高二第一学期期中数学试题及其答案
2023-2024学年河北省部分高中高二(上)期中数学试卷【答案版】
2023-2024学年河北省部分高中高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√322.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .44.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√557.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( ) A .2B .1C .12D .−748.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为1012.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= . 14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = .15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值.20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)21.(12分)如图,在斜三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为2的等边三角形,M ,Q 分别为AC ,A 1B 1的中点,且MQ ⊥AB . (1)证明:MC 1⊥AB .(2)若BB 1=4,MQ =√15,求平面MB 1C 1与平面MC 1Q 夹角的余弦值.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .2023-2024学年河北省部分高中高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√32解:将l 的方程转化为y =−2√33x +√33,则l 的斜率为−2√33. 故选:A .2.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)解:因为方程x 2+y 2+4x +2y ﹣m =0表示一个圆,所以42+22+4m >0,解得m >﹣5. 故选:B .3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .4解:椭圆E :x 29+y 25=1,可知a =3,因为P 是椭圆E 上一点,所以|PF 1|+|PF 2|=2a =6,所以|PF 2|=6﹣|PF 1|=4. 故选:D .4.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →解:因为P A ⊥平面ABC ,AB ⊥AC ,所以P A ⊥AB ,P A ⊥AC ,故以A 为坐标原点,AB ,AC ,P A 所在直线分别为x ,y ,z 轴建立空间直角坐标系,令AB =a ,AC =b ,P A =c ,则A (0,0,0),B (a ,0,0),C (0,b ,0),D(0,34b ,14c), 则AC →=(0,b ,0),BD →=(−a ,34b ,14c),所以BD →在AC →方向上的投影向量为AC →⋅BD →|AC →|⋅AC →|AC →|=34b 2|b|⋅AC →|b|=34AC →.故选:A .5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)解:∵O 1与O 2相交, ∴|r ﹣5|<|O 1O 2|<|r +5|, 又|O 1O 2|=7,∴|r ﹣5|<7<|r +5|,解得2<r <12. 故选:D .6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√55解:由题意得,BA →=(2,2,0),BC →=(2,0,−1),则BA →在BC →上的投影向量的模为|BA →⋅BC →||BC →|=√5,则点A 到直线BC 的距离为√|BA →|2−(|BA →⋅BC →||BC →|)2=√(√8)2−(4√5)2=2√305. 故选:A .7.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( )A .2B .1C .12D .−74解:由已知直线l 的方程为y =b ax ,即bx ﹣ay =0,点F (c ,0),则|FA|=|bc|√b +(−a)2=b ,因为FB →=BA →,所以B 为线段AF 的中点,则|BF|=b2, 设双曲线C 的左焦点为F 1,则|BF 1|=2a +b2, 在△BFF 1中,由余弦定理可得:cos ∠BFF 1=|BF|2+|FF 1|2−|BF 1|22|BF||FF 1|=b 24+4c 2−(2a+b 2)22×b2×2c=2b−ac, 又cos ∠BFF 1=bc ,所以a =b ,故l 的斜率为1, 故选:B .8.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117解:√(x −9)2+y 2+√x 2+y 2−4x −4y +8=√(x −9)2+y 2+√(x −2)2+(y −2)2, 该式表示直线l :2x ﹣y +2=0上一点到P (9,0),Q (2,2)两点距离之和的最小值. 而P ,Q 两点在l 的同一侧,设点P 关于l 对称的点P ′(x 0,y 0),则{y 0−0x 0−9=−122×x 0+92−y 0+02+2=0,解得{x 0=−7y 0=8,∴P ′(﹣7,8),故√(x −9)2+y 2+√x 2+y 2−4x −4y +8≥|P′Q|=√(−7−2)+(8−2)2=3√13. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→解:BC →−A 1A →=AD →+AA 1→=AD 1→,A 正确,B 不正确,又因为EF →=12A 1C 1→,故C 正确,D 不正确. 故选:AC .10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .解:A .取m =1,则直线l :y =x +1与曲线C :x 2+y 2=1满足图中的位置关系,因此A 正确; B .联立{y =mx +1x 2+my 2=1,化为(1+m 3)x 2+2m 2x +m ﹣1=0,若直线l :y =mx +1与曲线C :x 2+my 2=1有交点,则Δ=4m 4﹣4(1+m 3)(m ﹣1)=m 3﹣m +1>0. 由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,满足Δ>0,因此B 正确;C .由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,直线l 与椭圆应该有交点,因此C 不正确;D .由图可知:直线l 经过点(1,0),则m =﹣1,联立{y =−x +1x 2−y 2=1,化为x =1,y =0,即直线l 与双曲线的交点为(1,0),因此D 正确. 故选:ABD .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为10解:A 、B 选项,由椭圆的定义得,|PF 1|+|PF 2|=2a ,已知|PF 1|=43|PF 2|,解得|PF 1|=87a ,|PF 2|=67a ,由cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=4c 2−47a 2247ac=35, 整理得5a 2+18ac ﹣35c 2=0,即(a +5c )(5a ﹣7c )=0,则a =﹣5c (舍去)或a =75c ,即c a=57,故椭圆E 的离心率为57,故A 正确,B 不正确;C 选项,由a =75c ,得|F 1F 2|=2c =107a ,则|PF 1|2+|PF 2|2=|F 1F 2|2,故PF 1⊥PF 2,故C 正确; D 选项,由PF 1⊥PF 2,△PF 1F 2内切圆的半径为2,得2c =2a ﹣4,因为a =75c ,所以c =5,即椭圆E 的焦距为10,故D 正确. 故选:ACD .12.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63解:设F ,G 在平面ABCD 的投影分别为AB ,BC 的中点R ,S ,由于AF =√5,AB =4,所以F 到平面ABCD 的距离为FR =√AF 2−(12AB)2=1, 由于上、下两层等高,所以P 到平面ABCD 的距离为2,又FG =RS =12AC =2√2,由于GS =FR =1,BS =RB =12×4=2 所以BG =GC =√GS 2+BS 2=√5=BF =AF ,所以△AFB ≌△BGC ,同理可得△CDH ≌△ADE ≌△AFB ≌△BGC ,△BFG ≌△CHG ≌△DEH ≌△AEF , 则点B 到FG 的距离为√BF 2−(12FG)2=√(√5)2−(√2)2=√3,则△ABF 的面积为12AB ⋅FR =12×4×1=2,△BFG 的面积为12×2√2×√3=√6,故该几何体的表面积4×2+4×√6+4×4+2√2×2√2+2√2×4=32+8√2+4√6,故A 正确; 将该几何体放置在一个球体内,要使该球体体积最小,则球心在该几何体上下底面中心所连直线上, 且A 、B 、C 、D ,N 、P 、Q 、M 均在球面上,设球心到下底面ABCD 的距离为x , 由于四边形MNPQ 为边长为2√2的正方形,四边形ABCD 为边长为4的正方形, 则其对角线长度分别为4,4√2,则(2√2)2+x 2=22+(2−x)2,解得x =0,则该球体的半径为2√2,体积为4π3×(2√2)3=64√2π3,故B 错误;以A 为坐标原点建立如图所示的空间直角坐标系,则C (4,4,0),P (2,0,2),B (4,0,0),F (2,0,1),G (4,2,1),M (2,4,2),CP →=(−2,−4,2),BF →=(﹣2,0,1),BG →=(0,2,1),BM →=(﹣2,4,2), 平面ABF 的一个法向量为m →=(0,1,0),则cos <CP →,m →>=−42√6=−√63,设直线CP 与平面ABF 所成角为θ,则sinθ=|cos <CP →,m →>|=√63,故直线CP 与平面ABF 所成角的正弦值为√63,故C 正确; 设平面BFG 的法向量为n →=(x 1,y 1,z 1),则{n →⋅BF →=−2x 1+z 1=0n →⋅BG →=2y 1+z 1=0,令x 1=1,得n →=(1,﹣1,2), 则点M 到平面BFG 的距离为|n →⋅BM →||n →|=222=√63,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= 5 . 解:由题可知,N (3,0,4),则ON →=(3,0,4),∴|ON →|=√32+42=5. 故答案为:5.14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = 1 .解:由题可知(m +1)+(m 2﹣m ﹣2)=0,解得m =1或m =﹣1(舍去),∴m =1. 故答案为:1.15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 √3x −y =0 .解:圆C :x 2+(y ﹣1)2=1①,则圆心C (0,1), 以C (0,1),M (√3,0)为直径的圆的方程为:(x −√32)2+(y −12)2=1②,①﹣②可得,√3x −y =0,故直线AB 的方程为√3x −y =0. 故答案为:√3x −y =0.16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为7√111111.解:设I ∩AA 1=P ,连接NP ,MP ,直线NP 即为直线l .易证得MP ∥CN ,由AM =2MB ,N 为DD 1的中点,得AP =13AA 1,以D 为坐标原点,DA .DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设AB =6,则得:N (0,0,3),P (6,0,2),A (6,0,0),C 1(0,6,6), NP →=(6,0,﹣1),AC 1→=(﹣6,6,6), 所以得:|cos <NP →,AC 1→>|=|NP →⋅AC 1→||NP →|⋅|AC 1→|=37×63=7√111111,故直线与直线 AC 1 所成角的余弦值为7√111111.故答案为:7√111111. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值. 解:(1)因为a =1,所以l 1:x +y +1=0,l 2:2x +4y ﹣4=0,即x +2y ﹣2=0, 联立{x +y +1=0x +2y −2=0解得{x =−4y =3,故直线l 1与l 2的交点坐标为(﹣4,3).(2)因为l 1∥l 2,所以2a 2﹣a ﹣3=0,解得a =﹣1或a =32, 当a =﹣1时,l 1与l 2重合,不符合题意. 当a =32时,l 1与l 2不重合,符合题意. 故a =32.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.解:(1)证明:因为E ,F 分别为P A ,PC 的中点, 所以BE →=12BA →+12BP →,BF →=12BC →+12BP →, 所以BG →=BD →+DG →=BD →+23DP →=BD →+23(BP →−BD →)=13BD →+23BP →=13BA →+13BC →+23BP →=23(12BA →+12BP →)+23(12BC →+12BP →)=23BE →+23BF →, 故B ,E ,G ,F 四点共面;(2)由正四棱锥的对称性知,V 1=2V E ﹣PBG ,V 2=2V A ﹣PBD , 设点E 到平面PBG 的距离为d 1,点A 到平面PBD 的距离为d 2,由E 是P A 的中点得d 2=2d 1, 由DG →=2GP →得S △PBD =3S △PBG ,所以V 1V 2=V E−PBG V A−PBD=13S △PBG ⋅d 113S △PBD ⋅d 2=16.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值. 解:(1)设M (x ,y ),则Q (x ,0), 因为PQ →=2PM →,则P (x ,2y ), 因为P 在圆C 上,所以x 2+(2y )2=12, 故E 的方程为x 212+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),若A ,B 是E 上两点,则{x 1212+y 123=1x 2212+y 223=1, 两式相减得x 12−x 2212+y 12−y 223=0,即y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2).因为线段AB 的中点坐标为(−85,25),所以y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2)=1,所以k AB =1,则直线AB 的方程为y =x +2.联立方程组{y =x +2x 212+y 23=1,整理得5x 2+16x +4=0,其中Δ>0, 则x 1+x 2=−165,x 1x 2=45, |AB|=√1+12√(x 1+x 2)2−4x 1x 2=4√225. 20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)解:(1)由圆的对称性可知,该圆弧所在圆的圆心在y轴上,由图形可得A(﹣8,0),B(8,0),D(0,4),设该圆的半径为r米,则r2=82+(r﹣4)2,解得r=10,圆心为(0,﹣6),故该圆弧所在圆的方程为x2+(y+6)2=100.(2)设与该种汽车等高且能通过该隧道的最大宽度为d米,则(d2)2+(6+1.6)2=102,解得d=2√42.24.若并排通过4辆该种汽车,则安全通行的宽度为4×2.5+3×0.5=11.5<2√42.24.隧道能并排通过4辆该种汽车;若并排通过5辆该种汽车,则安全通行的宽度为5×2.5+4×0.5=14.5>2√42.24,故该隧道不能并排通过5辆该种汽车.综上所述,该隧道最多可以并排通过4辆该种汽车.21.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,△ABC是边长为2的等边三角形,M,Q分别为AC,A1B1的中点,且MQ⊥AB.(1)证明:MC1⊥AB.(2)若BB1=4,MQ=√15,求平面MB1C1与平面MC1Q夹角的余弦值.(1)证明:因为△A1B1C1是等边三角形,Q为A1B1的中点,所以C1Q⊥A1B1,又AB∥A1B1,所以C1Q⊥AB,因为MQ⊥AB,C1Q∩MQ=Q,所以AB⊥平面MC1Q,又MC1⊂平面C1MQ,所以MC1⊥AB;(2)解:取AB靠近点A的四等分点N,连接MN,NQ,易证得MN∥C1Q,则MN⊥AB,且MN=√32,由BB 1=4,得QN =3√72,因为MQ =√15,所以MQ 2+MN 2=QN 2, 即MQ ⊥MN ,又MQ ⊥AB ,从而MQ ⊥平面ABC ,以M 为坐标原点,MN 所在直线为x 轴,MQ 所在直线为z 轴,建立如图所示的空间直角坐标系,则M (0,0,0),B 1(0,1,√15),C 1(−√3,0,√15), 则MB 1→=(0,1,√15),MC 1→=(−√3,0,√15), 设平面MB 1C 1的法向量为m →=(x ,y ,z ),则有{m →⋅MB 1→=y +√15z =0m →⋅MC 1→=−√3x +√15z =0,令z =1,得m →=(√5,−√15,1),由图可知,n →=(0,1,0)是平面MC 1Q 的一个法向量,设平面MB 1C 1与平面MC 1Q 的夹角为θ,则cosθ=|m →⋅n →||m →||n →|=√1521=√357.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .解:(1)∵F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点,∴{a 2+b 2=10409a2−69b2=1,解得a 2=4,b 2=6,∴E 的方程为x 24−y 26=1.(2)证明:设T (1,m ),由题意得直线l 1的斜率存在且不等于0, 设直线l 的方程为y ﹣m =k (x ﹣1),则直线l 2的方程为y ﹣m =﹣k (x ﹣1), 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立方程组{y −m =k(x −1)x 24−y 26=1,整理得(3﹣2k 2)x 2+(4k 2﹣4km )x ﹣2k 2+4km ﹣2m 2﹣12=0,Δ=(4k 2﹣4km )2﹣(12﹣8k 2)(﹣2k 2+4km ﹣2m 2﹣12)=﹣72k 2﹣48km +24m 2+144>0, 则x 1+x 2=4k 2−4km 2k 2−3,x 1x 2=2k 2−4km+2m 2+122k 2−3,|AT |=√1+k 2|x 1−1|,|BT |=√1+k 2|x 2﹣1|,|CT |=√1+k 2|x 3﹣1|,|DT |=√1+k 2|x 4﹣1|, ∴|AT ||BT |=(1+k 2)|(x 1﹣1)(x 2﹣1)|=(1+k 2)|x 1x 2﹣(x 1+x 2)+1| =(1+k 2)|2k 2−4km+2m 2+122k 2−3−4k 2−4km 2k 2−3+1|=(1+k 2)|2m 2+92k 2−3|,同理,|CT ||DT |=(1+k 2)|2m 2+92k 2−3,∴|AT||DT|=|CT||BT|,∴△ACT ∽△DBT ,∴∠ABD =∠ACD .。
2023-2024学年山东省聊城市高二(上)期中数学试卷【答案版】
2023-2024学年山东省聊城市高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 1.设a ∈R ,则“直线ax +y ﹣1=0与直线x +ay +1=0平行”是“a =1”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.经过两条直线l 1:x +y =2,l 2:2x ﹣y =1的交点,且直线的一个方向向量v →=(−6,4) 的直线方程为( ) A .2x ﹣y ﹣1=0B .2x +y ﹣3=0C .3x ﹣2y ﹣5=0D .2x +3y ﹣5=03.已知SA ⊥平面ABC ,AB ⊥AC ,SA =AB =1,BC =√5,则空间的一个单位正交基底可以为( ) A .{AB →,12AC →,AS →} B .{AB →,AC →,AS →} C .{AB →,12AC →,12AS →} D .{AS →,AB →,√55BC →}4.椭圆x 216+y 24=1和x 236+y 224=1( )A .长轴长相等B .短轴长相等C .焦距相等D .顶点相同5.已知圆M :x 2+y 2﹣2ay =0(a >0)截直线x +y =0所得线段的长度是2√2,则圆M 与圆N :(x ﹣1)2+(y ﹣1)2=1的位置关系是( ) A .内切B .相交C .外切D .相离6.布达佩斯的伊帕姆维泽蒂博物馆收藏的达•芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达•芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.如图3中每个正方体的棱长为1,则点A 到平面QGC 的距离是( )A .14B .12C .√22D .√327.已知圆C :(x ﹣2)2+y 2=64,F (﹣2,0)为圆内一点,将圆折起使得圆周过点F (如图),然后将纸片展开,得到一条折痕l ,这样继续下去将会得到若干折痕,观察这些折痕围成的轮廓是一条圆锥曲线,则该圆锥曲线的方程为( )A .x 216+y 212=1B .x 24+y 2=1C .x 24+y 23=1D .x 216+y 24=18.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,O 是AC 中点,点P 在线段A 1C 1上,若直线OP 与平面A 1BC 1所成的角为θ,则sin θ的取值范围是( )A .[√23,√33] B .[13,12]C .[√34,√33] D .[14,13]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得О分.9.若直线过点A (1,2),且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .x ﹣y +1=0B .x +y ﹣3=0C .2x ﹣y =0D .x ﹣y ﹣1=010.已知点P 在圆C :x 2+y 2﹣4x =0上,直线AB :y =x +2,则( ) A .直线AB 与圆C 相交 B .直线AB 与圆C 相离C .点P 到直线AB 距离最大值为2√2+2D .点P 到直线AB 距离最小值为2√2−111.正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,已知平面α⊥AC 1,则关于α截此正方体所得截面的判断正确的是( )A .截面形状可能为正三角形B .截面形状可能为正方形C .截面形状可能为正六边形D .截面面积最大值为√312.已知椭圆C :x 225+y 29=1,F 1,F 2分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中正确的有( ) A .存在P 使得∠F 1PF 2=π2 B .cos ∠F 1PF 2的最小值为−18C .直线P A 与直线PB 斜率乘积为定值925D .PF 1⊥PF 2,则△F 1PF 2的面积为9三、填空题:本题共4小题,每小题5分,共20分.13.与圆x 2+y 2﹣2x +4y +3=0同圆心,且过点(1,1)的圆的方程是 .14.如图,P A ⊥平面ABCD ,底面ABCD 是正方形,E ,F 分别为PD ,PB 的中点,点G 在线段AP 上,AC 与BD 交于点O ,P A =AB =2,若OG ∥平面EFC ,则AG = .15.点P (﹣2,﹣1)到直线l :(2+λ)x +λy ﹣2﹣λ=0(λ为任意实数)的距离的最大值是 . 16.2023年第19届亚运会在中国浙江杭州举行,杭州有很多圆拱的悬索拱桥,经测得某圆拱索桥(如图)的跨度|AB |=100米,拱高|OP |=10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是 米.(注意:√10≈3.162)四、解答题:本题共6小题,第17题10分,其它每题共70分.解答应写出文字说明、证明过程或 17.(10分)已知直线l :mx ﹣y +1﹣m =0和圆C :x 2+(y ﹣1)=5. (1)求证:对任意实数m ,直线l 和圆C 总有两个不同的交点; (2)设直线l 和圆C 交于A ,B 两点.若|AB|=√17,求l 的倾斜角.18.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,AD =2,P A =BC =1.(1)求直线PC 与平面PBD 所成角的正弦值;(2)求平面P AB 与平面PCD 所成的锐二面角的余弦值.19.(12分)已知圆C :x 2+y 2﹣4x ﹣6y +9=0. (1)过点P (3,5)作圆C 的切线l ,求l 的方程;(2)若圆C 2:x 2+y 2+2x ﹣4y ﹣4=0与圆C 相交于A 、B 两点,求|AB |. 20.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,上顶点为A (0,1). (1)求E 的方程;(2)过点P(0,√3)斜率为k 的直线l 与椭圆E 交于不同的两M 、N ,且MN =8√27,求k 的值. 21.(12分)如图,四棱台ABCD ﹣A 1B 1C 1D 1中,上、下底面均是正方形,且侧面是全等的等腰梯形,AB =2A 1B 1=4,E 、F 分别为DC 、BC 的中点,上下底面中心的连线O 1O 垂直于上下底面,且O 1O 与侧棱所在直线所成的角为45°. (1)求证:BD 1∥平面C 1EF ;(2)线段BF 上是否存在点M ,使得直线A 1M 与平面C 1EF 所成的角的正弦值为3√2222,若存在,求出线段BM 的长;若不存在,请说明理由.22.(12分)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(−√2,0)和F 2(√2,0),Γ的下顶点为A ,直线l :x +y −4√2=0,点M 在l 上. (1)若a =2,线段AM 的中点在x 轴上,求M 的坐标;(2)椭圆Γ上存在一个点P (a cos θ,b sin θ)(θ∈[0,2π]),P 到l 的距离为d ,使|PF 1|+|PF 2|+d =6,当a 变化时,求d 的最小值.2023-2024学年山东省聊城市高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 1.设a ∈R ,则“直线ax +y ﹣1=0与直线x +ay +1=0平行”是“a =1”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件解:若直线ax +y ﹣1=0与直线x +ay +1=0平行,则{a 2−1=0a +1≠0⇒a =1; 若a =1,则直线x +y ﹣1=0与直线x +y +1=0平行,∴直线ax +y ﹣1=0与直线x +ay +1=0平行是a =1的充分必要条件. 故选:B .2.经过两条直线l 1:x +y =2,l 2:2x ﹣y =1的交点,且直线的一个方向向量v →=(−6,4) 的直线方程为( ) A .2x ﹣y ﹣1=0B .2x +y ﹣3=0C .3x ﹣2y ﹣5=0D .2x +3y ﹣5=0解:根据题意,{x +y =22x −y =1,解可得{x =1y =1,即两直线的交点为(1,1),设A (1,1),设直线上任意一点为M ,其坐标为(x ,y ), 直线的一个方向向量v →=(−6,4),则MA →∥v →,则有4(x ﹣1)=﹣6(y ﹣1),即4x +6y ﹣10=0,变形可得2x +3y ﹣5=0, 故要求直线的方程为2x +3y ﹣5=0. 故选:D .3.已知SA ⊥平面ABC ,AB ⊥AC ,SA =AB =1,BC =√5,则空间的一个单位正交基底可以为( )A .{AB →,12AC →,AS →}B .{AB →,AC →,AS →} C .{AB →,12AC →,12AS →}D .{AS →,AB →,√55BC →}解:由于SA ⊥平面ABC , 所以:SA ⊥AB ,SA ⊥AC , 由于AB ⊥AC ,AB =1,BC =√5, 所以AC =2.所以空间的一个单位正交基底可以为{AB →,12AC →,AS →}.故选:A .4.椭圆x 216+y 24=1和x 236+y 224=1( )A .长轴长相等B .短轴长相等C .焦距相等D .顶点相同解:椭圆x 216+y 24=1中a 2=16,b 2=4,故c 2=16﹣4=12,x 236+y 224=1中a 2=36,b 2=24,故c 2=36﹣24=12,故两个椭圆的a ,b 都不相等,而c 相等,故焦距相等. 故选:C .5.已知圆M :x 2+y 2﹣2ay =0(a >0)截直线x +y =0所得线段的长度是2√2,则圆M 与圆N :(x ﹣1)2+(y ﹣1)2=1的位置关系是( ) A .内切B .相交C .外切D .相离解:圆的标准方程为M :x 2+(y ﹣a )2=a 2(a >0), 则圆心为(0,a ),半径R =a , 圆心到直线x +y =0的距离d =a2, ∵圆M :x 2+y 2﹣2ay =0(a >0)截直线x +y =0所得线段的长度是2√2, ∴2√R 2−d 2=2√a 2−a 22=2√a22=2√2,即√a 22=√2,即a 2=4,a =2,则圆心为M (0,2),半径R =2,圆N :(x ﹣1)2+(y ﹣1)2=1的圆心为N (1,1),半径r =1,则MN =√12+12=√2, ∵R +r =3,R ﹣r =1,∴R ﹣r <MN <R +r ,即两个圆相交. 故选:B .6.布达佩斯的伊帕姆维泽蒂博物馆收藏的达•芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达•芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.如图3中每个正方体的棱长为1,则点A 到平面QGC 的距离是( )A .14B .12C .√22D .√32解:建立空间直角坐标系如图,则A (1,1,0),C (0,2,0),G (0,0,2),Q (1,0,2), GQ →=(1,0,0),GC →=(0,2,−2),CA →=(1,−1,0), 设平面QGC 的一个法向量为n →=(x ,y ,z),由{n →⋅GQ →=x =0n →⋅GC →=2y −2z =0,取z =1,得n →=(0,1,1), ∴点A 到平面QGC 的距离是|n →⋅CA →||n →|=√2=√22. 故选:C .7.已知圆C :(x ﹣2)2+y 2=64,F (﹣2,0)为圆内一点,将圆折起使得圆周过点F (如图),然后将纸片展开,得到一条折痕l ,这样继续下去将会得到若干折痕,观察这些折痕围成的轮廓是一条圆锥曲线,则该圆锥曲线的方程为( )A .x 216+y 212=1B .x 24+y 2=1C .x 24+y 23=1D .x 216+y 24=1解:F (﹣2,0),C (2,0),点F 关于折痕l 的对称点A 在圆周上,折痕l 为线段AF 的垂直平分线,折痕l 与AC 相交于点P ,如图所示:则有|P A |=|PF |,可知|PF |+|PC |=|P A |+|PC |=|AC |=8>|FC |=4,所以点P 的轨迹是以F ,C 为左、右焦点的椭圆,其中长轴2a =8,焦距2c =4, 所以点P 的轨迹方程为x 216+y 212=1,即折痕围成轮廓的圆锥曲线的方程为x 216+y 212=1.故选:A .8.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,O 是AC 中点,点P 在线段A 1C 1上,若直线OP 与平面A 1BC 1所成的角为θ,则sin θ的取值范围是( )A .[√23,√33] B .[13,12]C .[√34,√33] D .[14,13]解:设正方体棱长为1,A 1P A 1C 1=λ(0≤λ≤1).以D 为原点,分别以DA ,DC ,DD 1为坐标轴建立空间直角坐标系, 则O (12,12,0),P (1﹣λ,λ,1),∴OP →=(12−λ,λ−12,1),∵易证DB 1⊥平面A 1BC 1,∴DB 1→=(1,1,1)是平面A 1BC 1的一个法向量. ∴sin θ=|cos <OP →,DB 1→>|=1√3√2(λ−12)2+1,当λ=12时sin θ取得最大值√33,当λ=0或1时,sin θ取得最小值√23. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得О分.9.若直线过点A(1,2),且在两坐标轴上截距的绝对值相等,则直线l方程可能为()A.x﹣y+1=0B.x+y﹣3=0C.2x﹣y=0D.x﹣y﹣1=0解:当直线经过原点时,斜率为k=2−01−0=2,所求的直线方程为y=2x,即2x﹣y=0;当直线不过原点时,设所求的直线方程为x±y=k,把点A(1,2)代入可得1﹣2=k,或1+2=k,求得k=﹣1,或k=3,故所求的直线方程为x﹣y+1=0,或x+y﹣3=0;综上知,所求的直线方程为2x﹣y=0、x﹣y+1=0,或x+y﹣3=0.故选:ABC.10.已知点P在圆C:x2+y2﹣4x=0上,直线AB:y=x+2,则()A.直线AB与圆C相交B.直线AB与圆C相离C.点P到直线AB距离最大值为2√2+2D.点P到直线AB距离最小值为2√2−1解:圆C:x2+y2﹣4x=0,即(x﹣2)2+y2=4,圆心为C(2,0),半径r=2,则圆心C到直线AB的距离d=|2+2−0|√1+(−1)2=2√2>r,所以直线AB与圆C相离,又点P在圆C上,所以点P到直线AB距离最大值为2√2+2,点P到直线AB距离最小值为2√2−2,故正确的有B、C.故选:BC.11.正方体ABCD﹣A1B1C1D1的棱长为1,已知平面α⊥AC1,则关于α截此正方体所得截面的判断正确的是()A.截面形状可能为正三角形B.截面形状可能为正方形C.截面形状可能为正六边形D.截面面积最大值为√3解:如图所示,当截面为B 1CD 1时,截面为正三角形,选项A 正确;当截面过棱A 1B 1,B 1B ,BC ,CD ,DD 1,D 1A 1的中点时,截面为正六边形,选项C 正确; 当截面为正六边形时,面积最大,因为MN =√2,GH =√22,OE =√(12)2+(√24)2=√64, 所以S =2×12×(√22+√2)×√64=3√34,选项D 错误; 与AC 1垂直的截面不可能是正方形,选项B 错误. 故选:AC .12.已知椭圆C :x 225+y 29=1,F 1,F 2分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中正确的有( ) A .存在P 使得∠F 1PF 2=π2B .cos ∠F 1PF 2的最小值为−18C .直线P A 与直线PB 斜率乘积为定值925D .PF 1⊥PF 2,则△F 1PF 2的面积为9解:由椭圆的方程可得a =5,b =3,所以c =4,由题意可得A (﹣5,0),B (5,0),F 1(﹣4,0),F 2(4,0),设上顶点为D (0,3),A 中,DF 1→•DF 2→=(﹣4,﹣3)•(4,﹣3)=﹣16+9=﹣7<0,所以∠F 1PF 2的最大角为钝角, 所以存在P 使得∠F 1PF 2为直角,所以A 正确;B 中,设|PF 1|=m ,|PF 2|=n ,由椭圆的定义可得m +n =2a =10,cos ∠F 1PF 2=m 2+n 2−(2c)22mn =(m+n)2−2mn−642mn =36−2mn 2mn =18mn−1, 因为mn ≤(m+n 2)2=25,当且仅当m =n 时取等号,所以cos ∠F 1PF 2≥1825−1=−725,即cos ∠F 1PF 2的最小值为−725,所以B 不正确; C 中,设P (x 0,y 0),则x 0225+y 029=1,所以y 02=9(1−x 0225),可得k P A •k PB =y 0x 0+5•y 0x 0−5=y 02x 02−25=9(1−x 0225)x 02−25=−925,所以C 不正确;D 中,PF 1⊥PF 2,由B 选项及由勾股定理可得:m 2+n 2=(2c )2=64,即(m +n )2﹣2mn =64, 即2mn =100﹣64=36,所以mn =18,所以S △F 1PF 2=12mn =9,所以D 正确. 故选:AD .三、填空题:本题共4小题,每小题5分,共20分.13.与圆x 2+y 2﹣2x +4y +3=0同圆心,且过点(1,1)的圆的方程是: (x ﹣1)2+(y +2)2=9 . 解:圆x 2+y 2﹣2x +4y +3=0的标准方程为(x ﹣1)2+(y +2)2=2, 则圆心C (1,﹣2), ∵圆过点A (1,1), ∴半径R =|AC |=3,则圆的标准方程为(x ﹣1)2+(y +2)2=9. 故答案为:(x ﹣1)2+(y +2)2=9.14.如图,P A ⊥平面ABCD ,底面ABCD 是正方形,E ,F 分别为PD ,PB 的中点,点G 在线段AP 上,AC 与BD 交于点O ,P A =AB =2,若OG ∥平面EFC ,则AG =23.解:由题意建立如图所示的空间直角坐标系, A (0,0,0),因为P A =AB =2,C (2,2,0),B (2,0,0),D (0,2,0),P (0,0,2),O (1,1,0),因为E ,F 分别是PD ,PB 中点,设G (0,0,b ),设平面EFC 的法向量为n →=(x ,y ,z ), 因为OG ∥平面EFC ,所以OG →•n →=0,OG →=(﹣1,﹣1,b ), 所以E (0,1,1),F (1,0,1),则EF →=(1,﹣1,0), CE →=(﹣2,﹣1,1),则{n →⋅EF →=0n →⋅CE →=0,即{x −y =0−2x −y +z =0,令x =1,则y =1,z =3,所以n →=(1,1,3), 所以OG →•n →=−1﹣1+3b =0,解得b =23, 所以AG =b =23. 故答案为:23.15.点P (﹣2,﹣1)到直线l :(2+λ)x +λy ﹣2﹣λ=0(λ为任意实数)的距离的最大值是 √10 . 解:直线l :(2+λ)x +λy ﹣2﹣λ=0(λ为任意实数), 整理得:λ(x +y ﹣1)+(2x ﹣2)=0, 故{x +y −1=02x −2=0,解得{x =1y =0,故直线l 恒过点Q (1,0),故点P (﹣2,﹣1)到直线l 的最大距离d =√(−2−1)2+(−1−0)2=√10. 故答案为:√10.16.2023年第19届亚运会在中国浙江杭州举行,杭州有很多圆拱的悬索拱桥,经测得某圆拱索桥(如图)的跨度|AB |=100米,拱高|OP |=10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是 6.48 米.(注意:√10≈3.162)解:以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系, 设圆心坐标(0,a ),P (0,10),A (﹣50,0), 则圆拱所在圆的方程为x 2+(y ﹣a )2=r 2,所以{(10−a)2=r 2(−50)2+a 2=r 2,解得a =﹣120,r 2=16900, 所以圆的方程为x 2+(y +120)2=16900.将x =﹣30代入圆方程,得:900+(y +120)2=16900, 因为y >0,所以y =40√10−120≈40×3.162﹣120=6.48, 所以MN 的高度是6.48米. 故答案为:6.48.四、解答题:本题共6小题,第17题10分,其它每题共70分.解答应写出文字说明、证明过程或 17.(10分)已知直线l :mx ﹣y +1﹣m =0和圆C :x 2+(y ﹣1)=5. (1)求证:对任意实数m ,直线l 和圆C 总有两个不同的交点; (2)设直线l 和圆C 交于A ,B 两点.若|AB|=√17,求l 的倾斜角.(1)证明:由直线l :mx ﹣y +1﹣m =0,得m (x ﹣1)﹣y +1=0,由{x −1=0−y +1=0,得{x =1y =1,∴直线l :mx ﹣y +1﹣m =0过定点p (1,1),代入圆C :x 2+(y ﹣1)2=5,得12+(1﹣1)2=1<5,∴点p (1,1)在圆C :x 2+(y ﹣1)2=5内部, ∴对任意的m ,直线l 与圆C 总有两个不同的交点.(2)解:直线l 的斜率存在,由|AB|=√17,圆的半径为√5,得圆心到直线l :mx ﹣y +1﹣m =0的距离为√5−174=√32. 则√m 2+1=√32,解得:m =±√3.∴直线l 为y =√3x +1−√3或y =−√3x +1−√3.直线l 的倾斜角为60°或120°.18.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,AD =2,P A =BC =1. (1)求直线PC 与平面PBD 所成角的正弦值;(2)求平面P AB 与平面PCD 所成的锐二面角的余弦值.解:(1)∵P A ⊥面ABCD ,∴P A ⊥AB ,P A ⊥AD ,又∠BAD =90°, ∴AB ⊥AD ,∵为PB 与底面所成的角为45°, ∴∠PBA =45°,故AB =P A =1,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系O ﹣xyz , 则B (1,0,0),D (0,2,0),P (0,0,1),C (1,1,0), 则PC →=(1,1,﹣1),PB →=(1,0,﹣1),PD →=(0,2,﹣1), 设平面PBD 的一个法向量为m →=(x ,y ,z ),则{m →⋅PB →=0m →⋅PD →=0,即{x −z =02y −z =0,取z =2,则x =2,y =1,此时m →=(2,1,2), 设直线PC 与平面PBD 所成的角为θ, 则sin θ=|cos <m →,PC →>|=|m →⋅PC→|PC →||m →|||√3×3|√39. 所以直线PC 与平面PBD 所成角的正弦值为√39. (2)平面P AB 的一个法向量j →=(0,1,0) 设平面PCD 的一个法向量为n →=(x ,y ,z ), 则{n →⋅PC →=0n →⋅PD →=0,即{x +y −z =02y −z =0, 取y =l ,则z =2,x =l ,此时n →=(1,1,2), cos <n →,j →>=n →⋅j→|n →||j →|=6×1=√66, 所以平面P AB 与平面PCD 所成的锐二面角的余弦值为√66.19.(12分)已知圆C :x 2+y 2﹣4x ﹣6y +9=0. (1)过点P (3,5)作圆C 的切线l ,求l 的方程;(2)若圆C 2:x 2+y 2+2x ﹣4y ﹣4=0与圆C 相交于A 、B 两点,求|AB |.解:(1)圆C 1方程可化为(x ﹣2)2+(y ﹣3)=4,则圆心C 1(2,3),半径为2, 由 (3﹣2)2+(5﹣3)2>4,可知点P 在圆外, 设l 的方程为y ﹣5=k (x ﹣3),即kx ﹣y +5﹣3k =0, 则圆心C 1到直线l 的距离为√1+k 2=2,解得k =0或k =−43,∴l 的方程为4x +3y ﹣27=0或y =5.(2)把两圆的方程相减可得直线AB 的方程为6x +2y ﹣13=0, 则圆心C 到直线AB 的距离d =|6×2+2×3−13|√36+4=√104<2,直线与圆相交,所以|AB |=2√4−1016=3√62. 20.(12分)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为√22,上顶点为A (0,1).(1)求E 的方程;(2)过点P(0,√3)斜率为k 的直线l 与椭圆E 交于不同的两M 、N ,且MN =8√27,求k 的值. 解:(1)由离心率e =c a =√22,则a =√2c , 又上顶点A (0,1),知b =1,又b 2=a 2﹣c 2=1,可知c =1,a =√2, ∴椭圆E 的方程为x 22+y 2=1;(2)设直线l :y =kx +√3,设M (x 1,y 1),N (x 2,y 2), 则{y =kx +√3x 22+y 2=1,整理得:(1+2k 2)x 2+4√3kx +4=0,Δ=(4√3k)2−4×4×(1+2k 2)>0,即k 2>1, ∴x 1+x 2=−4√3k 1+2k2,x 1x 2=41+2k2,∴|MN|=√1+k 2|x 1−x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2=4√(1+k 2)(k 2−1)1+2k2=8√27, 即17k 4﹣32k 2﹣57=0,解得:k 2=3或−1917(舍去), ∴k =±√3.21.(12分)如图,四棱台ABCD ﹣A 1B 1C 1D 1中,上、下底面均是正方形,且侧面是全等的等腰梯形,AB =2A 1B 1=4,E 、F 分别为DC 、BC 的中点,上下底面中心的连线O 1O 垂直于上下底面,且O 1O 与侧棱所在直线所成的角为45°. (1)求证:BD 1∥平面C 1EF ;(2)线段BF 上是否存在点M ,使得直线A 1M 与平面C 1EF 所成的角的正弦值为3√2222,若存在,求出线段BM 的长;若不存在,请说明理由.解:(1)证明:因为OO 1⊥平面ABCD ,以点O 为坐标原点,DA ,OF →,OO 1→的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系.因为侧棱所在直线与上下底面中心的连线OO 1所成的角为45°,则B (2,2,0),D 1(−1,−1,√2),C 1(−1,1,√2),F (0,2,0),E (﹣2,0,0),A 1(1,−1,√2),所以BD 1→=(−3,−3,√2),CE 1→=(−1,−1,√2),EF →=(2,2,0), 设平面C 1EF 的一个法向量为n →=(x ,y ,z ),则{n →⋅EF →=x +y =0n →⋅C 1E →=x +y +√2z =0,令x =1,则n →=(1,﹣1,0), 因为BD 1→=(﹣3,﹣3,√2),所以n →•BD 1→=0,所以n →⊥BD 1→, 又因为BD 1⊂平面C 1EF ,所以BD 1∥平面 C 1EF ;(2)假设边BC 上存在点M (x ,2,0)满足条件,x ∈[﹣2,2], 则A 1M →=(x ﹣1,3,−√2),设直线A 1M 与平面C 1EFF 所成角为θ,由题意可得sin θ=|cos <A 1M →,n →>|=|A 1M →⋅n →||A 1M →|⋅|n →|=|x−4|√2⋅√x 2−2x+12=3√2222, 化简得x 2﹣35x +34=0,则x =1或x =34(舍去),即存在点M 符合题意,此时BM =1. 22.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(−√2,0)和F 2(√2,0),Γ的下顶点为A ,直线l :x +y −4√2=0,点M 在l 上. (1)若a =2,线段AM 的中点在x 轴上,求M 的坐标;(2)椭圆Γ上存在一个点P (a cos θ,b sin θ)(θ∈[0,2π]),P 到l 的距离为d ,使|PF 1|+|PF 2|+d =6,当a 变化时,求d 的最小值.解:(1)由题意可得a =2,b =c =√2,所以Γ:x 24+y 22=1,A(0,−√2),因为AM 的中点在x 轴上, 所以点M 的纵坐标为√2, 将y =√2代入x +y −4√2=0中, 解得x =3√2, 则M(3√2,√2); (2)易知d =|acosθ+bsinθ−42|2=6−2a ,因为椭圆在直线的左下方, 所以acosθ+bsinθ−422=6−2a ,即4√2−√a 2+b 2sin(θ+φ)=6√2−2√2a , 又a 2=b 2+2,可得√2a 2−2sin(θ+φ)=2√2a −2√2, 此时√a 2−1sin(θ+φ)=2a −2,|sin(θ+φ)|=√a 2−1≤1,整理得(a ﹣1)(3a ﹣5)≤0, 即1≤a ≤53,所以d =6−2a ≥6−2×53=83. 故d 的最小值为83.。
