=-27,且ab<0,则a-b 的值为( )A.-2B.±5C.5D.-53.(2018河北唐山五十四中课时作业)若a,b 均为正整数,且则a+b 的最小值是( )A.6B.7C.8D.94.(2018辽宁沈阳和平区期中)已知一个正数的平方根是3a+1和a+11,则这个数的立方根是 .5.(2018江西临川一中课时作业)2,则a 的值为 .6.(2018河南洛阳第二外国语学校课时作业)和83b -平方根是 .7.(2018陕西西工大附中课时作业)已知x+2的平方根是±2,2x+y+7的立方根是3求x 2+y 的立方根.8.(2018广东深圳中学课时作业)已知一个正方体的棱长是5cm,再做一个正方体,使它的体积是第一个正方体体积的2倍,求所做的正方体的棱长.(结果保留根号)9.(2018安徽合肥五十中课时作业)观察下列式子,并解决问题.≈2.714.≈ ,≈ ;(2)则x≈ ;(3)通过类比,你能得到什么规律?用一句话描述出来.参考答案1.B解析:=43=0.1错误,所以正确的有2个.故选B.2.C解析:∵a 2=4,∴a=±2.∵b 3=-27,∴b=-3,∵ab<0,∴a=2,b=-3,.∴a-b=5.故选C.3.B解析:∵9<11<16,∴<4,而,∴正整数a 的最小值是4.∵8<9<27,∴而∴正整数b 的最小值是3,∴a+b 的最小值是3+4=7.故选B.4.4解析:由题意,得3a+1+a+11=0,解得a=-3,所以这个数是(3a+1)2=64,因为43=64,所以这个数的立方根是4.5.0,±解析:2,所以1-a 2=0或1或-1,当1-a 2=0时,a 2=1,所以a=±1;当1-a 2=1时,a 2=0,所以a=0;当1-a 2=-1时,a 2=2,所以.综上,a 的值为0,±.6.±1解析:和83b -互为相反数,83b -=0,∴1-3a=0,8b-3=0,∴a=13,b=38;=1.∵1的平方根是±1,±1.7.解析:∵x+2的平方根是±2,∴x+2=22=4,解得x=2.∵2x+y+7的立方根是3,∴2x+y+7=33=27,∴2×2+y+7=27,解得y=16.∴x2+y=22+16=4+16=20,∴x2+y.8.解析:设所做的正方体的棱长为xcm,则x3=2×53,∴x3=250,∴答:cm.名师点睛:利用立方根的定义解决实际问题的关键是根据题意列出方程,然后再根据立方根的定义求出未知数的值,从而解决实际问题.9.解析:(1)5.848 12.60(2)200000(3)在开立方运算中,被开立方数的小数点向左或向右移动3n位时,其立方根的小数点相应地向左或向右移动n位(n为正整数).。

(沪教版)七年级数学专题训练专题专题02 运算能力之立方根易错点专练(解析版)

(沪教版)七年级数学专题训练专题专题02 运算能力之立方根易错点专练(解析版)

