高二上学期数学(理科)考试试题答案
河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)
(3) 已知点的坐标为(5,3),点在曲线 ′ 上运动,求线段的中点的轨迹方程.
22. (12 分)
如图,长方体 — 1 1 1 1 中, = 2 = 21 ,
点在棱上且1 丄平面1 1
(1)求 的值
21. ( 12 分)
已知两定点 (-4,0), (-1,0),动点 满足 | | = 2 ||,直线 :(2 + 1) + ( + 1) −
5 − 3 = 0.
(1) 求动点的轨迹方程,并说明轨迹的形状;
(2) 记动点的轨迹为曲线,把曲线向右平移 1 个单位长度,向上平移 1 个单位长度后得到曲线 ′ ,
反射光线所在直线的方程.
20. (12 分)
在直角梯形 中, //, = 2 = 2 =2 2,∠ = 900 如图(1). 把△沿
翻折,使得平面 ⊥平面,如图(2).
(1) 求证: ⊥ ;
(2) 若为线段的中点,求点到平面的距离.
所成角的余弦值为
A.
6
B.
3
3
C.
3
15
D.
5
10
5
12. 若圆 2 + 2 − 4 − 4 − 10 = 0至少有三个不同的点到直线: = 的距离为 2 2,则直线的倾斜角
的取值范围是
A.[ 12 , 4 ]
5
B. [ 12 , 12 ]
C. [ 6 , 3 ]
B. - 5
C. 10
D. -10
2.已知(4,1,9),(2,4,3),则线段的长为
A. 39
B.7
2022-2023学年四川省泸县第五中学高二上学期期末考数学(理)试卷带讲解
12.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线 : 就是一条形状优美的曲线,对于此曲线,给出如下结论:
【详解】∵直线方程 可整理为
∴定点为
∵点A在直线 上
∴
∴ ,当且仅当 时取等号
故答案为:
16.过点 作抛物线 的两条切线,切点分别为 和 ,又直线 经过拋物线 的焦点 ,那么 的最小值为_________.
16
【分析】设 ,写出以 为切点的切线方程,由判别式求出切线斜率,得到以 为切点的切线方程,同理求出以 为切点的切线方程,结合 在两条切线上得直线 的方程,联立直线 与抛物线方程,根据根与系数的关系,结合抛物线定义得出结果.
【考点】圆的方程,点到直线的距离公式
【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离.已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d与半径r的大小关系,以此来确定参数的值或取值范围.
9.已知 , ,若不等式 恒成立,则正数 的最小值是()
A. 2B. 4
C. 6D. 8
第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数
相同,第六组的人数为4人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;
黑龙江省鹤岗市第一中学2018-2019学年高二上学期期末考试数学(理)试题(解析版)
鹤岗一中2018-2019学年度上学期期末考试高二数学试卷(理科)一、单选题。
1.命题“,使”的否定为()A. ,使B. ,使C. ,D. ,【答案】D【解析】因为命题“”的否定为“”,所以命题“,使”的否定为,,选D.点睛:1.命题的否定与否命题区别“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论. 2命题的否定的注意点(1)注意命题是全称命题还是存在性命题,是正确写出命题的否定的前提;(2)注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定;(3)注意“或”“且”的否定,“或”的否定为“且”,且”的否定为“或”.2. “a>0”是“|a|>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:本题主要是命题关系的理解,结合|a|>0就是{a|a≠0},利用充要条件的概念与集合的关系即可判断.解:∵a>0⇒|a|>0,|a|>0⇒a>0或a<0即|a|>0不能推出a>0,∴a>0”是“|a|>0”的充分不必要条件故选A考点:必要条件.3.有50件产品,编号为0,1,2,…,49,现从中抽取5个进行检验,用系统抽样的方法抽取样本的编号可以为( )A. 5,10,15,20,25B. 5,13,21,29,37C. 8,22,23,1,20D. 1,11,21,31,41【解析】试题分析:系统抽样首先按照一定顺序分成5组每组10个个体,在每组中抽取样本抽取的样本间隔为10;所以选D. 考点:系统抽样.4.已知x、y的取值如下表所示:若从散点图分析,y与x线性相关,且,则的值等于()A. 2.6B. 6.3C. 2D. 4.5【答案】A【解析】试题分析:若与线性相关,则样本点中心必在回归直线上,由表中数据,,,将点代入回归方程,得,解得,故选A.