高二(上学期)期中考试数学试卷及答案
高二(上学期)期中考试数学试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.一直线过点(0,3),(3,0)-,则此直线的倾斜角为( )A .45°B .135°C .-45°D .-135°2.已知{}n a 是公差为d 的等差数列,n S 为其前n 项和.若3133S a =+,则d =( )A .2-B .1-C .1D .23.已知ABC 的顶点B ,C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC 的周长是( )A .B .6C .4D .4.设a R ∈,若直线10ax y +-=与直线10x ay ++=平行,则a 的值是( )A .1B .1,1-C .0D .0,15.已知直线:sin cos 1l x a y a -=,其中a 为常数且[0,2)a π∈.有以下结论:①直线l 的倾斜角为a ;①无论a 为何值,直线l 总与一定圆相切;①若直线l 与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;①若(,)p x y 是直线l 上的任意一点,则221x y +≥.其中正确结论的个数为( )A .1B .2C .3D .46.已知双曲线2222:1(0,0)x y C a b a b -=>>满足b a =,且与椭圆221123x y +=有公共焦点,则双曲线C 的方程为( )A .22145x y -= B .221810x y -= C .22154x y -= D .22143x y -= 7.在平面直角坐标系xoy 中,已知点()3,1P -在圆222:22150C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若ABC 的面积的最大值为8,则实数m 的取值范围是( )A .(3-+B .[]1,5C .][(35,3-⋃+D .][(),15,∞∞-⋃+8.已知A ,B 为圆22:2430C x y x y +--+=上的两个动点,P 为弦AB 的中点,若90ACB ∠=︒,则点P 的轨迹方程为()A .221(1)(2)4x y -+-=B .22(1)(2)1x y -+-=C .221(1)(2)4x y +++=D .22(1)(2)1x y +++=二、多选题9.已知直线30ax y a -+-=在两坐标轴上的截距相等,则实数=a ( )A .1B .1-C .3D .3-10.设抛物线24y x =,F 为其焦点,P 为抛物线上一点.则下列结论正确的是( )A .若()1,2P ,则2PF =B .若P 点到焦点的距离为3,则P 的坐标为(2,.C .若()2,3A ,则PA PF +D .过焦点F 做斜率为2的直线与抛物线相交于A ,B 两点,则6AB =11.如图,椭圆221:13+=x C y 和222:13y C x +=的交点依次为,,,.A B C D 则下列说法正确的是( )A .四边形ABCD 为正方形B .阴影部分的面积大于3.C .阴影部分的面积小于4.D .四边形ABCD 的外接圆方程为222x y +=12.已知圆222:22(1)2230()C x y mx m y m m m R ++-+++-=∈上存在两个点到点(0,1)A -的距离为4,则m 的可能的值为A .1B .1-C .3-D .5-三、填空题13.设()1,0F c -,()2,0F c 分别为椭圆()222210x y a b a b +=>>的左,右焦点,若直线22a x c=上存在点P ,使22PF c =,则椭圆离心率的取值范围为______.14.已知在数列{}n a 中,12a =,111n na a +=-,*n N ∈,则2021a =________.15.已知焦点为1F ,2F 的双曲线C P 为C 上一点,且满足2123PF PF =,若12PF F △的面积为C 的实轴长为________四、双空题16.抛物线2:2C y x =的焦点坐标是______;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=______.五、解答题17.已知{n a }为等差数列,Sn 为其前n 项和,若1356,0a a a =+=.(1)求数列{n a }的通项公式;(2)求Sn .18.已知A (4, 9), B (6, 3)两点,求以线段AB 为直径的圆的方程.19.已知直线10:4l mx y ++=和直线()()2:2100,0l m x ny m n +-+=>>互相垂直,求m n 的取值范围. 20.已知①ABC 的顶点A (-1,5),B (-1,-1),C (3,7).(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AM 所在直线的方程;(3)求①ABC 的面积.21.已知抛物线2:2(0)C y px p =>的焦点为F ,点M 在抛物线C 上,且M 点的纵坐标为4,52p MF =.(1)求抛物线C 的方程;(2)过点(0,4)Q -作直线交抛物线C 于,A B 两点,试问抛物线C 上是否存在定点N 使得直线NA 与NB 的斜率互为倒数?若存在求出点N 的坐标,若不存在说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,以椭圆C 的四个顶点为顶点的四边形面积为 (1)求椭圆C 的方程;(2)若椭圆C 的左顶点为A ,右焦点是F .点P 是椭圆C 上的点(异于左、右顶点),M 为线段PA 的中点,过M 作直线PF 的平行线l .延长PF 交椭圆C 于Q ,连接AQ 交直线l 于点B .①求证:直线l 过定点.①是否存在定点1D 、2D ,使得12BD BD +为定值,若存在,求出1D 、2D 的坐标;若不存在说明理由.参考答案:1.A【分析】根据斜率公式求得直线的斜率,得到tan 1α=,即可求解.【详解】设直线的倾斜角为α, 由斜率公式,可得03130k -==--,即tan 1α=, 因为0180α≤<,所以45α=,即此直线的倾斜角为45.故选:A.2.C【解析】根据{}n a 是公差为d 的等差数列,且3133S a =+,利用等差数列的前n 项和公式求解.【详解】因为{}n a 是公差为d 的等差数列,且3133S a =+,所以113333a d a +=+,解得1d =,故选:C3.D【分析】先由椭圆方程求出a =.【详解】由椭圆2213x y +=,得:a =由题意可得ABC 的周长为:221224AC CF F B BF a a a +++=+==.故选:D.4.A【分析】根据两直线平行则两直线斜率相等截距不相等可得答案.【详解】0a =时,两直线为10y -=、直线10x +=,显然不平行;所以0a ≠,两直线为1y ax =-+,1(1)=-+y x a, 所以1a a -=-,且11a -≠, 解得1a =.故选:A.5.C【分析】根据直线的性质及直线与圆的关系对选项一一判断即可.【详解】对于①,直线l 的倾斜角的取值范围为[0,)π,与角a 的不同,故①错误;对于①,(0,0)1=,则无论a 为何值,直线l 总与221x y +=相切,故①正确;对于①,若直线l 与两坐标轴都相交,则截距分别为1sin a ,1cos a -,则与两坐标轴围成的三角形的面积为111112sin cos sin 2a a a⋅=≥,故①正确; 对于①,由①知直线l 总与221x y +=相切,则直线l 上的点到原点的距离大于等于1,即221x y +≥,故①正确;综上所述,①①①共3个正确;故选:C6.A【分析】根据题意,结合椭圆与双曲线的几何性质,列出方程,求得,a b 的值,即可求解. 【详解】由椭圆的标准方程为221123x y +=,可得21239c =-=,即3c =, 因为双曲线C 的焦点与椭圆221123x y +=的焦点相同,所以双曲线C 中,半焦距3c =,又因为双曲线2222:1(0,0)x y C a b a b -=>>满足b a =,即b =,又由222+=a b c ,即229a ⎫⎪⎪⎝⎭+=,解得24a =,可得25b =, 所以双曲线C 的方程为22145x y -=. 故选:A .7.C【分析】由题知圆心为(),1,4C m r =,进而根据三角形面积公式得ABC 面积最大时,AB =,圆心C 到直线AB 的距离为4PC ≤<即可得答案.【详解】解:圆222:22150C x y mx y m +--+-=,即圆()()22:116C x m y -+-=,即圆心为(),1,4C m r =, 所以ABC 的面积为21sin 8sin 82ABC S r ACB ACB =∠=∠≤△,当且仅当2ACB π∠=,此时ABC 为等腰直角三角形,AB =C 到直线AB 的距离为= 因为点()3,1P -在圆222:22150C x y mx y m +--+-=内,所以4PC ≤<,即4<,所以,28(3)416m ≤-+<,解得31m -≤或53m ≤<+所以,实数m 的取值范围是][(35,3-⋃+故选:C8.B【分析】在直角三角形中利用几何关系即可获解【详解】圆C 即22(1)(2)2x y -+-=,半径r =因为CA CB ⊥,所以2AB ==又P 是AB 的中点,所以112CP AB == 所以点P 的轨迹方程为22(1)(2)1x y -+-=故选:B9.BC【分析】显然0a ≠,再分30a -=与30a -≠两种情况讨论,若30a -≠,求得直线在,x y 轴上的截距,即可得到方程,解得即可;【详解】解:依题意可知0a ≠,所以当30a -=,即3a =时,直线30ax y a -+-=化为30x y -=,此时直线在两坐标轴上的截距都为0,满足题意;当30a -≠,即3a ≠时,直线30ax y a -+-=在x 轴上的截距为3a a-,在y 轴上的截距为3a -,故33a a a -=-,解得1a =-; 综上所述,实数3a =或1a =-.故选:BC10.AC【分析】由抛物线的性质依次计算各选项所求,即可得出结果.【详解】抛物线24y x =,()1,0F .对于A ,()1,2P ,2PF ,A 正确;对于B ,设(,P x ±,()22143x x -+=,2x =,P 的坐标为(2,±.B 错误;对于C,()min PA PF AF +==正确;对于D ,直线:22l y x =-,联立24y x =,得:2310x x -+=,3A B x x +=,2=5B A x x AB ++=,D 错误. 故选:AC.11.ABC【分析】根据曲线的对称性,可判定A 正确;联立方程组求得A 的坐标,求得ABCD 的面积为13S =,可判定B 正确;由直线1,1x y =±=±围成的正方形的面积可判定C 正确;由232OA =,得出圆的方程,可判定D 错误.【详解】由题意,椭圆221:13+=x C y 和222:13y C x +=,根据曲线的对称性, 可得四边形ABCD 为正方形,选项A 正确;联立方程组,求得A ,所以正方形ABCD 的面积为13S =, 所以阴影部分的面积大于3,选项B 正确:由直线1,1x y =±=±围成的正方形的面积为2=4S ,所以阴影部分的面积小于4,选项C 正确;由232OA =,所以四边形ABCD 的外接圆方程为2232x y +=,选项D 错误. 故选:ABC .12.ACD【解析】根据题意,圆()()222:12C x m y m ++-+=⎡⎤⎣⎦与圆()222:14A x y ++=相交,再由两圆圆心距大于两圆半径之差,小于两圆半径之和,列出不等式,解得即可.【详解】由题知,圆()()222:12C x m y m ++-+=⎡⎤⎣⎦与圆()222:14A x y ++=相交,所以,4242CA -<<+,即26,解得()()1,20,171m ∈--,即m 的值可以为:1或3-或5-.故选:ACD.【点睛】本题体现了转化的数学思想,解题的关键在于将问题转化为两圆相交,属于基础题. 13.0e <≤【分析】由题设易知222||a PF c c≥-,结合椭圆离心率的性质即可得离心率的取值范围. 【详解】由题设,222||2a PF c c c=≥-,则22223c e a =≤,而01e <<,所以0e <≤故答案为:0e <≤14.12##0.5 【分析】由递推关系依次求出数列的前几项,归纳出周期后可得结论.【详解】由题意12a =,211122a =-=,311112a =-=-,41121a =-=-, 所以数列{}n a 是周期数列,周期为3,所以202136732212a a a ⨯+===. 故答案为:12.15【分析】由2123PF PF =和双曲线定义可得12,46a PF a PF ==,再结合余弦定理和c e a ==122cos 3F PF ∠=,利用面积公式1212121||||sin 2PF F S PF PF F PF =∠=a =. 【详解】由题意,221123PF PF PF PF ∴=> 由双曲线定义可知,122PF PF a -=21,46a PF a PF ==∴222222221212122212||||||36164524cos 2||||4848PF PF F F a a c a c F PF PF PF a a +-+--∴∠===又122cos 3c e c F PF a ===∴∠=又1212(0,)sin F PF F PF π∠∈∴∠=122121211||||sin 2422PF F S PF PF F PF a =∠=⨯=221,a ∴=又0a a >∴=故双曲线C16. ()1,0##0.5,02⎛⎫ ⎪⎝⎭; 9. 【分析】由抛物线的解析式可知22p =,即可得出焦点坐标为1,02F ⎛⎫ ⎪⎝⎭;过A 、B 、P 作准线的垂线且分别交准线于点M 、N 、K ,根据抛物线的定义可知AM BN AF BF +=+,由梯形的中位线的性质得出()1942212AM BN PK +==+=,进而可求出AF BF +的结果. 【详解】解:由抛物线2:2C y x =,可知22p =,则122p =, 所以抛物线2:2C y x =的焦点坐标为1,02F ⎛⎫ ⎪⎝⎭, 如图,过点A 作AM 垂直于准线交准线于M ,过点B 作BN 垂直于准线交准线于N ,过点P 作PK 垂直于准线交准线于K ,由抛物线的定义可得AM BN AF BF +=+,再根据()4,1P 为线段AB 的中点,而四边形AMNB 为梯形, 由梯形的中位线可知()1942212AM BN PK +==+=, 则9AM BN +=,所以9AF BF +=. 故答案为:1,02⎛⎫ ⎪⎝⎭;9. 17.(1)an =8﹣2n ;(2)27n S n n =-+.【分析】(1)应用等差数列通项公式求基本量,进而写出通项公式; (2)由等差数列前n 项和公式求Sn . (1)设等差数列{an }的公差为d ,由a 1=6,a 3+a 5=0,则6+2d +6+4d =0,解得d =﹣2, 因此an =a 1+(n ﹣1)d =8﹣2n , 所以{an }的通项公式为an =8﹣2n . (2)由题意知:()21172n n n S na d n n -=+=-+,18.(x -5)2+(y -6)2=10【分析】根据题意,求得圆心和半径,即可直接写出圆的标准方程.【详解】因为线段AB 为直径,所以线段AB 的中点C 为该圆的圆心,即C (5, 6).又因为AB ,所以所求圆的半径r =2AB, 因此,所求圆的标准方程为(x -5)2+(y -6)2=10. 19.10,2⎛⎫ ⎪⎝⎭【分析】通过两直线垂直的充要条件得到22n m m =+,然后两边同时除以m ,使用不等式即可解决. 【详解】因为12l l ⊥,所以()()210m m n ++⨯-=,所以22n m m =+,因为0m >,所以2221m m m m n m +==+. 因为0m >,所以22m +>,所以11022m <<+,故m n 的取值范围为10,2⎛⎫ ⎪⎝⎭. 20.(1)x +2y -9=0 (2)4y x =-+ (3)12【分析】(1)求得BC k ,根据垂直关系可得12AD k =-,再根据点斜式求解高AD 所在直线的方程即可;(2)根据中点坐标公式,结合两点式方程求解即可;(3)根据两点式方程可得边BC 所在直线的方程,再根据点到线的距离公式可得点A 到直线BC 的距离,进而根据三角形的面积公式求解即可. (1) 因为7(1)23(1)BC k --==--,所以12AD k =-,从而边BC 上的高AD 所在直线的方程为()1512y x -=-+,即x +2y -9=0(2)因为M 是BC 的中点,所以M (1,3),从而边BC 上的中线AM 所在直线的方程为315311y x --=---,即4y x =-+ (3)由题意知,边BC 所在直线的方程为()()()()117131y x ----=----,即210,x y BC -+==所以点A 到直线BC 的距离h ==ABC 的面积1122BC h =⋅=.21.(1)24y x =(2)存在,()44,【分析】(1)利用抛物线的焦半径公式求得点M 的横坐标,进而求得p,可得答案;(2)根据题意可设直线方程,和抛物线方程联立,得到根与系数的关系式,利用直线NA 与NB 的斜率互为倒数列出等式,化简可得结论. (1)(1)0(,4)M x 设 则05||22p pMF x =+=, 02x p ∴=, 2416p ∴=,0,2p p >∴=,故C 的方程为:24y x = ;(2)假设存在定点N ,使得直线NA 与NB 的斜率互为倒数, 由题意可知,直线AB 的斜率存在,且不为零,(4)AB x m y =+设的方程为,2011220(,),(,),(,)4y A x y B x y N y ,()244x m y y x ⎧=+⎨=⎩由, 24160y my m --=得,所以{Δ>0y 1+y 2=4m y 1y 2=−16m , 即4m <- 或0m > ,01020102222222000012010212441444444NA NB y y y y y y y y k k y y y y y y y y y y x x ----∴⋅=⋅=⋅=⋅=++---- 2001212()16y y y y y y ∴+++=,200(416)160y m y ∴-+-=恒成立,则024160160y y -=⎧⎨-=⎩ ,04y ∴=, (4,4),N ∴存在定点使得直线NA 与NB 的斜率互为倒数. 22.(1)2211612x y +=;(2)(i )证明见解析;(ii )存在,且()13,0D -、()21,0D -.【分析】(1)根据已知条件得出关于a 、b 、c 的方程组,解出这三个量的值,可得出椭圆C 的方程; (2)(i )分析可知直线PQ 不与x 轴重合,设设直线PQ 的方程为2x my =+,设点()00,P x y 、()11,Q x y ,写出点M 的坐标,化简直线l 的方程,即可得出直线l 所过定点的坐标;(ii )点(),B x y ,写出点B 的坐标,利用相关点法求出点B 的轨迹方程,可知点B 的轨迹为椭圆,求出椭圆的两个焦点坐标,结合椭圆的定义可得出结论. (1)解:由题意可得222121222c a a b a b c ⎧=⎪⎪⎪⋅⋅=⎨⎪=+⎪⎪⎩42a b c =⎧⎪=⎨⎪=⎩ 因此,椭圆C 的方程为2211612x y +=. (2)解:(i )易知点()2,0F 、()4,0A -,若PQ 与x 轴重合,则P 或Q 与点A 重合,不合乎题意,设直线PQ 的方程为2x my =+,设点()00,P x y 、()11,Q x y ,点M 的坐标为004,22x y -⎛⎫⎪⎝⎭,直线MB 的方程为00422x y x m y -⎛⎫-=- ⎪⎝⎭且002x my =+, 所以,直线l 的方程为1x my =-,因此,直线l 过定点()1,0-. (ii )因为B 为AQ 的中点,则114,22x y B -⎛⎫ ⎪⎝⎭,且有221111612x y +=, 设点(),B x y ,则11422x x y y -⎧=⎪⎪⎨⎪=⎪⎩,可得11242x x y y =+⎧⎨=⎩, 所以,()()2224211612x y ++=,即()222143x y ++=,即点B 的轨迹方程为()222143x y ++=,因为椭圆22143x y +=的两个焦点坐标分别为()1,0-、()1,0, 椭圆()222143x y ++=可由椭圆22143x y +=向左平移2个单位得到, 故椭圆()222143x y ++=的两个焦点坐标别为()3,0-、()1,0-, 故存在定点()13,0D -、()21,0D -使得124BD BD +=为定值. 【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明; (2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点; (3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.。
2023-2024学年浙江省金华市一中高二上学期期中数学试题及答案
金华一中2023学年第一学期期中考试高二数学一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 过点()0,2-且与直线230x y +-=垂直的直线方程为( )A. 220x y -+=B. 220x y ++=C. 220x y --= D. 220x y +-=2. 已知数列{}n a ,21a =,*12,n n a a n n ++=∈N ,则13a a +的值为 A. 4B. 5C. 6D. 83. 若椭圆短轴的两个端点与一个焦点构成一个正三角形,则该椭圆的离心率为( )A.12B.C.D.4. “点()()1,2,5,6A B -到直线:10l ax y ++=的距离相等”是“2a =-”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 若圆224x y +=上恰有三个点到直线:l y x a =+的距离等于1,则a 的值为( )A. 2±B.C. ±D. 6. 已知数列{}n a 是公差不为0的无穷等差数列,n S 是其前n 项和,若n S 存在最大值,则( )A. 在3202321,,,,232023S S S S ⋅⋅⋅中最大的数是1S B. 在3202321,,,,232023SS S S ⋅⋅⋅中最大数是20232023S C. 在1232023,,,,S S S S ⋅⋅⋅中最大的数是1S D. 在1232023,,,,S S S S ⋅⋅⋅中最大的数是2023S 7. 设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D.若D 到直线BC的距离小于a 近线斜率的取值范围是 ( )的A. (1,0)(0,1)-B. (,1)(1,)-∞-+∞C. (⋃D(,)-∞+∞ 8. 在棱长为1的正方体1111ABCD A B C D -中,E 为线段1B C 的中点,F 是棱11C D 上的动点,若点P 为线段1BD 上的动点,则PE PF +的最小值为( )A.B.C.D.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 已知双曲线22:13x C y -=,则下列结论正确的是( )A. 双曲线CB. 双曲线C 的焦距为4C. 双曲线C 的虚轴长为1D. 双曲线C的渐近线方程为x =10. 已知直线:10l ax y ++=,则下列说法正确的是( )A. 直线l 过定点()0,1-B. 直线l 与直线10x ay --=不可能垂直C. 若点()0,1A 与点(),0Bb 关于直线l 对称,则实数a的值为D. 直线l 被圆22280x y y +--=11. 已知抛物线()2:20C y px p =>上存在一点()2,E t 到其焦点的距离为3,点P 为直线2x =-上一.点,过点P 作抛物线C 的两条切线,切点分别为,,A B O 为坐标原点.则( )A. 抛物线的方程为24y x = B. 直线AB 一定过抛物线的焦点C. 线段AB 长最小值为 D. OP AB⊥12. 在正方体1111ABCD A B C D -中,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则下列说法正确的是( )A 当λμ=时,1A P ∥平面1ACD B. 当1μ=时,三棱锥1P A BC -的体积为定值C. 当1λ=时,△PBD 的面积为定值D. 当1λμ+=时,直线1A D 与1D P 所成角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦三、填空题(本大题共4小题,每小题5分,共20分.)13. 已知等差数列{}n a 满足25815a a a ++=,则5a =______.14. 已知12,F F 是椭圆22142x y +=的两个焦点,点P 在该椭圆上,若122PF PF -=,则12PF F △的面积是______.15. 已知球O 是直三棱柱111ABC A B C -的内切球(点O 到直三棱柱111ABC A B C -各面的距离都相等),若球O 的表面积为16π,ABC 的周长为4,则三棱锥1A ABC -的体积为______.16. 设经过抛物线28y x =焦点F 且斜率为1的直线l ,与抛物线交于,A B 两点,抛物线准线与x 轴交于C 点,则cos ACB ∠=______.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知动圆C :()()()22220x m y m m m -+-=>.(1)当2m =时,求经过原点且与圆C 相切的直线l 的方程;(2)若圆C 与圆E :()22316x y -+=内切,求实数m 的值.18. 如图,ABCD 为平行四边形,BCEF 是边长为1的正方形,,,23BF BA DAB AB AD π⊥∠==.的.(1)求证:BD FC ⊥;(2)求直线DE 与平面DFC 所成角的正弦值.19. 如图,已知抛物线21y x =-与x 轴相交于点,A B 两点,P 是该抛物线上位于第一象限内的点.(1)记直线,PA PB 的斜率分别为12,k k ,求证:21k k -为定值;(2)过点A 作AD PB ⊥,垂足为D ,若AB 平分PAD ∠,求PAD 的面积.20. 正项数列{}n a 中,11a =,对任意*n ∈N 都有()22112n n n n a a a a ++-=+.(1)求数列{}n a 的通项公式及前n 项和n S ;(2)设nn n a b a t=+,试问是否存在正整数,t m ,使得()12,,3m b b b m ≥成等差数列?若存在,求出所有满足要求的,t m ;若不存在,请说明理由.21. 在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E 、F 分别为PD 、PB 的中点.(1)求证://CF 平面PAD ;(2)若直线PA 与平面CEF 交点为G ,且1PG =,求截面CEF 与底面ABCD所成锐二面角的大的小.22. 已知点(),P x y 与定点()1,0M -的距离和它到定直线4x =-的距离的比是12.(1)求点P 的轨迹E 的标准方程;(2)设点()1,0N ,若点,A C 是曲线E 上两点,且在x 轴上方,满足//AM NC ,求四边形AMNC 面积的最大值.金华一中2023学年第一学期期中考试高二数学一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 过点()0,2-且与直线230x y +-=垂直的直线方程为( )A. 220x y -+=B. 220x y ++=C. 220x y --=D. 220x y +-=【答案】C 【解析】【分析】设出该直线的方程,由点()0,2-在该直线上,即可得出该直线方程.【详解】设该直线方程为20x y m -+=由点()0,2-在该直线上,则2020m ⨯++=,即2m =-即该直线方程为220x y --=故选:C【点睛】本题主要考查了由两直线垂直求直线方程,属于中档题.2. 已知数列{}n a ,21a =,*12,n n a a n n ++=∈N ,则13a a +的值为 A. 4 B. 5 C. 6 D. 8【答案】A 【解析】【分析】将n=1和n=2代入递推关系式,求解即可.【详解】数列{a n },a 2=1,*12,n n a a n n N ++=∈,可得a 1+a 2=2,a 2+a 3=4,解得a 1=1,a 3=3,a 1+a 3=4.故选A .【点睛】本题考查数列递推关系式的应用,考查转化思想以及计算能力.3. 若椭圆短轴的两个端点与一个焦点构成一个正三角形,则该椭圆的离心率为( )A.12B.C.D.【答案】D 【解析】【分析】根据等边三角形边长相等的性质,建立a b 、的关系,从而求出离心率.【详解】如图,若椭圆短轴的两个端点与一个焦点构成一个正三角形,则2a b =,所以椭圆的离心率为e ====.故选:D.4. “点()()1,2,5,6A B -到直线:10l ax y ++=距离相等”是“2a =-”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】利用点到直线的距离公式,并结合充分条件、必要条件的定义即可解答.【详解】若点()()1,2,5,6A B -到直线:10l ax y ++=的距离相等,则2a =-或1a =-.∴点()()1,2,5,6A B -到直线:10l ax y ++=的距离相等”是“2a =-”的必要不充分条件.故选:B.5. 若圆224x y +=上恰有三个点到直线:l y x a =+的距离等于1,则a 的值为( )A. 2±B.C. ±D. 【答案】B 【解析】【分析】根据圆的性质,结合点到直线的距离公式进行求解即可.的【详解】圆224x y +=的圆心为()00,,半径2r =,若圆224x y +=上恰有三个点到直线:l y x a =+的距离等于1,则圆心为()00,到直线:l y x a =+的距离等于1,1=,解得a =故选:B.6. 已知数列{}n a 是公差不为0无穷等差数列,n S 是其前n 项和,若n S 存在最大值,则( )A. 在3202321,,,,232023S S S S ⋅⋅⋅中最大的数是1S B. 在3202321,,,,232023SS S S ⋅⋅⋅中最大的数是20232023S C. 在1232023,,,,S S S S ⋅⋅⋅中最大的数是1S D. 在1232023,,,,S S S S ⋅⋅⋅中最大的数是2023S 【答案】A 【解析】【分析】根据题意,由条件可得0d <,由n S n ⎧⎫⎨⎬⎩⎭是以1S 为首项,2d 为公差的等差数列,即可判断AB ,由0d <可得在1232023,,,,S S S S ⋅⋅⋅中最大的数是不确定的,即可判断CD .【详解】设等差数列{}n a 的公差为d ,则0d ≠,由n S 存在最大值可知,0d <,因为()2111222n n n d d d S na n a n -⎛⎫=+=+- ⎪⎝⎭,则122n d d n a n S ⎛⎫=+- ⎪⎝⎭,所以数列n S n ⎧⎫⎨⎬⎩⎭是以1S 为首项,2d 为公差等差数列,且0d <,则n S n ⎧⎫⎨⎬⎩⎭是递减数列,所以在3202321,,,,232023S S S S ⋅⋅⋅中最大的数是1S ,故A 正确,B 错误;在1232023,,,,S S S S ⋅⋅⋅中最大的数是不确定的,比如92n a n =-+,由100n n a a +≥⎧⎨≤⎩,可得7922n ≤≤,所以4n =,即4S 为最大值,故CD 错误;故选:A的的7. 设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D.若D 到直线BC 的距离小于a 近线斜率的取值范围是 ( )A. (1,0)(0,1)- B. (,1)(1,)-∞-+∞C. (⋃D. (,)-∞+∞ 【答案】A 【解析】【详解】由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由BD AB ⊥得:,因为D 到直线BC 的距离小于a +,所以,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A .8. 在棱长为1的正方体1111ABCD A B C D -中,E 为线段1B C 的中点,F 是棱11C D 上的动点,若点P 为线段1BD 上的动点,则PE PF +的最小值为( )A.B.C.D.【答案】A 【解析】【分析】连接1BC ,得出点,,P E F 在平面11BC D 中,问题转化为在平面内直线1BD 上取一点P ,求点P 到定点E 的距离与到定直线的距离的和的最小值问题,建立平面直角坐标系,问题转化为点E 关于直线1BD 到直线11C D 的距离,从而可得结果.【详解】如上图示,连接1BC 则11BC B C E = ,点,,P E F 在平面11BC D 中,且111BC C D ⊥,111C D =,1BC =,在Rt △11BC D 中,以11C D 为x 轴,1C B 为y 轴,建立平面直角坐标系,如下图示,则1(1,0)D ,B ,E ,设点E 关于直线1BD 的对称点为E ',而直线1BD为1x =①,所以EE k '=,故直线EE '为y x =+②,联立①②,解得13x y ⎧=⎪⎪⎨⎪=⎪⎩EE '与1BD的交点1(3,所以对称点2(3E ',则PE PF PE PF E F ''+=+≥,最小值为E '到直线11C D故选:A.【点睛】关键点点睛:将立体几何问题转化为平面问题,结合将军饮马模型,求点到直线上动点距离最小.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 已知双曲线22:13x C y -=,则下列结论正确的是( )A. 双曲线CB. 双曲线C 的焦距为4C. 双曲线C 的虚轴长为1D. 双曲线C的渐近线方程为x =【答案】BD 【解析】【分析】根据双曲线方程可确定,,a b c 的值,即可求得双曲线离心率、焦距、虚轴长以及渐近线方程,即得答案.【详解】由题意知双曲线22:13x C y -=,设双曲线实半轴长为a ,虚半轴长为b ,焦距为2c,则1,2a b c ====,故双曲线C的离心率为c a ==,A 错误;双曲线焦距为24c =,B 正确;双曲线的虚轴长为 22b =,C 错误;双曲线C的渐近线方程为b y x a =±=,即x =,D 正确,故选:BD10. 已知直线:10l ax y ++=,则下列说法正确的是( )A. 直线l 过定点()0,1-B. 直线l 与直线10x ay --=不可能垂直C. 若点()0,1A 与点(),0Bb 关于直线l 对称,则实数a的值为D. 直线l 被圆22280x y y +--=【答案】AC 【解析】【分析】对于A ,当0x =时,1y =,对于B ,当0a =时,结合直线的平行条件,即可判断,对于C ,求出点()0,1A 与点(),0Bb 的直线方程,根据对称,即可求出,对于D ,直线l 被圆22280x y y +--=截得的最短弦长,根据几何关系和勾股定理,即可求出【详解】解:对于A ,当0x =时,1y =,故A 正确,对于B ,当0a =时,直线l 与直线10x ay --=互相垂直,故B 错误,对于C ,由题意知直线AB 与直线l 垂直,且线段AB 的中点在直线l 上,所以11022b a ⨯++=,且()11a b ⎛⎫-⨯-=- ⎪⎝⎭,解得a =,故C 正确,对于D ,圆22280x y y +--=的圆心为()0,1,半径为3,当圆心到直线l 的距离最大时,直线l 被圆22280x y y +--=截得的弦长最短,此时圆心()0,1到直线l的距离2d ,解得0a =,所以直线l 被圆22280x y y +--=截得的最短弦长为=,故D 错误.故选:AC11. 已知抛物线()2:20C y px p =>上存在一点()2,E t 到其焦点的距离为3,点P 为直线2x =-上一点,过点P 作抛物线C 的两条切线,切点分别为,,A B O 为坐标原点.则( )A. 抛物线的方程为24y x = B. 直线AB 一定过抛物线的焦点C. 线段AB长的最小值为 D. OP AB⊥【答案】ACD 【解析】【分析】根据抛物线的定义,求得抛物线的方程,可判定A 正确;设(2,)P m -,得出PA 和PB 的方程,联立方程组,结合Δ0=,得到12,k k 是方程2210k km +-=的两个不等式的实数根,再由韦达定理和1AB OP k k ⋅=-,可判定D 正确;由2AB k m=,得出直线AB ,结合直线的点斜式的形式,可判定B 不正确,再由圆锥曲线的弦长公式,结合二次函数的性质,可判定C 正确.【详解】由抛物线2:2C y px =,可得焦点坐标(,0)2p F ,准线方程为2p x =-,因为抛物线C 上存在一点()2,E t 到其焦点的距离为3,由抛物线的定义可得232p+=,可得2p =,所以抛物线的方程为24y x =,所以A 正确;设(2,)P m -,显然直线PA 的斜率存在且不为0,设斜率为1k ,可得PA 的方程为1(2)y m k x -=+,联立方程组12(2)4y m k x y x-=+⎧⎨=⎩,整理得2114840k y y k m -++=,因为PA 是抛物线的切线,所以()211(4)4840k k m ∆=--+=,即211210k k m +-=,且点A 的纵坐标为11422k k --=,代入抛物线方程,可得A 横坐标为211k ,即21112(,A k k ,设直线PB 的斜率存在且不为0,设斜率为2k ,同理可得:222210k k m +-=,且22212(,)B k k ,所以12,k k 是方程2210k km +-=的两个不等式的实数根,所以12121,22m k k k k +=-=-,因为2112122221221222()()(1112222AB OPk k k k m m m k k m k k k k --⨯⋅=⋅-=⋅-=⋅-=-+--,所以OP AB ⊥,所以D 正确;由OP AB ⊥,且2OP m k =-,可得2AB k m =,则直线AB 的方程为211221(y x k m k -=-,即22111222mk y mk k x -=-,又由211210k k m +-=,可得21112k m k =-,所以3221111(2)2(12)22k k y k k x ---=-,即211(12)2(2)k y k x -=-,所以直线AB 一定过定点(2,0),该点不是抛物线的焦点,所以B 不正确.由直线AB 的斜率不为0,设直线AB 的方程为2x my =+,且1122(,),(,)A x y B x y ,联立方程组224x my y x=+⎧⎨=⎩,整理得2480y my --=,所以12124,8y y m y y +==-,则2AB y =-====≥0m =时,等号成立,即AB的最小值为,所以C 正确.故选:ACD.【点睛】方法点睛:解决直线与抛物线有关问题的方法与策略:1、涉及抛物线的定义问题:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.2、涉及直线与抛物线综合问题:通常设出直线方程,与抛物线方程联立方程组,结合根与系数的关系,合理进行转化运算求解,同时注意向量、基本不等式、函数及导数在解答中的应用.的12. 在正方体1111ABCD A B C D -中,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则下列说法正确的是( )A. 当λμ=时,1A P ∥平面1ACD B. 当1μ=时,三棱锥1P A BC -的体积为定值C. 当1λ=时,△PBD 的面积为定值D. 当1λμ+=时,直线1A D 与1D P 所成角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦【答案】ABD 【解析】【分析】对于A 选项,确定P 点在面对角线1BC 上,通过证明面面平行,得线面平行;对于B 选项,确定P 点在棱11B C 上,由等体积法,说明三棱锥1P A BC -的体积为定值;对于C 选项,确定P 点在棱1CC 上,PBD △的底BD 不变,高PE 随点P 的变化而变化;对于D 选项,通过平移直线1A D ,找到异面直线1A D 与1D P 所成的角,在正11D B C △中,确定其范围.【详解】对于A 选项,如下图,当λμ=时,P 点在面对角线1BC 上运动,又P ∈平面11A C B ,所以1A P ⊂平面11A C B ,在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,则四边形11ABC D 为平行四边形,所以,11//AD BC ,1AD ⊄ 平面11A BC ,1BC ⊂平面11A BC ,1//AD ∴平面11A BC ,同理可证//AC 平面11A BC ,1AD AC A = ,所以,平面11//A C B 平面1ACD ,1A P ⊂ 平面11A BC ,所以,1//A P 平面1ACD ,A 正确;对于B 选项,当1μ=时,如下图,P 点在棱11B C 上运动,三棱锥1P A BC -的体积111113P A BC A BC P PBC V V S B A --==⋅⋅为定值,B 正确;对于C 选项,当1λ=时,如图,P 点在棱1CC 上运动,过P 作PE BD ⊥于E 点,则12PBD S BD PE =⋅△,其大小随着PE 的变化而变化,C 错误;对于D 选项,如图所示,当1λμ+=时,P ,C ,1B 三点共线,因为11//A B CD 且11A B CD =,所以四边形11A B CD 为平行四边形,所以11//A D B C ,所以11D PB ∠或其补角是直线1A D 与1D P 所成角,在正11D B C △中,11D PB ∠取值范围为,32ππ⎡⎤⎢⎥⎣⎦,D 正确.