专题02 运算能力之立方根易错点专练(解析版)错误率:___________易错题号:___________一、单选题1.下列说法错误的是( ) A .125的平方根是±15B .﹣9是81的一个平方根C 4D =﹣3【标准答案】C 【思路指引】根据平方根的定义、算术平方根的定义、以及立方根的定义逐项分析即可. 【详解详析】解:A 、因为(±15)2=125,所以125的平方根是±15,故该选项说法正确;B 、因为(﹣9)2=81,所以﹣9是81的一个平方根,关系选项说法正确;C 4,2,不是4,故该选项说法错误;D 、因为(﹣3)3=﹣27,3,故该选项说法正确; 故选择:C . 【名师指路】本题考查有关平方根,算术平方根,立方根问题,关键是掌握平方根的性质,算术平方根性质,以及立方根性质,会用性质进行审误.2.实数229,,,227π--,无理数有( )个.A .3B .4C .5D .6【标准答案】B 【思路指引】根据无理数的定义依次作出判断即可. 【详解详析】解:3=-,π-8,,0.505005000...,22,共4个.故选:B .【名师指路】本题主要考查了无理数的定义.解题的关键是掌握无理数的定义及无理数的各种类型,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数. 3.下列各组数,互为相反数的是( )A .3-和13-B C D .【标准答案】C 【思路指引】分别化简各项,再根据相反数的定义判断. 【详解详析】解:A 、3-和13-不互为相反数,故错误;B 不互为相反数,故错误;C =-3,互为相反数,故正确;D 、不互为相反数,故错误; 故选C . 【名师指路】此题主要考查了算术平方根和立方根的定义,以及相反数的含义和求法,要熟练掌握. 4.下列说法正确的是( ) A .()32--的立方根不存在 B .平方根等于本身的数有0,1 C .6±是36的算术平方根 D .立方根等于本身的数有-1,0,1【标准答案】D 【思路指引】根据平方根的定义,立方根的定义,算术平方根的定义,对各选项分析判断后利用排除法解答. 【详解详析】解:A 、()382--=,立方根是2,存在,故本选项错误; B 、平方根等于本身的数是0,故本选项错误; C 、6是36的算术平方根,故本选项错误; D 、立方根等于本身的数有-1,0,1,故本选项正确; 故选D . 【点评】本题考查了平方根的定义,算术平方根的定义,立方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,任何实数都有立方根. 5.(上海闵行·七年级期末)下列说法不正确的是( ) A .9的平方根是±3 B .0的平方根是0C 15±D .-8的立方根是-2【标准答案】C 【思路指引】根据平方根和立方根的定义逐个分析即可. 【详解详析】C225的算术平方根,应该等于15, A 、B 、D 项正确, 故选:C. 【名师指路】本题主要考查平方根和立方根的概念.理解相关定义是关键. 6.(上海奉贤·八年级期中)下列方程中,有实数根的方程是( )A .x 4+16=0B .x 3+9=0C .2101x =- D +3=0【标准答案】B 【思路指引】利用乘方的意义可对A 进行判断;通过解无理方程可对B 、C 进行判断;通过算术平方根的概念可对D 进行判断. 【详解详析】解:A 、x 4≥0,x 4+16>0,方程x 4+16=0没有实数解;B 、移项得,x 3=﹣9,两边开立方得,x 故方程的解为x =C 、∵分子1≠0,∴2101x ≠-,原方程没有实数解;D 、,30>,原方程没有实数解. 故选:B . 【名师指路】本题考查了乘方的意义、立方根的意义、算术平方根的意义、分式的值为零的条件,熟练掌握各知识点是解答本题的关键.7.(2019·上海·七年级课时练习)下列说法中正确的有( )个.① 负数没有平方根,但负数有立方根.②49的平方根是23,827的立方根是23.③如果23(2)x =- ,那么x =-2. ④算术平方根等于立方根的数只有1. A .1B .2C .3D .4【标准答案】A 【思路指引】根据平方根、立方根、乘方的定义以及性质逐一进行分析判断即可. 【详解详析】① 负数没有平方根,但负数有立方根,正确; ②49的平方根是23±,827的立方根是23,故②错误; ③任何实数的平方都不可能为负数,故③错误; ④算术平方根等于立方根的数有0、1,故④错误, 所以正确的有1个, 故选A. 【名师指路】本题考查了平方根、立方根,熟练掌握平方根及立方根的定义是解题的关键. 