考点:线性回归方程中,样本点中心在回归直线上.5.与二进制数相等的十进制数是()A. 6B. 7C. 10D. 11【答案】A【解析】由题意,110(2)=1×22+1×21+0×20=6,故选A.6.下列说法中,正确的是()A. 数据5,4,4,3,5,2的众数是4B. 一组数据的标准差是这组数据的方差的平方C. 数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D. 频率分布直方图中各小长方形的面积等于相应各组的频数【答案】C【解析】试题分析:A选项众数为4、5;B选项应该是方差是标准差的平方;C正确;D选项频率分布直方图中各小长方形的面积等于相应各组的频率.7.5个人站成一排,若甲、乙两人之间恰有1人,则不同的站法数有()A. 18B. 26C. 36D. 48【答案】C【解析】试题分析:先排列其余三人后甲乙两人插空,所以有种考点:排列问题8.在面积为的的边上任取一点,则的面积大于的概率是( )A. B. C. D.【答案】B【解析】试题分析:△的面积大于只需|PB|>,所以概率考点:几何概型9.已知的展开式中没有常数项,则n不能是()A. 5B. 6C. 7D. 8【答案】D【解析】【分析】本题首先可以根据解出二项式的通项,再对通项进行化简,然后通过展开式中没有常数项可知,不能为0,最后将选项依次代入,得出结果。
(完整版)高二理科数学(上)期末试卷包含答案,推荐文档
20、(本题满分 10 分)如图所示,在直角梯形 ABCD 中,|AD|=3,|AB|=4,|BC|= 3,
4 /8
高二理科数学(上)期末试卷包含答案 曲线段 DE 上任一点到 A、B 两点的距离之和都相等. (1)建立适当的直角坐标系,求曲线段 DE 的方程; (2)过 C 能否作一条直线与曲线段 DE 相交,且所
D. 2 a 2 b 1 c 3 32
6、抛物线 y 4x2 上的一点 M 到焦点的距离为 1,则点 M 的纵坐标为( )
17
A.
16
15
B.
16
7
C.
8
D.0
7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线 x+2y-3=0,则该双曲线的
离心率为(
)
A.5 或 5 4
B. 5 或 5 2
和为 3,判断命题“ p ”、“ q ”、“ p q ”、“ p q ”为假命题的个数为( )
A.0
B.1
C.2
D.3
3、“a>b>0”是“ab< a 2 b2 ”的 (
)
2
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
x2
4、椭圆
y2
1的焦距为 2,则 m 的值等于 (
18、(本题满分 8 分) (1)已知双曲线的一条渐近线方程是,
y
3 2
x 焦距为 2
13 ,求此双曲线的
标准方程;
(2)求以双曲线 y2 x2 1 的焦点为顶点,顶点为焦点的椭圆标准方程。 16 9
19.(本小题满分 12 分)
已知函数 f (x) x3 ax 2 4(a R), f '(x) 是 f (x) 的导函数。 (1)当 a=2 时,对于任意的 m [1,1], n [1,1],求f (m) f '(n) 的最小值; (2)若存在 x0 (0,) ,使 f (x0 ) 0, 求 a 的取值范围。
人教版高二上学期期末数学试卷(理)(有答案)
黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。
2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)
2018-2019学年四川省广安市高二(上)期末数学试卷(理科)一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.(5分)已知空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),则|AB|=(()A.B.C.D.2.(5分)直线的倾斜角大小为()A.30°B.60°C.120°D.150°3.(5分)以x=1为准线的抛物线的标准方程为()A.y2=2x B.y2=﹣2x C.y2=4x D.y2=﹣4x 4.(5分)“若x<1,则x2﹣3x+2>0”的否命题是()A.若x≥1,则x2﹣3x+2≤0B.若x<l,则x2﹣3x+2≤0C.若x≥1,则x2﹣3x+2>0D.若x2﹣3x+2≤0,则x≥15.(5分)已知直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则a为()A.﹣B.C.D.﹣6.(5分)设某高中的学生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.67x ﹣60.9,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该高中某学生身高为170cm,则可断定其体重必为53kgD.