故选:ABD.三、填空题(本大题共4小题,每小题5分,共20分.)13. 已知等差数列{}n a 满足25815a a a ++=,则5a =______.的【答案】5【解析】【分析】根据等差数列下标和性质计算可得.【详解】因为25815a a a ++=,且2852a a a +=,所以5315a =,解得55a =.故答案为:514. 已知12,F F 是椭圆22142x y +=的两个焦点,点P 在该椭圆上,若122PF PF -=,则12PF F △的面积是______.【解析】【分析】利用椭圆定义结合题设求得12,PF PF ,可判断212PF F F ⊥,即可求得12PF F △的面积.【详解】由题意知12,F F 是椭圆22142x y +=的两个焦点,则2,a b c ====不妨取12(F F ,则12||F F =又1224PF PF a +==,结合122PF PF -=可得123,1PF PF ==,则2221212||PF PF F F =+,即212PF F F ⊥,故12212||11||122PF F S PF F F =⨯⨯⋅==△,15. 已知球O 是直三棱柱111ABC A B C -的内切球(点O 到直三棱柱111ABC A B C -各面的距离都相等),若球O 的表面积为16π,ABC 的周长为4,则三棱锥1A ABC -的体积为______.【答案】163##153【解析】【分析】由题意求出直棱柱内切球半径,即可求得棱柱的高,将直棱柱分割为5个小棱锥,根据等体积法求得棱柱的底面积,再根据棱锥的体积公式即可求得答案.【详解】设直三棱柱111ABC A B C -的高为h ,设,,AB c BC a AC b ===,内切球的半径设为r ,则2h r =,球O 的表面积为16π,则216π4πr =,则2,4r h ==;又ABC 的周长为4,即4a b c ++=,连接111,,,,,OA OB OC OA OB OC ,则直三棱柱111ABC A B C -被分割为5个小棱锥,即以内切球球心为顶点,以三棱锥的两个底面和三个侧面为底面的5个棱锥,根据体积相等可得111123333ABC ABC r S h ahr bhr chr S =+++⨯⋅⋅ ,即()44383ABC ABC S a b c S =+++ ,即得4ABC S = ,故三棱锥1A ABC -的体积为111644333ABC V S h ==⨯=⋅⨯ ,故答案为:16316. 设经过抛物线28y x =焦点F 且斜率为1的直线l ,与抛物线交于,A B 两点,抛物线准线与x 轴交于C 点,则cos ACB ∠=______.【答案】13【解析】【分析】得到直线l 的方程为2y x =-,联立抛物线方程,求出,A B 的坐标,得到,,AC BC AB ,利用余弦定理求出答案.【详解】由题意得()2,0F ,()2,0C -,直线l 的方程为2y x =-,联立28y x =得,21240x x -+=,设()()1122,,,A x y B x y ,不妨设A 在第一象限,解得1266x x =+=-故1244y y =+=-,故((64,64A B ++--,故AC ==,BC ==12416AB x x =++=,由余弦定理得2221cos 23AC BC ABACB AC BC+-∠===⋅.故答案为:13四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知动圆C :()()()22220x m y m m m -+-=>.(1)当2m =时,求经过原点且与圆C 相切的直线l 的方程;(2)若圆C 与圆E :()22316x y -+=内切,求实数m 的值.【答案】(1)0x =或34y x =(2)m =【解析】【分析】(1)2m =时圆心为()2,4,半径为2.当过原点的直线斜率不存在时恰好与此圆相切,此时切线方程为0x =;当过原点的直线斜率存在时设直线方程为y kx =,当直线与圆相切时圆心()2,4到直线y kx =的距离等于半径2,可求得k 的值,从而可得切线方程.(2)圆C 的圆心(),2C m m ,半径为m ;圆E 的圆心()3,0E ,半径为4.当两圆内切时两圆心距等于两半径的差的绝对值,从而可得m 的值.【详解】(1)22:(2)(4)4C x y -+-=当直线l 的斜率不存在时,l 方程为0x =,当直线l 的斜率存在时,设l 方程为y kx =,由题意得32,4d k ∴=所以l 方程为34y x =.(2)(,2),(3,0)C m m E ,由题意得4m CE -==两边平方解得m =.18. 如图,ABCD 为平行四边形,BCEF 是边长为1的正方形,,,23BF BA DAB AB AD π⊥∠==.(1)求证:BD FC ⊥;(2)求直线DE 与平面DFC 所成角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)要证BD FC ⊥,转化只需证明BD ⊥平面BCEF ,只需证明BD BC ⊥、BD BF ⊥即可;(2)建立空间直角坐标系,求出平面DFC 的一个法向量和向量DE 的坐标,转化为利用向量DE和法向量所成的角,即可求解直线DE 与平面DFC 所成角的正弦值.【小问1详解】因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =,从而222BD AD AB +=,∴BD AD ⊥,又//AD BC ,故BD BC ⊥.又,BF BA BF BC ⊥⊥,,,BA BC B BA BC =⊂ 平面ABCD ,所以BF ⊥底面ABCD ,而BD ⊂底面ABCD ,可得BD BF ⊥,因为,,BF BC B BF BC ⋂=⊂平面BCEF ,∴BD ⊥平面BCEF ,FC⊂平面BCEF ,故BD FC ⊥.如图建立空间直角坐标系B xyz -,则(1,0,0),(0,0,1),(1,0,1)C D F E,()()()1,,,,01,01,DF FC DE =-=-=,设平面DFC 的法向量为(,,)n x y z =,则n DF z n FC x z ⎧⋅=+=⎪⎨⋅=-=⎪⎩,可取n = , 设直线DE 与平面DFC 所成的角为θ.故|sin |cos |||,||DE n DE nn DE θ⋅====⨯.19. 如图,已知抛物线21y x =-与x 轴相交于点,A B 两点,P 是该抛物线上位于第一象限内的点.(1)记直线,PA PB 的斜率分别为12,k k ,求证:21k k -为定值;(2)过点A 作AD PB ⊥,垂足为D ,若AB 平分PAD ∠,求PAD 的面积.【答案】(1)证明见解析 (2)1+【解析】【分析】(1)设点P 的坐标为()2,1P t t -,再利用两点间的斜率公式即可证明.(2)由AB 平分PAD ∠,可知1AD k k =-,再由AD PB ⊥求出P ,再利用AD PB 、相交求出D ,即可求出PAD 的面积.由题意得点,A B 的坐标分别为()()1,0,1,0A B -.设点P 的坐标为()2,1P t t -,且1t >,则2212111,111t t k t k t t t --==-==++-,所以212k k -=为定值.【小问2详解】由直线,PA AD 的位置关系知:11AD k k t =-=-.因为AD PB ⊥,所以()()2111AD k k t t ⋅=-+=-,解得t =,因为P是第一象限内的点,所以t =,则)P.联立直线PB 与AD的方程(()(()1111y x y x ⎧=+-⎪⎨=-+⎪⎩,解得D .所以PAD的面积112P D S AB y y =⋅⋅-=20. 正项数列{}n a 中,11a =,对任意*n ∈N 都有()22112n n n n a a a a ++-=+.(1)求数列{}n a 的通项公式及前n 项和n S ;(2)设nn n a b a t=+,试问是否存在正整数,t m ,使得()12,,3m b b b m ≥成等差数列?若存在,求出所有满足要求的,t m ;若不存在,请说明理由.【答案】(1)21n a n =-,2n S n =(2)存在,27t m =⎧⎨=⎩或35t m =⎧⎨=⎩或54t m =⎧⎨=⎩【解析】【分析】(1)利用平方差公式得到12n n a a +-=,从而判断得{}n a 是等差数列,从而利用公式法即可得解;(2)假设存在,利用中等中项公式即可得解.因为()22112n n n n a a a a ++-=+,所以()()()1112n n n n n n a a a a a a ++++-=+,因为0n a >,所以12n n a a +-=,又11a =,数列{}n a 是以1为首项,2为公差的等差数列.所以{}n a 的通项公式为21n a n =-,前n 项和()21212n n n S n +-==.【小问2详解】存在正整数,t m ,使得()12,,3m b b b m ≥成等差数列,由(1)得2121n n b n t-=-+,假设存在正整数,t m ,传得()12,,3m b b b m ≥成等差数列,则122m b b b +=,即12161213m t m t t -+=+-++,当1t =0=,显然不成立,所以1t ≠,得314311t m t t +==+--,*4,,1t m t ∈∴-N 为整数,10t ->,故11,2,4t -=,即2,3,5t =,对应的7,5,4m =,所以存在满足要求的,t m ,27t m =⎧⎨=⎩或35t m =⎧⎨=⎩或54t m =⎧⎨=⎩.21. 在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E 、F 分别为PD 、PB 的中点.(1)求证://CF 平面PAD ;(2)若直线PA 与平面CEF 的交点为G ,且1PG =,求截面CEF 与底面ABCD 所成锐二面角的大小.【答案】(1)证明见解析;(2)45︒.【解析】【分析】(1)先利用中位线判定四边形QFCD 是平行四边形,得到线线平行//FC QD ,再利用线面平行的判定定理即证结果;(2)先找到点G ,利用线面平行的性质定理//EG DQ ,再建立空间直角坐标系写点坐标,计算两个平面的法向量,计算夹角余弦即得结果.【详解】解:(1)取PA 的中点Q ,连接QF 、QD ,∵F 是PB 的中点,∴//QF AB 且12QF AB =,∵底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===//CD AB ,且12CD AB =,∴//QF CD 且QF CD =,∴四边形QFCD 是平行四边形,∴//FC QD ,又⊄FC平面PAD ,QD ⊂平面PAD ,∴//FC 平面PAD .(2)方法一:取PC 的中点M ,连接AC 、EM 、FM 、QM ,QM EF N ⋂=,连接CN 并延长交PA 于G ,已知1PG =.∵//FC 平面PAD ,且平面CEGF ⋂平面APD =EG ,∴//CF EG ,又//CF DQ ,∴//EG DQ ,建立如图所示直角坐标系,()0,0,0A,()0,B,()C,()D,)2E,()2F ,则平面ABCD 的法向量为()10,0,1n =,()2CE =,()2CF =- ,设平面CEF 的法向量为()2,,n x y z =,则有2200CE n CF n ⎧⋅=⎪⎨⋅=⎪⎩,即2020z z ⎧+=⎪⎨-+=⎪⎩,即z =,则1x =,1y =,即(2n =.∴设两个法向量1n u r 、2n u u r 的夹角为θ,则1212cos n n n n θ⋅===⋅ ,即两个法向量的夹角为45︒.∴截面CEF 与底面ABCD 所成锐二面角的大小为45︒.【点睛】本题考查了空间中线面平行的判定和二面角的向量求法,属于中档题.22. 已知点(),P x y 与定点()1,0M -的距离和它到定直线4x =-的距离的比是12.(1)求点P 的轨迹E 的标准方程;(2)设点()1,0N ,若点,A C 是曲线E 上两点,且在x 轴上方,满足//AM NC ,求四边形AMNC 面积的最大值.【答案】(1)22143x y +=(2)3【解析】【分析】(1)根据题意设 ,然后根据题中的几何条件得出方程,从而求解出轨迹方程;(2)根据题意设出直线,求出直线与椭圆相交弦长,并结合点到直线距离知识从而求解.【小问1详解】12=,整理化简得,223412x y +=,所以:点P 的轨迹E 的方程为:22143x y +=.【小问2详解】设O 为坐标原点,连接CO ,延长交椭圆E 于点B ,连接,,BM AN CM ,由椭圆对称性可知:OC OB =,又OM ON =,所以CMBN 为为平行四边形,所以://,CN BM CN BM =,则:BOM CON S S = ,且,,A M B 三点共线,所以:四边形AMNC 的面积ACM COM CON ACM COM BCM ABC S S S S S S S S =++=++= ,设直线()()()11221:1,,,,0AB x my A x y B x y y =->,由221431x y x my ⎧+=⎪⎨⎪=-⎩,得:()221212226934690,,3434m m y my y y y y m m +--=∴+==-++,所以:()2212134m AB m +===+,又//AM NC ,所以:点C 到直线AB 的距离即为点N 到直线AB的距离,因为:点N 到直线AB 的距离d =,所以12S AB d =⋅==设:234m t +=,则:24,43t m t -=≥,所以:S ====又因为:114t≤,所以当114t =时,即0m =时,四边形AMNC 面积取得最大值,最大值为3.椭圆联立求出弦长,然后再结合基本不等式求解出最值.。
高二上学期期中考试数学试卷含答案
高二级上学期期中考试题数学本试卷共8页,22小题,满分150分,考试时间120分钟。
第一部分选择题(共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( )A .0B .-1C .0或1D .0或-12.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.2π B .22π C .2πD .4π3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 5.下列命题中,正确的是( )A .任意三点确定一个平面B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( )A. 5 B .23 C . 22D .3 37.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上, 则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .D .⎡⎣二、多选题:本题共4小题,每小题5分,共20分.9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .410.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+=B .30x y +-=C .20x y -=D .10x y --=12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6第二部分非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.命题“20210x x x ∃<-->,”的否定是______________.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.15.若直线:l y kx =与曲线:1M y =+有两个不同交点,则k 的取值范围是________________.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,P A ⊥平面ABCD ,P A =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l 与圆C 相离,求a 的取值范围.20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.21. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.22. (本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点? 若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.高二级上学期期中考试题 数学答案及说明一、选择题:1.D ,2.A ,3.C ,4.B ,5.C ,6.B ,7.D ,8.A ,9.BCD ,10.ACD ,11.ABC ,12.BC.二、填空题:13.0x ∀<,2210x x --≤;14.y =-2x -2;15.13,24⎡⎫⎪⎢⎣⎭;16.36π.题目及详细解答过程:一、单选题(本题共8小题,每小题5分,共40分)1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( ) A .0 B .-1 C .0或1 D .0或-1 解析:因为l 1⊥l 2,所以2m 2+2m =0,解得m =0或m =-1. 答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( ) A.2π B .22π C .2π D .4π 解析:设底面圆的半径为r ,高为h ,母线长为l ,由题可知,r =h =22l ,则12(2r )2=1,r =1,l =2.所以圆锥的侧面积为πrl =2π. 答案:A3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°解析:当三棱锥D ABC 体积最大时,平面DAC ⊥平面ABC .取AC 的中点O ,则∠DBO 即为直线BD 和平面ABC 所成的角.易知△DOB 是等腰直角三角形,故∠DBO =45°.答案:C4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=25. 故选:B .5.下列命题中,正确的是( ) A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( ) A. 5 B .23 C . 22D .3 3解析:易知NF 的斜率k =-3,故NF 的方程为y =-3(x -1),即3x +y -3=0. 所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:B7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:D8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则22AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1202222d ++==.故点P 到直线20x y ++=的距离2d 的范围为2,32⎡⎤⎣⎦,则[]22122,62ABP S AB d d ==∈△.故答案为A.二、多选题(每题5分,共20分)9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【答案】BCD【解析】:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-,)a ,则2a .∴实数a 的值可以是2,3,4.故选:BCD .10.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】:当直线经过原点时,斜率为20210k -==-,所求的直线方程为2y x =,即20x y -=; 当直线不过原点时,设所求的直线方程为x y k ±=,把点(1,2)A 代入可得12k -=,或12k +=,求得1k =-,或3k =,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 故选:ABC .12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =,26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6 【答案】BC【解析】作图在四棱锥P ABCD -中:为矩形,由题:侧面PCD ⊥平面ABCD ,交线为CD ,底面ABCDBC CD ⊥,则BC ⊥平面PCD ,过点B 只能作一条直线与已知平面垂直,所以选项A错误;连接AC 交BD 于O ,连接MO ,PAC ∆中,OM ∥PA ,MO ⊆面MBD ,PA ⊄面MBD ,所以//PA 面MBD ,所以选项B 正确;四棱锥M ABCD -的体积是四棱锥P ABCD -的体积的一半,取CD 中点N ,连接PN ,PN CD ⊥,则PN平面ABCD ,32PN =,四棱锥M ABCD -的体积112326321223M ABCD V -=⨯⨯⨯⨯=所以选项D 错误.矩形ABCD 中,易得6,3,3AC OC ON ===,PCD 中求得:16,2NM PC ==在Rt MNO 中223MO ON MN =+=即: OM OA OB OC OD ====,所以O 为四棱锥M ABCD -外接球的球心,半径为3, 所以其体积为36π,所以选项C 正确, 故选:BC三、填空题(每题5分,共20分)13.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,, 则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线:l y kx =与曲线()2:113M y x =+--有两个不同交点,则k 的取值范围是________________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 答案:13,24⎡⎫⎪⎢⎣⎭16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ABC 的体积为311323r V SC OB OA ⎛⎫=⨯⋅⋅= ⎪⎝⎭,即r 33=9.所以r =3.所以3344336.33=O V r πππ=⨯=球答案:36π四、解答题(每题5分,共70分)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解:(1)设l 2的方程为2x -y +m =0,..........1分因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3,即l 2:2x -y -3=0.....3分联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1.所以直线l 1与l 2的交点坐标为(2,1)...........5分 (2)当l 3过原点时,l 3的方程为y =12x ..........6分当l 3不过原点时,设l 3的方程为12x y a a +=...........7分 又直线l 3经过l 1与l 2的交点,所以2112a a+=, 得52a =,l 3的方程为2x +y -5=0...........8分 综上,l 3的方程为y =12x 或2x +y -5=0...........10分18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.18.解:(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,..........1分又因为AB ⊥AD ,AD ∩PA =A ,..........3分 所以AB ⊥平面PAD ,..........4分又PD ⊂平面PAD ,..........5分所以AB ⊥PD ...........6分 (2)解:S 梯形ABCD =12(AB +CD )·AD =332,.......8分又PA ⊥平面ABCD ,..........9分所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32...........12分19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值; (2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l与圆C 相离,求a 的取值范围.19.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1...........2分又|MC |=(4-1)2+(4-0)2=5,..........4分 所以|MN |的最小值为5-1=4...........5分(2)因为直线l 的斜率为43,且与y 轴相交于点20,3⎛⎫- ⎪⎝⎭,所以直线l 的方程为y =43x -23.即4x -3y -2=0..........7分因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则224243a a ->+.........9分又0a <,所以245a a ->-,解得2a >-..........11分 所以a 的取值范围是(-2,0)..........12分20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点. (1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.20.解:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1,.........1分 因为DE ⊂平面B 1CD ,.........2分AC 1⊄平面B 1CD ,.........3分所以AC 1∥平面B 1CD ..........4分(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1........5分 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD ..........6分又CD ⊥AB ,AA 1∩AB =A ,.........7分所以CD ⊥平面ABB 1A 1,因为CD ⊂平面CDB 1,.........8分 所以平面ABB 1A 1⊥平面CDB 1,.........9分故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1......10分 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95..........12分22. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.21.解: 作于点G ,连接FG , 四边形ABCD 是菱形,,,为等边三角形,,-----1分平面ABCD ,平面ABCD ,,又,,平面AFG ,BC FG ∴⊥-----2分 G∴为二面角的平面角,------3分----------------------------4分连接AE ,设点E 到平面AFC 的距离为h , 则, ----------------------5分即,也就是,--------------------6分解得:; ------------------------------------------------7分(3)作CH AB ⊥于点H ,连接FH ,ABC ∆为等边三角形,H ∴为AB 的中点,221,3,5,AH CH FH FA AH ===+= FA ⊥平面ABCD ,CH ⊂平面ABCD ,FA CH ∴⊥,----8分 又,CH AB AB AF A ⊥⋂=,CH ∴⊥平面ABF ,-----9分CFH ∴∠为直线FC 与平面ABF 所成的角,-------10分36sin 422CH CFH CF ∴∠===.-----------------12分 22.(本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点?若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.22.解:(1)当直线AB CD 、的斜率存在且不为0,设直线AB 的方程为:()()()112220,,,,y kx k A x y B x y =-≠------------1分由2229+=y kx x y =-⎧⎨⎩得:()221450k x kx +--=--------------------2分 点()0,2P -在圆内,故0∆>. 又 1212222422,21211M M Mx x k k x x x y kx k k k +∴+=∴===-=-+++ 即 2222,11kM k k ⎛⎫- ⎪++⎝⎭--------------------3分AB CD ⊥以1k -代换k 得22222,11k k N k k ⎛⎫-- ⎪++⎝⎭22222222111.22211MNk k k k k k k k k k -+-++∴==+++---------------4分∴直线MN 的方程为:222212121k k y x k k k -⎛⎫+=- ⎪++⎝⎭化简得2112k y x k-=-,故直线MN 恒过定点()01-,--------------------5分 当直线AB CD 、的斜率不存在或为0时,显然直线MN 恒过定点()01-, 综上,直线MN 恒过定点()01-,--------------------.6分 (2) 解法一:圆心O 到直线AB的距离1d =AB ==分 (或由第(1)问得:21AB x =-==以1k -代换k 得CD =)AB CD ⊥∴以1k -代换k 得:CD =分12ACBD S AB CD ∴=⋅==分14=≤= 当且仅当221,1k k k==±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=-----------12分 解法二:设圆心O 到直线AB 、CD 的距离分别为12,d d 、则22222211229,9AB r d d CD r d d =-=-=-=---------------------7分AB CD ⊥222124d d OP ∴+==--------------------8分()()()2222121221991821818414ACBD S AB CD d d d d OP ∴=⋅=≤-+-=-+=-=-=--------------------10分当且仅当12d d =,即1k =±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=---------12分。
北京市房山区2023-2024学年高二上学期期中考试数学试题含答案
房山区2023-2024学年度第一学期期中学业水平调研高二数学(答案在最后)第一部分(选择题共50分)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知()1,3A -,()3,5B ,则线段AB 的中点坐标为()A.(1,4)B.(2,1)C.(2,8)D.(4,2)【答案】A 【解析】【分析】用中点坐标公式即可求解.【详解】设线段AB 的中点坐标为(),M a b ,则132352a b -+⎧=⎪⎪⎨+⎪=⎪⎩,即14a b =⎧⎨=⎩,则线段AB 的中点坐标为()1,4M .故选:A.2.如图,平行六面体1111ABCD A B C D -中,E 为1CC 中点.设AB a =,AD b =,1AA c = ,用基底{},,a b c 表示向量AE,则AE = ()A.a b c ++r r rB.12a b c++ C.12a b c++ D.12a b c ++ 【答案】B【分析】利用几何图形的关系,结合向量的加法运算,即可求解.【详解】11122AE AC CE AB AD AA a b c =+=++=++.故选:B3.在如图所示的正方体1111ABCD A B C D -中,异面直线1AB 与1BC 所成角的大小为()A.30°B.45°C.60°D.90°【答案】C 【解析】【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接1A D ,DB ,如图,因为正方体中11//A D B C ,所以1BA D ∠就是1A B 与1B C 所成的角,在1BA D 中,11A D A B BD ==.∴160BA D ∠=︒.故选:C4.在棱长为2的正方体1111ABCD A B C D -中,11AA BC ⋅=()A. B. C.2D.4【解析】【分析】根据向量数量积定义计算即可.【详解】在棱长为2的正方体1111ABCD A B C D -中,易知12AA =,1BC = 因为11AA BB = ,1BB 与1BC 的夹角为π4,所以1AA 与1BC 的夹角为π4,1111π2cos 2442AA BC AA BC ⋅=⋅=⨯= .故选:D5.如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,则下列叙述中错误的是()A.ACD ∠是直线AC 与平面BCD 所成角B.ABD ∠是二面角A BC D --的一个平面角C.线段AC 的长是点A 到直线BC 的距离D.线段AD 的长是点A 到平面BCD 的距离【答案】B 【解析】【分析】根据线面垂直即可求解AD ,根据BC ⊥平面ACD ,即可得BC AC ⊥,进而判断C ,结合二面角的定义即可判断B.【详解】对于AD ,由于AD ⊥平面BCD ,所以ACD ∠是直线AC 与平面BCD 所成角,线段AD 的长是点A 到平面BCD 的距离,故AD 正确,对于B ,AD ⊥平面BCD ,BC ⊂平面BCD ,所以BC AD ⊥,又BC CD ⊥,,,AD CD D AD CD =⊂ 平面ACD ,所以BC ⊥平面ACD ,CA ⊂平面ACD ,故BC AC ⊥,又BC CD ⊥,AC ⊂平面ABC ,CD ⊂平面BCD ,故ACD ∠是二面角A BC D --的一个平面角,故B 错误,对于C ,由于BC AC ⊥,所以线段AC 的长是点A 到直线BC 的距离,C 正确,故选:B6.已知直线1l :()210x a y a +-+=与直线2l :20ax y ++=平行,则a 的值为()A.1-或2B.13C.2D.1-【答案】D 【解析】【分析】根据两直线平行,即可列式求解.【详解】因为12l l //,所以2112a a a -=≠,解得:1a =-.故选:D7.在同一平面直角坐标中,表示1l :y ax b =+与2l :y bx a =-的直线可能正确的是()A. B.C. D.【答案】C【解析】【分析】结合各选项分析直线的斜率与在y 轴上的截距,即可判断.【详解】对于A :由图可得直线1l 的斜率0a >,在y 轴上的截距0b >;而2l 的斜率0b <,矛盾,故A 错误.对于B :由图可得直线1l 的斜率0a >,在y 轴上的截距0b >;而2l 的斜率0b <,矛盾,故B 错误.对于C :由图可得直线1l 的斜率a<0,在y 轴上的截距0b >;而2l 的斜率0b >,在y 轴上的截距0a ->,即a<0,故C 正确.对于D :由图可得直线1l 的斜率a<0,在y 轴上的截距0b <;而2l 的斜率0b >,矛盾,故D 错误.故选:C .8.长方体1111ABCD A B C D -中,12AA AB ==,M 为AB 的中点,1D M MC ⊥,则AD =()A.1B.2C.3D.4【答案】A 【解析】【分析】连接1CD ,设AD a =()0a >,表示出CM ,1CD ,1MD ,利用勾股定理计算可得.【详解】如图连接1CD ,设AD a =()0a >,则CM =1==CD ,1MD ==因为1D M MC ⊥,所以22211MC MD CD +=,即22158a a +++=,解得1a =(负值舍去).故选:A9.设P 为直线1y =-上的动点,过点P 作圆C :()()22324x y ++-=的切线,则切线长的最小值为()A.2B.C.3D.【答案】B 【解析】【分析】根据切线最小时为圆心到直线上的点的距离最小时可以求出圆心到直线的距离,再求出切线长即可.【详解】圆心为()3,2C -,半径为2r =,设切点为Q ,要使得切线长PQ 最小,则CP 最小,此时CP l ⊥,所以3CP =,所以PQ ==故选:B10.古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数(0k k >且)1k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点()1,0A -,()2,0B ,圆()()()221:204C x y m m -+-=>,在圆上存在点P 满足2PA PB =,则实数m 的取值范围是()A.22⎣⎦B.521,42⎡⎢⎣⎦C.212⎛ ⎝⎦D.521,22⎢⎣⎦【答案】D 【解析】【分析】设(),P x y ,根据2PA PB =求出点P 的轨迹方程,根据题意可得两个圆有公共点,根据圆心距大于或等于半径之差的绝对值小于或等于半径之和,解不等式即可求解.【详解】设(),P x y ,因为点()1,0A -,()2,0B ,2PA PB =,=22650x y x +-+=,所以()2234x y -+=,可得圆心()3,0,半径2R =,由圆()()221:24C x y m -+-=可得圆心()2,C m ,半径12r =,因为在圆C 上存在点P 满足2PA PB =,所以圆()2234x y -+=与圆()()221:24C x y m -+-=有公共点,所以112222-≤≤+,整理可得:2925144m ≤+≤,解得:52122m ≤≤,所以实数m的取值范围是22⎤⎢⎥⎣⎦,故选:D.第二部分(非选择题共100分)二、填空题共6小题,每小题5分,共30分.11.已知()2,1A ,()0,3B -,则直线AB 的斜率AB k =__________.【答案】2【解析】【分析】根据直线斜率公式进行计算即可.【详解】根据题意,1(3)220AB k --==-,故答案为:2.12.已知()0,0A ,()2,2B ,()4,2C ,则ABC 外接圆的方程为____________.【答案】22620x y x y +-+=【解析】【分析】首先设ABC 外接圆的方程为220x y Dx Ey F ++++=,从而得到044220164420F D E F D E F =⎧⎪++++=⎨⎪++++=⎩,再解方程组即可.【详解】设ABC 外接圆的方程为220x y Dx Ey F ++++=,则064422021644200F D D E F E D E F F ==-⎧⎧⎪⎪++++=⇒=⎨⎨⎪⎪++++==⎩⎩,所以ABC 外接圆的方程为:22620x y x y +-+=.故答案为:22620x y x y +-+=13.已知直线l 与平面α所成角为45︒,A ,B 是直线l 上两点,且6AB =,则线段AB 在平面α内的射影的长等于____________.【答案】【解析】【分析】依题意可得线段AB 在平面α内的射影的长等于45cos AB ︒.【详解】因为直线l 与平面α所成角为45︒,A ,B 是直线l 上两点,且6AB =,则线段AB 在平面α内的射影的长等于456s 2co AB ︒=⨯=故答案为:14.如图,长方体1111ABCD A B C D -中,11AA AD ==,2AB =,则点1D 到点B 的距离等于____________;点1D 到直线AC 的距离等于____________.【答案】①.②.5【解析】【分析】以向量DA ,DC ,1DD所在方向为x 轴,y 轴,z 轴建立空间直角坐标系,根据两点间的距离公式可求点1D 到点B 的距离;连接1D A ,作1D E 垂直AC ,垂足为E ,求出向量1AD uuu r 在向量AC上的投影,由勾股定理即可求点1D 到直线AC 的距离.【详解】如图,以向量DA ,DC ,1DD所在方向为x 轴,y 轴,z 轴建立空间直角坐标系,由11AA AD ==,2AB =,则()10,0,1D ,()1,2,0B ,所以1D B ==,所以点1D 到点B .连接1D A ,作1D E 垂直AC ,垂足为E ,由()1,0,0A ,()0,2,0C ,所以()11,0,1AD =- ,()1,2,0AC =-,所以15AD AC AE AC⋅===,又1AD =,所以点1D 到直线AC 的距离5d ==.;5.15.已知圆O :()2220x y rr +=>和直线l :40x y -+=,则圆心O 到直线l 的距离等于_____________;若圆O 上有且仅有两个点到直线l ,写出一个符合要求的实数r 的值,r =______________.【答案】①.②.2(答案不唯一).【解析】【分析】根据点到直线距离公式计算;将圆O 上有且仅有两个点到直线l 转化为半径与圆心O 到直线l 的距离之间的关系即可求解.【详解】圆心O 到直线l 的距离为d ==;因为圆O 上有且仅有两个点到直线l ,所以d r <-<r <<.故答案为:2(答案不唯一).16.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PAB 是等边三角形,O 为AB 的中点,且PO ⊥底面ABCD ,点F 为棱PC 上一点.给出下面四个结论:①对任意点F ,都有CD OF ⊥;②存在点F ,使//OF 平面PAD ;③二面角P AC B --;④平面PAB ⊥平面ABCD .其中所有正确结论的序号是____________.【答案】②③④【解析】【分析】根据题意,利用空间直线与直线,直线与平面位置关系,依次进行判断即可.【详解】对于①,若点F 与点C 重合,显然不满足CD OF ⊥,所以①错;对于②,若点F 为线段PC 中点,取线段PD 中点E ,连接EF ,则//EF CD 且12EF CD =,所以//EF AO 且EF AO =,则四边形AOFE 为平行四边形,得//OF AE ,因为OF ⊄平面PAD ,AE ⊂平面PAD ,所以//OF 平面PAD ,所以②正确;对于③,因为O 为AB 的中点,且PO ⊥底面ABCD ,过O 作OH AC ⊥于H ,则PHO ∠即为二面角P AC B --的平面角,根据边长可求得32PO =,4OH =,所以32tan 24PHO ∠==,所以③正确;对于④,因为PO ⊥底面ABCD ,PO ⊂平面PAB ,所以平面PAB ⊥平面ABCD ,所以④正确;故答案为:②③④三、解答题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.已知三条直线1l :20x y +-=,2l :3100x y -+=,3l :3450x y -+=.(1)求直线1l ,2l 的交点M 的坐标;(2)求过点M 且与直线3l 平行的直线方程;(3)求过点M 且与直线3l 垂直的直线方程.【答案】(1)()1,3M -(2)34150x y -+=(3)4350x y +-=【解析】【分析】(1)联立直线方程,即可求解;(2)根据已知条件,结合直线平行的性质,即可求解;(3)根据已知条件,结合直线垂直的性质,即可求解;【小问1详解】联立203100x y x y +-=⎧⎨-+=⎩,解得13x y =-⎧⎨=⎩,故交点M 坐标为()1,3M -;【小问2详解】所求直线与直线3l 平行,则所求直线可设3405x y C C -+=≠(),所求直线过点()1,3M -,则()31430C ⨯--⨯+=,解得15C =,故所求直线方程为34150x y -+=;【小问3详解】所求直线与直线3l 垂直,则所求直线可设430x y D ++=,所求直线过点()1,3M -,则()41330D ⨯-+⨯+=,解得5D =-,故所求直线方程为4350x y +-=.18.已知圆C 的圆心为点()1,3C -,半径为2.(1)写出圆C 的标准方程;(2)若直线l :20x y --=与圆C 交于A ,B 两点,求线段AB 的长.【答案】(1)()()22134x y -++=(2)【解析】【分析】(1)根据圆的标准方程定义可得解;(2)求出圆心到直线的距离,再利用勾股定理计算可得.【小问1详解】因为圆心()1,3C -,半径2r =,所以圆C 的标准方程为()()22134x y -++=.【小问2详解】圆心C 到直线l 的距离d ==2AB∴===AB ∴=19.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是正方形,1==PA AB ,M 为PB 的中点.(1)求证:AM ⊥平面PBC ;(2)求直线PD 与平面PBC 所成角的大小;(3)求点D 到平面PBC 的距离.【答案】(1)见解析(2)π6(3)2【解析】【分析】(1)根据线线,线面的垂直关系的转化,即可证明线面垂直;(2)首先建立空间直角坐标系,由(1)可知向量AM是平面PBC 的法向量,利用向量法求线面角的大小;(3)根据(2)的结果,结合点到平面的距离的定义,即可求解.【小问1详解】因为PA ⊥平面ABCD ,所以PA BC ⊥,又BC AB ⊥,PA AB A = ,,PA AB ⊂平面PAB ,所以BC ⊥平面PAB ,AM ⊂平面PAB ,所以BC AM ⊥,因为PA AB =,且点M 是PB 的中点,所以AM PB ⊥,且BC PB B = ,,BC PB ⊂平面PBC ,所以AM ⊥平面PBC ;【小问2详解】以点A 为原点,以向量,,AB AD AP 为,,x y z 轴的方向向量,建立空间直角坐标系,()0,0,0A ,11,0,22M ⎛⎫ ⎪⎝⎭,()0,0,1P ,()0,1,0D ,()1,0,0B ,()1,1,0C ,11,0,22AM ⎛⎫= ⎪⎝⎭,()0,1,1PD =- ,由(1)可知,向量AM是平面PBC 的法向量,设直线PD 与平面PBC 所成角为θ,所以1sin cos ,2PD AM θ== ,则π6θ=,所以直线PD 与平面PBC 所成角的大小为π6;【小问3详解】因为1PA AD ==,则PD =由(2)可知,直线PD 与平面PBC 所成角的大小为π6,所以点D 到平面PBCπ62=.20.如图,在三棱柱111ABC A B C -中,1A A ⊥平面ABC ,D 是BC的中点,BC =11A A AB AC ===.(1)求证:1//A B 平面1ADC ;(2)求二面角1D AC C --的余弦值;(3)判断直线11A B 与平面1ADC 是否相交,如果相交,求出A 到交点H 的距离;如果不相交,求直线11A B 到平面1ADC 的距离.【答案】(1)见解析(2)3(3)相交,AH =【解析】【分析】(1)构造中位线,利用线线平行证明线面平行;(2)建立空间直角坐标系,利用法向量求二面角的余弦值;(3)利用平面的性质,即可判断直线11A B 与平面1ADC 的位置关系,并利用图形求解.【小问1详解】连结1AC 交1AC 于点E ,连结DE,因为点,D E 分别是1,BC A C 的中点,所以1//DE A B ,且DE ⊂平面1ADC ,1A B ⊄平面1ADC ,所以1//A B 平面1ADC ;【小问2详解】因为1AB AC ==,BC =,所以AB AC ⊥,且1A A ⊥平面ABC ,所以如图,以点A 为原点,以向量1,,AB AC AA 为,,x y z轴的方向向量建立空间直角坐标系,()0,0,0A ,11,,022D ⎛⎫ ⎪⎝⎭,()10,1,1C ,11,,022AD ⎛⎫= ⎪⎝⎭,()10,1,1AC =uuu r ,设平面1ADC 的法向量为(),,m x y z=,则1110220AD m x y AC m y z ⎧⋅=+=⎪⎨⎪⋅=+=⎩ ,令1x =,则1y =-,1z =,所以平面1ADC 的法向量为()1,1,1m =-,平面1ACC 的法向量()1,0,0n =,设二面角1D AC C --的平面角为θ,则13cos cos ,33m n m n m n θ⋅==== ,所以二面角1D AC C --的余弦值为33;【小问3详解】如图,延长1C D 交1B B 于点G ,连结GA 并延长,交11B A 的延长线于点H ,因为点D 是BC 的中点,所以11GB BB ==,所以112BA B H =,即111A H AA ==,则22112AH =+=21.已知圆M :22420x y x y +--=和直线l :1y kx =-.(1)写出圆M 的圆心和半径;(2)若在圆M 上存在两点A ,B 关于直线l 对称,且以线段AB 为直径的圆经过坐标原点,求直线AB 的方程.【答案】(1)圆心为()2,1,半径为5(2)30x y +-=或0x y +=【解析】【分析】(1)将圆的一般方程化为标准方程,得到圆心和半径;(2)推出直线l 即为AB 的垂直平分线,过圆心()2,1M ,从而得到1k =,直线AB 的斜率为1-,再结合图形,得到当AB 过点M 和过原点时,满足要求,得到答案.【小问1详解】22420x y x y +--=变形为()()22215x y -+-=,故圆M 的圆心为()2,1【小问2详解】由垂径定理可知,线段AB 的垂直平分线一定过圆心()2,1M ,又A ,B 关于直线l 对称,故直线l 即为AB 的垂直平分线,所以直线l 过点()2,1M ,将其代入1y kx =-中得,211k -=,解得1k =,故直线AB 的斜率为1-,又以线段AB 为直径的圆经过原点,圆M 也经过原点,故当AB 过点M 时满足要求,此时直线AB 的方程为()12y x -=--,即30x y +-=,当当AB 过原点时,也满足要求,此时直线AB 的方程为()00y x -=--,即0x y +=,综上,直线AB 的方程为30x y +-=或0x y +=.。