8.(上海市建平实验中学七年级期中)下列各式正确的是( )A 4±B 3-C 3-D 153【标准答案】B 【思路指引】根据平方根和立方根的定义计算,负数的立方根是负数,正数的立方根是正数,0的立方根是0. 【详解详析】A. 4,此选项错误;B. 3=-,此选项正确;C.,此选项错误;D. 此选项错误. 故选B. 【名师指路】此题考查二次根式的性质与化简,平方根,立方根,解题关键在于掌握运算法则. 9.下列计算正确的是( )A 3=-B .2353(3)9a b a b -=-C .0(21=-D .3332m n nm m n -=【标准答案】D 【思路指引】根据立方根的意义、积的乘方、零指数幂、整式减法等知识可以辨别各项正误,从而得到正确答案. 【详解详析】 解:逐项分析如下:故选D. 【名师指路】二、填空题10=______.【标准答案】14【思路指引】先求出根式里的数,再根据实数的性质进行化简. 【详解详析】14== 故答案为:14.【名师指路】此题主要考查实数的运算,解题的关键是熟知实数的性质. 11.(上海松江·八年级期末)方程31+9=03x 的解是____.【标准答案】x =-3 【思路指引】根据立方根的含义和求法,求出方程31+9=03x 的解是多少即可.【详解详析】 解:∵31+9=03x ,∴x 3=-27, 解得x =-3. 故答案为:x =-3. 【名师指路】此题主要考查了立方根的含义和求法,要熟练掌握,如果一个数x 的立方等于a ,即x 的三次方等于a (x 3=a ),那么这个数x 就叫做a 的立方根,也叫做三次方根.读作“三次根号a ”其中,a 叫做被开方数,3叫做根指数.12 2.515≈,不使用计算器,________. 【标准答案】0.02515 【思路指引】根据立方根的性质:被开方数的小数点每向一个方向移动3位,则立方根的小数点一定向相同方向移动1位. 【详解详析】解: 2.515≈,, 故答案为:0.02515. 【名师指路】本题考查了立方根的计算,根据立方根的性质进行求解是解题的关键.13.(2019·上海· 【标准答案】490.3【思路指引】根据算术平方根和立方根定义进行分析.【详解详析】49==0.3=故答案为49,0.3【名师指路】考核知识点:算术平方根和立方根.理解定义是关键.14.(2019·上海虹口·七年级月考)已知|a+2| 【标准答案】2 【思路指引】由于|a+2|≥0,而|a+2|由此即可得到接着可以求出a 、b 的值,然后代入所求代数式即可求出结果. 【详解详析】∵|a+2|≥0∴∴a+2=0,b-10=0, ∴a=-2,b=10,2. 故答案为2. 【名师指路】此题主要考查了非负数的性质,首先根据非负数的性质确定待定的字母的取值,然后代入所求代数式计算即可解决问题.15.(2019·上海虹口·七年级月考)一个棱长为1dm 的正方体,要使它保持正方体形状但体积增加1倍,则这个新正方体的棱长是______dm.【思路指引】首先根据题意求出正方体的体积,再求立方根即可得出结果. 【详解详析】 ∵2×13=2(dm 3),∴3.【名师指路】本题考查了正方体的体积、立方根;熟练掌握立方根的概念,根据题意求出正方体的体积是解决问题的关键. 16.(2020·上海·八年级期中)方程(x +2)3=﹣27的解是_____. 【标准答案】x =﹣5 【思路指引】方程利用立方根定义开立方即可求出解. 【详解详析】方程开立方得:x +2=﹣3, 解得:x =﹣5, 故答案为:x =﹣5. 【名师指路】此题考查了立方根,熟练掌握立方根定义是解本题的关键.17.(2020·上海市静安区实验中学月考)一个数的平方等于64,则这个数的立方根是_____. 【标准答案】±2 【详解详析】 ∵22864(8)64=-=,, ∴若一个数的平方等于64,则这个数是8±. ∴这个数的立方根是:2±.18.(2020·上海市梅陇中学七年级期中)若20x -=,则 x +y 的立方根是_____. 【标准答案】-1 【思路指引】根据非负数的性质,求出x,y 的值,代入即可得出结果. 【详解详析】解:∵20x -=, ∴x-2=0,6+2y=0, 解得x=2,y=-3, ∴x+y=2-3=-1,∴x+y 的立方根是-1,故答案为:-1.【名师指路】此题考查非负数的性质,算术平方根和绝对值,解题关键在于掌握运算法则.19___________.【标准答案】2【思路指引】8,根据立方根的定义即可求解.【详解详析】8=,8的立方根是2,故答案为:2.【名师指路】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.20.