若该高中某学生身高增加1cm,则其体重约增加0.67kg7.(5分)“2<m<6”是“方程+=1为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位:mm)组成一个样本,得到如图所示的茎叶图.若甲、乙两种棉花纤维的平均长度分别用,表示,标准差分别用s1,s2表示,则()A.>,s 1>s2B.>,s1<s2C.<,s 1>s2D.<,s1<s29.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.14310.(5分)小华和小明两人约定在7:30到8:30之间在“思源广场”会面,并约定先到者等候另一人30分钟,过时离去,则两人能会面的概率是()A.B.C.D.11.(5分)双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),点A(﹣,0),点P为双曲线第二象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.16B.7+3C.14+D.1812.(5分)已知A,B是以F为焦点的抛物线y2=4x上两点,且满足=5,则弦AB 中点到准线距离为()A.B.C.D.二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)把二进制数10011(2)转化为十进制的数为.14.(5分)已知双曲线x2﹣y2=1,则它的右焦点到它的渐近线的距离是.15.(5分)若命题“∃x0∈R,x02+(a﹣1)x0+1<0”是假命题,则实数a的取值范围为.16.(5分)已知椭圆C:=1(a>b>0)的左右焦点分别为F1、F2,抛物线y2=4cx(c2=a2﹣b2且c>b)与椭圆C在第一象限的交点为P,若cos∠PF1F2=,则椭圆C的离心率为.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0.(Ⅰ)若l1∥l2,求l1,l2间的距离;(Ⅱ)求证:直线l1必过第三象限.18.(12分)已知命题p:实数m满m2﹣2am﹣3a2<0,其中a>0;命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部.(Ⅰ)当a=1,p∧q为真时,求m的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求a的取值范围.19.(12分)已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,(Ⅰ)试求M点的轨迹C2方程;(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.20.(12分)随着2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮广安某社团调查了广安某校300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内,并按时间(单位:分钟)将学生分成六个组:[0,20),[20,40),[40,60),[60,80),[80,100),[100,120]经统计得到了如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值,并估计该校学生每天诵读诗词的时间的平均数和中位数.(Ⅱ)若两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.21.(12分)已知椭圆C:+y2=1(a>0),过椭圆C右顶点和上顶点的直线l与圆x2+y2=相切.(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2(1+sin2θ)=2.(Ⅰ)求l的直角坐标方程和C的直角坐标方程;(Ⅱ)若l和C相交于A,B两点,求|AB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣1|,g(x)=|2x﹣4|.(Ⅰ)求不等式f(x)>g(x)的解集.(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,求实数a的取值范围.2018-2019学年四川省广安市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.【解答】解:∵空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),∴|AB|==.故选:B.2.【解答】解:由题意,直线的斜率为k=,即直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角为30°,故选:A.3.