人教版高二上学期期中考试数学试题与答案解析(共两套)
人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。
A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。
A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。
A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。
A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。
A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。
A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。
山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)
山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。
每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。
高二上学期数学期中试题(含答案)
高二(上)期中数学试卷第Ⅰ卷(选择题)一、选择题(每小题4分,共12小题,共48分)1.已知数列{n a }的通项公式是n a =252+n n (n ∈*N ),则数列的第5项为( ) A.110 B.16 C.15 D.12 2.在△ABC 中,a b c 、、分别是三内角A B C 、、的对边, ︒=︒=45,75C A ,2b =,则此三角形的最小边长为( )A .46B .322C .362D . 42 3(理).在等差数列{n a }中,已知,21=a ,1332=+a a 则654a a a ++等于( )A.40B.42C.43D.453(文).已知等差数列a n 中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A . 30 B . 15 C . D .4. 下列说法中正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b ,则a <bD .若a <b ,则a <b5. 在ABC ∆中,A,B,C 的对边分别为a,b,c ,已知bc c b a ++=222,则A 等于( )A. 120B. 60C. 45D. 306.已知等差数列{}n a 的前n 项和为n S ,若5418a a -=,则8S 等于( )A .36B .54C .72D .187(理). 不等式0442>-+-x x 的解集是( )A.RB.ΦC.),0(+∞D.)0,(-∞7(文).不等式x (2﹣x )≤0的解集为( )A . {x|0≤x≤2}B . {x|x≤0,或x≥2}C . {x|x≤2}D .{x|x≥0} 8. 在等比数列{n a }中,若2101-=⋅a a ,则74a a ⋅的值为( )A.-4B.-2C.4D.29. 已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为( )A .15B .17C .19D .2110.在一座20m 高的观测台测得对面一水塔塔顶得仰角为 60,塔底的俯角为 45,那么这座水塔的高度是( )mA.)331(20+ B.)26(20+ C.)26(10+ D. )31(20+ 11(理). 下列函数中最小值为4的是 ( )A. x x y 4+= B.x x y sin 4sin += (0﹤x ﹤π) C. x x y -⋅+=343 D.10log 4lg x x y += 11(文).设x >1,则x+的最小值是( ) A . 4 B . 5 C . 6 D . 712.设x ,y ∈R 且,则z=x+2y 的最小值等于( )A . 2B . 3C . 5D .9第Ⅱ卷(非选择题)二、填空题(每小题4分,共4小题,共16分)13(理).在等差数列{}n a 中,11=a ,2=d ,9=n S ,则项数n=13(文).在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=14.在等比数列{a n }中,若a 3=2,a 6=2,则公比q= .15. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B+cos B =2,则角A 的大小为________16.若角α、β满足,则α﹣β的取值范围是三、解答题(共5小题,共56分)17. (理、10分)在ABC ∆中,A B 、为锐角,角A B C 、、所对的边分别为a b c 、、,且21a b -=-,510sin ,sin 510A B == (1)求b a ,的值;(2)求角C 和边c 的值。
浙江省杭州2023-2024学年高二上学期期中数学试题含解析
杭州2023学年第一学期高二年级期中数学试卷(答案在最后)第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“2m =”是“直线1l:()310m x my -++=与直线2l :()120mx m y +--=互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两直线垂直求出参数的值,再根据充分条件、必要条件的定义判断即可.【详解】若直线1l :()310m x my -++=与直线2l :()120mx m y +--=互相垂直,则()()310m m m m -+-=,解得0m =或2m =,所以由“2m =”推得出“直线1l :()310m x my -++=与直线2l :()120mx m y +--=互相垂直”,即充分性成立;由“直线1l :()310m x my -++=与直线2l :()120mx m y +--=互相垂直”推不出“2m =”,即必要性不成立,所以“2m =”是“直线1l :()310m x my -++=与直线2l :()120mx m y +--=互相垂直”的充分不必要条件.故选:A2.已知事件,A B 相互独立,()0.5P A =,()0.4P B =,则()P A B +=()A.0.88 B.0.9C.0.7D.0.72【答案】C 【解析】【分析】根据事件,A B 相互独立得到()()()0.2P AB P A P B ==,结合()()()()P A B P A P B P AB +=+-求出答案.【详解】因为事件,A B 相互独立,故()()()0.50.40.2P AB P A P B ==⨯=,又()0.5P A =,()0.4P B =,所以()()()()0.50.40.20.7P A B P A P B P AB +=+-=+-=.故选:C 3.过点),且与椭圆2212516y x +=有相同焦点的椭圆的标准方程为()A.221189x y += B.221189y x += C.221123x y += D.221123y x +=【答案】D 【解析】【分析】设所求椭圆方程为22221y xa b +=()0a b >>,依题意可得22229421a b a b⎧-=⎪⎨+=⎪⎩,解得2a 、2b ,即可求出椭圆方程.【详解】椭圆2212516y x +=的焦点为()0,3或()0,3-,设所求椭圆方程为22221y x a b+=()0a b >>,则22229421a b a b⎧-=⎪⎨+=⎪⎩,解得22123a b ⎧=⎨=⎩,所以椭圆方程为221123y x +=.故选:D4.已知()()()()0,0,2,1,0,1,1,1,0,0,0,0A B C O -,则点O 到平面ABC 的距离是()A.11B.11C.5D.5【答案】B 【解析】【分析】利用空间向量计算点面距离即可.【详解】由题意可知()()()1,0,3,1,1,2,0,0,2AB AC AO =-=-=-,设面ABC 的一个法向量为(),,n x y z = ,则030200n AB x z x y z n AC ⎧⋅=-=⎧⎪⇒⎨⎨+-=⋅=⎩⎪⎩ ,取13,1z x y =⇒==-,即()3,1,1n =-,所以点O 到平面ABC 的距离是11AO n d n ⋅=== .故选:B5.点(),P x y 在圆222x y +=上运动,则3x y -+的取值范围()A.[]0,1 B.[]0,4 C.[]1,5 D.[]1,4【答案】C 【解析】(),P x y 到直线30x y -+=的距离d ,求出圆心()0,0O 到直线30x y -+=的距离1d ,从而求出d 的取值范围,即可求出3x y -+的取值范围.【详解】圆222x y +=的圆心为()0,0O ,半径r =因为点(),P x y 在圆222xy +=上运动,又3x y-+=(),P x y 到直线30x y -+=的距离d ,所以3x y -+=,又圆心()0,0O 到直线30x y-+=的距离1322d ==,所以11d rd d r -≤≤+,即22d ≤≤,所以[]31,5x y -+=∈.故选:C6.如图,在边长为3的正方体1111ABCD A B C D -中,3BC EC =,点P 在底面正方形ABCD 上移动(包含边界),且满足11B P D E ⊥,则线段1B P 的长度的最大值为()A.B.C. D.【答案】B 【解析】【分析】建立合适的空间直角坐标系,求出点P 的轨迹结合函数求最值即可.【详解】依据题意可以建立如图所示的空间直角坐标系,则()()()110,0,3,1,3,0,3,3,3D E B ,设()[](),,0,0,3P x y x y ∈,所以()()113,3,3,1,3,3B P x y D E =---=-,即1133033B P D E x y x y ⋅=+-=⇒=-,所以[]03330,1y y ≤-≤⇒∈,而1B P =,由二次函数的单调性可知22391061810181010t y y y ⎛⎫=-+=-+- ⎪⎝⎭,当1y =时,max 22t =,则1max B P =.故选:B7.已知A ,B 是圆()()()22:330C x m y m -+-=>上两点,且AB =.若存在R a ∈,使得直线1:410l ax y a -++=与2:50l x ay a +-=的交点P 恰为AB 的中点,则实数m 的取值范围为()A.(0,1⎤-⎦B.(0,2⎤⎦C.(0,1⎤+⎦D.(3⎤+⎦【答案】A 【解析】【分析】根据直线与圆相交的弦长可得AB 中点M 的轨迹为()()2231x m y -+-=,又根据直线1l ,2l 的方程可知12l l ⊥,交点P 的轨迹方程为()()22238x y ++-=,若P 恰为AB 的中点,即圆M 与圆P 有公共点,根据圆与圆的位置关系可得实数m 的取值范围.【详解】圆()()()22:330C x m y m -+-=>,半径为r =,设AB 中点为M ,且直线AB 与圆的相交弦长为AB =即1MC =,所以点M 的轨迹方程为()()()22310x m y m -+-=>,又直线1:410l ax y a -++=过定点()4,1Q -,直线2:50l x ay a +-=过定点()0,5S ,且12l l ⊥,则点P 是两垂线的交点,所以P 在以QS 为直径的圆上,则圆心()2,3-,半径12QS =,所以点P 的轨迹方程为()()22238x y ++-=,由于直线1l 的斜率存在,所以点P 的轨迹要除去点()4,5-,若点P 恰为AB 中点可知圆P 与圆M 有公共点,即11-≤,0m >,即121m -≤+≤+,解得31m -≤≤-,即01m <≤,故选:A.8.已知动点,P Q 分别在正四面体ABCD 的内切球与外接球的球面上,且PQ x AB y AC z AD =++,则2x y z ++的最大值为()A.1+6B.263C.12+D.83【答案】B 【解析】【分析】计算出正四面体ABCD 的内切球与外接球的半径,求出()2,x y z AT AT ++⋅范围,即可得出2x y z ++的最大值.【详解】由题意,连接,AD EF ,设交点为M ,则点M 是AD 中点设正方体边长为2,由几何知识得,点A 到面BCM 距离即为AM ,设内切球半径为1r ,外接球半径为2r ,三棱锥外接球半径222222232r ++==,而由正三棱锥内切球半径公式,13323r ==,取任意一点P ,使得()22x y z AT xAB y AC z AD xAB y AC z AM ++⋅=++=++,则点T 在面BCM 上,∴()123432333x y z AT PQ r r ++⋅=≤+=+=,点A 到面BCM 距离为=d AM ,则22AT d AM ≥=== ∴()43263232x y z AT x y z AT++⋅++=≤,故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某学校随机抽取100名学生数学周测成绩的频率分布直方图如图所示,据此估计该校本次数学周测的总体情况(同一组中的数据用该组区间的中点值为代表),下列说法正确的是()A.众数为60或70B.45%分位数为70C.平均数为73D.中位数为75【答案】BC 【解析】【分析】利用众数的概念直接可判断A ,再根据平均数,中位数及百分位数公式可判断BCD.【详解】A 选项:由频率分布直方图可知众数为6070652+=,A 选项错误;B 选项:由频率分布直方图可得0.005100.04100.45⨯+⨯=,所以45%分位数为70,B 选项正确;C 选项:由频率分布直方图可知平均数为550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,C 选项正确;D 选项:由频率分布直方图可得0.005100.04100.450.5⨯+⨯=<,0.005100.04100.03100.750.5⨯+⨯+⨯=>,所以中位数[)70,80a ∈,所以()0.005100.0410700.030.5a ⨯+⨯+-⨯=,解得71.67a ≈,D 选项错误;故选:BC.10.已知点()0,1P 和直线:210l x y ++=,下列说法不正确的是()A.经过点P 的直线都可以用方程1y kx =+表示B.直线l 在y 轴上的截距等于1C.点P 关于直线l 的对称点坐标为81,55⎛⎫- ⎪⎝⎭D.直线l 关于点P 对称的直线方程为230x y ++=【答案】ABD 【解析】【分析】当过点P 的直线斜率不存在时,方程为0x =,可判断A 选项,令0x =可判断B 选项,设点P 关于直线l 的对称点为()11,x y ,根据对称的概念列方程,可判断C 选项,设l 上一点()00,x y ,其对称点为(),x y ,根据对称及点()00,x y 在直线l 上,可得直线方程,即可判断D 选项.【详解】A 选项:当过点P 的直线斜率不存在时,方程为0x =,A 选项错误;B 选项:令0x =,得10y +=,即1y =-,所以截距为1-,B 选项错误;C 选项:设点P 关于直线l 的对称点为()11,x y ,所以()111101*********x y y x ++⎧⨯++=⎪⎪⎨-⎪⨯-=--⎪⎩,解得118515x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以点P 关于直线l 的对称点坐标为81,55⎛⎫- ⎪⎝⎭,C 选项正确;设l 上一点()00,x y ,其对称点为(),x y ,则000212x xy y +⎧=⎪⎪⎨+⎪=⎪⎩,即002x x y y =-⎧⎨=-⎩,又点()00,x y 在直线l 上,则()()2210x y ⨯-+-+=,即230x y +-=,D 选项错误;故选:ABD.11.如图,棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为棱111,A D AA 的中点,G 为面对角线1B C 上一个动点,则()A.三棱锥1A EFG -的体积为定值B.点E 到直线1B CC.线段1B C 上存在点G ,使得FG BD⊥D.线段1B C 上不存在点G ,使平面//EFG 平面1BDC 【答案】ACD【解析】【分析】利用等体积法可判定A ,建立合适的空间直角坐标系利用空间向量计算点线距离,线线与面面位置关系可判定B 、C 、D .【详解】由正方体的结构特征可知1//B C 平面AEF ,故点G 到平面AEF 距离2h AB ==不变,所以11113G A EF A EFG A EF V V S h --==⨯⨯ ,又1122222A EF S =⨯⨯ 是定值,故A正确;如图所示,建立空间直角坐标系,则()()()()111,0,2,0,2,0,2,2,2,0,2,2E C B C ,()()2,0,1,2,2,0F B 所以()()11,2,2,2,0,2EC B C =--=--,故点E 到直线1B C的距离2d ==,故B 错误;设()1101B G B C λλ=<< ,则()()()110,2,12,0,22,2,12FG FB B C λλλλλ=+=+--=--,()2,2,0DB = ,所以4401DB FG λλ⋅=-+=⇒=,即G C 、重合,故C 正确;易知()10,2,2DC = ,设平面1BDC 的一个法向量为(),,n x y z =,则102202200n DB x y y z n DC ⎧⋅=+=⎧⎪⇒⎨⎨+=⋅=⎩⎪⎩ ,取11y x z =-⇒==,即()1,1,1n =- 而()1,0,1EF =- ,则10,2212004n EF n FG λλλ⋅=⋅=--+-=⇒=-<,故不存在G 使得n FG ⊥,故D 正确.故选:ACD12.已知12(,0),(,0)F c F c -分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,下列说法正确的是()A.若点P 为椭圆上一点,则21||||PF PF -的最大值是2cB.若点T 的坐标为1(,0)2a ,P 是椭圆上一动点,则线段PT 长度的最小值为12aC.过F 2作垂直于x 轴的直线,交椭圆于A ,B 两点,则22c AF a a=-D.若椭圆上恰有6个不同的点P ,使得12PF F △为等腰三角形,则椭圆E 的离心率的取值范围是111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】ACD 【解析】【分析】A ,结合三角形不等式即可;B ,设出(),P m n ,[],m a a ∈-,则22221m na b+=,表达出22342222221244c a a PT m a b a c c ⎛⎫=-++- ⎪⎝⎭,分3202a a c <<与322a a c≥两种情况,得到不同情况下的线段PT 长度的最小值,B 错误;;C ,x c =代入即可求;D ,选项,先得到上下顶点能够使得12PF F △为等腰三角形,再数形结合得到1F 为圆心,12F F 为半径作圆,只能交椭圆与不同于上下顶点的12,P P 两点,列出不等式组22a c ca c -<⎧⎨≠⎩,求出答案;【详解】对A ,1122||||||PF PF F F -≤,当P 在左顶点时等号成立,则最大值是2c ,A 正确;对B ,设(),P m n ,[],m a a ∈-,则22221m na b+=,22222222222222111244b m c PT m a n m am a b m am a b a a ⎛⎫=-+=-++-=-++ ⎪⎝⎭,2234222221244c a a m a b a c c⎛⎫=-++- ⎪⎝⎭,若b c <,此时222a c <,3202a a c <<,此时当322a m c =时,2PT 取得最小值,最小值为4222144a a b c+-,线段PT ;若b c ≥,此时222a c ≥,322a a c≥,此时当m a =时,2PT 取得最小值,最小值为214a ,线段PT 长度的最小值为12a ,综上:B 错误;对C ,当x c =时,22221c ya b+=,解得2b y a =±,即22222||b a c c AF a a a a-===-,C 正确;对D ,如图,椭圆左右顶点为,A B ,上下顶点为,C D ,显然上下顶点能够使得12PF F △为等腰三角形,要想椭圆上恰有6个不同的点P ,使得12PF F △为等腰三角形,以1F 为圆心,12F F 为半径作圆,只能交椭圆与不同于上下顶点的12,P P 两点,则要满足11F A FQ <,且111FC F P ≠,即22a c c a c-<⎧⎨≠⎩,解得:13c a >,且12c a ≠,故椭圆E 的离心率的取值范围是111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭,D 正确;故选:ACD第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.在两坐标轴上的截距相等,且与圆22(3)(4)2x y -+-=相切的直线有________条.【答案】4【解析】【分析】分横纵截距为零和横纵截距不为零两种情况讨论即可.【详解】圆()()22342x y -+-=的圆心坐标为()3,4,当横纵截距为零时,直线方程为()0y kx k =≠,=,整理得2724140k k -+=,因为22447141840∆=-⨯⨯=>,所以方程2724140k k -+=有两个解,故当横纵截距为零时存在两条直线与圆相切;当横纵截距不为零时,设直线方程为()0x y a a +=≠,=5a =或9,所以横纵截距不为零时存在两条直线与圆相切,综上可得,存在4条截距相等的直线与圆相切.故答案为:4.14.已知矩形ABCD,1,AB BC ==,沿对角线AC 将ABC 折起,若BD =则二面角B AC D --的余弦值为________.【答案】13【解析】【分析】利用空间向量的数量积与模长计算夹角即可.【详解】如图所示,过B D 、分别作,BE AC DF AC ⊥⊥,垂足分别为E F 、,由矩形ABCD 中,1,AB BC ==,可知12,=60,,122AC BAC BE DF AE CF EF =∠⇒===== ,设二面角B AC D --的平面角为α,则,EB FD α=,2222222BD BE EF FD BD BE EF FD BE EF EF FD BE FD=++⇒=+++⋅+⋅+⋅ ()33312=++1+2cos πcos 4443αα⨯⨯-⇒=.故答案为:1315.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,上顶点为,B O 为坐标原点,椭圆上的点()(),,,M M N N M x y N x y 分别在第一、二象限内,若OAN 与OBM 的面积相等,且2224M N x x b +=,则C的离心率为__________.【答案】2【解析】【分析】根据题意,由两个三角形面积相等可得N M ay bx =,将点N 的坐标代入椭圆方程,结合条件化简即可得到,a b 关系,再根据离心率公式即可得到结果.【详解】因为OAN 与OBM 的面积相等,且()(),,,M M N N M x y N x y ,则1122N M ay bx =,即N M ay bx =,所以2222N M a y b x =,将(),N N N x y 坐标代入2222:1(0)x y C a b a b +=>>,可得22221N N x y a b+=,化简可得222222N N b x a y a b +=,即222222N M b x b x a b +=,所以()22222NM bxx a b +=,且2224MN x x b +=,所以22224b b a b ⋅=,即224a b =,则离心率为2e ===,故答案为:216.某同学回忆一次大型考试中的一道填空题,题目要求判断一条给定直线与给定圆的位置关系,该同学表示,题中所给直线与圆的方程形式分别为:l y kx b =+,222:C x y r +=,但他忘记了方程中的三个参数的具体值,只记得{},,1,2,3,4k b r ∈,并且他填写的结果为直线与圆相交.若数组(,,)k b r 的每一种赋值的可能性都相等,则该同学该题答对的概率为________.【答案】78##0.875【解析】【分析】利用直线与圆的位置关系结合古典概型分类讨论计算即可.【详解】易知数组(,,)k b r 有3464=种结果,若要直线与圆相交,需圆心()0,0C 到直线l 的距离2221b d r k r =<⇒<+,显然b r ≤时,22211b k r≤<+恒成立,若b r >,①当2,1b r ==,此时1k =不符题意;②当3,1b r ==,此时1,2k =不符题意,当3,2b r ==,此时1k =不符题意;③当4,1b r ==,此时1,2,3k =不符题意,当4,2b r ==,此时1k =不符题意,当4,3b r ==,k 取何值均成立;综上,共有8种情况不符题意,故答对的概率为871648P =-=.故答案为:78四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知, , a b c 是空间中的三个单位向量,且a b ⊥ ,,,60a c b c == .若2OM a b c =+-,OA a b c =++ ,2OB a b c =++ .(1)求MB;(2)求MB 和OA夹角的余弦值.【答案】(1;(2)15【解析】【分析】利用空间向量的数量积公式计算即可.【小问1详解】由已知可得2MB OB OM a b c =-=-++,所以MB =;【小问2详解】由OA a b c OA =++⇒=,所以MB 和OA夹角的余弦值为222cos ,15MB OA MB OA MB OA⋅==⋅ .18.为调查高一、高二学生心理健康情况,某学校采用分层随机抽样方法从高一、高二学生中分别抽取了60人、40人参加心理健康测试(满分10分).经初步统计,参加测试的高一学生成绩i x ()1,2,3,,60i =⋅⋅⋅的平均分8x =,方差22x s =,高二学生成绩i y (i =1,2,…,40)的统计表如下:成绩y 456789频数12915103(1)计算参加测试的高二学生成绩的平均分y 和方差2y s ;(2)估计该学校高一、高二全体学生的平均分z 和方差2z s .【答案】18.7,1.2;19.7.6,1.92.【解析】【分析】(1)利用统计表计算平均数与方差即可;(2)根据分层抽样的平均数与方差公式计算即可.【小问1详解】由表可知41526971581093712915103y ⨯+⨯+⨯+⨯+⨯+⨯==+++++,()()()()()()222222214725796715771087397 1.240y s ⨯-+⨯-+⨯-+⨯-+⨯-+⨯-==;【小问2详解】由已知及(1)可知6040877.6100100z =⨯+⨯=,()()222226040 1.92100100z x y s s x z s y z ⎡⎤⎡⎤=⨯+-+⨯+-=⎣⎦⎣⎦.19.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为12,收到0的概率为12;发送1时,收到0的概率为13,收到1的概率为23.(1)重复发送信号1三次,计算至少收到两次1的概率;(2)依次发送1,1,0,判断以下两个事件:①事件A :至少收到一个正确信号;②事件B :至少收到两个0,是否互相独立,并给出证明.【答案】19.2027;20.事件A 与事件B 不互相独立,证明见解析.【解析】【分析】(1)利用事件的相互独立求“至少收到两次1”的概率;(2)利用事件的相互独立性计算()P A ,()P B ,()P AB ,利用独立事件的概率公式验证.【小问1详解】重复发送信号1三次,“至少收到两次1”的可能情况为:(1,1,1),(1,0,1),(1,1,0),(0,1,1),因为信号的传输相互独立,故“至少收到两次1”的概率为:2222122211222033333333333327⨯⨯+⨯⨯+⨯⨯+⨯⨯=.【小问2详解】事件A 与事件B 不互相独立,证明如下:若依次发送1,1,0,则三次都没收到正确信号的概率为111133218⨯⨯=,故至少收到一个正确信号的概率为()11711818P A =-=;若依次发送1,1,0,“至少收到两个0”的可能情况为:(0,0,0),(0,0,1),(0,1,0),(1,0,0),根据事件的相互独立性,故()11111112121161332332332332183P B =⨯⨯+⨯⨯+⨯⨯+⨯⨯==,若依次发送1,1,0,“至少收到两个0且至少收到一个正确信号”的可能情况为:(0,0,0),(0,1,0),(1,0,0),根据事件的相互独立性,故()111121211533233233218P AB =⨯⨯+⨯⨯+⨯⨯=,因为()()()P A P B P AB ≠,所以事件A 与事件B 不互相独立.20.已知圆22:46120C x y x y +---=.(1)求过点()75,且与圆C 相切的直线方程;(2)求经过直线70x y +-=与圆C 的交点,且面积最小的圆的方程.【答案】(1)21202470x y +-=或7x =(2)23π【解析】【分析】(1)由已知可得点()75,在圆外,即有两条切线,当切线斜率存在时,设出切线方程,根据点到直线距离公式可得斜率与方程,当切线斜率不存在时,可判断直线与圆相切;(2)由已知可设圆的方程为()22461270x y x y x y λ+---++-=,可得圆的半径1r =,可知当2λ=-时,1r ,此时面积最小为23π.【小问1详解】由22:46120C x y x y +---=得()()22:2325C x y -+-=,圆心()2,3C ,半径=5r ,又()75,到圆心的距离为5=>,所以点()75,在圆外,所以过点()75,的切线共有两条,当切线斜率存在时,设切线方程为()57y k x -=-,即750kx y k --+=,所以圆心C到直线的距离5d =,解得2120k =-,所以直线方程为()215720y x -=--,即21202470x y +-=,当直线斜率不存在时,直线方程为7x =,与圆C 相切,综上所述,切线方程为21202470x y +-=或7x =.【小问2详解】已知可设圆的方程为()22461270x y x y x y λ+---++-=,即()()22461270x y x y λλλ++-+---=,则圆的半径1r =可知当2λ=-时,1r ,此时面积最小为21π23πS r ==.21.如图,三棱台111ABC A B C -中,AB AC ==,112B C BC ==1AA =,点A 在平面111AB C 上的射影在111B A C ∠的平分线上.(1)求证:111AA B C ⊥;(2)若A 到平面111A B C 的距离为4,求直线AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析;(2)35【解析】【分析】(1)利用线面垂直证线线垂直即可;(2)利用棱台的特征补全棱锥,结合等体积法求点面距离,计算即可.【小问1详解】如图所示,补全棱台,延长三条侧棱交于O 点,得到棱锥111O A B C -,由题意可知、、A B C 分别是三条侧棱111OA OB OC 、、的中点,取11B C 的中点D ,连接1A D ,设A 在底面111A B C 的投影为M ,连接AM ,根据题意可知AM ⊥底面111A B C ,且M 在1A D 上,因为11B C ⊂面111A B C ,所以11AM B C ⊥又1111AB AC A B A C =⇒=,所以111A D B C ⊥,而11,A D AM M A D AM ⋂=⊂、平面1AA D ,所以11B C ⊥面1AA D ,因为1AA ⊂面1AA D ,所以111B C AA ⊥;【小问2详解】过O 作ON ⊥底面111A B C ,结合(1)可知N 在1A D 上,且4,8AM ON ==,在111A B C △上,()2211111112225,2225322A B A C B C A D ⎛⎫===⇒=-= ⎪ ⎪⎝⎭,结合题意可知:22111122,2422A M A A AM A N A M DM DN =-===⇒==,则22221166,217OD DN ON OB B D OD =+==+=在11OA B中,22211111111112cos 2A O B O A B OA AA A OB A O B O +-==⇒∠==⋅所以1111sin OA B AOB S ∠=⇒= 设1C 到平面11AA B B 的距离为h ,11A C 与平面11AA B B 的夹角为θ,所以111111111111133O A B C A B C C OA B OA B V ON S V h S --=⋅==⋅ ,解之得:h =,所以11sin 35h A C θ==,因为11//A C AC ,所以直线AC 与平面11AA B B所成角的正弦值为35.22.设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AD 的平行线交AC 于点E.(1)写出点E 的轨迹方程;(2)设点E 的轨迹为曲线1C ,过A 且与l 平行的直线与曲线1C 交于,P Q 两点,求AD PQ ⋅的取值范围.【答案】(1)221(0)43x y y +=≠(2))⎡⎣【解析】【分析】(1)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB ED =,再由圆的定义和椭圆的定义,可得E 的轨迹为以A ,B 为焦点的椭圆,求得a ,b ,c ,即可得到所求轨迹方程;(2)联立直线与圆,以及直线与椭圆方程,可得跟与系数的关系,结合向量的坐标运算,即可根据数量积的坐标运算得AD PQ ⋅= .【小问1详解】圆A 的标准方程为22(1)16x y ++=,故半径4r =因为||||4AD AC r ===,//EB AC ,故EBC ADC ACD ∠=∠=∠,所以||||EB ED =,故||||||||||EA EB EA ED AD +=+=,因此||||4EA EB +=,由题设得(1,0)A -,(1,0)B ,||2||||AB EA EB =<+,由椭圆定义可得点E 的轨迹方程为:221(0)43x y y +=≠.【小问2详解】设直线CD 的方程为1x ty =+,则直线PQ 的方程为1x ty =-,联立直线CD 与圆的方程2212150x ty x y x =+⎧⎨++-=⎩,消元得()2214120t y ty ++-=,则()2221648164480t t t ∆=++=+>则()2242121t t x t t -±-±==++,联立直线PQ 与圆的方程221143x ty x y =-⎧⎪⎨+=⎪⎩,消元得()2234690t y ty +--=,由于点A 在椭圆内,故该方程一定有两个不相等的实数根,不妨设()()3344,,,P x y Q x y ,则34342269,3434t y y y y t t -+==++,()()()()2222234343422221216944343434t t y y y y y y t t t +-⎛⎫-=+-=-= ⎪++⎝⎭+,()()43434311x x ty ty t y y -=---=-()()43434343,,PQ x x y y ty ty y y =--=-- ,()1,D D AD x y =+ ()()()()()()()()24343434343122D D D D D D AD PQ x ty ty y y y ty ty ty y y y t y y t y y ⋅=+-+-=+-+-=++- ,()22222432121D D t t y y t t t t -±++=+=±+所以2432D D AD PQ t y y t y y ⋅=++-== 令234,4t s s +=≥,则AD PQ ⋅== 令11,04x xs =<≤,则AD PQ ⋅= 由于函数27114y x x =-+的对称轴为1114x =,故27114y x x =-+在10,4x ⎛⎤∈ ⎥⎝⎦单调递减,故当14x =时,27114y x x =-+取最小值2716,故2277114,416y x x ⎡⎫=-+∈⎪⎢⎣⎭,所以)AD PQ ⎡⋅=⎣ 【点睛】圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.。
高二上学期期中考试数学试题(带答案)
高二上学期期中考试数学试题(带答案)高二上学期期中考试数学试题(带答案)注:题号后(A)表示1-7班必做,(B)表示8班必做。
)完卷时间:120分钟,总分:150分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设$a,b,c\in R$,且$a>b$,则()A.$ac>bc$B.$\frac{1}{a}<\frac{1}{b}$C.$a^2>b^2$D.$a^3>b^3$2.已知数列$\{a_n\}$是公差为2的等差数列,且$a_1,a_2,a_5$成等比数列,则$a_2=$()A.$-2$B.$-3$C.$2$D.$3$3.已知集合$A=\{x\in R|x^2-4x-12<0\},B=\{x\in R|x<2\}$,则$A\cap B=$()A.$\{x|x<6\}$B.$\{x|-2<x<2\}$C.$\{x|x>-2\}$D.$\{x|2\leq x<6\}$4.若变量$x,y$满足约束条件$\begin{cases}x+y\leq 4\\x\geq 1\end{cases}$,则$z=2x+y$的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和55.已知等比数列$\{a_n\}$的前三项依次为$a-1,a+1,a+4$,则$a_n=$A.$4\cdot (\frac{3}{2})^{n-1}$B.$4\cdot (\frac{2}{3})^{n-1}$C.$4\cdot (\frac{3}{2})^{n-2}$D.$4\cdot (\frac{2}{3})^{n-2}$6.在$\triangle ABC$中,边$a,b,c$的对角分别为$A,B,C$,且$\sin^2 A+\sin^2 C-\sin A\sin C=\sin^2 B$。
江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)