(上海杨浦·七年级期中)27的立方根为_____.【标准答案】3【详解详析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算三、解答题21.(上海市川沙中学南校七年级期中)解方程:()36131164x++=-【标准答案】34x=-.【思路指引】利用直接开立方根的方法求解即可.【详解详析】解:()31253164 x+=-∴5 314 x+=-∴934x =-∴34x =-.【名师指路】本题考察了解方程中的直接开平方法,熟悉相关解法是解题的关键.22)1030.0011--.【标准答案】4 【思路指引】根据立方根、平方根以及零指数幂、负指数幂的意义计算. 【详解详析】解:原式=23101--+-4=.【名师指路】本题考查了实数的混合运算,正确理解平方根与立方根的意义是解题的关键. 23.(上海市进才中学北校八年级期中)解方程:31110645125x ⎛⎫-+= ⎪⎝⎭.【标准答案】35x =-【思路指引】先把15x -看成一个整体,求出它的值,然后再求原方程的值【详解详析】原方程变形为3164()5125x -=-解得15x -=14135555x ∴==-+=- ∴原方程的解为:35x =-【名师指路】本题考查了立方根,将15x -看成一个整体是解题的关键.24.(2019·上海浦东新·七年级期中)已知a =b =求3a b +的平方根. 【标准答案】3±【思路指引】根据平方根和立方根的性质求出a,b 的值,进而再求3a b +的平方根即可.【详解详析】∵a =,b =∴a 5=,6b =-.∴3=±.【名师指路】本题主要考查的是立方根、平方根的性质,熟练掌握平方根、立方根的性质是解题的关键.25.(2019·上海浦东新·七年级期中)已知3a =18,3b =216,c 是100的算术平方根,求()a b c +的值. 【标准答案】4【思路指引】先求出a 、b 、c 的值,代入即可得出结果.【详解详析】解:∵3a =18,3b =216,c 是100的算术平方根, ∴a=12,b=6,c=10, ∴()a b c +=12(610)4+=.【名师指路】本题考查了平方根和立方根,解题的关键是熟练掌握平方根和立方根的性质.26.(2019·,求2x 5y x 2y ++的值. 【标准答案】83【思路指引】利用互为相反数的两数之和列出关系式,根据含x 的代数式表示y 的值,代入原式计算即可.【详解详析】解:∴2x+y+2+2x+y-2=0, ∴4x+2y=0,即y=-2x,∴2x5yx2y++=21088433x x xx x x--==--.【名师指路】本题考查了立方根,解题的关键是熟练掌握立方根的概念.27.(2019·上海·七年级课时练习)已知实数a,满足0,a求|a-1|+|a+1|的值.【标准答案】2【思路指引】先根据0a=求出a的值,然后代入计算即可.【详解详析】解:∵||a a a a++∴当a≥0时,原式=a+a+a=0,解得a=0,|a-1|+|a+1|=1+1=2.当a<0时,原式=a-a+a=0,解得a=0,|a-1|+|a+1|=1+1=2.【名师指路】本题考查了立方根和算术平方根的定义,以及分类讨论的数学思想,熟练掌握立方根和算术平方根的定义是解答本题的关键.28.(2019·上海·七年级课时练习)已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【标准答案】10【思路指引】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【详解详析】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x 2+y 2的算术平方根为10.【名师指路】此题考查平方根,立方根的概念,解题关键在于掌握运算法则,难易程度适中.29.(2020·上海静安· 【标准答案】136-【思路指引】分别根据偶次方根和立方根的运算法则进行计算即可得到答案.【详解详析】=21232-+- =136- 【名师指路】此题主要考查了立方根以及偶次方根的运算,熟练掌握运算法则是解题的关键.30.(上海长宁·二模)计算:12131271)()2-+-+ 【标准答案】6【思路指引】根据实数的运算法则计算 .【详解详析】解:原式=3+3﹣=3+3﹣+2=6.【名师指路】本题考查实数的混合运算,熟练掌握与实数有关的立方根、完全平方公式、二次根式的运算及负整数指数运算等是解题关键.。