江苏省扬州中学2024-2025学年第一学期期中试卷高 二 数 学 2024.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆的圆心和半径分别是( )A .,1B .,3C .,2D .,22.经过两点,的直线的斜率为( )A .B .C .D .3.椭圆x 225+y 216=1的焦点为为椭圆上一点,若,则( )A .B .C .D .4.已知双曲线的离心率大于实轴长,则的取值范围是( )A .B .C .D.5.两平行直线与之间的距离为( )ABCD6.已知圆关于直线对称,则实数( )A .1或B .1C .3D .或37.已知抛物线C :y 2=2px (p >0)的焦点为,若抛物线上一点满足|MF |=2,∠OFM =60°,则( )A .3B .4C .6D .88.如图,双曲线的左右焦点分别为、,过的直线与该双曲线的两支分别交于、两点(在线段上),⊙与⊙分别为与的内切圆,其半径分别为、,则的取值范围是( )A .B .C .D .(0,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A .若,且直线不经过第二象限,则,.()()22232x y +++=()2,3-()2,3-()2,3--()2.3-(2,7)A (4,6)B 12-2-12212,,F F P 13PF =2PF =435722:1y C x m -=m (3,)+∞)+∞(0,3)320mx y --=4670x y --=22:330C x y mx y +-++=:0l mx y m +-=m =3-1-F M p =2218y x -=1F 2F 1F l A B A 1F B 1O 2O 12AF F △2ABF △1r 2r 12r r 1132⎛⎫ ⎪⎝⎭,1233⎛⎫⎪⎝⎭,1223⎛⎫ ⎪⎝⎭,0abc ≠0ax by c ++=0ab >0bc <B .方程()表示的直线都经过点.C .,直线不可能与轴垂直.D .直线的横、纵截距相等.10.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P,使得C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则.11.已知集合.由集合中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论,正确的有( )A .白色“水滴”区域(含边界)任意两点间距离的最大值为B .在阴影部分任取一点,则到坐标轴的距离小于等于3.C .阴影部分的面积为.D .阴影部分的内外边界曲线长为.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的离心率为2,则其两条渐近线所成的锐角的大小为 .13.已知椭圆的左、右焦点分别为F 1、F 2,过点的直线交椭圆于A 、B 两点,若,则该椭圆的离心率为 .14.已知为曲线y =1+4―x 2上的动点,则的最大值为 .四、解答题:本题共5小题,共77分.解答题写出文字说明、证明过程或演算步骤.15.已知△ABC 的顶点坐标是为的中点.(1)求中线的方程;(2)求经过点且与直线平行的直线方程.16.已知双曲线C :x 2a2―y 2b 2=1(a >0,b >0)的离心率为为双曲线的右焦点,且点到直线的()()21250x y λλ++--=R λ∈()2,1m ∈R 220m x y ++=y 3310x y +-=:44C x x y y =-1F 2(0,F 124PF PF -=2y x =2y x =±45QA QB ⋅=(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣P 1M M 8π8π()222210,0y x a b a b -=>>22221(0)x y a b a b+=>>2F 1AB F B ⊥,14sin 5F AB ∠=(),P a b 223a b a b --++()()()2,0,6,2,2,3,A B C M --AB CM B AC ()5,,03F c F 2a x c=距离为.(1)求双曲线的方程;(2)若点,点为双曲线左支上一点,求的最小值.17.已知,是抛物线:上的两点.(1)求抛物线的方程;(2)若斜率为的直线经过的焦点,且与交于,两点,求的最小值.18.椭圆与椭圆:有相同的焦点,且经过点.(1)求椭圆的方程;(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.①证明:动直线恒过轴上的某个定点,并求出该定点的坐标.②求△OMN 面积的最大值.19.定义:M 是圆C 上一动点,N 是圆C 外一点,记的最大值为m ,的最小值为n ,若,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“”的“钻石点”.已知圆165C ()12,0A P C PA PF +()6,2A m +()24,8B m +C ()221y px p =>C ()0k k ≠l C C P Q 2PQ k +C 1C 2212x y +=31,2Q ⎛⎫ ⎪⎝⎭C C B l l C M N BM BN l x MN MN 2m n =E F -A :,P 为圆A 的“黄金点”(1)求点P 所在曲线的方程.(2)已知圆B :,P ,Q 均为圆“”的“钻石点”.①求直线的方程.②若圆H 是以线段为直径的圆,直线l :与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分?若存在,求出点W 的坐标;若不存在,请说明理由.()()221113x y +++=()()22221x y -+-=A B -PQ PQ 13y kx =+IWJ ∠江苏省扬州中学2024-2025学年第一学期期中试卷高二数学(参考答案)2024.11参考答案:题号12345678910答案C A D A C C A C BD CD 题号11 答案ABD8.【详解】设,∴S △AF 1F 2=12r 1(8+2m )=(4+m )r 1,S △ABF 2=12r 2(2m +2p )=(m +p )r 2,.在△与△中:,即,,当双曲线的斜率为正的渐近线时,取最大,此时,,当与轴重合时,取最小,此时,经上述分析得:,.故选:C.10.【详解】当时,曲线,即;当时,曲线,即;不存在;时,曲线,即;时,曲线,即;画出图形如右:对于A ,由图可得A 错误,故A 错误;对于B ,方程是以为上下焦点的双曲线,当时,曲线C 存在点P ,使得,故B 错误;对于C ,一三象限曲线的渐近线方程为,所以直线与曲线C 没有交点,故C 正确;对于D ,设,设点在直线上,点在直线,11222,,6,2,2AF m BA p F F AF m BF m p ====+=+-()()11224m r S m S p m p r +∴==+12AF F 2AF B 122cos cos F AF F AB ∠=-∠()()()()()2222222262222224m m m p m p m p m m m pm++-++-+-=-⇒=⋅⋅+⋅+⋅-32212324444444m m r m mp m m m r p mp m m m++-∴===+++--//l m p →+∞404m m ∴-=⇒=l x m 2m =()2,4m ∈1212,23r r ⎛⎫∴∈ ⎪⎝⎭0,0x y ≥>22:44C x y =-2214y x -=0,0x y ≥<22:44C x y =--2214y x +=-0,0x y ≤≥22:44C x y -=-2214y x +=0,0x y <≤22:44C x y -=--2214y x -=2214y x -=12,F F 0,0x y ≥>214PF PF -=2y x =2y x =()00,Q x y A 2y x =B 2y x =-又点Q 是曲线C 上在第三象限内的一点,代入曲线方程可得,故D 正确;故选:CD.11.【详解】对于A ,由于,令时,整理得,解得,“水滴”图形与轴相交,最高点记为A ,则点A 的坐标为,点,白色“水滴”区域(含边界)任意两点间距离的最大值为,故A 正确;对于B ,由于,整理得:,所以,所以到坐标轴的距离为或,因为,所以,,所以到坐标轴的距离小于等于3,故B正确;对于C ,由于,令时,整理得,解得,因为表示以为圆心,半径为的圆,则,且,则在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以为圆心,半径为1的半圆,阴影的上半部分的外边界是以为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以为圆心,半径为2的圆弧,设,则,即AN 所对的圆心角为,同理AM 所在圆的半径为2,所对的圆心角为,阴影部分在第四象限的外边界为以为圆心,半径为2的圆弧,设,可得,DG 所对的圆心角为,同理DH 所在圆的半径为2,所对的圆心角为,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,22004455x y QA QB -⋅==22(cos )(sin )4x y θθ-+-=0x =[]32sin 0,2y yθ=-∈[1]y ∈- y (0,1)B -||1AB =22(cos )(sin )4x y θθ-+-=2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩2cos cos ,2sin sin )(M αθαθ++M ||2cos cos αθ+|2sin sin |αθ+cos [1,1],sin [0,1]θθ∈-∈2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=M 22(cos )(sin )4x y θθ-+-=0y =[]32cos 2,2y yθ=-∈-[3,1][1,3]x ∈-- 22(cos )(sin )4x y -+-=θθ()cos ,sin Q θθ2r =13r OQ OP OQ r =-≤≤+=0πθ≤≤()cos ,sin Q θθO O ()1,0M -()1,0N 2AN AM MN ===π3π3()1,0N ()()3,0,3,0G H -π1,3ON OD OND ==∠=2π32π3所以它的面积是.轴上方的半圆(包含阴影和水滴的上半部分)的面积为,第四象限的阴影和水滴部分面积可以看作是一个直角三角形和一个扇形的面积的和,且等于所以阴影部分的面积为C 错误;对于D ,轴上方的阴影部分的内外边界曲线长为,轴下方的阴影部分的内外边界曲线长为,所以阴影部分的内外边界曲线长为,故D 正确.故选:ABD.12.13【详解】如图,设,因为,所以.由椭圆定义可知,,由,可得,所以.在Rt △F 1BF 2中,由,可得,即得,故得14.【详解】曲线,由于在曲线上,令,则,(其中),,又,,当时取得最大值15.【详解】(1)因为,所以,212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯=⎝V 弓形半圆x 219π3π22⨯=2114π21π323⨯⨯+=941116π2(πππ2363++-=+x 1π4132π3223πππ2333⨯⨯+⨯⨯=+=x 111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=13π11π8π33+=π314BF t =1AB F B ⊥,14sin 5F AB ∠=15,3AF t AB t ==21212=25,224AF a AF a t BF a BF a t =--=-=-22493AB AF BF a t t =+=-=13t a =1242,33BF a BF a ==2221212||||||F F BF BF =+222424(()33a a c =+2295c a =c e a ==9+1y =()()22141x y y +-=≥(),P a b ()2cos ,0π12sin a b θθθ=⎧≤≤⎨=+⎩()()222232cos 12sin 32cos 12sin a b a b θθθθ--++=---+++2cos 2sin 454sin 42sin 2cos 54sin θθθθθθ=--++=+-++()96sin 2cos 9θθθϕ=+-=+-sin ϕ=cos ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭[][]0,π,πθθϕϕϕ∈∴-∈-- π,02ϕ⎛⎫-∈- ⎪⎝⎭ππ,π2ϕ⎛⎫-∈ ⎪⎝⎭∴π2θϕ-=223a b a b --++9+()()2,0,6,2A B -()4,1M -故的方程是,即;(2)因为直线的斜率,所以经过点且与直线平行的直线方程为,即.16.【详解】(1)由题意知,解得,则,所以双曲线的方程为.(2)记双曲线的左焦点为,则,可得,当三点共线时,最小,且最小值为.故的最小值为.17.【详解】(1)∵,是抛物线C :上的两点,∴,则,整理得,解得, 当时,,解得,不合题意;当时,,解得.故抛物线C 方程为y 2=6x .(2)由(1)知C 的焦点为,故直线l 的方程为,联立,得,必有,设,,则,∴, ∴,即所以的最小值为18.【详解】(1)椭圆:的焦点坐标为,所以椭圆的焦点坐标也为,即得焦距为,∵椭圆过点,∴,CM 143124y x +-=+--2350x y +-=AC 303224ACk -==---B AC ()3264y x +=--34100x y +-=253165c a a c c ⎧=⎪⎪⎨⎪-=⎪⎩35a c =⎧⎨=⎩4b ==C 221916x y -=C 0F ()05,0F -0026PA PF PA PF a PA PF +=++=++0,,P F A 0PA PF +017AF =PA PF +17623+=()6,2A m +()24,8B m +()221y px p =>()()22212,848m p m p⎧+=⎪⎨+=⎪⎩()()22842m m +=+216m =4m =±4m =-()21224p m =+=113p =<4m =()212236p m =+=31p =>3,02⎛⎫⎪⎝⎭32y k x ⎛⎫=- ⎪⎝⎭2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩()222293604k x k x k -++=0∆>()11,P x y ()22,Q x y 212236k x x k ++=2122236636k PQ x x p k k+=++=+=+222666PQ k k k +=++≥+226k k=2k =2PQ k +6+1C 2212x y +=()1,0±C ()1,0±22c =C 31,2Q ⎛⎫⎪⎝⎭24a +=∴,,∴椭圆的标准方程为.(2)①设直线:(),由,得,设M (x 1,y 1),N (x 2,y 2),所以,,所以,因为直线和的斜率互为相反数,所以,所以,所以,所以.即,所以,因为,所以,所以动直线恒过轴上的定点②由①知,,且,即,又S △OMN =12⋅|OT |⋅|y 1―y 2|=12⋅4⋅(y 1+y 2)2―4y1y 2令,则,∴S △OMN=24⋅n (3n +16)2≤24⋅n (2⋅3n⋅16)2=24⋅n 4⋅3n ⋅16=3(当且仅当时取“=”)∴(S △OMN )max =3.19.【详解】(1)因为点P 为圆A 的“黄金点”,即,所以点P的轨迹是以AP 所在曲线的方程为(2)①因为P 为圆B 的“黄金点”,则所以,即点P 在圆上,则P 是圆和的交点.因为P ,Q 均为圆“”的“钻石点”,所以直线即为圆和的公共弦所在直线,2a =b =22143x y +=l x my t =+0m ≠223412x my t x y =+⎧⎨+=⎩()2223463120m y mty t +++-=122634mt y y m +=-+212231234t y y m -=+()()()()1221121212111111MF NF y x y x y yk k x x x x -+-+=+=----()()()()1221121111y my t y my t x x +-++-=--BM BN 0MB NB k k =+()()()()12211211011y my t y my t x x +-++-=--()()1221110y my t y my t +-++-=()()1212210my y t y y +-+=()22231262103434t mtm t m m --⨯+-⨯=++()640m t -=0m ≠4t =l x ()4,0T 1222434m y y m +=-+1223634y y m =+()()22Δ24434360m m =-+⋅>24m >224==240n m =->24m n =+316n ==PA =()()2211 3.x y +++=()121PB PB +=-||3PB =()()22229x y -+-=()()22113x y +++=()()22229x y -+-=A B -PQ ()()22113x y +++=()()22229x y -+-=两圆方程相减可得,故直线的方程为.②设的圆心为的圆心为,半径为.直线的方程为,得的中点坐标为,点S 到直线,则,所以圆H 的方程为.假设轴上存在点满足题意,设,.若轴平分,则,即,整理得又,所以代入上式可得,整理得①,由可得,所以x 1+x 2=―23k k 2+1,x 1x 2=―89k 2+1,代入①并整理得,此式对任意的都成立,所以.故轴上存在点,使得轴平分.0x y +=PQ 0x y +=22(1)(1)3x y +++=(11),S --()()22229x y -+-=(2,2)T 3ST y x =PQ (0,0)0x y +==12PQ ==221x y +=y (0),W t ()()1122,,,I x y J x y 120x x ≠y IWJ ∠0IM JW k k +=12120y t y tx x --+=()()21120.x y t x y t -+-=11223,113y kx y kx =+=+211211)33(()0x kx t x kx t +-++-=()12121203kx x t x x ⎛⎫+-+= ⎪⎝⎭22131y kx x y ⎧=+⎪⎨⎪+=⎩()22281039k x kx ++-=2203k kt -+=k 3t =y ()0,3W y IWJ ∠。
2023-2024学年湖北省部分重点中学高二(上)期中数学试卷【答案版】
2023-2024学年湖北省部分重点中学高二(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .43.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2D .y =√33x −24.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞)B .[125,+∞)C .[0,125]D .[0,512]5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√26.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π67.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√328.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73C .24√77D .12√77二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π310.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3]B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√2211.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√6612.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 .14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为 . 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= .16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件:(i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |.20.(12分)如图,在四棱锥P ﹣ABCD 中,底面是边长为2的菱形,∠ABC =π3,H 为BC 的中点,P A =PB =PH =√2.E 为PD 上的一点,已知PD =4PE . (1)证明:平面P AB ⊥平面ABCD ; (2)求平面EAC 与平面P AB 夹角的余弦值.21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.2023-2024学年湖北省部分重点中学高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行解:令m →=λn →,即(1,1,﹣2)=λ(2,﹣2,1),则{1=2λ1=−2λ−2=λ,此方程组无解,则直线l 1,l 2不平行,即相交或异面.故选:A . 2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .4解:椭圆C :x 2m+1+y 2m=1,可得a 2=m +1,b 2=m , 所以该椭圆的离心率e =c a =√1−b 2a2=√1−m m+1=12,则m =3.故选:C .3.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2 D .y =√33x −2解:由题意知,入射光线所在直线的斜率为tan150°=−√33, 所以入射光线为y ﹣3=−√33(x +√3),整理得y =−√33x +2,令y =0,得x =2√3,所以入射光线与x 轴的交点为(2√3,0), 由对称性知,反射光线的斜率为√33, 所以反射光线的方程为y ﹣0=√33(x ﹣2√3),即y =√33x ﹣2.故选:D .4.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞) B .[125,+∞) C .[0,125] D .[0,512] 解:方程x 2﹣4x +y 2﹣6y +9=0,即(x ﹣2)2+(y ﹣3)2=4,所以(x ,y )是以(2,3)为圆心,半径为2的圆上的点,y−1x+1表示点(x ,y )与点(﹣1,1)连线的斜率,设直线y ﹣1=k (x +1),kx ﹣y +1+k =0与圆(x ﹣2)2+(y ﹣3)2=4相切, (2,3)到直线kx ﹣y +1+k =0的距离√k 2+1=√k 2+1=2,解得k =0或k =125,所以y−1x+1的取值范围是[0,125]. 故选:C .5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√2解:根据题意,由{x +y −5=03x −5y +1=0,解得{x =3y =2,可知B (3,2).由直线BE 的方程为x +y ﹣5=0,且AC 、BE 相互垂直,可知k AC =−1kBE=1,结合点A (﹣2,1),得直线AC 的方程为y ﹣1=x +2,即x ﹣y +3=0, 因为点B 到直线AC 的距离d =|3−2+3|1+1=2√2,所以AC 边上的高BE 的长度等于2√2.故选:C .6.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π6解:如图,取AB 中点M ,连接CM ,DM ,因为△ABD 为等边三角形,△ABC 为等腰直角三角形,所以CM ⊥AB ,DM ⊥AB , 故∠CMD 即为二面角C ﹣AB ﹣D 的平面角. 因为AB =4,所以CM =2,DM =2√3,所以cos ∠CMD =CM 2+DM 2−CD 22⋅CM⋅DM =4+12−282×2×2√3=−√32,所以∠CMD =5π6,即二面角C ﹣AB ﹣D 的大小为5π6.故选:D .7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√32解:不妨设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0),因为点F 是△BPQ 的重心,所以BF →=2FM →,即(c ,﹣b )=2(x 0﹣c ,y 0),所以x 0=3c 2,y 0=−b2, 此时x 1+x 2=2x 0=3c ,y 1+y 2=2y 0=﹣b , 因为点M 在直线l 上,所以3√3•3c 2−4•(−b2)﹣21=0,即9√3c +4b ﹣42=0,①因为P ,Q 两点均在椭圆上,所以{ x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1,两式作差得(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0,则直线l 的斜率k =y 2−y 1x 2−x 1=−b 2(x 1+x 2)a 2(y 1+y 2)=−b 2⋅3c a 2⋅(−b)=3√34,即√3a 2=4bc ,②又a 2=b 2+c 2,b >c ③联立①②③,解得a =2c ,b =√3c ,则椭圆的离心率e =c a =12. 故选:B .8.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73 C .24√77D .12√77解:设椭圆的方程为y 2a 2+x 2b 2=1(a >b >0),设直线l 的方程为x =my ﹣2,A (x 1,y 1),B (x 2,y 2),联立{y 2a 2+x 2b 2=1x =my −2,整理得:(b 2+a 2m 2)y 2﹣4ma 2y +4a 2﹣a 2b 2=0,由椭圆的离心率e =c a =√1−b 2a2=√23,得b 2=79a 2,代入上式并整理得:(7+9m 2)y 2﹣36my +36﹣7a 2=0, 则y 1+y 2=36m 7+9m 2,y 1y 2=36−7a 27+9m 2, 由△OAC 与△OBC 的面积之比为3:1,则y 1=﹣3y 2,则y 2=−18m7+9m 2, 所以△OAB 的面积为S △OAC +S △OBC =12×|OC |×|y 1|+12|OC |×|y 2|=|y 1﹣y 2|=4|y 2| =4×18|m|7+9m 2≤4×18|m|2√7×9m 2=4×18|m|6√7|m|=12√77,当且仅当9m 2=7,即m =±√73时,等号成立, 故△OAB 面积的最大值为12√77.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π3解:因为椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点,故a =2,b =√3,c =√4−3=1,故椭圆离心率为ca=12,A 不对;|PF 1|的最小值为:a ﹣c =1,B 对; |PF 1|+|PF 2|=2a =4,C 不对;当P 与A 重合,即为短轴端点时,∠F 1PF 2取最大值,此时|AF 1|=|AF 2|=a =|F 2F 1|,故∠F 1PF 2=π3,所以0≤∠F 1PF 2≤π3,故D 正确. 故选:BD .10.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3] B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√22解:A 选项,k P A =1−02−1=1,所以直线P A 的倾斜角为π4, k PB =2√3−0−1−1=−√3,所以直线PB 的倾斜角为2π3, 所以直线l 的倾斜角范围为[π4,2π3],A 选项正确.B 选项,由a ×(﹣a )=(﹣1)×1,解得a =±1, 当a =1时,两直线为x ﹣y +1=0,x ﹣y ﹣2=0,两直线平行;当a =﹣1时,两直线为﹣x ﹣y +1=0.x +y ﹣2=0,即x +y ﹣1=0,x +y ﹣2=0,两直线平行, 所以a =1是直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行的充分不必要条件,所以B 选项错误. C .选项,C 1:x 2+y 2+2x =0即(x +1)2+y 2=1,是圆心为C 1(﹣1,0),半径r 1=1, 圆x 2+y 2﹣4x ﹣8y +m =0,即(x ﹣2)2+(y ﹣4)2=20﹣m 要表示圆,则20﹣m >0即m <20, 此时圆心为C 2(2,4),半径为√20−m ,两圆有四条公切线,所以两圆外离,所以5>1+√20−m ,解得4<m <20,C 选项正确. D 选项,圆x 2+y 2=2的圆心为(0,0),半径为√2,圆心到直线x ﹣y +1=0的距离为√2=√22, 所以圆 x 2+y 2=2上有且仅有3个点到直线l :x ﹣y +1=0的距离都等于√22,所以D 选项错误. 故选:AC .11.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√66解:以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),E (0,2,1),P (0,0,2),N (1,0,1),M (2,1,0),对于A ,假设存在点Q (m ,2,0)(0<m <2),使得NQ ⊥PB , ∵NQ →=(m ﹣1,2,﹣1),PB →=(2,0,﹣2),∴NQ →⋅PB →=2(m ﹣1)+2=0,解得m =0,不合题意,故A 错误;对于B ,假设存在点Q (m ,2,0)(0<m <2),使得异面直线NQ 与PE 所成的角为30°, ∵NQ →=(m ﹣1,2,﹣1),PE →=(0,2,﹣1), ∴|cos <NQ →,PE →>|=|NQ →⋅PE →||NQ →|⋅|PE →|=5√(m−1)+5⋅√5=cos30°=√32,解得m =1±√153,不符合0<m <2, ∴不存在点Q ,使得异面直线NQ 与PE 所成角为30°,故B 正确; 对于C ,连接AQ ,AM ,AN ,DQ =m ,(0<m <2),CQ =2﹣m ,∵S △AMQ =S ABCD ﹣S △ABM ﹣S △QCM ﹣S △ADQ =4﹣1−12(2−m)−m =2−m2, 点N 到平面AMQ 的距离为d =12PA =1, ∴V Q ﹣AMN =V N ﹣AMQ =13(2−m 2)=23−m 6, ∵0<m <2,∴V Q ﹣AMN ∈(13,23),故C 正确; 对于D ,当点Q 运动到DC 中点时,Q (1,2,0), ∵N (1,0,1),M (2,1,0),∴NQ →=(0,2,﹣1),NM →=(1,1,﹣1), 设n →=(x ,y ,z )是平面QMN 的法向量,则{n →⋅NQ →=2y −z =0n →⋅NM →=x +y −z =0,令y =1,则n →=(1,1,2),∵DC →=(2,0,0),设直线DC 与平面QMN 所成的角为θ,∴sin θ=|cos <DC →,n →>|=|DC →⋅n →||DC →|⋅|n →|=22×6=√66,故D 错误. 故选:BC .12.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 解:选项A ,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,由题意知,2a =6,离心率e =c a =√53, 所以a =3,c =√5,b =√a 2−c 2=2, 所以椭圆的方程为x 29+y 24=1,即选项A 正确;选项B ,当点P 位于椭圆的上或下顶点时,OP 平分∠F 1PF 2,且sin ∠OPF 2=ca =√53,cos ∠OPF 2=ba =23,所以sin ∠F 1PF 2=sin2∠OPF 2=2sin ∠OPF 2•cos ∠OPF 2=2×√53×23=4√59>19,即选项B 错误; 选项C ,设点P (x 0,y 0),其中y 0∈[﹣2,2],则x 029+y 024=1,即x 02=9(1−14y 02),而B (0,2),所以|BP |2=x 02+(y 0−2)2=9(1−14y 02)+y 02−4y 0+4=−54y 02−4y 0+13=−54(y 0+85)2+815,在[﹣2,−85]上单调递增,在[−85,2]上单调递减, 所以当y 0=−85时,|BP |2取得最大值815,此时|BP |max =√815=9√55,即选项C 正确;选项D ,设点M (x 1,y 1),则y 1=x 1+2①, 过点M 作椭圆的切线,切点弦所在的直线方程为x 1x 9+y 1y 4=1,即直线PQ 的方程为x 1x 9+y 1y 4=1②,联立①②,消去y 1可得,4x 1x +9x 1y +18y ﹣36=0,整理得,(4x +9y )x 1+18y ﹣36=0,令{18y −36=04x +9y =0,解得{x =−92y =2, 所以直线PQ 恒过定点(−92,2),即选项D 正确. 故选:ACD .三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 x ﹣2y ﹣1=0 . 解:圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4,两圆方程相减可得x 2+y 2﹣[(x ﹣1)2+(y +2)2]=1﹣4,即x ﹣2y ﹣1=0, 则两圆的公共弦所在直线方程为x ﹣2y ﹣1=0. 故答案为:x ﹣2y ﹣1=0.14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为√52. 解:因为BM →=BB 1→+B 1M →=BB 1→+12(B 1A 1→+B 1C 1→)=−12AB →+12AD →+AA 1→,所以BM →2=(−12AB →+12AD →+AA 1→)2=14AB →2+14AD →2+AA 1→2−12AB →⋅AD →−AA 1→⋅AB →+AD →⋅AA 1→=14×1+14×1+1−12×1×1×cos60°−1×1×cos30°+1×1×cos30°=54, 所以|BM →|=√52. 故答案为:√52. 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= √17 . 解:如图,∵PQ ∥AB ,∴|PQ||AB|=|PF 2||AF 2|=|QF 2||BF 2|=12,∵△PQF 2的周长为4,∴△ABF 2的周长|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =8 ∴a =2,∴椭圆方程为x 24+y 23=1,c 2=4﹣3=1,F 1(﹣1,0),直线AB 垂直x 轴,设A (﹣1,y 0),不妨设y 0>0, 则14+y 023=1,解得y 0=32,即A(−1,32),∴|AF 2|2=|AF 1|2+|F 1F 2|2=94+4=254,即|AF 2|=52, ∵∠F 2AF 1外角平分线AT 的垂线与直线BA 交于点N , ∴|AF 2|=|AN|=52,又|AF 1|=32, ∴|NF 1|=52+32=4,则|ON|2=|NF 1|2+|F 1O|2=42+1=17, ∴|ON|=√17, 故答案为:√17.16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 30 . 解:|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的几何意义为点A ,B 到直线3x +4y ﹣10=0的距离之和,根据梯形中位线知其最大值是AB 的中点M 到直线3x +4y ﹣10=0的距离的2倍, 由题可知,圆O :x 2+y 2=4的圆心O (0,0),半径为2,|AB|=2√3, 则|OM|=√22−(232)2=1,所以AB 的中点M 的轨迹是以原点O 为圆心,1为半径的圆, 故点M 到直线3x +4y ﹣10=0的最大距离√32+42+1=3,所以|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的最大值为2×3=6,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为30. 故答案为:30.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程. 解:(1)由题意知,k BP =0−(−3)3−6=−1, 因为P (3,0),所以直线BP 的方程为y =﹣(x ﹣3),即x +y ﹣3=0, 联立{x +y −3=0x −y =0(x ≥0),解得{x =32y =32,即A(32,32).(2)不妨设A (a ,a ),B (﹣2b ,b ),a >0,b <0, 则线段AB 的中点为(a−2b 2,a+b2), 因为线段AB 的中点为P ,所以{a−2b2=3a+b 2=0,解得{a =2b =−2, 所以A (2,2),B (4,﹣2),所以直线AB 的斜率为2−(−2)2−4=−2,因为直线AB 经过点P (3,0),所以直线AB 的方程为y =﹣2(x ﹣3),即2x +y ﹣6=0, 故直线AB 的方程为2x +y ﹣6=0.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.解:(1)FC →=FA →+AB →+BC →=−AF →+AB →+AD →=a →+b →−c →.(2)MN →=AN →−AM →=AN →−(AD →+DM →)=13AE →−(AD →+13DB →)=13(AB →+AF →)﹣[AD →+13(AB →−AD →)] =13(a →+c →)﹣[b →+13(a →−b →)] =(13−1)b →+13c →=−23b →+13c →. 19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件: (i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |. 解:(1)依题意,由{(x +3)2+y 2=9(x −1)2+y 2=9,解得{x =−1y =−√5或{x =−1y =√5, 因此圆C 1与圆C 2的公共弦的两个端点坐标分别为M(−1,−√5),N(−1,√5), 当圆C 的面积最小时,MN 是圆C 的直径,则圆C 的圆心为(﹣1,0),半径为√5, 所以圆C 的标准方程是(x +1)2+y 2=5;(2)因为直线l 与直线√19x +y −3=0垂直,则设直线l 的方程为x −√19y +m =0, 而直线l 与圆C 相切,则有d =|−1+0+m|2√5=√5,解得m =1或m =﹣9,又因为l 在y 轴上的截距大于0,即√190,所以m =11,即直线l 的方程为x −√19y +11=0,而圆C 2的圆心C 2(1,0),半径r 2=3, 点C 2到直线l :x −√19y +11=0 的距离为d 2=|1+0+11|25=6√55,于是得|DE|=2√r 22−d 22=2√9−(655)2=6√55.20.(12分)如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠ABC=π3,H为BC的中点,P A=PB=PH=√2.E为PD上的一点,已知PD=4PE.(1)证明:平面P AB⊥平面ABCD;(2)求平面EAC与平面P AB夹角的余弦值.(1)证明:取AB中点O,连接PO,HO,∵P A=PB,O为AB中点,∴PO⊥AB,∵PA=√2,OA=12AB=1,∴PO=√PA2−OA2=1,∵四边形ABCD为菱形,∠ABC=π3,∴△ABC为等边三角形,∴AC=2,又O,H分别为AB,BC中点,∴OH=12AC=1,∴OH2+PO2=PH2,即PO⊥OH,∵OH∩AB=O,OH,AB⊂平面ABCD,PO⊄平面ABCD,∴PO⊥平面ABCD,∵PO⊂平面P AB,∴平面P AB⊥平面ABCD;(2)解:连接CO,由(1)知:△ABC为等边三角形,∴CO⊥AB,CO=√3,以O为坐标原点,OC、OB、OP所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则A(0,−1,0),C(√3,0,0),D(√3,−2,0),P(0,0,1),H(√32,12,0), ∴AC →=(√3,1,0),PD →=(√3,−2,−1),PH →=(√32,12,−1),PA →=(0,−1,−1), 由PD =4PE 得:PE →=(√34,−12,−14), ∴EA →=PA →−PE →=(−√34,−12,−34), 设平面EAC 的法向量为m →=(x ,y ,z),则{AC →⊥m →EA →⊥m →⇒⇒{AC →⋅m →=0EA →⋅m →=0⇒⇒{√3x +y =0−√34x −y 2−34z =0, 令z =1,解得:x =√3,y =−3,∴m →=(√3,−3,1), ∵x 轴⊥平面P AB ,∴平面P AB 的一个法向量ℎ→=(1,0,0), 设平面EAC 与平面P AB 的夹角为θ, 则cosθ=|cos <m →,ℎ→>|=|m →⋅ℎ→||m →|⋅|ℎ→|=3√13=√3913,所以平面EAC 与平面P AB 夹角的余弦值为√3913. 21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 解:(1)设M (x ,y ),易知B(√3,−1), 由k MA ⋅k MB =−13,得x+√3⋅x−√3=−13,化简得x 26+y 22=1,故椭圆C 的标准方程为x 26+y 22=1.(2)∵点Q 是椭圆C 长轴上的不同于A 、B 的任意一点, 故可设直线PN 的方程为x =my +x 0,P (x 1,y 1),N (x 2,y 2), 由{x =my +x 0x 26+y 22=1,得(m 2+3)y 2+2mx 0y +x 02−6=0, ∴y 1+y 2=−2mx 0m 2+3,y 1y 2=x 02−6m 2+3,Δ>0恒成立.又|PQ|=√1+m 2|y 1|,|QN|=√1+m 2|y 2|, ∴1|PQ|+1|QN|=√1+m2(1|y 1|+1|y 2|)=√1+m 212−y 1y 2,=1√1+m 2√(y1+y 2)2−4y 1y 2−y 1y 2=1√1+m 2⋅√(−2mx 0m 2+3)2−4⋅x 02−6m 2+3−x 02−6m 2+3=26−x 02√6m 2−3x 02+18m 2+1=26−x 02√6(m 2+6−x 022)m 2+1, 要使其值为定值,则6−x 022=1,故当x 02=4,即x 0=±2时,1|PQ|+1|QN|=√6.综上,存在这样的稳定点Q (±2,0). 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.解:(1)由题意得,{2c =4√34a 2+3b 2=1a 2−b 2=c 2,解之得{a 2=16b 2=4c =2√3,故椭圆E 的方程为x 216+y 24=1;(2)设A (x 1,y 1),B (x 2,y 2),Q (x 0,y 0),直线AB 的方程为y =kx +t . 将y =kx +t 代入x 216+y 24=1,整理得(1+4k 2)x 2+8ktx +4t 2﹣16=0,Δ=(8kt )2﹣4(1+4k 2)(4t 2﹣16)>0,即16k 2+4﹣t 2>0, 则x 1+x 2=−8kt 1+4k2,x 1x 2=4t 2−161+4k2,故|AB|=√1+k 2|x 1−x 2|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅4√16k 2−t 2+41+4k2.又原点O 到直线AB 的距离为d =|t|√1+k,所以S △AOB=12|AB|×d =12⋅√1+k 2⋅4√16k 2−t 2+41+4k 2⋅|t|√1+k=2√(16k 2−t 2+4)t 21+4k 2≤16k 2+41+4k 2=4, 当且仅当16k 2﹣t 2+4=t 2,即2+8k 2=t 2……①时,等号成立. 由OQ →=λOA →+μOB →,得{x 0=λx 1+μx 2,y 0=λy 1+μy 2,代入x 0216+y 024=1,整理得λ2(x 1216+y 124)+μ2(x 2216+y 224)+2λμ(x 1x 216+y 1y 24)=1,即λ2+μ2+2λμ(x 1x 216+y 1y 24)=1⋯⋯②.而x 1x 216+y 1y 24=x 1x 216+(kx 1+t)(kx 2+t)4=(1+4k 2)x 1x 2+4kt(x 1+x 2)+4t 216=(1+4k 2)×4t 2−161+4k2+4kt×(−8kt 1+4k2)+4t216=t 2−2−8k22(1+4k 2).由①可知x 1x 216+y 1y 24=0,代入②式得λ2+μ2=1.故λ2+μ2=1的值为1.。
安徽省蚌埠市2023-2024学年高二上学期期中数学试题含解析
蚌埠2023-2024学年第一学期期中检测试卷高二数学(答案在最后)一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.若直线l 的一个方向向量为(-,求直线的倾斜角()A.π3B.π6C.2π3D.5π6【答案】C 【解析】【分析】求出直线斜率,进而求出直线倾斜角即得.【详解】直线l 的一个方向向量为(-,则直线l 斜率为,所以直线l 的倾斜角为2π3.故选:C2.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,已知PA a = ,PB b = ,PC c = ,12PE PD = ,则BE = ()A.131222a b c -+B.111222a b c-+C.131222a b c ++D.113222a b c -+【答案】A 【解析】【分析】利用空间向量加法法则直接求解.【详解】连接BD ,如图,则()()()1111122222BE BP BD PB BA BC PB PA PB PC PB =+=-++=-+-+-()11131131222222222PB PA PB PC PA PB PC a b c=-+-+=-+=-+故选:A .3.已知点A 与点(1,2)B 关于直线30x y ++=对称,则点A 的坐标为A.(3,4) B.(4,5)C.(4,3)-- D.(5,4)--【答案】D 【解析】【分析】根据对称列式求解.【详解】设(),A x y ,则123052224(1)11x y x y y x ++⎧++=⎪=-⎧⎪∴⎨⎨-=-⎩⎪⋅-=-⎪-⎩,选D.【点睛】本题考查关于直线对称点问题,考查基本分析求解能力,属基础题.4.在一平面直角坐标系中,已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角,则折叠后A ,B 两点间的距离为()A.27 B.41C.17 D.35【答案】D 【解析】【分析】平面直角坐标系中已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角后,通过向量的数量积转化求解距离即可.【详解】解:平面直角坐标系中已知()1,6A -,()2,6B -,沿x 轴将坐标平面折成60°的二面角后,作AC ⊥x 轴,交x 轴于C 点,作BD ⊥x 轴,交x 轴于D 点,则6,3,6,AC CD DB === ,AC CD CD DB ⊥⊥ ,,AC DB的夹角为120°∴AB AC CD DB =++ ,222222212+2+2=6+3+6266452AB AC CD DB AC CD CD DB AC DB =+++⋅⋅⋅-⨯⨯⨯= 35AB ∴=,即折叠后A ,B 两点间的距离为35.故选:D .【点睛】本题考查与二面角有关的立体几何综合题,解题时要认真审题,注意数形结合思想的合理运用.5.如果实数x ,y 满足()2222x y -+=,则yx的范围是()A.()1,1- B.[]1,1- C.()(),11,-∞-⋃+∞ D.(][),11,-∞-⋃+∞【答案】B 【解析】【分析】设yk x =,求y x的范围救等价于求同时经过原点和圆上的点(),x y 的直线中斜率的范围,结合图象,易得取值范围.【详解】解:设yk x=,则y kx =表示经过原点的直线,k 为直线的斜率.如果实数x ,y 满足22(2)2x y -+=和yk x=,即直线y kx =同时经过原点和圆上的点(),x y .其中圆心()2,0C ,半径2r =从图中可知,斜率取最大值时对应的直线斜率为正且刚好与圆相切,设此时切点为E则直线的斜率就是其倾斜角EOC ∠的正切值,易得2OC =,CE r ==可由勾股定理求得OE ==,于是可得到tan 1CEk EOC OE =∠==为y x的最大值;同理,yx的最小值为-1.则yx的范围是[]1,1-.故选:B.6.抛物线214x y =的焦点到双曲线22221(0,0)x y a b a b -=>>的渐近线的距离是2,则该双曲线的离心率为()A.B.C.2D.233【答案】A 【解析】【分析】先求得抛物线的焦点,根据点到直线的距离公式列方程,求得22b a =,由此求得双曲线的离心率.【详解】抛物线214x y =即24y x =的焦点坐标为()1,0,双曲线22221(0,0)x y a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=,所以点()1,0到直线0bx ay ±=的距离为22=,则22b a =,则双曲线的离心率为c e a =====故选:A7.直线()2200ax by a b a b +--=+≠与圆2220x y +-=的位置关系为()A.相离 B.相切C.相交或相切D.相交【答案】C 【解析】【分析】利用几何法,判断圆心到直线的距离与半径的关系,判断直线与圆的位置关系即可.【详解】由已知得,圆2220x y +-=的圆心为(0,0),所以圆心到直线()2200ax by a b a b +--=+≠.因为222ab a b ≤+,所以()()2222a b a b+≤+≤,所以直线与圆相交或相切;故选:C .8.在正方体1111ABCD A B C D -中,点P 在1AC 上运动(包括端点),则BP 与1AD 所成角的取值范围是()A.ππ,43⎡⎤⎢⎥⎣⎦ B.π0,2⎡⎤⎢⎥⎣⎦C.ππ,62⎡⎤⎢⎥⎣⎦D.ππ,63⎡⎤⎢⎥⎣⎦【答案】B 【解析】【分析】建立空间直角坐标系,设1AB =,则,01λ≤≤,利用1c s o BC BP =,,即可得出答案.【详解】设BP 与1AD 所成角为θ,如图所示,不妨设1AB =,则()0,0,0B ,()0,1,0A ,()10,1,1A ,()11,0,1C ,()111,0,1AD BC == ,()1,0,0BC = ,()11,1,1AC =-.设1AP AC λ= ,则()1,1,BP BA AC λλλλ=+=-,01λ≤≤.所以111c ·o s BC BPBC BP BC BP==⋅,当0λ=时,10cos BC BP = ,,此时BP 与1AD 所成角为π2,当0λ≠时,1c os BC BP =,,此时10cos 1BC BP <≤,,当且仅当1λ=时等号成立,因为cos y x =在π02x ⎡⎤∈⎢⎥⎣⎦,上单调递减,所以1π0,2BC BP ⎡⎫∈⎪⎢⎣⎭ ,,综上,π0,2θ⎡⎤∈⎢⎥⎣⎦.故选:B .二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)9.下列说法正确的有()A.若直线y kx b =+经过第一、二、四象限,则()k b ,在第二象限B.直线32y ax a =-+过定点()32,C.过点()21-,斜率为的点斜式方程为)12y x +=-D.斜率为2-,在y 轴截距为3的直线方程为23y x =-±.【答案】ABC 【解析】【分析】由直线y kx b =+过一、二、四象限,得到斜率0k <,截距0b >,可判定A 正确;由把直线方程化简为()()320a x y -+-+=,得到点()32,都满足方程,可判定B 正确;由点斜式方程,可判定C 正确;由斜截式直线方程可判定D 错误.【详解】对于A 中,由直线y kx b =+过一、二、四象限,所以直线的斜率0k <,截距0b >,故点()k b ,在第二象限,所以A 正确;对于B 中,由直线方程32y ax a =-+,整理得()()320a x y -+-+=,所以无论a 取何值点()32,都满足方程,所以B 正确;对于C 中,由点斜式方程,可知过点()21-,斜率为的点斜式方程为)12y x +=-,所以C 正确;由斜截式直线方程得到斜率为2-,在y 轴上的截距为3的直线方程为23y x =-+,所以D 错误.故选:ABC .【点睛】本题主要考查了直线的方程的形式,以及直线方程的应用,其中解答中熟记直线的点斜式的概念及形式,以及直线的斜率与截距的概念是解答的关键,着重考查推理与运算能力,属于基础题.10.关于空间向量,以下说法正确的是()A.若直线l 的方向向量为()1,0,3e = ,平面α的法向量为22,0,3n ⎛⎫=- ⎪⎝⎭ ,则直线l α∥B.已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底C.若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面D.两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线【答案】BCD 【解析】【分析】计算得到e n ⊥,l α∥或l ⊂α,A 错误,若,,a b a c +r r r r 共面,则,,a b c 共面,不成立,故B 正确,化简得到23PA PB PC =--,C 正确,若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确,得到答案.【详解】()22,0,22031,0,3e n ⎛⎫=-=-+= ⎪⎝⎭⋅⋅ ,故e n ⊥ ,故l α∥或l ⊂α,A 错误;若,,a b a c +r r r r共面,设()()b a a c a c λμλμμ=++=++ ,则,,a b c 共面,不成立,故{},,a b m 也是空间的基底,B 正确;111632OP OA OB OC =++ ,则()()()111632OA OP OB OP OC OP -+-+- 1110632PA PB PC =++=,即23PA PB PC =--,故P ,A ,B ,C 四点共面,C 正确;若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确.故选:BCD.11.已知平面α的法向量为()1,2,2n =-- ,点()2,21,2A x x +为α内一点,若点()0,1,2P 到平面α的距离为4,则x 的值为()A.2 B.1C.3- D.6-【答案】AD【解析】【分析】利用向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,代入相关数值,通过解方程即可求解.【详解】解:由向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,又 ()()22,(,20,2,0)122,1,x x AP x x →+--==-,()1,2,2n =--24AP n x x →→∴⋅=+,||3n ==由点()0,1,2P 到平面α的距离为4,有2443x x+=解得2x =或6x =-故选:AD【点睛】本题考查的是点面距离的计算问题,核心是会利用向量法中点到平面的距离公式,考查运算求解能力,属于基础题.12.已知双曲线C 经过点6,12⎛⎫ ⎪ ⎪⎝⎭,且与椭圆22Γ:12x y +=有公共的焦点12,F F ,点M 为椭圆Γ的上顶点,点P 为C 上一动点,则()A.双曲线CB.sin 3MOP ∠>C.当P 为C 与Γ的交点时,121cos 3F PF ∠= D.||PM 的最小值为1【答案】ACD 【解析】【分析】根据题意中的点求出双曲线方程,结合离心率的定义即可判断A ;根据双曲线的渐近线,结合图形即可判断B ;根据椭圆与双曲线的定义,结合余弦定理计算即可判断C ;由两点距离公式,结合二次函数的性质即可判断D.【详解】A :由题意,12(1,0),(1,0)F F -,设双曲线的标准方程为222221,11x y a a a-=<-,将点,1)2代入得212a =,所以双曲线方程为2211122x y -=,得其离心率为22c e a ===,故A 正确;B :由A 选项的分析知,双曲线的渐近线方程为y x =±,如图,π4MON ∠=,所以π3π44MOP <∠<,得sin 12MOP <∠≤,故B 错误;C :当P为双曲线和椭圆在第一象限的交点时,由椭圆和双曲线的定义知,1212PF PF PF PF +=-=12,22PF PF ==,又122F F =,在12F PF △中,由余弦定理得222121212121cos 23PF PF F F F PF PF PF +-∠==⋅,故C 正确;D :设00(,)P x y ,则22001,(0,1)2x y M -=,所以PM ==,当012y =时,min1PM =,故D 正确.故选:ACD.三、填空题(本大题共4小题,共20.0分)13.若空间向量(,2,2)a x =和(1,1,1)b = 的夹角为锐角,则x 的取值范围是________【答案】4x >-且2x ≠【解析】【分析】结合向量夹角公式、向量共线列不等式来求得x 的取值范围.【详解】依题意04211a b a bx x ⎧⋅=>⎪⋅⎪⇒>-⎨⎪≠⎪⎩ 且2x ≠.故答案为:4x >-且2x ≠14.已知0a >,0b >,直线1l :()110a x y -+-=,2l :210x by ++=,且12l l ⊥,则21a b+的最小值为__________.【答案】8【解析】【分析】根据两条直线的一般式方程及垂直关系,求出a ,b 满足的条件,再由基本不等式求出最小值即可.【详解】因为12l l ⊥,所以()11120a b -⨯+⨯=,即21a b +=,因为0a >,0b >,所以()2121422248b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4b a a b =,即12a =,14b =时等号成立,所以21a b+的最小值为8.故答案为:8.15.直线30x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2232x y -+=上,则ABP 面积的取值范围______.【答案】[]6,12【解析】【分析】由题意求得所以()30A -,,()0,3B -,从而求得AB =,再根据直线与圆的位置关系可求得点P 到直线30x y ++=距离h ⎡∈⎣,再结合面积公式即可求解.【详解】因为直线30x y ++=分别与x 轴,y 轴交于A ,B 两点,所以()30A -,,()0,3B -,因此AB =.因为圆()2232x y -+=的圆心为()3,0,半径r =,设圆心()3,0到直线30x y ++=的距离为d ,则3033222d ++==>,因此直线30x y ++=与圆()2232x y -+=相离.又因为点P 在圆()2232x y -+=上,所以点P 到直线30x y ++=距离h 的最小值为32222d r -=-=,最大值为32242d r +=+=,即22,42h ⎡⎤∈⎣⎦,又因为ABP 面积为13222AB h h ⨯⨯=,所以ABC 面积的取值范围为[]6,12.故答案为:[]6,1216.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知ABC 的顶点()4,0-A ,()0,4B ,其欧拉线方程为20x y -+=,则顶点C 的坐标可以是_________【答案】()2,0或()0,2-【解析】【分析】设(,)C x y ,依题意可确定ABC ∆的外心为(0,2)M ,可得出,x y 一个关系式,求出ABC ∆重心坐标,代入欧拉直线方程,又可得出,x y 另一个关系式,解方程组,即可得出结论.【详解】设(,),C x y AB 的垂直平分线为y x =-,ABC 的外心为欧拉线方程为20x y -+=与直线y x =-的交点为(1,1)M -,∴22||||10,(1)(1)10MC MA x y ==++-=①由()4,0-A ,()0,4B ,ABC 重心为44(,)33x y -+,代入欧拉线方程20x y -+=,得20x y --=②由①②可得2,0x y ==或0,2x y ==-.故答案为:()2,0或()0,2-.【点睛】本题以数学文化为背景,考查圆的性质和三角形的外心与重心,考查逻辑思维能力和计算能力,属于较难题.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.已知圆M 的圆心为()2,3,且经过点()5,1C -.(1)求圆M 的标准方程;(2)已知直线:34160l x y -+=与圆M 相交于,A B 两点,求AB .【答案】(1)()()222325x y -+-=(2)AB =【解析】【分析】(1)根据条件求出圆M 的半径,再结合圆心坐标求出标准方程即可;(2)求出圆心M 到直线l 的距离,再由垂径定理求出||AB .【小问1详解】因为圆M 的圆心为(2,3),且经过点(5,1)C -,所以圆M 的半径5r MC ===,所以圆M 的标准方程为()()222325x y -+-=.【小问2详解】由(1)知,圆M 的圆心为()2,3,半径=5r ,所以圆心M 到直线l 的距离2d =,所以由垂径定理,得AB ===.18.已知ABC 的顶点()3,2A ,边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=.(1)求顶点,B C 的坐标;(2)求ABC 的面积.【答案】(1)B 的坐标为()8,7,C 的坐标为()1,3(2)152【解析】【分析】(1)设(),B a b ,(),C m n ,由题意列方程求解即可得出答案.(2)先求出AB 和直线AB 所在的方程,再由点到直线的距离公式求出边AB 上的高,即可求出ABC 的面积.【小问1详解】设(),B a b ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以2903238022a b a b --=⎧⎪⎨++-⨯+=⎪⎩,解得87a b =⎧⎨=⎩,即B 的坐标为()8,7.设(),C m n ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以3802132m n n m -+=⎧⎪-⎨=-⎪-⎩,解得13m n =⎧⎨=⎩,即C 的坐标为()1,3.【小问2详解】因为()()3,2,8,7A B,所以AB ==因为边AB 所在直线的方程为237283y x --=--,即10x y --=,所以点()1,3C 到边AB的距离为2=,即边AB上的高为2,故ABC的面积为115222⨯=.19.已知直三棱柱111ABC A B C -,侧面11AA C C 是正方形,点F 在线段1AC 上,且13AF =,点E 为1BB 的中点,1AA =,1AB BC ==.(1)求异面直线CE 与BF 所成的角;(2)求平面CEF 与平面11ACC A 夹角的余弦值.【答案】(1)90(2)21【解析】【分析】(1)利用直棱柱的结构特征,结合线面垂直的性质,建立空间直角坐标系,利用直线与直线所成角的向量求法,计算得结论;(2)分别求出两个平面的法向量,利用平面与平面所成角的向量求法,即可得到结果.【小问1详解】因为侧面11AA C C 是正方形,1AA =,1AB BC ==,所以BA BC ⊥,因为三棱柱111ABC A B C -直三棱柱,所以1BB ⊥面ABC ,而BC ,BA ⊂平面ABC ,因此1BB BC ⊥,1BB BA ⊥,所以BC ,BA ,1BB 两两垂直.以B 为坐标原点,BC ,BA ,1BB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如下图:因此()100C ,,,()000,,B ,()010A ,,,(1102C ,,而点E 为1BB 的中点,所以2002E ⎛⎫ ⎪ ⎪⎝⎭,,,因为F 在线段1AC 上,所以设()()1,201AF AC λλλλλ==-≤≤ ,因此(),12BF BA AF λλλ=+=- ,因为13AF = ()()222123λλλ+-+=解得16λ=,因此152,,666BF ⎛⎫= ⎪ ⎪⎝⎭ ,即152,,666F ⎛⎫ ⎪ ⎪⎝⎭,因为21,0,2CE ⎛⎫=- ⎪ ⎪⎝⎭,所以11066CE BF ⋅=-+= ,因此异面直线CE 与BF 所成的角为90 .【小问2详解】设平面CEF 的法向量为()1n x y z = ,,,而552,,666CF ⎛⎫=- ⎪ ⎪⎝⎭,因此由1100n CE n CF ⎧⋅=⎪⎨⋅=⎪⎩ 得2025520666x z x y z ⎧-+=⎪⎪⎨⎪-++=⎪⎩,取2z =得1x =,35y =,所以13125n ⎛= ⎝ ,,是平面CEF 的一个法向量,设平面11ACC A 的法向量为()2222n x y z = ,,,()110AC =- ,,,(112AC =- ,,,因此由22100n AC n AC ⎧⋅=⎪⎨⋅=⎪⎩ 得020x y x y z -=⎧⎪⎨-+=⎪⎩,取1x =得1y =,0z =,所以()2110n = ,,是平面11ACC A 的一个法向量.设平面CEF 与平面11ACC A 夹角为θ,则02πθ≤≤,因此121212cos cos ,n n n n n n θ⋅==31521+==,所以平面CEF 与平面11ACC A 夹角的余弦值为24221.20.已知双曲线C的焦点坐标为()1F,)2F ,实轴长为4,(1)求双曲线C 的标准方程;(2)若双曲线C 上存在一点P 使得12PF PF ⊥,求12PF F △的面积.【答案】(1)2214x y -=;(2)1.【解析】【分析】(1)由题可知,c a 的值即可求出双曲线C 的标准方程;(2)由双曲线的定义及面积公式即可求出.【详解】(1)设双曲线方程为22221(0,0)x y a b a b-=>>,由条件知c =,24a =,∴2,1a b ==,∴双曲线C 的方程为2214x y -=.(2)由双曲线的定义可知,124PF PF -=±.∵12PF PF ⊥,∴22212420PF PF c +==,即21212()220PF PF PF PF ⨯-+=∴122PF PF ⋅=,∴12PF F △的面积12112122S PF PF =⋅=⨯=.21.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥,侧面PAB ⊥底面ABCD ,2PA PB AD ===,4BC =.(1)若PB 的中点为E ,求证://AE 平面PCD ;(2)若PB 与底面ABCD 所成的角为60︒,求PC 与平面PBD 的所成角的余弦值.【答案】(1)证明见解析(2)80535【解析】【分析】(1)取PC 的中点F ,连接,EF DF .先证明四边形ADFE 是平行四边形,即可得出//DF AE ,然后即可证明线面平行;(2)先证明PO ⊥平面ABCD ,即可得出60PBA ∠=︒.然后建立空间直角坐标系,得出点以及向量的坐标,求出平面PBD 的法向量,根据向量求得PC 与平面PBD 的所成角的正弦值,进而求得余弦值.【小问1详解】如图1,取PC 的中点F ,连接,EF DF ,,E F 分别为,PB PC 的中点,∴//EF BC ,且122EF BC ==.//AD BC 且2AD =,//EF AD ∴且2EF AD ==,∴四边形ADFE 是平行四边形,//DF AE ∴.AE ⊄ 平面PCD ,DF ⊂平面PCD ,∴//AE 平面PCD .【小问2详解】若O 是AB 中点,取CD 中点为G ,连结OG .,O G 分别是,AB CD 的中点,∴//OG BC .AB BC ⊥,∴OG AB ⊥.由底面ABCD 为直角梯形且//AD BC ,2PA PB AD ===,4BC =.PA PB =,∴PO AB ⊥.由侧面PAB ⊥底面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂面PAB ,∴PO ⊥平面ABCD ,P ∴在平面ABCD 的投影在直线AB 上.又PB 与底面ABCD 所成的角为60︒,PB ∴与底面ABCD 所成角的平面角60PBA ∠=︒,∴PAB 为等边三角形,2AB PA ==.以O 为原点,分别以,,OB OG OP 所在的直线为,,x y z 轴,如图2建空间直角坐标系,则()1,0,0B ,()1,4,0C ,()1,2,0D -,(3P ,则(3BP =- ,(1,2,3PD =- ,(1,4,3PC = .设平面PBD 的法向量(),,n x y z =r,则00n BP n PD ⎧⋅=⎪⎨⋅=⎪⎩,即020x x y ⎧-+=⎪⎨-+-=⎪⎩,取x =,得)n = ,∴cos ,35n PC n PC n PC ⋅==r uu u r r uu u r r uu u r .设PC 与平面PBD 的所成角为θ,则sin cos ,35n PC θ== . π0,2θ⎡⎤∈⎢⎥⎣⎦,∴cos 0θ≥∴cos 35θ==,PC ∴与平面PBD的夹角的余弦值为35.22.已知抛物线C :()220y px p =>的焦点为F ,斜率为1的直线l 经过F ,且与抛物线C 交于A ,B 两点,8AB =.(1)求抛物线C 的方程;(2)过抛物线C 上一点(),2P a -作两条互相垂直的直线与抛物线C 相交于MN 两点(异于点P ),证明:直线MN 恒过定点,并求出该定点坐标.【答案】(1)24y x=(2)证明见解析【解析】【分析】(1)根据条件,得到直线l 方程为2p y x =-,设1122(,),(,)A x y B x y ,联立抛物线方程,根据抛物线的弦长求得p ,即得答案;(2)求得a 的值,设直线MN 的方程为x my n =+,联立抛物线方程,得根与系数的关系,利用PM PN ⊥,得到32(1)n m -=-或32(1)n m -=--,代入直线方程,分离参数,求得定点坐标,证明结论.【小问1详解】设1122(,),(,)A x y B x y ,由题意知(,0)2p F ,则直线l 方程为2p y x =-,代入()220y px p =>,得22304p x px -+=,280p ∆=>,∴123x x p +=,由抛物线定义,知1||2p AF x =+,2||2p BF x =+,∴12348AB AF BF x x p p p p =+=++=+==,∴2p =,∴抛物线的方程为24y x =.【小问2详解】证明: (),2P a -在抛物线24y x =上,∴242),1(a a =∴=-,由题意,直线MN 的斜率不为0,设直线MN 的方程为x my n =+,设3344(,),(,)M x y N x y ,由24y x x my n⎧=⎨=+⎩,得2440y my n --=,则216160m n '∆=+>,且34344,4y y m y y n +==-,又23434)242(x x m y y n m n +=++=+,22234344334()()()x x my n my n m y y mn y y n n =++=+++=,由题意,可知PM PN ⊥,PM PN ∴⊥,故3434(1)(1)(2)(2)0PM PN x x y y +⋅=+--+= ,故()3434343412()40x x x x y y y y -++++++=,整理得2246850n m n m --++=,即22(3)4)(1n m -=-,∴32(1)n m -=-或32(1)n m -=--,即21n m =+或25n m =-+.若21n m =+,则21(2)1x my n my m m y =+=++=++,此时直线MN 过定点(1,2)-,不合题意;若25n m =-+,则()2525x my n my m m y =+=-+=-+,此时直线MN 过定点(5,2),符合题意,综上,直线MN 过异于P 点的定点(5,2).【点睛】方法点睛:直线和抛物线的位置关系中,证明直线过定点问题,一般是设出直线方程,利用根与系数的关系化简,求得参数之间的关系式,再对直线分离参数,求得定点坐标,进而证明直线过定点.。
北京市西城区2024-2025学年高二上学期期中测验数学试题含解析
2024-2025学年度第一学期期中试卷高二数学(答案在最后)2024年11月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题,共40分)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.直线的倾斜角是23π,则斜率是()A.33-B.33C.D.【答案】C 【解析】【分析】由直线的倾斜角与斜率的关系即得.【详解】∵直线的倾斜角是23π,∴直线的斜率为2tan tan()tan 333ππππ=-=-=故选:C.2.已知点P 在椭圆22132x y +=上,点()11,0F ,()21,0F -,则12PF PF +=()A.2B.C.D.【答案】C 【解析】【分析】根据题意由椭圆标准方程以及椭圆定义即可得出结果.【详解】由椭圆方程为22132x y +=可知1a c ==,则()11,0F ,()21,0F -即为椭圆的左、右焦点,由椭圆定义可得122PF PF a +==.故选:C3.已知圆222610x y x y +-++=关于直线0x y m ++=对称,则实数m =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据圆关于直线对称即圆心在直线上得到答案.【详解】将222610x y x y +-++=化成标准方程为()()22139x y -++=,圆心为()1,3-,半径为3,因为圆222610x y x y +-++=关于直线0x y m ++=对称,所以圆心()1,3-在直线上,即130m -+=,解得2m =.故选:D.4.以点()2,1A 为圆心,且与x 轴相切的圆的标准方程为()A.()()22211x y -+-= B.()()22214x y -+-=C.()()22211x y +++= D.()()22214x y +++=【答案】A 【解析】【分析】根据圆心和半径可得圆的方程.【详解】以点()2,1A 为圆心,且与x 轴相切的圆的半径为1.故圆的标准方程是()()22211x y -+-=.故选:A .5.已知Q 为直线:210l x y ++=上的动点,点P 满足()1,3QP =-,记P 的轨迹为E ,则()A.E的圆 B.E 是一条与l 相交的直线C.E 上的点到l D.E 是两条平行直线【答案】C 【解析】【分析】设(),P x y ,由()1,3QP =-可得Q 点坐标,由Q 在直线上,故可将点代入坐标,即可得P 轨迹E ,结合选项即可得出正确答案.【详解】设(),P x y ,由()1,3QP =-,则()1,3Q x y -+,由Q 在直线:210l x y ++=上,故()12310x y -+++=,化简得260x y ++=,即P 的轨迹为E 为直线且与直线l 平行,E 上的点到l的距离d ==,故A 、B 、D 错误,C 正确.故选:C .6.如图,三棱锥D-ABC 中,DC ⊥平面ABC ,DC=1,且 为边长等于2的正三角形,则DA 与平面DBC所成角的正弦值为A.5B.5C.5D.25【答案】B 【解析】【分析】先过A 点作出高线,利用等体积法先求高线,再计算线面角.【详解】过点A 作垂直于平面BCD 的直线,垂足为O ,利用等体积法求解AO .011131V DC S 60221V AO S 33233D ABC ABC A BCD BCD sin --=⨯=⨯⨯⨯⨯===⨯,由此解得AO =,DA 与平面DBC 所成角为ADO ∠,所以15sin ADO 5AO AD ∠==,故选B 【点睛】本题考查了等体积法和线面角的基本求法,综合性强,在三棱锥中求高线,利用等体积法是一种常见处理手段,计算线面角,先找线面角,要找线面角必找垂线,而求解垂线的基本方法为等体积法或者点到平面的距离公式.7.点M 是直线250x y -+=上的动点,O 是坐标原点,则以OM 为直径的圆经过定点().A.(0,0)和(1,1)-B.(0,0)和(2,2)-C.(0,0)和(1,2)-D.(0,0)和(2,1)-【答案】D 【解析】【分析】过点O 作OP 垂直于直线250x y -+=,根据圆的性质可得以OM 为直径的圆过定点O 和P ,得解.【详解】如图,过点O 作OP 垂直于直线250x y -+=,垂足为P ,则以OM 为直径的圆过定点O 和P ,易知直线OP 的方程为12y x =-,联立25012x y y x -+=⎧⎪⎨=-⎪⎩,解得21x y =-⎧⎨=⎩,即()2,1P -.所以以OM 为直径的圆经过定点()0,0和()2,1-.故选:D.8.“3m =”是“椭圆2214x y m+=的离心率为12”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据椭圆2214x y m+=的离心率为12求出m ,进而求得答案.【详解】椭圆2214x y m +=的离心率为12,当04m <<时,4122=,得3m =;当4m >时,12=,得163m =.即“3m =”是“椭圆2214x y m+=的离心率为12”的充分不必要条件.故选:A.9.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.若图3中每个正方体的棱长为1,则点P 到平面QGC 的距离是()A.12B.22C.32D.1【答案】B 【解析】【分析】根据题意,建立空间直角坐标系,结合向量法求解点到面的距离,即可得到结果.【详解】建立如图所示空间直角坐标系,则()()()()0,2,0,0,0,2,1,0,2,2,0,1C G Q P ,则()()()1,0,0,0,2,2,2,2,1GQ GC CP ==-=-,设平面QGC 的一个法向量为(),,n x y z =,则0220GQ n x GC n y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,取1z =,得()0,1,1n = ,所以点P 到平面QGC 的距离是22n CP n ⋅== .故选:B10.如图,已知正方体1111ABCD A B C D -的棱长为1,点M 为棱AB 的中点,点P 在正方形11BCC B 的边界及其内部运动.以下四个结论中错误的是()A.存在点P满足1PM PD +=B.存在点P 满足1π2D PM ∠=C.满足1AP D M ⊥的点P 的轨迹长度为π4D.满足1MP D M ⊥的点P的轨迹长度为4【答案】C 【解析】【分析】建立空间直角坐标系,利用空间向量解决此题,对于A ,利用两个特殊点求出1PM PD +的值,在此范围内即可;对于B ,利用向量垂直数量积等于零解方程即可求P 点坐标;对于C ,D 利用向量垂直数量积等于零可求P 点的轨迹方程,根据图形找到P 点的轨迹求长度即可.【详解】如图所示,建立空间直角坐标系,则(1A ,0,0),1(0D ,0,1),1(1,,0)2M ,1(0C ,1,1),动点P 设为(P x ,1,)z ,对于A ,点M 关于平面11BCB C 的对称点为13(1,,0)2M ,当动点P 在点1M时,此时1min 11()2PM PD D M +===<,当动点P 在点1C时,此时111135122PM PD C D C M +=+=+=>,所以存在点P满足1PM PD +=,所以A 正确;对于B ,1(1,,)2PM x z =--- ,1(,1,1)PD x z =--- ,若1π2D PM ∠=,则11(1)(1)02PM PD x x z z ⋅=--+--= ,化简得:2211()(022x z -+-=,解得1212x z ⎧=⎪⎪⎨⎪=⎪⎩,即11(,1,)22P ,满足题意,所以B 正确;对于C ,(1,1,)AP x z =- ,11(1,,1)2D M =- ,若1AP D M ⊥,则11102AP D M x z ⋅=-+-= ,即12z x =-,取BC 中点E ,1BB 中点F ,则点P 的轨迹为线段EF ,长度为22,所以C 错误;对于D ,1(1,,)2MP x z =- ,11(1,,1)2D M =- ,若1MP D M ⊥,则11104MP D M x z ⋅=-+-= ,即34z x =-,取BF 中点H ,BE 中点K ,则点P 的轨迹为线段HK ,长度为24,所以D 正确.故选:C .第二部分(非选择题,共110分)二、填空题共5小题,每小题5分,共25分.11.椭圆22194x y +=的离心率是_________.【答案】53【解析】【分析】利用标准方程,求出a ,b ,然后求解c ,即可求解离心率.【详解】椭圆22194x y +=的长半轴为a =3,短半轴为b =2,则半焦距为c ==.所以椭圆的离心率为:e 53c a ==.故答案为53.【点睛】本题考查椭圆的简单性质的应用,离心率的求法,是基础题.12.已知直线1l :()210m x y +++=,2l :()5210x m y +-+=.若12l l ∥,则实数m 的值为______.【答案】-3【解析】【分析】根据两直线平行的条件列式求解即可.【详解】若12l l ∥,则()()2250m m +--=,解得3m =或3m =-,当3m =时,直线1l :510x y ++=与2l :5310x y ++=重合,不符合题意;当3m =-时,直线1l :10x y -++=与2l :5510x y -+=,符合题意,综上,3m =-故答案为:-3.13.在正三棱柱111ABC A B C -中,2AB =,1AA =,则异面直线1AB 与1BC 所成角的大小为______.【答案】π2【解析】【分析】利用异面直线夹角的向量求法建立空间直角坐标系计算可得结果.【详解】分别取11,BC B C 的中点1,O O ,连接1,AO OO ,由正三柱性质可知11,,AO BC OO BC AO OO ⊥⊥⊥,以O 为坐标原点,1,,OA OB OO 所在直线分别为,,x y z 轴建立空间直角坐标系,如下图所示:由2AB =,12AA =可得)()((113,0,0,0,1,0,0,1,2,0,1,2AB BC -,所以((113,1,2,0,2AB BC ==-,又111111022cos ,066AB BC AB BC AB BC ⋅===⨯,且[]11,0,πAB BC ∈ ;所以11π,2AB BC = .故答案为:π214.已知点P 是圆()2211x y -+=上的动点,直线1l :3470x y -+=,2l :340x y m -+=,记P 到直线1l ,2l 的距离分别为1d ,2d (若P 在直线上,则记距离为0),(1)1d 的最大值为______;(2)若当点P 在圆上运动时,12d d +为定值,则m 的取值范围是______.【答案】①.3②.(],8∞--【解析】【分析】(1)根据圆上点到直线的距离最大值为圆心到直线的距离加半径求解即可;(2)根据12d d +为定值,分析得到圆的位置,结合直线与圆的位置关系求解.【详解】(1)圆()2211x y -+=,圆心 th ,半径为1,圆心到直线1l 的距离()2231407234d ⨯-⨯+==+-,所以P 到直线1l 的距离1d 的最大值为13d +=;(2)当7m =时,两直线重合,不符题意;当7m ≠时,直线1l ,2l 平行,若当点P 在圆上运动时,12d d +为定值,所以圆在两平行线之间,此时直线2l 与圆相离,所以()223140134m d ⨯-⨯+=≥+-,解得2m ≥或8m ≤-,又因为当2m ≥时,直线1l ,2l 在圆同侧,不符合题意,所以8m ≤-,故答案为:3,(],8∞--.15.伯努利双纽线(简称双纽线)是瑞士数学家伯努利(1654-1705)在1694年提出的.伯努利将椭圆的定义作了类比处理,指出是到两个定点距离之积为定值的点的轨迹是双纽线.在平面直角坐标系xOy 中,到定点(),0A a -,(),0B a 的距离之积为()20a a >的点的轨迹C 就是伯努利双纽线,C 的方程为()()2222222x y a x y +=-,其形状类似于符号∞,若点()00,P x y 是轨迹C 上一点,给出下列四个结论:①曲线C 关于原点中心对称;②00y x ≤恒成立;③曲线C 2a ;④当0x a =时,0y 取得最大值或最小值.其中所有正确结论的序号是______.【答案】①②③【解析】【分析】根据曲线的方程,结合对称性的判定方法,联立方程组,以及不等式和三角形面积,逐项判定,即可求解.【详解】在曲线C 上任取一点(),M x y ,关于原点的对称点为(),M x y '--,代入曲线C 的方程,可知M '在曲线C 上,所以曲线C 关于原点中心对称,故①正确;因为点()00,P x y 是轨迹C 上一点,所以()()22222200002x y a x y +=-,因为()222000x y +≥,所以()()222222000020x y a x y +=-≥,即2200y x ≤,所以00y x ≤,故②正确;因为()()()22222222222x y a x x y y a +=-+≤,所以2222x y a +≤,≤,所以曲线C ,故③正确;因为()00,P x y ,所以12121212011||||sin ||||22PF F S PF PF F PF F F y =⋅⋅∠=⋅ ,又212||||PF PF a ⋅=,所以2120sin 2||a F PF a y ∠=⋅,即012||sin 22a a y F PF =∠≤,所以022a a y -≤≤,当12π2F PF ∠=时等号成立,故④错误,故答案为:①②③【点睛】方法点睛:本题考查曲线的轨迹及其性质的问题,同时需要结合解三角形的方法对所给信息进行辨析.三、解答题共6小题,共85分.解答题应写出文字说明、验算步骤或证明过程.16.已知直线l :()()211510x y λλλ++---=,R λ∈.(1)当直线l 与直线20x y +=垂直时,求λ的值;(2)设直线l 恒过定点P ,求P 的坐标;(3)若对任意的实数λ,直线l 与圆()2220x y r r +=>总有公共点,直接写出r 的取值范围.【答案】(1)14λ=(2)()2,1P(3)r ≥【解析】【分析】(1)根据直线与直线垂直关系列方程即可求得λ的值;(2)将直线方程转化为()1250x y x y λ--++-=,列方程组解得定点坐标即可;(3)根据直线与圆位置关系结合点与圆位置关系求解即可.【小问1详解】当直线l :()()211510x y λλλ++---=与直线20x y +=垂直时,可得()()21112410λλλ+⨯+-⨯=-=,解得14λ=;【小问2详解】直线l :()()211510x y λλλ++---=方程整理得()1250x y x y λ--++-=,令10,250x y x y --=⎧⎨+-=⎩,解得2,1,x y =⎧⎨=⎩即直线l 恒过定点()2,1P ;【小问3详解】对任意的实数λ,直线l 与圆()2220x y rr +=>总有公共点,则直线l 恒过定点()2,1P 在圆上或者圆内,则OP r =≤,即r ≥17.已知C 经过点()0,2A -,()3,1B ,并且圆心C 在直线28y x =-上,(1)求C 的方程;(2)设过点()2,0P 的直线l 与C 交于M ,N 两点,若MN =l 的方程.【答案】(1)()()22329x y -++=(2)2x =或3460x y +-=.【解析】【分析】(1)根据圆的几何性质确定线段AB 的垂直平分线方程,从而联立直线可得圆心坐标,根据圆的定义得半径,从而得圆的方程;(2)根据直线与圆相交弦长公式,分直线斜率存在与不存在两种情况验证求解直线方程即可.【小问1详解】因为()0,2A -,()3,1B ,则1AB k =,且线段AB 中点为31,22⎛⎫- ⎪⎝⎭,则线段AB 的垂直平分线的斜率为1-,故其方程为1322y x ⎛⎫+=-- ⎪⎝⎭,即10x y +-=,由圆的对称性知点C 在AB 的垂直平分线上,因此联立10,28,x y y x +-=⎧⎨=-⎩解得3,2,x y =⎧⎨=-⎩即点()3,2C -,又因为3r AC ==,所以圆C :()()22329x y -++=.【小问2详解】圆心()3,2C -,半径3r =当1l 的斜率不存在时,1l :2x =,则圆心C 到直线1l 的距离为1d =,此时相交弦长MN ==当1l 的斜率存在时,设1l :()2y k x =-,即20kx y k --=,因为相交弦长MN ==所以C 到1l的距离为1d ==,解得34k =-,此时,直线1l :3460x y +-=,综上,直线1l 的方程为2x =或3460x y +-=.18.已知椭圆C :()222210+=>>x y a b a b的左、右焦点分别为()1F和)2F ,长轴长为4.(1)求椭圆C 的方程;(2)设P 为椭圆C 上一点,()1,0M .若存在实数λ使得12PF PF PM λ+=,求λ的取值范围.【答案】(1)2214x y +=(2)4,3⎡⎢⎣.【解析】【分析】(1)根据椭圆,,a b c 的关系列方程组求得,,a b c 的值,即可得椭圆方程;(2)根据椭圆的定义可得124PF PF +=,再根据两点距离公式结合点在椭圆上求解PM 的取值范围,即可得所求.【小问1详解】由题知22224,,c a a b c ⎧=⎪=⎨⎪=+⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以,C 的方程为2214x y +=.【小问2详解】由椭圆的定义可知124PF PF +=,设点 h t h ,其中220014x y +=,则220014x y =-,所以()222020200033421224433PM x y x x x ⎛⎫=-+=-+=-+ ⎪⎝⎭,因为022x -≤≤,所以2293PM ≤≤,即633PM ≤≤当且仅当043x =时,63PM =,02x =-时,3PM =,因为12PF PF PM λ+=,则12PF PF PM λ+=,所以4,3λ⎡∈⎢⎣.综上所述,λ的取值范围是4,3⎡⎢⎣.19.如图,在三棱台111ABC A B C -中,若1A A ⊥平面1,,2ABC AB AC AB AC AA ⊥===,111,A C N =为AB 中点,M 为棱BC 上一动点(不包含端点).(1)若M 为BC 的中点,求证:1//A N 平面1C MA .(2)是否存在点M ,使得平面1C MA 与平面11ACC A 所成角的余弦值为66?若存在,求出BM 长度;若不存在,请说明理由.【答案】(1)证明见解析(2)23【解析】【分析】(1)利用三角形中位线定理,结合平行四边形的判定定理和性质、线面平行的判定定理进行证明即可;(2)利用空间向量夹角公式进行求解即可.【小问1详解】连接NM ,因为N 为AB 中点,M 为BC 的中点,所以1//,2NM AC NM AC =,因为111ABC A B C -是正三棱台,111,2A C AC ==,所以11111//,2AC AC AC AC =,于是有11111//,2NM A C NM A C =,因此四边形11NMC A 是平行四边形,所以111//,A N C M A N ⊄平面1C MA ,1C M ⊂平面1C MA ,所以1//A N 平面1C MA【小问2详解】假设存在点M ,使得平面1C MA 与平面11ACC A 所成角的余弦值为66,因为1A A ⊥平面,,ABC AB AC ⊂平面ABC ,所以11,A A AB AA AC ⊥⊥,而AB AC ⊥,所以建立如图所示的空间直角坐标系,()()()()()10,0,0,0,1,2,2,0,0,0,2,0,,,A C B C M x y z ,设()()()()()0,12,,2,2,022,2,0BM BC x y z M λλλλλ=∈⇒-=-⇒-,设平面1C MA 的法向量为(),,m a b c =,()()1220,1,2,0,,2,AC AM λλ=-=,所以有()1202,2,112220m AC b c m m AM a b λλλλ⎧⋅=+=⎪⎛⎫⇒=-⎨ ⎪-⎝⎭⋅=-+=⎪⎩,因为1A A AB ⊥,AB AC ⊥,11,,AA AC A AA AC A == ,所以AB ⊥平面11ACC A ,所以平面11ACC A 的法向量为()2,0,0AB =,所以41cos ,66m AB m AB m ABλ⋅==⇒⋅ ,解得13λ=,1λ=-舍去,即42,,033M ⎛⎫ ⎪⎝⎭,223BM ==,即BM 长度为223.20.平面直角坐标系xOy 中,点M 到点()0,1F 的距离比它到x 轴的距离多1,记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点()1,0P ,若直线l 与轨迹C 恰好有一个公共点,求实数k 的取值范围.【答案】(1)24,00,0y y x y ≥⎧=⎨<⎩(2)[)0,1.【解析】【分析】(1)根据题意列出等量关系并整理即可得出轨迹C 的方程;(2)分情况将曲线C 与直线方程联立,根据方程根的个数求得实数k 的取值范围.【小问1详解】设点 t1y =+,两边平方,并整理得24,0220,0y y x y y y ≥⎧=+=⎨<⎩,所以轨迹C 的方程为24,00,0y y x y ≥⎧=⎨<⎩.【小问2详解】易知直线():1l y k x =-,当0y ≥时,如下图所示:联立()214y k x x y⎧=-⎨=⎩,消去y 得2440x kx k -+=,21616k k ∆=-,当0∆=,即0k =或1k =时,有且仅有一个公共点且满足题意;当0∆<,即01k <<时,无公共点;当0y <时,令0x =,yk =-,当0k ≤时,无公共点;当0k >时,有一个公共点;综合以上可知当01k ≤<时,有且仅有一个公共点,故k 的取值范围是[)0,1.21.用一个矩形铁皮制作成一个直角圆形弯管(如图1):将该矩形铁皮围成一个圆柱体(如图2),再用一个与圆柱底面所成45︒的平面截圆柱,将圆柱截成两段,再将这两段重新拼接就可以得到直角圆形弯管.现使用长为2π,宽为π的矩形铁皮制作一个直角圆形弯管,当得到的直角圆形弯管的体积最大时(不计拼接损耗部分),解答下列问题.(1)求该直角圆形弯管的体积;(2)已知在制造直角圆形弯管时截得的截口是一个椭圆,求该椭圆的离心率;(3)如图3,若将圆柱被截开的一段的侧面沿着圆柱的一条母线剪开,并展成平面图形(如图4),证明:该截口展开形成的图形恰好是某正弦型函数的部分图象,并指出该正弦型函数的最小正周期与振幅.【答案】(1)2π(2)22(3)证明见解析,最小正周期为2π,振幅为1【解析】【分析】(1)易知直角圆形弯管的体积即为切割前圆管体积,且当矩形的长或宽作为圆柱的高时,体积最大,分别求两种情况的体积;(2)根据圆柱截面的性质可得a =,即可得离心率;(3)以椭圆的短轴所在直线在底面的投影为x 轴建立平面直角坐标系,设对于底面圆上一点()cos ,sin P αα,则()1,0与P 所连接的弧长为α,假设短轴对应的高度为0,可得点P 对应到椭圆上的点的高度,即可得截口展开形成的图形的函数,进而可得最小正周期与振幅.【小问1详解】易知直角圆形弯管的体积即为切割前圆管体积,且当矩形的长或宽作为圆柱的高时,体积最大,当矩形的长作为圆柱的高时,圆柱体的底面圆周长为π,则底面半径为12,高为2π,体积为221π2ππ22⎛⎫⨯= ⎪⎝⎭;当矩形的宽作为圆柱的高时,圆柱体的底面圆周长为2π,则底面半径为1,高为π,体积为222ππ1ππ2⨯=>;所以体积为2π;【小问2详解】设该椭圆为()222210+=>>x y a b a b,因此22a b =,即a =,所以22c e a ===;【小问3详解】以椭圆的短轴所在直线在底面的投影为x 轴建立平面直角坐标系,设对于底面圆上一点()cos ,sin P αα,则()1,0与P 所连接的弧长为α,假设短轴对应的高度为0,则点P 对应到椭圆上的点的高度为sin tan 45sin αα︒=,所以,截口展开形成的图形的函数解析式为sin y x =,最小正周期为2π,振幅为1.。