6.2《立方根》同步练习及答案

6.2《立方根》同步练习及答案

知识点:立方根:一样地,如果一个数的立方等于a,那么那个数是a的立方根立方根性质:正数的立方根是正数0的立方根是0 负数的立方根是负数3-a = —3 a同步练习:一、填空题:1. ________________ 1的立方根是.2.33.83. __________ 2是'勺立方根.4. ______ 的立方根是0.1 .5 .立方根是-的数是27 66. 27是的立方根.64 ---------------7. _____________ ( 3)3.8. ( 3)3的立方根是_________9. -是的立方根.510. ______________________________________________ 若a与b 互为相反数,则它们的立方根的和是______________________ .11. 0的立方根是 ________ .12. ___________________________ 36的平方根的绝对值是.13. 的立方根是729、判定题: 1. -的立方根是丄;() 8 22. 5没有立方根;()3. 的立方根是-;()2-6 64.-是—的立方根;() 9 7295. 负数没有平方根和立方根;()2.一个数的平方根与立方根相等,则那个数是( ). A . 1B . 1C . 0D . 13. 如果b 是a 的立方根,那么下列结论正确的是( ).A . b 也是 a 的立方根B . b 也是a 的立方根C . b 也是a 的立方根D . b 差不多上a 的立方根 4. 下列语句中,正确的是().A. 一个实数的平方根有两个,它们互为相反数B. 一个实数的立方根不是正数确实是负数6. 7. a 的三次方根是负数,a 必是负数;( 立方根等于它本身的数只能是 如果X 的立方根是2,那么 5的立方根是35 ;() 0或1; x 8 ;(9. 10. 8的立方根是 2 ;() 11. 丄的立方根是没有意义;216、、 112. —的立方根是 -;()27313. 0的立方根是0;( 14. -是-27的立方根;5_ 12515. 门是3立方根; 16. a 为任意数,式子 三、选择题: 1. 36的平方根是(A .B . 6 ) )2a ,3a 差不多上非负数.()).C .D .不存在C .负数没有立方根D .如果一个数的立方根是那个数本身,那么那个数一定是 1或0或15. 8的立方根是().A . 2B . 2C . 4D . 6. 设n 是大于1的整数,则等式n 1 n 1A .大于1的偶数B .大于1的奇数 7. 下列各式中正确的是().A . 16 43 --- 42中的n 必是().B . ;( 3)23C . 382 D . <'( 3)2 ( 4)2&与数轴上的点 ----- 对应的数是( A .整数B .有理数9.下列运算正确的是( A . 33C . 3 3四、解答题:3 3 331 .求下列各数的立方根. (1) C .). 无理数D .实数).B . 3 33 —J 3(3) (5) (7)343 512 (2)丄1&00 82780.216(4) 15- ⑹(8)2.求下列各式的值.38 3 /■- ----- •• 0.125 3时512 (1) (3) (5) (7)..0.0196 ^273 ------------- 3订迺)27£4(2) (4)(6)(8)(3)2 (-)2的算术平方根773.- --- .a 333 1727(9)(11)3 . x 取何值时,下面各式有意义?(1) x ■. x(10): (12)专3 -----------31 1212 4⑵3x 1(3)亠(4) 3x2x 34. 求下列各式中的x.(1) (0.1x 10)327000 ( 2) 3 2x 5 2(4) 125x3 512 0(5) 16x4625(7) (x 2)3 1 85 .化简3 a(a 1)(a 1) a .五、运算(2)3,( 4)23 4 --(4)3 (R 81.(3) 4x2 121(6) x9 1六、已知4;3T1 0,其中x , y 为实数,求x 3 y 1998的值.七、一个比例式的两个外项分别是 0.294和0.024, 数,求这两个内项各是多少?八、一个长方体木箱子,它的底是正方形,木箱高8立方米.求那个木箱底边的长.(精确到0.01米)九、一个圆形物体,面积是200平方厘米,半径r 是多少平方厘米?( 取3.14, r 精确到0.01厘米)两个内项是相等的 1.25米,体积2.71十、如果球的半径是r,则球的体积用公式V 4 n3来运算•当体积V 500立方厘米,半径r是多少厘米?(取3.14, r精确到0.01厘米)参考答案、1. 12. 323. 84. —0.00112521634-278. —39. 空12510. 011. 012. 614. 315. —1, 0, +116. —117. —0.218. 互100019. x 3, x 5且x 820.士8, 4二、1.x 2.x 3.V4.V5.x 6.V7.x 8.V9.V 10.x 11.x 12.V 13.V 14.x 15.V 16.x三、四、321. A2. C3. C4. D5. A6.丄10 1. (1) —1(7)02.(1) —2(7) —0.143. (1)x 04. (1) —4005. a五、- -33六、2627七、0.084(7) 2八、1.47米B 7. C(3) —78. D 9. C52(5)8 (6) (8) —0.6 (3)0.5(3) —35(8) 7(2)x取全体实数(3) x3 11⑵7 (3)号2 2(9)—a(10)a(5)8(12)j0.001(11)41且x 3 (4)x取任何实数8 5⑷8 (5) |5 2(6)—15.6.7.九、7.98 厘米十、 4.92 厘米14. 3 27 =. 15.立方根等于它本身的数是.16. ( 1)109的立方根是.17. 0.008的立方根是.18. —是'勺立方根.19 .当x为____________■寸,* * * * * x 3有意义;x3当x为时,35—X有意义.3x820. ( 2)6的平方根是____________立方根是____________ .。