2023-2024学年湖北省孝感市高二(上)期中数学试卷【答案版】
2023-2024学年湖北省孝感市高二(上)期中数学试卷一、选择题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.若复数z 满足2z −z =3+12i ,其中i 为虚数单位,z 是z 的共轭复数,则复数z 在复平面内对应的点所在的象限是( )A .一B .二C .三D .四 2.已知向量a →=(﹣1,2),b →=(3,4),c →=2a →−λb →,若c →⊥b →,则实数λ=( )A .−25B .12C .−12D .25 3.甲、乙两人独立地破译某个密码,如果每人译出密码的概率均为0.4,则密码被破译的概率为( )A .0.36B .0.48C .0.64D .0.544.经过点(1,3)且在两坐标轴上的截距互为相反数的直线方程是( )A .x +y =4B .y =x +2C .y =3x 或x +y =4D .y =3x 或y =x +25.关于空间中两条不同的直线m ,n 与两个不同的平面α,β,下列说法正确的是( )A .若m ∥α,n ∥β,α∥β,则m ∥nB .若m ⊥α,n ⊥β,α∥β,则m ⊥nC .若n ∥α,m ⊥n ,α⊥β,则m ∥βD .若n ⊥α,m ∥n ,α∥β,则m ⊥β6.东寺塔和西寺塔为昆明市城中古景,分别位于昆明市南面的书林街和东寺街,一东一西隔街相望,距今已有1100多年历史,在二月的梅花和烟雨中,“双塔烟雨”成为明清时的“昆明八景”之一.东寺塔基座为正方形,塔身有13级,塔顶四角立有四只铜皮做成的鸟,俗称金鸡,所以也有“金鸡塔”之称.如图,从东到西的公路上有相距80(单位:m )的B 、A 两个观测点,在A 点测得塔在北偏东60°的点D 处,在B 点测得塔在北偏西30°,塔顶C 的仰角为45°,则塔的高度CD 约为( )A .40mB .37mC .35mD .23m7.已知圆C :x 2+y 2﹣2x =0,直线l :x +y +1=0,P 为l 上的动点,过点P 作圆C 的两条切线P A 、PB ,切点分别A 、B ,当|PC |•|AB |最小时,直线AB 的方程为( )A .x +y =0B .x ﹣y =0C .2x ﹣2y +1=0D .2x +2y +1=08.如图,棱长为2的长方体ABCD ﹣A 1B 1C 1D 1中,P 为线段B 1D 1上动点(包括端点).则以下结论正确的为( )A .三棱锥P ﹣A 1BD 中,点P 到面A 1BD 的距离为定值4√33B .过点P 平行于面A 1BD 的平面被正方体ABCD ﹣A 1B 1C 1D 1截得的多边形的面积为3√3C .当点P 为B 1D 1中点时,三棱锥P ﹣A 1BD 的外接球体积为11√11π3 D .直线P A 1与面A 1BD 所成角的正弦值的范围为[√33,√63] 二、不定项选择题(本大题共4小题,共20.0分)9.已知事件A ,B ,且P (A )=0.5,P (B )=0.2,则下列结论正确的是( )A .如果B ⊆A ,那么P (AB )=0.5 B .如果A 与B 互斥,那么P (AB )=0C .如果A 与B 相互独立,那么P(AB)=0.4D .如果A 与B 相互独立,那么P (AB )=010.已知圆O :x 2+y 2=4,过点M (﹣1,0)直线l 与圆O 交于P ,Q 两点.下列说法正确的是( )A .|PQ |的最小值为2√2B .PO →⋅PQ →∈[6,8]C .OP →⋅OQ →的最小值为﹣4D .线段PQ 中点的轨迹为圆11.在直三棱柱ABC ﹣A 1B 1C 1中,点D 是BB 1的中点,AA 1=AB =4,AC =2,∠BAC =60°,点P 为侧面AA 1C 1C (含边界)上一点,BP ∥平面ADC 1,则下列结论正确的是( )A .BC ⊥AC 1B .直线C 1D 与直线A 1C 所成角的余弦值是2√55 C .点A 1到平面AC 1D 的距离是√3D .线段BP 长的最小值是8√55 12.已知F 为椭圆C :x 24+y 22=1的左焦点,直线l :y =kx (k ≠0)与椭圆C 交于A 、B 两点,AE ⊥x 轴,垂足为E ,BE 与椭圆C 的另一个交点为P ,则( )A .1|AF|+4|BF|的最小值为2B .△ABE 的面积的最大值为√2C .直线BE 的斜率为k 2D .∠P AB 为直角 三、填空题(本大题共4小题,共20.0分)13.已知有8个样本数据分别为4,7,8,10,12,15,20,22,则估计该组数据的总体的第三四分位数为 .14.已知圆C 1:x 2+y 2=4和圆C 2:(x ﹣2)2+(y ﹣2)2=4,若点P (a ,b )(a >0,b >0)在两圆的公共弦上,则1a +9b 的最小值为 . 15.如图,在矩形ABCD 中,已知AB =2AD =6,E 是AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE ,连接A 1C .当三棱锥A 1﹣CDE 的体积取得最大值时,此时三棱锥A 1﹣CDE 外接球的体积为 .16.设椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,P 是椭圆上一点,且∠F 1PF 2=π3,若△F 1PF 2的外接圆和内切圆的半径分别为R ,r ,当R =4r 时,椭圆的离心率为 .四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.(10分)某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n )进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]的频数分别为8,2.(1)求样本容量n 和频率分布直方图中的x ,y 的值;(2)估计本次竞赛学生成绩的众数、中位数、平均数.18.(12分)法国数学家费马被称为业余数学之王,很多数学定理以他的名字命名.对△ABC而言,若其内部的点P满足∠APB=∠BPC=∠CP A=120°,则称P为△ABC的费马点.如图所示,在△ABC中,已知∠BAC=45°,设P为△ABC的费马点,且满足∠PBA=45°,P A=2.(1)求△P AC的面积;(2)求PB的长度.19.(12分)在四棱锥S﹣ABCD中,底面ABCD是正方形,SD⊥平面ABCD,SD=DC,E是SC的中点.(1)证明:SA∥平面BDE;(2)若点G在棱SC上,且SG:GC=2:1,在棱SB上求一点H使得AH∥平面BDG.20.(12分)公元前3世纪,古希腊数学家阿波罗尼斯在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆,后世把这种圆称之为阿波罗尼斯圆.已知平面直角坐标系中A(﹣2,0),B(1,0)且|P A|=2|PB|.(1)求点P的轨迹方程;(2)若点P在(1)的轨迹上运动,点M为AP的中点,求点M的轨迹方程;(3)若点P(x,y)在(1)的轨迹上运动,求t=y+4x−6的取值范围.21.(12分)如图,在四棱锥P﹣ABCD中,平面P AB⊥平面ABCD,AB⊥AD,AD∥BC,P A=BC=3,AB =AD=2,PB=√13.E为PD中点,点F在PC上,且PC=3FC.(1)求证:AB ⊥平面P AD ;(2)求二面角F ﹣AE ﹣D 的余弦值;(3)线段AC 上是否存在点Q ,使得DQ ∥平面F AE ?说明理由.22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点M(√3,12),点A 为下顶点,且AM 的斜率为√32. (1)求椭圆E 的方程;(2)如图,过点B (0,4)作一条与y 轴不重合的直线,该直线交椭圆E 于C 、D 两点,直线AD ,AC 分别交x 轴于H ,G 两点,O 为坐标原点.求证:|OH ||OG |为定值,并求出该定值.2023-2024学年湖北省孝感市高二(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.若复数z 满足2z −z =3+12i ,其中i 为虚数单位,z 是z 的共轭复数,则复数z 在复平面内对应的点所在的象限是( )A .一B .二C .三D .四解:设z =a +bi (a ,b ∈R ),由2z −z =3+12i ,得2a +2bi ﹣a +bi =a +3bi =3+12i ,∴a =3,b =4.则复数z 在复平面内对应的点的坐标为(3,4),所在的象限是第一象限. 故选:A .2.已知向量a →=(﹣1,2),b →=(3,4),c →=2a →−λb →,若c →⊥b →,则实数λ=( )A .−25B .12C .−12D .25解:由于知向量a →=(﹣1,2),b →=(3,4),c →=2a →−λb →=(﹣2﹣3λ,4﹣4λ),由于c →⊥b →,故:3×(﹣2﹣3λ)+4×(4﹣4λ)=0,解得λ=25.故选:D .3.甲、乙两人独立地破译某个密码,如果每人译出密码的概率均为0.4,则密码被破译的概率为() A .0.36 B .0.48 C .0.64 D .0.54解:甲乙都不能译出密码的概率为P 1=(1﹣0.4)×(1﹣0.4)=0.36,故密码被破译的概率为1﹣P 1=0.64.故选:C .4.经过点(1,3)且在两坐标轴上的截距互为相反数的直线方程是( )A .x +y =4B .y =x +2C .y =3x 或x +y =4D .y =3x 或y =x +2解:当直线过原点时,由于斜率为3−01−0=3,故直线方程为y =3x ;当直线不过原点时,设方程为x a +y −a =1,把点(1,3)代入可得a =﹣2,故直线的方程为y =x +2,故选:D .5.关于空间中两条不同的直线m ,n 与两个不同的平面α,β,下列说法正确的是( )A .若m ∥α,n ∥β,α∥β,则m ∥nB .若m ⊥α,n ⊥β,α∥β,则m ⊥nC.若n∥α,m⊥n,α⊥β,则m∥βD.若n⊥α,m∥n,α∥β,则m⊥β解:根据题意,依次分析选项:对于A,直线m、n可以平行、相交,也可以异面,A错误;对于B,若m⊥α,n⊥β,α∥β,则m∥n,B错误;对于C,若n∥α,m⊥n,α⊥β,则m可以与平面β相交,C错误;对于D,若n⊥α,m∥n,则m⊥α,又由α∥β,则m⊥β,D正确.故选:D.6.东寺塔和西寺塔为昆明市城中古景,分别位于昆明市南面的书林街和东寺街,一东一西隔街相望,距今已有1100多年历史,在二月的梅花和烟雨中,“双塔烟雨”成为明清时的“昆明八景”之一.东寺塔基座为正方形,塔身有13级,塔顶四角立有四只铜皮做成的鸟,俗称金鸡,所以也有“金鸡塔”之称.如图,从东到西的公路上有相距80(单位:m)的B、A两个观测点,在A点测得塔在北偏东60°的点D 处,在B点测得塔在北偏西30°,塔顶C的仰角为45°,则塔的高度CD约为()A.40m B.37m C.35m D.23m解:从东到西的公路上有相距80(单位:m)的B、A两个观测点,在A点测得塔在北偏东60°的点D 处,在B点测得塔在北偏西30°,则∠DAB=90°﹣60°=30°,∠DBA=90°﹣30°=60°,则∠ADB=90°,又|AB|=80,则|BD|=40,又在B点测得塔顶C的仰角为45°,则∠CBD=45°,则|CD|=|BD|=40,则塔的高度CD约为40m.故选:A.7.已知圆C:x2+y2﹣2x=0,直线l:x+y+1=0,P为l上的动点,过点P作圆C的两条切线P A、PB,切点分别A 、B ,当|PC |•|AB |最小时,直线AB 的方程为( )A .x +y =0B .x ﹣y =0C .2x ﹣2y +1=0D .2x +2y +1=0 解:化圆C 为(x ﹣1)2+y 2=1,则圆心C (1,0),半径r =1.∵四边形P ACB 面积S =12|PC |•|AB |=2S △P AC =|P A |•|AC |=2|P A |=2√PC 2−4,∴要使|PC |•|AB |最小,则需|PC |最小,此时PC 与直线l 垂直,则直线PC 的方程为y =x ﹣1,联立{y =x −1x +y +1=0,解得P (0,﹣1). 则以PC 为直径的圆的方程为(x −12)²+(y +12)²=12.则两圆方程相减可得直线AB 的方程为x +y =0.故选:A .8.如图,棱长为2的长方体ABCD ﹣A 1B 1C 1D 1中,P 为线段B 1D 1上动点(包括端点).则以下结论正确的为( )A .三棱锥P ﹣A 1BD 中,点P 到面A 1BD 的距离为定值4√33B .过点P 平行于面A 1BD 的平面被正方体ABCD ﹣A 1B 1C 1D 1截得的多边形的面积为3√3C .当点P 为B 1D 1中点时,三棱锥P ﹣A 1BD 的外接球体积为11√11π3 D .直线P A 1与面A 1BD 所成角的正弦值的范围为[√33,√63] 解:对于A 中,由题意可得:BB 1∥DD 1且BB 1=DD 1∴BB 1D 1D 为平行四边形,则BD ∥B 1D 1,且B 1D 1⊄平面A 1BD ,BD ⊂平面A 1BD , ∴B 1D 1∥平面A 1BD ,又P 为线段B 1D 1上,则点P 到平面A 1BD 的距离为定值,设点P 到面A 1BD 的距离为h ,△A 1BD 为等边三角形,∴S △A 1BD =12×2√2×2√2×√32=2√3, ∵V P−A 1BD =V A 1−PBD ,∴13×2√3×ℎ=13×√2×12×2√2×2,解得ℎ=2√33,∴A 错误; 对于B 中,过点P 平行于平面A 1BD 的平面被正方体所截的截面为△B 1D 1C , 此时三角形B 1D 1C 为边长为2√2的等边三角形,其面积为12×2√2×2√2×√32=2√3,∴B 不正确; 设直线P A 1与平面A 1BD 所成角为θ,则sinθ=ℎA 1P =2√33A 1P , ∵A 1P ∈[√2,2],则sinθ∈[√33,√63],∴D 正确; 对于C 中,当点P 为B 1D 1中点时,则A 1P ⊥B 1D 1,∵BB 1⊥平面A 1B 1C 1D 1,A 1P ⊂平面A 1B 1C 1D 1,∴A 1P ⊥BB 1,又BB 1∩B 1D 1=B 1,BB 1,B 1D 1⊂平面BB 1D 1D ,∴A 1P ⊥平面BB 1D 1D ,设△PBD 的外接圆圆心为O 1,半径为r ,三棱锥P ﹣A 1BD 的外接球的球心O ,半径为R ,连接OO 1,O 1B ,OB ,则OO 1⊥平面PBD ,且OO 1=12A 1P =√22,对于△PBD ,则PB =PD =√6,BD =2√2,∴cos ∠BPD =PB 2+PD 2−BD 22PB⋅PD=13, 则sin ∠BPD =√1−cos 2∠BPD =2√23,∵2r =BD sin∠BPD =3,则r =32,∴R 2=r 2+OO 12=114,即R =√112, 则三棱锥P ﹣A 1BD 的外接球的体积为43πR 3=11√11π6,∴C 错误.故选:D .二、不定项选择题(本大题共4小题,共20.0分)9.已知事件A ,B ,且P (A )=0.5,P (B )=0.2,则下列结论正确的是( )A .如果B ⊆A ,那么P (AB )=0.5B .如果A 与B 互斥,那么P (AB )=0C .如果A 与B 相互独立,那么P(AB)=0.4D .如果A 与B 相互独立,那么P (AB )=0解;对于A ,由B ⊆A 得A ∩B =B ,则P (AB )=P (A ∩B )=P (B )=0.2,A 错; 对于B ,由A 与B 互斥得A ∩B =∅,则P (AB )=P (A ∩B )=P (∅)=0,B 对; 对于CD ,A 与B 相互独立,则P(AB)=P(A)P(B)=0.5×0.8=0.4,P (AB )=P (A )P (B )=0.5×0.2=0.1,故C 对D 错;故选:BC .10.已知圆O :x 2+y 2=4,过点M (﹣1,0)直线l 与圆O 交于P ,Q 两点.下列说法正确的是() A .|PQ |的最小值为2√2 B .PO →⋅PQ →∈[6,8]C .OP →⋅OQ →的最小值为﹣4D .线段PQ 中点的轨迹为圆解:对于选项A :由题意可知,当l ⊥x 轴时,|PQ |最小,所以|PQ |的最小值为2×√4−1=2√3,故选项A 错误;对于选项B :设N 是PQ 的中点,连接ON ,则ON ⊥PQ ,PO →⋅PQ →=|PO →|⋅|PQ →|⋅cos∠OPQ =|PQ →|⋅|PN →|=12|PQ →|2,∵|PQ →|的最小值为2√3,最大值为4,∴PO →⋅PQ →∈[6,8],故选项B 正确;对于选项C :当直线l 的斜率为0时,OP →⋅OQ →=2×2×cosπ=−4,当直线l 的斜率不为0时,设直线l 的方程为x =my ﹣1,P (x 1,y 1),Q (x 2,y 2), 联立方程{x =my −1x 2+y 2=4,消去x 得(m 2+1)y 2﹣2my ﹣3=0, ∴y 1+y 2=2m m 2+1,y 1y 2=−3m 2+1, ∴OP →⋅OQ →=(m 2+1)y 1y 2−m(y 1+y 2)+1=−3(m 2+1)−2m 2m 2+1+1=−4m 2−2m 2+1=−4+2m 2+1∈(−4,−2],∴OP →⋅OQ →∈[−4,−2],∴OP →⋅OQ →的最大值为﹣2,当且仅当m =0,即l :x =﹣1时取等号,故选项C 正确; 对于选项D :由于MN ⊥ON ,则点N 在以MO 为直径的圆上,圆心为(−12,0),半径为12,∴点N 的轨迹方程为(x +12)2+y 2=14,即线段PQ 中点的轨迹为圆,故选项D 正确. 故选:BD .11.在直三棱柱ABC ﹣A 1B 1C 1中,点D 是BB 1的中点,AA 1=AB =4,AC =2,∠BAC =60°,点P 为侧面AA 1C 1C (含边界)上一点,BP ∥平面ADC 1,则下列结论正确的是( )A .BC ⊥AC 1B .直线C 1D 与直线A 1C 所成角的余弦值是2√55C .点A 1到平面AC 1D 的距离是√3D .线段BP 长的最小值是8√55解:直三棱柱ABC ﹣A 1B 1C 1中,C 1C ⊥BC , 在△ABC 中,AB =4,AC =2,∠BAC =60°,可得BC 2=AB 2+AC 2﹣2AB •AC •cos60°=16+4﹣2×4×2×12=12, 所以AC 2+BC 2=12=AB 2,可得AC ⊥BC ,结合AC ∩C 1C =C ,可知BC ⊥平面AA 1C 1C ,所以BC ⊥AC 1,故A 正确;由前面的分析,可知CA 、CB 、CC 1两两垂直,可知CA →⋅CB →=CB →⋅CC 1→=CC 1→⋅CA →=0,而A 1C →=A 1A →+AC →=−CA →−AA 1→=−CA →−CC 1→,C 1D →=C 1B 1→+B 1D →=CB →−12CC 1→,所以A 1C →⋅C 1D →=(−CA →−CC 1→)⋅(CB →−12CC 1→)=−CA →⋅CB →+12CA →⋅CC 1→−CC 1→⋅CB →+12CC 1→2=12CC 1→2=12×42=8,结合|A 1C →|=√42+22=2√5,|C 1D →|=√12+22=4, 可得cos <A 1C →,C 1D →>=A 1C →⋅C 1D →|A 1C →|⋅|C 1D →|=825×4=√55,所以直线C 1D 与直线A 1C 所成角的余弦值是√55,故B 不正确;根据A 1C 1=AC =2,AA 1=4,可知D 到平面AA 1C 1的距离等于BC =2√3,可得V D−AA 1C 1=13×12×2×4×2√3=8√33,AD =√16+4=2√5,AC 1=√16+4=2√5,DC 1=√4+12=4, 所以S △AC 1D =12×4×√20−4=8,设A 1到平面AC 1D 的距离为h , 可得13×8×ℎ=8√33,解得h =√3,即点A 1到平面AC 1D 的距离是√3,故C 正确;分别取CC 1、AC 的中点G 、H ,连接BG ,BH ,GH ,可得BG ∥DC 1,GH ∥AC 1, 又因为BG ⊄平面AC 1D ,DC 1⊂平面AC 1D ,所以BG ∥平面AC 1D ,同理GH ∥平面AC 1D , 结合BG ∩GH =G ,可得平面BGH ∥平面AC 1D ,所以BP ∥平面AC 1D , 因此,P 点的轨迹为线段GH ,因为BH =√12+1=√13,GH =√4+1=√5,BG =√12+4=4, 所以cos ∠BHG =2×√13×√5=√6565,可得sin ∠BHG =√1−165=8√6565. 所以S △BGH =12×√13×√5×8√6565=4, 设B 到GH 的距离为d ,由等面积法可得:12×√5d =4,即d =8√55,可得线段BP 长的最小值是8√55,故D 正确.故选:ACD .12.已知F 为椭圆C :x 24+y 22=1的左焦点,直线l :y =kx (k ≠0)与椭圆C 交于A 、B 两点,AE ⊥x 轴,垂足为E ,BE 与椭圆C 的另一个交点为P ,则( ) A .1|AF|+4|BF|的最小值为2B .△ABE 的面积的最大值为√2C .直线BE 的斜率为k 2D .∠P AB 为直角解:对于A :因为O 为AB 的中点,O 也是FF 2的中点, 所以AFBF 2为平行四边形,所以BF =AF 2, 所以AF +BF =AF +AF 2=2a =4, 所以1AF+4BF=14(1AF+4BF)(AF +BF )=14(5+BF AF +4AF BF )≥14(5+4)=94,故A 错误; 对于B :设A (m ,n ),B (﹣m ,﹣n ),E (m ,0),P (x 1,y 1), 因为A 在椭圆上,所以m 24+n 22=1≥2√m 2n 28,即mn ≤√2,所以S =12•m •2n =mn ≤√2,当且仅当m =√2,n =1时取等号,故B 正确; 对于C :因为k =k OA =n m ,所以k BE =n 2m =k2,故C 正确; 对于D :因为A ,P 在椭圆上,所以m 24+n 22=1,x 124+y 122=1,两式相减得n 2−y 12m 2−x 12=−12,即(n+y 1)(n−y 1)(m+x 1)(m−x 1)=−12,即k PB •k P A =−12,所以k 2•k P A =−12,所以k •k P A =﹣1,所以∠P AB 为直角,故D 正确, 故选:BCD .三、填空题(本大题共4小题,共20.0分)13.已知有8个样本数据分别为4,7,8,10,12,15,20,22,则估计该组数据的总体的第三四分位数为 17.5 .解:由题意,数据的总体的第三四分位数即第75百分位数,又样本数据有8个, 所以8×75%=6,所以第三四分位数为15+202=17.5.故答案为:17.5.14.已知圆C 1:x 2+y 2=4和圆C 2:(x ﹣2)2+(y ﹣2)2=4,若点P (a ,b )(a >0,b >0)在两圆的公共弦上,则1a+9b 的最小值为 8 .解:由题意,两圆的方程相减,可得x +y =2, ∵点P (a ,b )(a >0,b >0)在两圆的公共弦上, ∴a +b =2,∴1a+9b =12(1a +9b)(a +b )=12(10+b a +9a b )≥12(10+6)=8, 当且仅当ba=9a b ,即b =3a 时,取等号,1a+9b的最小值为8,故答案为8.15.如图,在矩形ABCD 中,已知AB =2AD =6,E 是AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE ,连接A 1C .当三棱锥A 1﹣CDE 的体积取得最大值时,此时三棱锥A 1﹣CDE 外接球的体积为 36π .解:因为三棱锥A 1﹣CDE 的底面积S △CDE =9为定值,故当高最大值时,体积最大,又因为DE =CE =3√2,且△A 1DE 为等腰直角三角形,取DE 中点为F , 连接A 1F ,故A 1F ⊥DE ,且A 1F =3√22,所以当A 1F ⊥平面DEBC 时,三棱锥A 1﹣CDE 的高最大为3√22, 可知DE 2+CE 2=CD 2,即∠CED =90°,则△DEC 为等腰直角三角形,所以球心O 在平面DEBC 的投影为DC 中点G ,且△DEC 的外接圆半径为r =3, 设OG =h ,则FG =12EC =3√22, 由题意可得{R 2=ℎ2+9R 2=92+(3√22−ℎ)2,解得{R =3ℎ=0, 所以三棱锥A 1﹣CDE 外接球的体积为V =43πR 3=36π. 故答案为:36π. 16.设椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,P 是椭圆上一点,且∠F 1PF 2=π3,若△F 1PF 2的外接圆和内切圆的半径分别为R ,r ,当R =4r 时,椭圆的离心率为 23.解:△F 1PF 2的外接圆的半径R ,由正弦定理2R =|F 1F 2|sin∠F 1PF 2=2c sin π3,所以R =2√33c , 又由于R =4r ,所以r =√36c ,在△F 1PF 2中,由余弦定理可得|F 1F 2|2=|PF 1|2+|PF 2|2﹣2|PF 1||PF 2|•cos ∠F 1PF 2,而∠F 1PF 2=π3, 所以4c 2=4a 2﹣3|PF 1||PF 2|,所以可得:|PF 1||PF 2|=43(a 2﹣c 2),由三角形的面积相等可得:12(|PF 1|+|PF 2|+|F 1F 2|)•r =12|PF 1||PF 2|sin ∠F 1PF 2,所以(2a +2c )r =43(a 2﹣c 2)•√32, 所以2(a +c )√36c =43(a 2﹣c 2)•√32, 整理可得:c =2(a ﹣c )=0,即3c =2a ,解得e =23, 故答案为:23.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.(10分)某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n )进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]的频数分别为8,2.(1)求样本容量n 和频率分布直方图中的x ,y 的值; (2)估计本次竞赛学生成绩的众数、中位数、平均数.解:(1)由频率分布直方图得[50,60)的频率为0.016×10=0.16, ∵得分在[50,60),[90,100]的频数分别为8,2. ∴n =80.016×10=50,y =2n×10=2500=0.004, ∴x =[1﹣(0.016+0.04+0.01+0.004)×10]÷10=0.03. (2)估计本次竞赛学生成绩的众数为:70+802=75,∵[50,70)的频率为:(0.016+0.03)×10=0.46,[70,80)的频率为:0.04×10=0.4,∴中位数为:70+0.5−0.460.4×10=71,平均数为:55×0.16+65×0.3+75×0.4+85×0.1+95×0.04=70.6.18.(12分)法国数学家费马被称为业余数学之王,很多数学定理以他的名字命名.对△ABC而言,若其内部的点P满足∠APB=∠BPC=∠CP A=120°,则称P为△ABC的费马点.如图所示,在△ABC中,已知∠BAC=45°,设P为△ABC的费马点,且满足∠PBA=45°,P A=2.(1)求△P AC的面积;(2)求PB的长度.解:(1)由已知可得∠P AB=180°﹣120°﹣45°=15°,∴∠P AC=45°﹣15°=30°,在△P AC中,∠PCA=180°﹣120°﹣30°=30°,∴P A=PC=2,∴△P AC的面积S=12P A•PC•sin∠P AC=12×2×2×√32=√3.(2)∵sin15°=sin(45°﹣30°)=√22×√32−√22×12=√6−√24,sin45°=√22,∴在△P AB中,由正弦定理PBsin15°=PAsin45°,可得PB=2sin15°sin45°=2×√6−√24√22=√3−1.19.(12分)在四棱锥S﹣ABCD中,底面ABCD是正方形,SD⊥平面ABCD,SD=DC,E是SC的中点.(1)证明:SA∥平面BDE;(2)若点G在棱SC上,且SG:GC=2:1,在棱SB上求一点H使得AH∥平面BDG.解:(1)证明:连接AC交BD于O,连接EO,由题意得:在△SAC中,EO∥SA,又EO⊂平面EDB,SA⊄平面EDB,∴SA∥平面EDB;(2)连接AC交BD于O,连接GO,取SG的中点F,连接AF,则根据题意可得G为FC的中点,又O为AG中点∴AF∥OG,取SB的中点H,连接FH,则FH∥GB,又AF∩FH=F,∴平面AFH∥平面BDG,又AH⊂平面AFH,∴AH∥平面BDG,∴当点H为棱SB的中点时,AH∥平面BDG.20.(12分)公元前3世纪,古希腊数学家阿波罗尼斯在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆,后世把这种圆称之为阿波罗尼斯圆.已知平面直角坐标系中A(﹣2,0),B(1,0)且|P A|=2|PB|.(1)求点P的轨迹方程;(2)若点P在(1)的轨迹上运动,点M为AP的中点,求点M的轨迹方程;(3)若点P(x,y)在(1)的轨迹上运动,求t=y+4x−6的取值范围.(1)设P(x,y),|P A|=2|PB|.则(x+2)2+y2=4[(x﹣1)2+y2],化简得:x2﹣4x+y2=0,故点P的轨迹方程为x2﹣4x+y2=0;(2)设M(a,b),因为点M为AP的中点,所以点P的坐标为(2a+2,2b),将P(2a+2,2b)代入x2﹣4x+y2=0中,得到a2+b2=1,所以点M的轨迹方程为x2+y2=1;(3)因为点P(x,y)在(1)的轨迹上运动,所以x2﹣4x+y2=0,变形为(x﹣2)2+y2=4,即点P(x,y)为圆心为(2,0),半径为2的圆上的点,则t=y+4x−6表示的几何意义为圆上一点与(6,﹣4)连线的斜率,当过(6,﹣4)的直线与圆相切时,取得最值,设y+4=k(x﹣6),则由点到直线距离公式可得:√1+k2=2,解得k=−4−√73或−4+√73,故t=y+4x−6的取值范围是[−4−√73,−4+√73].21.(12分)如图,在四棱锥P﹣ABCD中,平面P AB⊥平面ABCD,AB⊥AD,AD∥BC,P A=BC=3,AB =AD=2,PB=√13.E为PD中点,点F在PC上,且PC=3FC.(1)求证:AB⊥平面P AD;(2)求二面角F﹣AE﹣D的余弦值;(3)线段AC上是否存在点Q,使得DQ∥平面F AE?说明理由.(1)证明:在△P AB中,∵P A=3,AB=2,PB=√13,∴PA 2+AB 2=32+22=(√13)2=PB 2. ∴∠P AB =90°,即AB ⊥P A .又∵AB ⊥AD ,在平面P AD 中,P A ∩AD =A , ∴AB ⊥平面P AD ;(2)解:∵平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,AB ⊥AD ,AD ⊂平面ABCD , ∴AD ⊥平面P AB ,得AD ⊥P A ,已证AB ⊥P A ,且已知AB ⊥AD ,∴以A 为坐标原点,分别以AD 、AB 、AP 所在直线为x 、y 、z 轴建立空间直角坐标系,则D (2,0,0),P (0,0,3),C (3,2,0).AP →=(0,0,3),AD →=(2,0,0),AC →=(3,2,0),CP →=(−3,−2,3), ∵E 为PD 中点,∴AE →=12(AP →+AD →)=(1,0,32).由PC =3FC 知,AF →=AC →+CF →=AC →+13CP →=(3,2,0)+(−1,−23,1)=(2,43,1).设平面AEF 的法向量为n →=(x ,y ,z),由{n →⋅AE →=x +32z =0n →⋅AF →=2x +43y +z =0,令z =2,得n →=(−3,3,2).又AB ⊥平面P AD ,∴平面P AD 的法向量为AB →=(0,2,0). ∴cos〈n →,AB →〉=n →⋅AB→|n →||AB →|=3×22×9+9+4=3√2222,由题知,二面角F ﹣AE ﹣D 为锐角, ∴二面角F ﹣AE ﹣D 的余弦值为3√2222; (3)解:设Q 是线段AC 上一点,则存在λ∈[0,1]使得AQ →=λAC →. ∵AC →=(3,2,0),DA →=(−2,0,0),∴DQ →=DA →+AQ →=DA →+λAC →=(3λ−2,2λ,0).∵DQ ⊄平面AEF ,∴要使DQ ∥平面AEF ,则DQ →⋅n →=0,即(3λ﹣2,2λ,0)•(﹣3,3,2)=0.即(3λ﹣2)×(﹣3)+2λ×3+0×2=0.解得λ=2. ∵λ=2∉[0,1],∴线段AC 上不存在Q ,使得DQ ∥平面AEF .22.(12分)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点M(√3,12),点A 为下顶点,且AM 的斜率为√32.(1)求椭圆E 的方程;(2)如图,过点B (0,4)作一条与y 轴不重合的直线,该直线交椭圆E 于C 、D 两点,直线AD ,AC 分别交x 轴于H ,G 两点,O 为坐标原点.求证:|OH ||OG |为定值,并求出该定值.(1)解:∵椭圆过点M(√3,12),点A 为下顶点,坐标为(0,﹣b ),又AM 的斜率为√32,则有:{ 3a 2+14b2=112+b 3=√32,解得a =2,b =1.故求椭圆E 的方程为x 24+y 2=1.(2)证明:由题意知,直线BC 的斜率存在,设直线BC :y =kx +4,由{x 24+y 2=1,y =kx +4整理得,(1+4k 2)x 2+32kx +60=0.设D (x 1,y 1),C (x 2,y 2),则x 1+x 2=−32k 1+4k2,x 1x 2=601+4k2.Δ=(32k )2﹣4(1+4k 2)×60=16(4k 2﹣15)>0,得|k|>√152.因为A (0,﹣1),直线AD 的方程为y =y 1+1x 1x −1,令y =0,解得x =x1y 1+1, 则H(x 1y 1+1,0),同理可得G(x2y 2+1,0), ∴|OH||OG|=|x 1y 1+1||x 2y 2+1|=|x 1x 2(kx 1+5)(kx 2+5)|=|x 1x 2k 2x 1x 2+5k(x 1+x 2)+25| =|601+4k2k 2⋅601+4k2+5k(−32k 1+4k2)+25|=|6060k 2−160k 2+25(1+4k 2)|=125.(定值)。
高二上册数学期中试卷及答案精选
高二上册数学期中试卷及答案精选学生的时代只有课本、作业、同学和试卷,单纯却美好。
下面小编整理了高二上册数学期中试卷及答案精选,欢迎阅读参考。
高二上册数学期中试卷及答案精选(一)一、单项选择(注释)1、在△ABC中,已知60°,如果△ABC 两组解,则x的取值范围是 ( )A.(1,2)B. (3,+∞)C.( 2,+∞)D.( 1,+∞)2、已知函数,若则实数的取值范围是 ( )A.(1,+∞)B. (1,-∞)C. (+∞,2)D.(-∞,2)3、设函数则不等式的解集是( )A.(1,2) (3,+∞)B.(1,2) (2,+∞)C. (1,2) (3,-∞)D.(1,2) (2,-∞)4、已知正数满足 , ,则的取值范围是______ .5、已知实数满足则的最大值是( )A.4B.5C. 7D.46、设f(x)= 则不等式f(x)>2的解集为( )A.(1,2) (3,+∞)B.( ,+∞)C.(1,2) ( ,+∞)D.(1,2)7、下列不等式(1)m-3>m-5;(2)5-m>3-m;(3)5m>3m ;(4)5+m>5-m其中正确的有( )(A)1个 (B)2个(C)3个 (D)4个8、已知等差数列的前项和为,,,取得最小值时的值为( )A. B. C. D.9、设等差数列的前项和为 ,若 ,则等于( )A.18B.36C.45D.6010、S={1,2,…,2003},A是S的三元子集,满足:A中的所有元素可以组成等差数列.那么,这样的三元子集A的个数是( )A. B.C. D.11、设等差数列满足: ,则 ( )A.14B.21C.28D.3512、在中,,,分别是,,的对边,已知,,成等比数列,且,则的值为( )A. 4B.2C. 1D.5评卷人得分二、填空题(注释)13、已知 ,若恒成立,则实数的取值范围_________14、已知不等式(x+y) 对任意正实数x,y恒成立,则正实数a的最小值为__________15、在△ 中,若,则△ 的形状是16、在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sinA∶sinB∶sinC=________.评卷人得分三、解答题(注释)17、设数列满足下列关系:为常数), ;数列满足关系: .(1)求证:(2)证明数列是等差数列.18、已知集合A={x|x2<4},B={x|1< }.(1)求集合A∩B;(2)若不等式2x2+ax+b<0的解集为B,求a、b的值.19、已知数列的各项均为正整数,且 ,设集合 .性质1 若对于 ,存在唯一一组 ( )使成立,则称数列为完备数列,当k取最大值时称数列为k阶完备数列.性质2 若记 ,且对于任意 , ,都有成立,则称数列为完整数列,当k取最大值时称数列为k阶完整数列.性质3 若数列同时具有性质1及性质2,则称此数列为完美数列,当取最大值时称为阶完美数列;(Ⅰ)若数列的通项公式为 ,求集合 ,并指出分别为几阶完备数列,几阶完整数列,几阶完美数列;(Ⅱ)若数列的通项公式为 ,求证:数列为阶完备数列,并求出集合中所有元素的和 .(Ⅲ)若数列为阶完美数列,试写出集合 ,并求数列通项公式.20、已知数列为等差数列,公差 ,其中恰为等比数列,若 , , ,⑴求等比数列的公比⑵试求数列的前n项和21、已知是各项均为正数的等比数列,且 ,;(1)求的通项公式;(2)设 ,求数列的前项和 .22、在数列中, .(1)证明数列是等比数列;(2)设是数列的前项和,求使的最小值.参考答案一、单项选择1、【答案】C2、【答案】C【解析】由题知在上是增函数,由题得,解得,故选择C。
2023-2024学年河南省信阳市高二(上)期中数学试卷【答案版】
2023-2024学年河南省信阳市高二(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x +y ﹣2023=0的倾斜角为( ) A .−π4B .π4C .π2D .3π42.抛掷一枚质地均匀的骰子,记随机事件:E =“点数为奇数”,F =“点数为偶数”,G =“点数大于2”,H =“点数不大于2”,R =“点数为1”.则下列结论不正确的是( ) A .E ,F 为对立事件B .G ,H 为互斥不对立事件C .E ,G 不是互斥事件D .G ,R 是互斥事件3.已知直线l 1:mx +y +6=0,l 2:3x +(m ﹣2)y +2m =0,若l 1∥l 2,则m 等于( ) A .﹣3B .﹣1C .3D .﹣1 或34.天气预报说,在今后的三天中,每一天下雨的概率均为50%.我们通过设计模拟实验的方法求概率.利用计算机产生一组随机数:907 966 191 924 274 932 812 458 569 683 431 257 393 027 556 488 730 113 537 986若用1,3,5,7,9表示下雨,用0,2,4,6,8表示不下雨,则这三天中至少有两天下雨的概率近似为( ) A .920B .12C .1120D .385.已知PA →,PB →,PC →不共面,PM →=(3−x −y)PA →+xPB →+(y −2)PC →,则( ) A .∀x ,y ∈R ,A ,B ,C ,M 四点共面 B .∀x ,y ∈R ,A ,B ,C ,M 四点不共面C .∀x ,y ∈R ,A ,B ,C ,P 四点共面D .∃x ,y ∈R ,A ,B ,C ,P 四点共面6.已知AB 是圆锥PO 的底面直径,C 是底面圆周上的点,∠BAC =30°,AB =2√3,P A =2,则P A 与平面PBC 所成角的正弦值为( )A .12B .√32C .2√1313D .3√13137.已知直线l :3x +ay ﹣25=0与圆C :x 2+y 2=25,点A (3,a ),则下列说法不正确的是( )A .若直线l 与圆C 相切,则a =4B .若0<α<4,则直线l 与圆C 相离 C .若a >4,则直线l 与圆C 相交D .若点A 在直线l 上,则直线l 与圆C 相切8.已知x +y +1=0,则√x 2+y 2−2x −2y +2+√(x −3)2+y 2的最小值是( ) A .√10B .√13C .√29D .6二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.若方程x 2+y 2﹣2mx +m 2﹣2m ﹣1=0表示圆,则m 的取值可以为( ) A .2B .0C .−12D .﹣210.如图是一个古典概型的样本空间Ω和事件A 和B ,其中n (Ω)=36,n (A )=18,n (B )=12,n (A ∪B )=24,则( )A .P(A ∪B)=23B .P(AB)=13C .事件A 与B 互斥D .事件A 与B 相互独立11.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 是底面ABCD 的中心,Q 是棱A 1D 1上的一点,且D 1Q →=λD 1A 1→,λ∈[0,1],N 为线段AQ 的中点,则( )A .C ,M ,N ,Q 四点共面B .三棱锥A ﹣DMN 的体积为定值C .当λ=12时,过A ,M ,Q 三点的平面截正方体所得截面的面积为4 D .不存在λ使得直线MB 1与平面CNQ 垂直12.古希腊数学家阿波罗尼斯在《圆锥曲线论》中证明了命题:平面内与两定点距离的比为常数k (k >0且k ≠1)的点的轨迹是圆,人们称之为阿氏圆.现有△ABC ,BC =8,sin B =3sin C .以BC 所在的直线为x 轴,BC 的垂直平分线为y 轴建立直角坐标系xOy ,则( ) A .点A 的轨迹方程为x 2+y 2+10x +16=0(y ≠0)B .点A 的轨迹是以(5,0)为圆心,3为半径的圆C .△ABC 面积的最大值为12D .当AB ⊥BC 时,△ABC 的内切圆半径为4−2√2 三、填空题:本大题共4小题,每小题5分,共20分. 13.圆x 2+y 2+mx ﹣2y ﹣m =0恒过的定点是 .14.第三届“一带一路”国际高峰论坛于2023年10月在北京召开.某记者与参会的3名代表一起合影留念(四人站成一排).则记者站在两端的概率为 ;若记者与代表甲必须相邻,则此两人站在中间的概率为 .15.已知圆C :(x ﹣1)2+(y ﹣3)2=4,直线l :x +2y +3=0,M 为直线l 上的动点,过点M 作圆C 的两条切线MA ,MB ,则四边形MACB 面积的最小值为 .16.在空间直角坐标系中,若一条直线经过点P (x 0,y 0,z 0),且以向量n →=(a ,b ,c )(abc ≠0)为方向向量,则这条直线可以用方程x−x 0a=y−y 0b=z−z 0c来表示.已知直线l 的方程为x −1=12y +1=2z ﹣6,则M (3,1,1)到直线l 的距离为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤 17.(10分)从三名男生(记为A 1,A 2,A 3)、两名女生(记为B 1,B 2)中任意选取两人. (1)在有放回的选取中,写出样本空间,并计算选到两人都是男生的概率; (2)在不放回的选取中,写出样本空间,并计算选到至少有一名女生的概率. 18.(12分)已知A (1,1),B (2,3),C (4,0).求: (1)过点A 且与BC 平行的直线方程; (2)AB 边垂直平分线方程;(3)过点A 且倾斜角为直线AB 倾斜角2倍的直线方程.19.(12分)在三棱锥O ﹣ABC 中,OA =OB =OC =2,OA ⊥OB ,∠AOC =∠BOC =60°,M ,N 分别为AB ,OC 的中点,设OA →=a →,OB →=b →,OC →=c →. (1)用a →,b →,c →表示MN →,并求|MN →|; (2)求OM 与NB 所成角的余弦值.20.(12分)在第19届杭州亚运会上中国射击队获得32枚金牌中的16枚,并刷新3项世界纪录.甲、乙两名亚运选手进行赛前训练,甲每次射中十环的概率为0.9,乙每次射中十环的概率为p ,在每次射击中,甲和乙互不影响.已知两人各射击一次至少有一人射中十环的概率为0.98. (1)求p ;(2)甲、乙两人各射击两次,求两人共射中十环3次的概率.21.(12分)正三棱柱ABC ﹣A 1B 1C 1中,AB =2,M 是BB 1的中点,M 到平面ABC 1的距离为34.(1)求A 1A ;(2)在C 1A 上是否存在点P ,使平面ABC 1与平面PBM 夹角的余弦值为√217? 若存在,求出C 1P PA的值;若不存在,请说明理由.22.(12分)已知圆C 经过点A (0,2),B (2,0),且直线x +y +2=0被圆C 所截得的弦长为2√2.点P 为圆C 上异于A 、B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N . (1)求圆C 的方程;(2)探求|AN |•|BM |是否为定值,若为定值,求出此定值,若不是定值,说明理由;(3)过点D (﹣4,0)的动直线l 与圆C 交于不同的两点E ,F .记线段EF 的中点为R ,则当直线l 绕点D 转动时,求动点R 的轨迹长度.2023-2024学年河南省信阳市高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x+y﹣2023=0的倾斜角为()A.−π4B.π4C.π2D.3π4解:直线x+y﹣2023=0,即y=﹣x+2023,斜率为﹣1,设倾斜角为α,则tanα=﹣1,且α∈[0,π),可得α=3π4.故选:D.2.抛掷一枚质地均匀的骰子,记随机事件:E=“点数为奇数”,F=“点数为偶数”,G=“点数大于2”,H=“点数不大于2”,R=“点数为1”.则下列结论不正确的是()A.E,F为对立事件B.G,H为互斥不对立事件C.E,G不是互斥事件D.G,R是互斥事件解:抛掷一枚质地均匀的骰子,点数为奇数与点数为偶数不可能同时发生,且必有一个发生,即E,F为对立事件,A正确;点数大于2与点数不大于2不可能同时发生,且必有一个发生,即G,H为对立事件,B错误;点数为奇数与点数大于2可能同时发生,即E,G不是互斥事件,C正确;点数大于2与点数为1不可能同时发生,即G,R是互斥事件,D正确.故选:B.3.已知直线l1:mx+y+6=0,l2:3x+(m﹣2)y+2m=0,若l1∥l2,则m等于()A.﹣3B.﹣1C.3D.﹣1 或3解:因为l1∥l2,所以m(m﹣2)=1×3,且m•2m≠6×3,解得m=﹣1.故选:B.4.天气预报说,在今后的三天中,每一天下雨的概率均为50%.我们通过设计模拟实验的方法求概率.利用计算机产生一组随机数:907 966 191 924 274 932 812 458 569 683431 257 393 027 556 488 730 113 537 986若用1,3,5,7,9表示下雨,用0,2,4,6,8表示不下雨,则这三天中至少有两天下雨的概率近似为()A .920B .12C .1120D .38解:由数表可知,20个随机数中,至少有两天下雨为907,191,932,569,431,257,393,556,730,113,537,共11个数,则这三天中至少有两天下雨的概率近似为1120.故选:C .5.已知PA →,PB →,PC →不共面,PM →=(3−x −y)PA →+xPB →+(y −2)PC →,则( ) A .∀x ,y ∈R ,A ,B ,C ,M 四点共面 B .∀x ,y ∈R ,A ,B ,C ,M 四点不共面C .∀x ,y ∈R ,A ,B ,C ,P 四点共面D .∃x ,y ∈R ,A ,B ,C ,P 四点共面解:∵(3﹣x ﹣y )+x +(y ﹣2)=1,∴∀x ,y ∈R ,A ,B ,C ,M 四点共面. 故选:A .6.已知AB 是圆锥PO 的底面直径,C 是底面圆周上的点,∠BAC =30°,AB =2√3,P A =2,则P A 与平面PBC 所成角的正弦值为( )A .12B .√32C .2√1313D .3√1313解:依题意:圆锥的高PO =√22−(√3)2=1,以O 为原点,建立如图所示空间直角坐标系O ﹣xyz :则A(0,−√3,0),B(0,√3,0),C(32,√32,0),P(0,0,1),PB →=(0,√3,−1),BC →=(32,−√32,0),PA →=(0,−√3,−1).设平面PBC 的法向量n →=(x ,y ,z),则{n →⋅PB →=0n →⋅B →C =0⇒⇒{√3y −z =032x −√32y =0取x =1,得n →=(1,√3,3), 设P A 与平面PBC 所成角为θ,则sinθ=|cos〈PA →,n →〉|=62×√13=3√1313,即P A 与平面PBC 所成角的正弦值为3√1313. 故选:D .7.已知直线l :3x +ay ﹣25=0与圆C :x 2+y 2=25,点A (3,a ),则下列说法不正确的是( ) A .若直线l 与圆C 相切,则a =4 B .若0<α<4,则直线l 与圆C 相离 C .若a >4,则直线l 与圆C 相交D .若点A 在直线l 上,则直线l 与圆C 相切解:圆心C (0,0)到直线l 的距离d =25√9+a 2.若直线l 与圆C 相切,则d =25√9+a 2=5,解得a =±4,故A 错误;若0<a <4,则9+a 2<25,所以d =25√9+a 25,则直线l 与圆C 相离,故B 正确;若a >4,则9+a 2>25,所以d =25√9+a 25,则直线l 与圆C 相交,故C 正确;若点A (3,a )在直线l 上,则9+a 2﹣25=0,即a =±4,d =25√9+a 2=5,直线l 与圆C 相切,故D 正确. 故选:A .8.已知x +y +1=0,则√x 2+y 2−2x −2y +2+√(x −3)2+y 2的最小值是( ) A .√10B .√13C .√29D .6解:设点P ′(x ,y )为直线l :x +y +1=0的动点,则√x 2+y 2−2x −2y +2+√(x −3)2+y 2=√(x −1)2+(y −1)2+√(x −3)2+y 2, 可看作P ′(x ,y )与点A (1,1),B (3,0)的距离之和, 设A (1,1)关于直线l 的对称点为A ′(a ,b ),则{b−1a−1=1a+12+b+12+1=0,解得{a =−2b =−2,所以A ′(﹣2,﹣2),则|P ′A |+|P ′B |=|P ′A ′|+|P ′B |≥|A ′B |=√(−2−3)2+(−2−0)2=√29, 当且仅当P ′与A ′,B 共线时(即图中位置P )取等号,即√x 2+y 2−2x −2y +2+√(x −3)2+y 2的最小值是√29. 故选:C .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.若方程x 2+y 2﹣2mx +m 2﹣2m ﹣1=0表示圆,则m 的取值可以为( ) A .2B .0C .−12D .﹣2解:由(﹣2m )2﹣4×(m 2﹣2m ﹣1)>0知m >−12.结合选项,符合条件的只有2和0. 故选:AB .10.如图是一个古典概型的样本空间Ω和事件A 和B ,其中n (Ω)=36,n (A )=18,n (B )=12,n (A ∪B )=24,则( )A .P(A ∪B)=23B .P(AB)=13C .事件A 与B 互斥D .事件A 与B 相互独立解:因为n (Ω)=36,n (A )=18,n (B )=12,n (A ∪B )=24,则n (A ∩B )=6, 则P (A )=1836=12,P (B )=1236=13,P (AB )=636=16, 则P (A ∪B )=P (A )+P (B )﹣P (AB )=23,P (AB )=P (A )•P (B ), 又A 与B 能同时发生,故不互斥. 故选:AD .11.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 是底面ABCD 的中心,Q 是棱A 1D 1上的一点,且D 1Q →=λD 1A 1→,λ∈[0,1],N 为线段AQ 的中点,则( )A .C ,M ,N ,Q 四点共面B .三棱锥A ﹣DMN 的体积为定值C .当λ=12时,过A ,M ,Q 三点的平面截正方体所得截面的面积为4 D .不存在λ使得直线MB 1与平面CNQ 垂直解:连接AC 、CQ ,则M 、N 分别为AC 、AQ 的中点,因为MN 为△AQC 的中位线,所以MN ∥CQ ,可得C 、M 、N 、Q 四点共面,故A 正确.根据题意,可得V A ﹣DMN =V N ﹣ADM =12V Q ﹣ADM =12×13S △ADM ×2=13为定值,故B 正确. 当λ=12时,过A 、M 、Q 三点的平面截正方体所得截面为等腰梯形ACFQ , 如图所示,过Q 作AC 的垂线,垂足为G ,则AG =2√2−√22=√22,QG =√5−12=3√22.因此可得S =12(√2+2√2)×3√22=92,故C 错误. 以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,可得D (0,0,0,),A (2,0,0),A 1(2,0,2),B 1(2,2,2),C (0,2,0),D 1(0,0,2), M (1,1,0),Q (2λ,0,2),CQ →=(2λ,−2,2),AC →=(−2,2,0),MB 1→=(1,1,2),若存在λ使得直线MB 1与平面CNQ (即平面ACQ )垂直, 则{MB 1→⋅CQ →=0MB 1→⋅AC →=0,即{2λ−2+4=0−2+2+0=0,解得λ=﹣1,不符合题意,故不存在λ使得直线MB 1与平面CNQ 垂直,所以D 正确. 故选:ABD .12.古希腊数学家阿波罗尼斯在《圆锥曲线论》中证明了命题:平面内与两定点距离的比为常数k (k >0且k ≠1)的点的轨迹是圆,人们称之为阿氏圆.现有△ABC ,BC =8,sin B =3sin C .以BC 所在的直线为x 轴,BC 的垂直平分线为y 轴建立直角坐标系xOy ,则( ) A .点A 的轨迹方程为x 2+y 2+10x +16=0(y ≠0)B .点A 的轨迹是以(5,0)为圆心,3为半径的圆C .△ABC 面积的最大值为12D .当AB ⊥BC 时,△ABC 的内切圆半径为4−2√2解:如图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立直角坐标系xOy , 可得B (﹣4,0),C (4,0),由正弦定理和条件sin B =3sin C ,可得|AC |=3|AB |, 设A (x ,y ),可得√(x −4)2+y 2=3√(x +4)2+y 2, 两边平方,化简可得x 2+y 2+10x +16=0,则A 点的轨迹方程为x 2+y 2+10x +16=0(y ≠0),圆心为(﹣5,0),半径为3, 故A 正确,B 错误;由A 的轨迹可得A 到直线BC 的距离的最大值为半径3, 则△ABC 面积的最大值为12×8×3=12,故C 正确;当AB ⊥BC 时,|AB |2+|BC |2=|AC |2,即,|AB |2+64=|AC |2, 又|AC |=3|AB |,解得|AB |=2√2,|AC |=6√2,设△ABC 的内切圆半径为r ,可得12×2√2×8=12r (2√2+8+6√2),解得r =4﹣2√2,故D 正确.故选:ACD .三、填空题:本大题共4小题,每小题5分,共20分. 13.圆x 2+y 2+mx ﹣2y ﹣m =0恒过的定点是 (1,1) . 解:因为圆x 2+y 2+mx ﹣2y ﹣m =0, 则x 2+y 2﹣2y +m (x ﹣1)=0,联立{x 2+y 2−2y =0x −1=0,解得{x =1y =1. 故答案为:(1,1).14.第三届“一带一路”国际高峰论坛于2023年10月在北京召开.某记者与参会的3名代表一起合影留念(四人站成一排).则记者站在两端的概率为 12;若记者与代表甲必须相邻,则此两人站在中间的概率为13.解:四个位置,记者站在两端,有2种站法,所求概率为A 21A 33A 44=12;记者与代表甲必须相邻,则此两人站在中间的概率为A 22A 22A 22A 33=13.故答案为:12;13.15.已知圆C :(x ﹣1)2+(y ﹣3)2=4,直线l :x +2y +3=0,M 为直线l 上的动点,过点M 作圆C 的两条切线MA ,MB ,则四边形MACB 面积的最小值为 8 .解:圆C :(x ﹣1)2+(y ﹣3)2=4,则圆心C (1,3),半径r =2. 因为四边形MACB 的面积S =2S △CAM =|CA |•|AM |=2|AM |=2√|CM|2−4, 要使四边形MACB 面积最小,则需|CM |最小,此时CM 与直线l 垂直, 直线l :x +2y +3=0,|CM |=|1+6+3|1+4=2√5,∴四边形MACB 面积的最小值为2√20−4=8. 故答案为:8.16.在空间直角坐标系中,若一条直线经过点P (x 0,y 0,z 0),且以向量n →=(a ,b ,c )(abc ≠0)为方向向量,则这条直线可以用方程x−x 0a=y−y 0b=z−z 0c来表示.已知直线l 的方程为x −1=12y +1=2z ﹣6,则M (3,1,1)到直线l 的距离为 √693 . 解:直线l 的方程标准化为:x−11=y+22=z−312,所以直线l 过P (1,﹣2,3),方向向量为n →=(1,2,12),|n →|=√12+22+(12)2=√212,设n →的方向向量为u →,则u →=n →|n →|=2√21•(1,2,12)=1√21•(2,4,1), a →=PM →=(2,3,﹣2),可得|a →|=√22+32+(−2)2=√17,所以a →•u →=14√21, 所以M 到直线l 的距离为d =√a →2−(a →⋅u →)2=√17−(1421)2=√693. 故答案为:√693. 四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤 17.(10分)从三名男生(记为A 1,A 2,A 3)、两名女生(记为B 1,B 2)中任意选取两人.(1)在有放回的选取中,写出样本空间,并计算选到两人都是男生的概率; (2)在不放回的选取中,写出样本空间,并计算选到至少有一名女生的概率.解:(1)样本空间Ω={(A 1,A 1),(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 1),(A 2,A 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,A 1),(A 3,A 2),(A 3,A 3),(A 3,B 1),(A 3,B 2),(B 1,A 1),(B 1,A 2),(B 1,A 3),(B 1,B 1),(B 1,B 2),(B 2,A 1),(B 2,A 2),(B 2,A 3),(B 2,B 1),(B 2,B 2)}, 设事件A 表示“选到两人都是男生”, 则事件A 包含的样本点有9个, 所以P (A )=925; (2)样本空间Ω={(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,A 1),(A 3,A 2),(A 3,B 1),(A 3,B 2),(B 1,A 1),(B 1,A 2),(B 1,A 3),(B 1,B 2),(B 2,A 1),(B 2,A 2),(B 2,A 3),(B 2,B 1)}, 设事件B 表示“选到至少有一名女生”, 则事件B 包含的样本点有14个, 所以P (B )=1420=710. 18.(12分)已知A (1,1),B (2,3),C (4,0).求: (1)过点A 且与BC 平行的直线方程; (2)AB 边垂直平分线方程;(3)过点A 且倾斜角为直线AB 倾斜角2倍的直线方程. 解:(1)由于所求的直线l 与BC 平行,故k l =−32,由于直线l 经过点A (1,1),所求的直线的方程为y −1=−32(x −1),整理得3x +2y ﹣5=0; (2)由于A (1,1),B (2,3),所以中点D (32,2),直线AB 的斜率k AB =2,所以直线AB 的垂直平分线的斜率k =−12,所求的垂直平分线的方程为y −2=−12(x −32),整理得2x +4y ﹣11=0.(3)由于A (1,1),B (2,3),所以直线AB 的斜率k AB =2,设直线的倾斜角为θ,故tan θ=2, 所求直线的倾斜角为直线AB 的倾斜角的2倍,所以直线的斜率k =tan2θ=2tanθ1−tan 2θ=−43, 故所求的直线的方程为y −1=−43(x −1),整理得4x +3y ﹣7=0.19.(12分)在三棱锥O ﹣ABC 中,OA =OB =OC =2,OA ⊥OB ,∠AOC =∠BOC =60°,M ,N 分别为AB ,OC 的中点,设OA →=a →,OB →=b →,OC →=c →.(1)用a →,b →,c →表示MN →,并求|MN →|; (2)求OM 与NB 所成角的余弦值.解:(1)MN →=ON →−OM →=12c →−12(a →+b →)=12(c →−a →−b →),∵OA =OB =OC =2,OA ⊥OB ,∠AOC =∠BOC =60°, ∴a →2=b →2=c →2=4,a →⋅b →=0,a →⋅c →=b →⋅c →=2×2cos60°=2,∴|MN →|=12√(c →−a →−b →)2=12√c →2+a →2+b →2−2a →⋅c →−2b →⋅c →+2a →⋅b →=1;(2)OM →=12(a →+b →),NB →=OB →−ON →=b →−12c →,OM →⋅NB →=12(a →+b →)⋅(b →−12c →)=12(a →⋅b →−12a →⋅c →+b →2−12b →⋅c →)=1,|OM →|=12√(a →+b →)2=√2,|NB →|=√(b →−12c →)2=√3, cos <OM →,BN →>=OM →⋅NB →|OM →|⋅|NB →|=2×3=√66.所以,OM 与NB 所成角的余弦值为√66. 20.(12分)在第19届杭州亚运会上中国射击队获得32枚金牌中的16枚,并刷新3项世界纪录.甲、乙两名亚运选手进行赛前训练,甲每次射中十环的概率为0.9,乙每次射中十环的概率为p ,在每次射击中,甲和乙互不影响.已知两人各射击一次至少有一人射中十环的概率为0.98. (1)求p ;(2)甲、乙两人各射击两次,求两人共射中十环3次的概率. 解:(1)由题意,两人各射击一次至少有一人射中十环的概率为0.98, 则都没有击中十环的概率为0.1×(1﹣p )=1﹣0.98,求得p =0.8.(2)甲、乙两人各射击两次,求两人共射中十环3次,即甲乙二人中,只有一人只击中1次,故它的概率为C 22×0.92•C 21×0.8×0.2+C 21×0.9×0.1×C 22×0.82=0.3744.21.(12分)正三棱柱ABC ﹣A 1B 1C 1中,AB =2,M 是BB 1的中点,M 到平面ABC 1的距离为34.(1)求A 1A ;(2)在C 1A 上是否存在点P ,使平面ABC 1与平面PBM 夹角的余弦值为√217 若存在,求出C 1P PA的值;若不存在,请说明理由.解:(1)取AC 的中点O ,以O 为原点,建立如图所示空间直角坐标系O ﹣xyz ,设A 1A =a ,则A (1,0,0),B(0,√3,0),C 1(﹣1,0,a ),M(0,√3,a2), 所以AC 1→=(−2,0,a),AB →=(−1,√3,0),BM →=(0,0,a2), 设平面ABC 1的法向量n →=(x ,y ,z ),则{n →⋅AB →=−x +√3y =0n →⋅AC 1→=−2x +az =0,取x =3,得y =√3,z =6a,所以平面ABC 1的一个法向量为n →=(3,√3,6a ),则M 到平面ABC 1的距离d =|BM →⋅n →||n →|=3√32+3+(6a)2=34,解得a =3,即A 1A =3;(2)因为C 1A →=(2,0,−3),BC 1→=(−1,−√3,3), 设C 1P →=λC 1A →=(2λ,0,−3λ)(0≤λ≤1),所以BP →=BC 1→+C 1P →=(2λ−1,−√3,3−3λ),BM →=(0,0,32), 设平面PBM 的法向量m →=(b ,c ,t),则{m →⋅BP →=(2λ−1)b −√3c +(3−3λ)t =0m →⋅BM →=32t =0, 取b =√3,得c =2λ﹣1,t =0,所以平面PBM 的一个法向量m →=(√3,2λ−1,0),由|cos <m →,n →>|=√217,得√3+(2λ−1)√3|2=√217,解得λ=13,或λ=3(舍去),故在C 1A 上存在点P ,当C 1PPA =12时,可使平面ABC 1与平面PBM 夹角的余弦值为√217.22.(12分)已知圆C 经过点A (0,2),B (2,0),且直线x +y +2=0被圆C 所截得的弦长为2√2.点P 为圆C 上异于A 、B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N . (1)求圆C 的方程;(2)探求|AN |•|BM |是否为定值,若为定值,求出此定值,若不是定值,说明理由;(3)过点D (﹣4,0)的动直线l 与圆C 交于不同的两点E ,F .记线段EF 的中点为R ,则当直线l 绕点D 转动时,求动点R 的轨迹长度.解:(1)易知点C 在线段AB 的中垂线y =x 上,故可设C (a ,a ),圆C 的半径为r , ∵直线x +y +2=0被圆C 所截得的弦长为2√2,且r =√a 2+(a −2)2, ∴C (a ,a )到直线x +y +2=0的距离d =|2a+2|√2, 由d 2+(√2)2=r 2,得(|2a+2|√2)2+2=a 2+(a −2)2,∴a =0, ∴圆C 的方程为x 2+y 2=4;(2)当直线P A 的斜率不存在时,|AN |•|BM |=8.当直线P A 的斜率存在时,如图,设P (x 0,y 0),直线P A 的方程为y =y 0−2x 0x +2, 令y =0,得M(2x 02−y 0,0).直线PB 的方程为y =y 0x 0−2(x −2),令x =0,得N (0,2y 02−x 0).∴|AN |•|BM |=(2−2y 02−x 0)(2−2x 02−y 0)=4+4[y 0x 0−2+x 0y 0−2+x 0y0(x 0−2)(y 0−2)]=4+4×y 02−2y 0+x 02−2x 0+x 0y 0(x 0−2)(y 0−2)=4+4×4−2y 0−2x 0+x 0y 0(x 0−2)(y 0−2)=4+4×4−2y 0−2x 0+x 0y04−2y 0−2x 0+x 0y 0=8.故|AN |•|BM |为定值8.(3)设CD 的中点为Q ,则Q (﹣2,0),因为线段EF 的中点为R ,所以CR ⊥EF ,即CR ⊥DR , 所以RQ =12CD =2,设R (x ,y ),则(x +2)2+y 2=4,如图, 设圆x 2+y 2=4与(x +2)2+y 2=4的交点为G ,H ,显然△QCG 是边长为2的正三角形,所以所求弧长GCH ̂的长度即为以Q (﹣2,0)为圆心,以2为半径的圆的13为4π3.。
高二上学期期中考试数学试卷含答案(共5套)
高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。
2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷【答案版】
2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤22.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=104.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =35.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=07.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤48.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.2410.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1)B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线 D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是 .14.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 . 15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 . 16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 .四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AMAE =λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714.2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤2解:过P (﹣6,﹣8)的直线l 与线段AB 相交,如图所示:可得k AP ≤k ≤k PB , 即0−(−8)2−(−6)≤k ≤4−(−8)0−(−6),即k ∈[1,2].故选:D .2.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切解:两个圆的圆心分别为 C 1(﹣2,2)、C 2:(2,5),半径分别为2、4,两圆的圆心距 C 1C 2=√(2+2)2+(5−2)2=5,大于半径之差而小于半径之和,故两个圆相交, 故选:B .3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=10解:圆C 经过点A (2,5),B (4,3),可得线段AB 的中点为(3,4),又 k AB =5−32−4=−1,所以线段AB 的中垂线的方程为y ﹣4=x ﹣3,即x ﹣y +1=0. 由{x −y +1=03x −y −3=0,解得{x =2y =3,即C (2,3),圆C 的半径 r =√(2−2)2+(5−3)2=2, 所以圆C 的方程为 (x ﹣2)2+(y ﹣3)2=4. 故选:A .4.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =3解:由直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行, 可得{a(a +1)=2×33×(−2)≠2a(a +1),解得a =2或a =﹣3.故选:A .5.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →解:∵在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点. AB →=a →,AD →=b →,AA 1→=c →,∴向量BM →=BB 1→+12B 1D 1→=BB 1→+12(BA →+AD →) =−12a →+12b →+c →.故选:A . 6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=0解:设A (x 1,y 1),B (x 2,y 2),则{x 129+y 124=1x 229+y 224=1,所以x 12−x 229+y 12−y 224=0,整理得y 1−y 2x 1−x 2=−4(x 1+x 2)9(y 1+y 2),因为P (1,1)为弦AB 的中点,所以x 1+x 2=2,y 1+y 2=2, 所以k AB =y 1−y2x 1−x 2=−4(x 1+x 2)9(y 1+y 2)=−49,所以弦AB 所在直线的方程为y −1=−49(x −1),即4x +9y ﹣13=0. 故选:A .7.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤4解:直线l :kx ﹣y ﹣2=0恒过定点(0,﹣2),∵√1−(y −1)2=x −1,得到(x ﹣1)2+(y ﹣1)2=1(x ≥1),∴曲线C 表示以点(1,1)为圆心,半径为1,且位于直线x =1右侧的半圆(包括点(1,2),(1,0)),如下图所示:当直线l 经过点(1,0)时,l 与曲线C 有两个不同的交点,此时k =2; 当l 与半圆相切时,则由题可得√k 2+1=1,解得k =43,由图可知,当43<k ≤2时,l 与曲线C 有两个不同的交点. 故选:D .8.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)解:由点M(√22,−12)在半圆上,所以b =√32,G (0,a ),A (﹣b ,0), 要使△AGM 的面积最大,可平行移动AG ,当AG 与半圆相切于M(√22,−12)时,M 到直线AG 的距离最大, 此时OM ⊥AG ,即k OM •k AG =﹣1; 又k OM =−12√22=−√22,k AG =a b ,∴−√22⋅a b =−1,∴a =√2b =√62,所以半椭圆的方程为4x 23+2y 23=1(y ≥0).故选:D .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.24解:A 中,由互斥事件的定义可知,事件A 、B 互斥,则A 与B 也是互斥事件不成立, 比如事件A 、B 是对立事件,则A 与B 是同一事件,显然不互斥,故A 错误; B 中,若A 与B 相互独立,则A 与B ,B 与A ,A 与B 都是相互独立事件,故B 正确;C 中,如果A 与B 相互独立,则P (A +B )=P (A )+P (B )﹣P (AB )=0.8﹣0.12=0.68,故C 错误;D 中,如果A 与B 相互独立,则P(AB)=P(A)P(B)=P(A)(1−P(B))=0.8×(1−0.7)=0.24,故D 正确. 故选:BD .10.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1) B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称解:对于A ,直线l :kx ﹣y ﹣k =0⇒k (x ﹣1)﹣y =0,恒过点(1,0),所以A 不正确;对于B ,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(−D2,−E2),所以D =﹣4,E =﹣2,所以B 正确; 对于C ,圆M :x 2+y 2﹣4x ﹣2y +1=0⇒(x ﹣2)2+(y ﹣1)2=4的圆心坐标为(2,1),圆的半径为2. 直线l :kx ﹣y ﹣k =0,恒过点(1,0),圆的圆心到定点的距离为:√12+12=√2<2,直线与圆相交, 直线l 被圆M 截得的最短弦长为2√4−2=2√2,所以C 正确;对于D ,当k =1时,直线方程为:x ﹣y ﹣1=0,经过圆的圆心,所以圆M 上存在无数对点关于直线l 对称,所以D 正确. 故选:BCD . 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形解:∵椭圆方程为x 29+y 23=1,∴a =3,b =√3,c =√6,设椭圆的左焦点为F ',则|AF '|=|BF |,∴|AF |+|BF |=|AF |+|AF '|=2a =6,∴A 选项正确; ∵△ABF 的周长为|AB |+|AF |+|BF |,又|AF |+|BF |=6,易知|AB |的范围是(0,6), ∴△ABF 的周长的范围是(6,12),∴B 选项错误;将y =1与椭圆方程联立,解得A(−√6,1),B(√6,1),∴S △ABF =12×2√6×1=√6,∴C 选项正确;将y =√32与椭圆方程联立,可解得A(−3√32,√32),B(3√32,√32),又易知F(√6,0), ∴AF →⋅BF →=(√6+3√32)(√6−3√32)+(√32)2=0,∴△ABF 为直角三角形,∴D 选项正确. 故选:ACD .12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33解:对于A :如图将平面ABCD 展开与平面ADD 1A 1处于一个平面,连接A 1C 与AD 交于点P , 此时A 1P +PC 取得最小值,即(A 1P +PC)min =√22+42=2√5,故A 错误;对于B :如图取DD 1的中点E ,连接BP 、PE 、C 1E 、AD 1, 因为点P 是棱AD 的中点,所以PE ∥AD 1且PE =12AD 1,又AB ∥C 1D 1且AB =C 1D 1,所以四边形ABC 1D 1为平行四边形,所以AD 1∥BC 1, 所以PE ∥BC 1,所以四边形EPBC 1即为平面PBC 1截正方体所得截面, 又BC 1=2√2,PE =12AD 1=√2,BP =EC 1=√12+22=√5, 所以截面周长为3√2+2√5,故B 正确;对于C :如图,DC 1⊥D 1C ,BC ⊥平面DCC 1D 1,DC 1⊂平面DCC 1D 1, 所以DC 1⊥BC ,又D 1C ∩BC =C ,D 1C ,BC ⊂平面BCD 1A 1, 所以DC 1⊥平面BCD 1A 1,因为平面ABCD ∩平面BCD 1A 1=BC , D 1∈平面BCD 1A 1,P ∈平面ABCD ,又PD 1⊥DC 1,所以P 在直线BC 上,即动点P 的轨迹是一条直线,故C 正确;对于D :如图建立空间直角坐标系,则B (2,2,0),C 1(0,2,2),设P (a ,2﹣a ,0)(a ∈[0,2]), 所以BC 1→=(−2,0,2),BP →=(a −2,−a ,0), 所以P 到棱BC 1的距离d =√|BP →|2−(BC 1→⋅BP →|BC 1→|)2=√32a 2−2a +2=√32(a −23)2+43,所以当a =23时d min =√43=2√33,故D 正确.故选:BCD .三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是29.解:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,共有6×6=36种结果, 而满足条件的事件是点P 落在圆x 2+y 2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3) (2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果, 根据古典概型概率公式得到P =836=29, 故答案为:2914.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 −79或−13. 解:∵两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等, ∴√a 2+1=√a 2+1,化为|3a +3|=|6a +4|.∴6a +4=±(3a +3),解得a =−79或−13. 故答案为:a =−79或−13.15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 x =1或3x ﹣4y +5=0(写出一条即可) . 解:因为A (1,0),B (4,0),点P 满足|PA||PB|=12,设P (x ,y ),则2222=12,化简得x 2+y 2=4,因为圆C 上恰有三个点到直线l 的距离为1,所以圆心到直线的距离为1. 若直线l 的斜率不存在,直线l 的方程为x =1;若直线l 的斜率存在,设直线l 的方程为y ﹣2=k (x ﹣1),即kx ﹣y ﹣k +2=0, d =|−k+2|√k +1=1,解得k =34,直线l 的方程为:3x ﹣4y +5=0.故答案为:x =1或3x ﹣4y +5=0(写出一条即可).16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 √33解:如图所示,∵点P 在椭圆上,∴|PF 1|+|PF 2|=2a , ∵点A 是椭圆的下顶点,∴|AF 1|=|AF 2|=a ,又∵|PF 1|=|P A |=|PF 2|+|AF 2|=|PF 2|+a =2a ﹣|PF 1|+a =3a ﹣|PF 1|, ∴|PF 1|=3a 2,|PF 2|=12a , 在△PF 1A 中,|PF 1|=3a 2,|P A |=3a2,|AF 1|=a , 由余弦定理可得:cos ∠F 1AP =|AF 1|2+|PA|2−|PF 1|22|AF 1||AP|=13,∴sin 2∠F 1AO =1−cos∠F 1AP 2=13, ∴sin ∠F 1AO =√33,又∵sin ∠F 1AO =ca , ∴离心率e =ca =√33, 故答案为:√33.四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率.解:记“甲第i 次复原成功”为事件A i ,“乙第i 次复原成功”为事件B i , 依题意,P (A i )=0.8,P (B i )=0.6.(1)“甲第三次才成功”为事件A 1A 2A 3,且三次复原过程相互独立, 所以,P(A 1A 2A 3)=P(A 1)P(A 2)P(A 3)=0.2×0.2×0.8=0.032. (2)“甲、乙两人在第一次复原中至少有一人成功”为事件C . 所以P(C)=1−P(A 1⋅B 1)=1−P(A 1)⋅P(B 1)=1−0.2×0.4=0.92. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.解:(1)因为B (4,3),C (3,﹣2), 所以k BC =−2−33−4=5, 因为AD 是BC 边上的高, 所以k AD ⋅k BC =−1⇒k AD =−15,所以高AD 所在直线的方程为y −1=−15(x +2)⇒x +5y −3=0; (2)因为点M (3,1)为边AC 的中点,所以{3=−2+C x21=1+C y 2⇒C(8,1),因此BC 边所在直线的方程为y−33−1=x−44−8⇒x +2y −10=0.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.解:(1)由题意,建立如图所示空间直角坐标系,A 1(2,0,2),E(2,1,0),A 1E →=(0,1,−2),B(2,3,0),C 1(0,3,2),BC 1→=(−2,0,2), 设直线A 1E 与直线BC 1所成角为α,则cosα=|A 1E →⋅BC 1→|A 1E →|⋅|BC 1→||=5×22=√105.(2)由题意C(0,3,0),EC →=(−2,2,0), 设平面A 1EC 的法向量为n →=(x ,y ,z),则{n →⋅A 1E →=y −2z =0n →⋅EC →=−2x +2y =0,取n →=(2,2,1),又BE →=(0,−2,0),所以B 到平面A 1EC 的距离为|n →⋅BE →|n →||=|−43|=43.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.解:(1)由题意得A (1,2)在圆外, 则1+4+2m +6>0,即m >−112, 又4m 2+4﹣8>0,即m >1或m <﹣1, 所以−112<m <−1或m >1;故m 的取值范围为(−112,﹣1)∪(1,+∞); (2)m =﹣2时,圆方程为(x ﹣2)2+(y +1)2=3, 则圆的半径r =√3,圆心C (2,﹣1),∴S 四边形PMCN =|PM|⋅r =√3|PM|=√3⋅√|PC|2−r 2=√3⋅√|PC|2−3. 直线方程为2x ﹣y +3=0,设圆心(2,﹣1)到直线2x ﹣y +3=0的距离为d ,∴|PC|min =d =|2×2−(−1)+3|5=85,∴(S 四边形PMCN )min =√3√645−3=√3√495=75√15. 21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.解:(1)由题可知c =√3,ab =2,a 2=b 2+c 2,∴a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)易知当直线l 的斜率为0或直线l 的斜率不存在时,不合题意.当直线l 的斜率存在且不为0时,设直线l 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2). 联立{x =my +1x 2+4y 2=4,消去x ,可得(4+m 2)y 2+2my ﹣3=0. Δ=16m 2+48>0,y 1+y 2=−2m 4+m 2,y 1y 2=−34+m 2. ∵点B 在以MN 为直径的圆上,∴BM →⋅BN →=0.∵BM →⋅BN →=(my 1+1,y 1−1)⋅(my 2+1,y 2−1)=(m 2+1)y 1y 2+(m ﹣1)(y 1+y 2)+2=0, ∴(m 2+1)⋅−34+m 2+(m −1)⋅−2m4+m 2+2=0, 整理,得3m 2﹣2m ﹣5=0, 解得m =﹣1或m =53.∴直线l 的方程为x +y ﹣1=0或3x ﹣5y ﹣3=0.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AM AE=λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714. 解:(1)证明:如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.∵由图1得:DC ⊥CF ,DC ⊥CB ,且CF ∩CB =C ,∴在图2中DC ⊥平面BCF ,∠BCF 是二面角F ﹣DC ﹣B 的平面角,则∠BCF =60°, ∴△BCF 是正三角形,且N 是BC 的中点,FN ⊥BC , 又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD , ∵BC ∩CD =C ,BC ,CD ⊂平面ABCD . ∴FN ⊥平面ABCD ,∵AD ⊂平面ABCD ,∴FN ⊥AD .(2)∵FN ⊥平面ABCD ,过点N 做AB 平行线NP ,∴以点N 为原点,NP ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N ﹣xyz ,如图,则A(5,√3,0),B(0,√3,0),D(3,−√3,0),E (1,0,3), 设M (x 0,y 0,z 0)则AM →=(x 0−5,y 0−√3,z 0),AE →=(−4,−√3,3), AD →=(−2,−2√3,0),DE →=(−2,√3,3).∵AM →=λAE →,∴{x 0−5=−4λy 0=√3−√3λz 0=3λ⇒{x 0=5−4λy 0=√3−√3λz 0=3λ.∴M(5−4λ,√3−√3λ,3λ),∴BM →=(5−4λ,−√3λ,3λ), 设平面ADE 的法向量为n →=(x ,y ,z)则{n →⋅AD →=0n →⋅DE →=0⇒{−2x −2√3y =0−2x +√3y +3z =0,取x =√3,得n →=(√3,−1,√3), 设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n →,BM →〉|=|n →⋅BM →||n →|⋅|BM →|=5√3√3+1+3⋅√28λ−40λ+25=5√714,∴28λ2﹣40λ+13=0,解得λ=12或λ=1314. 故当λ为12或1314时,直线BM 与平面ADE 所成角的正弦值为5√714.。