立方根和平方根试题与答案

立方根和平方根试题与答案

1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。

立方根练习题及答案

立方根练习题及答案

A.1
B.−1
C.4
D.−4
8. 一个数的立方根是4,这个数的平方根是( )
A.8
B.−8
C.8或−8
D.4或−4
9. 下列说法中正确的是( )
A.−0.064的立方根是0.4
B.−9的平方根是±3
C.0.001的立方根是0.000001
D.16的立方根是3√16
10. 下列说法错误的是( )
A.−9没有平方根
3√19 − 1 − (−1)2017
27

(2)求满足条件的������值:(������ − 1)2 = 9.
第1页共8页 ◎ 第2页共8页
27. 已知2������ − 1的平方根是±3,3������ + ������ − 9的立方根是2,������是√57的整数部分,求������ + 2������ + ������的算术平方根.
B.3√−1 = −1
C.3√64 = 8
D.±√9 = −3
13. 下列命题中:
①立方根等于它本身的数有−1,0,1;
②负数没有立方根; ③3√6 = 2;
④任何正数都有两个立方根,且它们互为相反数; ⑤平方根等于它本身的数有0和1.
正确的有( ) A.1个
B.2个
C.3个
D.4个
14. 下列说法中,不正确的有( )个
③3√6 = 2,错误;④任何正数都有两个立方根,且它们互为相反数,错误;
⑤平方根等于它本身的数有0,故错误,
14.【答案】A【解答】解:①−64的立方根是−4,正确,不合题意; ②49的算术平方根是7,故此选项错误,
符合题意;③217的立方根为13,正确,不合题意; ④14是116的平方根,正确,不合题意.

立方根(第课时) 同步练习

立方根(第课时)  同步练习

6.2《立方根》同步测试(第2课时)一、选择题1.估算10 000的立方根的范围大概是( ).A.10~15 B.15~20 C.20~25 D.25~30考查目的:考查无理数的估算能力.答案:C.解析:因为,,,,,又8000<10000<15625,所以10000的立方根应在20和25之间,故答案选C.2.已知:,,则等于( ).A.-17.38 B.-0.01738 C.-806.7 D.-0.08067考查目的:考查被开方数与立方根之间的小数点变化规律.答案:D.解析:根据可知,须先求出的值.0.000525是把525的小数点向左移动6位得到的,根据规律:被开方数的小数点每向右或向左移动3位,立方根的小数点向右或向左移动1位,可知,0.000525的立方根应把的立方根8.067向左移动2位,即0.08067.所以=-0.08067.4.在,1,-4,0这四个数中,最大的数是( ).A. B.1 C.-4 D.0考查目的:考查立方根的定义和大小比较.答案:.解析:因为正数大于负数和零,所以最大数应在和1中选,因为>,即>1,故答案选A.二、填空题4.估计在哪两个相邻整数之间:<<.考查目的:考查估算能力.答案:8 9.解析:因为<700<,所以8<<9.5.比较大小:______.考查目的:考查对平方根和立方根估算能力以及大小比较.答案:<.解析:因为,,所以5<<6,;因为,,所以10<<11.故<.6.一个正方形的面积变为原来的倍,则边长变为原来的倍;一个正方体的体积变为原来的倍,则棱长变为原来的倍.考查目的:考查算术平方根和立方根的概念和变化规律.答案:,.解析:由于正方形的面积为边长的平方,故边长变化的倍数是面积变化倍数的算术平方根;同理,棱长变化的倍数为体积变化倍数的立方根.三、解答题。

初中数学专题-立方根--同步练习2试题及答案

初中数学专题-立方根--同步练习2试题及答案

6.2立方根课前预习:要点感知1一般地,如果一个数的立方等于a,那么这个数叫做a的__________,即如果x3=a,那么__________叫做__________的立方根.预习练习1-1(20**·黄冈)-8的立方根是( )A.-2B.±2C.2 D.-1 21-2 -64的立方根是__________,-13是__________的立方根.要点感知2求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是__________;负数的立方根是__________;0的立方根是__________.预习练习2-1下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0要点感知3一个数a的立方根可以用表示,读作“__________”,其中__________是被开方数,__________是根指数.预习练习3-1=__________.当堂练习:知识点1 立方根1.的立方根是( )A.-1 B.0 C.1 D.±1 2.若一个数的立方根是-3,则该数为( )A.-B.-27 C.±D.±273.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15④任何有理数都有立方根,它不是正数就是负数.其中正确的有( )A.1个B.2个C.3个D.4个4.立方根等于本身的数为__________.的平方根是__________.6.若x-1是125的立方根,则x-7的立方根是__________.7.求下列各数的立方根:(1)0.216; (2)0;(3)-210 27;(4)-5.8.求下列各式的值:(1;(2;知识点2 用计算器求立方根9.的值约为( )A.3.049 B.3.050 C.3.051D.3.05210.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间11.计算≈__________(精确到百分位).12.038.23.820,=__________.13.(1)(2)_______________.(3)根据你发现的规律填空:①已知=1.442,________________;.076 96,则=__________.课后作业:14.下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根D.15.( )A.7 B.-7 C.±7D.无意义16.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( )A.2倍 B.3倍 C.4倍D.5倍17.-27__________.18.计算:-364=__________,337164-=__________. 19.已知2x+1的平方根是±5,则5x+4的立方根是__________. 20.求下列各式的值:(1)31000-; (2)-364-; (3)-3729+3512; (4)30.027-31241125-+30.001-.21.比较下列各数的大小:(1)与; (2)-342与-3.4. 22.求下列各式中的x :(1)8x 3+125=0; (2)(x+3)3+27=0. 23.若8a +与(b-27)2互为相反数,求-的立方根.24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想:(1)做出来的新祭坛是原来体积的多少倍?(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍? 挑战自我25.请先观察下列等式:3227327333263326 344633463…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.参考答案课前预习要点感知1立方根(或三次方根) x a预习练习1-1A1-2 -4-1 27要点感知2正数负数 0预习练习2-1 D要点感知3 三次根号a a 3预习练习3-1 3当堂训练1.C 2.B3.B4.0,1或-1 5.±2 6.-1 7.(1)∵0.63=0.216,∴0.216的立方根是0.6,=0.6;(2)∵03=0,∴0的立方根是0,即=0;(3)∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43,=-43;(4)-5 8.(1)0.1;(2)-75;(3)-23.9.B 10.C 11.2.92 12.10.38 -0.482 013.(1)0.01 0.1 1 10 100(2)被开方数扩大1 000倍,则立方根扩大10倍(3)14.42 0.144 2 7.696课后作业14.D15.B 16.B 17.0或-6 18.-4 -3419.420.(1)-10;(2)4;(3)-1;(4)0.21.(1)>;.4.22.(1)8x3=-125,x3=-1258,x=-52;(2)(x+3)3=-27,x+3=-3,x=-6.23.由题意知a=-8,b=27,所以-=-5.24.(1)8倍;(2)倍.25.=≠1,且n为整数).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 立方根
课前预习:
要点感知1一般地,如果一个数的立方等于a,那么这个数叫做a的__________,即如果x3=a,那么__________叫做__________的立方根.
预习练习1-1 (20**·黄冈)-8的立方根是( )
A.-2
B.±2
C.2
D.-1 2
1-2 -64的立方根是__________,-1
3
是__________的立方根.
要点感知2 求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是__________;负数的立方根是__________;0的立方根是__________.
预习练习2-1下列说法正确的是( )
A.如果一个数的立方根是这个数本身,那么这个数一定是0
B.一个数的立方根不是正数就是负数
C.负数没有立方根
D.一个不为零的数的立方根和这个数同号,0的立方根是0
要点感知3一个数a的立方根可以用表示,读作“__________”,其中__________是被开方数,__________是根指数.
预习练习3-1=__________.
当堂练习:
知识点1 立方根
1.的立方根是( )
A.-1
B.0
C.1
D.±1
2.若一个数的立方根是-3,则该数为( )
A.-
B.-27
C.±
D.±27
3.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15
.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
4.立方根等于本身的数为__________.
的平方根是__________.
6.若x-1是125的立方根,则x-7的立方根是__________.
7.求下列各数的立方根:
(1)0.216; (2)0; (3)-210
27
; (4)-5.
8.求下列各式的值:

知识点2 用计算器求立方根
9.的值约为( )
A.3.049
B.3.050
C.3.051
D.3.052
10.估计96的立方根的大小在( )
A.2与3之间
B.3与4之间
C.4与5之间
D.5与6之间
11.≈__________(精确到百分位).
12.则
13.(1)
(2)
______________________________.
(3)根据你发现的规律填空:
①已知=1.442,;
则=__________.
课后作业:
14.下列说法正确的是( )
A.一个数的立方根有两个,它们互为相反数
B.一个数的立方根比这个数平方根小
C.如果一个数有立方根,那么它一定有平方根
D.
15.( )
A.7
B.-7
C.±7
D.无意义
16.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( )
A.2倍
B.3倍
C.4倍
D.5倍
17.-27__________.
18.计算:=__________=__________.
19.已知2x+1的平方根是±5,则5x+4的立方根是__________.
20.求下列各式的值:
(1)31000-; (2)-364-; (3)-3729+3512; (4)30.027-********
-+3
0.001-. 21.比较下列各数的大小:
(1)与; (2)-342与-3.4. 22.求下列各式中的x :
(1)8x 3+125=0; (2)(x+3)3+27=0. 23.若8a +与(b-27)2互为相反数,求-的立方根.
24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”
如图所示,不妨设原祭坛边长为a,想一想:
(1)做出来的新祭坛是原来体积的多少倍?
(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍? 挑战自我
25.请先观察下列等式:
3
2
27
327
3
33
263326 3
44
633463

(1)请再举两个类似的例子;
(2)经过观察,写出满足上述各式规则的一般公式.
参考答案
课前预习
要点感知1 立方根(或三次方根) x a 预习练习1-1 A
1-2 -4 -1 27
要点感知2 正数负数 0
预习练习2-1 D
要点感知3 三次根号a a 3
预习练习3-1 3
当堂训练
1.C
2.B
3.B
4.0,1或-1
5.±2
6.-1
7.(1)∵0.63=0.216,
∴0.216的立方根是0.6=0.6;
(2)∵03=0,
∴0的立方根是0,即=0;
(3)∵-210
27
=-
64
27
,且(-
4
3
)3=-
64
27

∴-210
27
的立方根是-
4
3
=-
4
3

(4)-5 8.(1)0.1;
(2)-7
5

(3)-2
3
.
9.B 10.C 11.2.92 12.10.38 -0.482 0 13.(1)0.01 0.1 1 10 100
(2)被开方数扩大1 000倍,则立方根扩大10倍
(3)14.42 0.144 2 7.696
课后作业
14.D 15.B 16.B 17.0或-6 18.-4 -3
4
19.4
20.(1)-10;
(2)4;
(3)-1;
(4)0.
21.(1)>;
-3.4.
22.(1)8x3=-125,x3=-125
8
,x=-
5
2
;
(2)(x+3)3=-27,x+3=-3,x=-6.
23.由题意知a=-8,b=27,
所以-=-5.
故-
24.(1)8倍;
(2)倍.
25.
≠1,且n为整数).。

相关文档
最新文档