【解答】解:以x=1为准线的抛物线,开口向左,可得p=2,所以抛物线的标准方程为:y2=﹣4x.故选:D.4.【解答】解:若p则q的否命题为若¬p则¬q,即命题的否命题为:若x≥1,则x2﹣3x+2≤0,故选:A.5.【解答】解:根据题意,直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则有=1,解可得:a=﹣;故选:D.6.【解答】解:根据y与x的线性回归方程为=0.67x﹣60.9,则b=0.67>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该高中某学生身高为170cm,则可预测其体重必为53kg,C错误;若该高中某学生身高增加1cm,则其体重约增加0.67kg,D正确.∴不正确的结论是C.故选:C.7.【解答】解:若方程+=1为椭圆方程,则,解得:2<m<6,且m≠4,故“2<m<6”是“方程+=1为椭圆方程”的必要不充分条件,故选:B.8.【解答】解:由茎叶图得:甲的数据相对分散,而乙的数据相对集中于茎叶图的右下方,∴<,s 1>s2.故选:C.9.【解答】解:初始值n=3,x=3,程序运行过程如下表所示:v=1i=2,v=1×3+2=5i=1,v=5×3+1=16i=0,v=16×3+0=48i=﹣1,不满足条件,跳出循环,输出v的值为48.故选:C.10.【解答】解:设记7:30为0,则8:30记为60,设小华到达“思源广场”为x时刻,小明小华到达“思源广场”为y时刻,则0≤x≤60,0≤y≤60,记“两人能会面”为事件A,则事件A:|x﹣y|≤30,由图知:两人能会面的概率是:==,故选:B.11.【解答】解:双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),可得,c==6,a=2,b=4.双曲线方程为,设双曲线的上焦点为F'(0,6),则|PF|=|PF'|+4,△P AF的周长为|PF|+|P A|+|AF|=|PF'|+2a+|P A|+AF,当P点在第二象限时,|PF'|+|P A|的最小值为|AF'|=7,故△P AF的周长的最小值为14+4=18.故选:D.12.【解答】解:设BF=m,由抛物线的定义知AA1=5m,BB1=m,∴△ABC中,AC=4m,AB=6m,kAB=,直线AB方程为y=(x﹣1),与抛物线方程联立消y得5x2﹣26x+5=0,所以AB中点到准线距离为+1=+1=.故选:A.二、填空题:本大题共4个小题,每小题5分,共20分.13.【解答】解:10011(2)=1+1×2+1×24=19故答案为:1914.【解答】解:双曲线x2﹣y2=1,可得a=1,b=1,c=,则右焦点(1,0)到它的渐近线y=x的距离为d==.故答案为:.15.【解答】解:∵命题“∃x0∈R,x+(a﹣1)x0+1<0”是假命题,∴命题“∀x∈R,x2+(a﹣1)x+1≥0”是真命题,即对应的判别式△=(a﹣1)2﹣4≤0,即(a﹣1)2≤4,∴﹣2≤a﹣1≤2,即﹣1≤a≤3,故答案为:[﹣1,3].16.【解答】解:抛物线y2=4cx的焦点为F2(c,0),如下图所示,作抛物线的准线l,则直线l过点F1,过点P作PE垂直于直线l,垂足为点E,由抛物线的定义知|PE|=|PF2|,易知,PE∥x轴,则∠EPF1=∠PF1F2,所以,=,设|PF1|=5t(t>0),则|PF2|=4t,由椭圆定义可知,2a=|PF1|+|PF2|=9t,在△PF1F2中,由余弦定理可得,整理得,解得,或.∵c>b,则c2>b2=a2﹣c2,可得离心率.当时,离心率为,合乎题意;当时,离心率为,不合乎题意.综上所述,椭圆C的离心率为.故答案为:.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:(Ⅰ)若l1∥l2,直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0,则有=≠,求得k=﹣4,故直线l1即:2x+y+6=0,故l1,l2间的距离为=.(Ⅱ)证明:直线l1:kx﹣2y+k﹣8=0(k∈R),即k(x+1)﹣2y﹣8=0,必经过直线x+1=0和直线﹣2y﹣8=0的交点(﹣1,﹣4),而点(﹣1,﹣4)在第三象限,直线l1必过第三象限.18.【解答】解:(Ⅰ)当a=1,命题p:m2﹣2m﹣3<0,﹣1<m<3,命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部,∴m2﹣4<0,∴﹣2<m<2,∵p∧q为真,∴m的取值范围为(﹣1,3)∩(﹣2,2)=(﹣1,2);(Ⅱ)命题p:(m﹣3a)(m+a)<0,∵a>0,∴﹣a<m<3a,设A=(﹣a,3a)命题q:﹣2<m<2,设B=(﹣2,2)∵¬p是¬q的充分不必要条件,∴¬p⇒¬q,¬q推不出¬p,∴q⇒p,p推不出q,∴B⊊A,∴,∴a≥2,∴a的取值范围为[2,+∞).19.【解答】解:(Ⅰ)设M(x,y),B(x′,y′),则由题意可得:,解得:,∵点B在圆C1:x2+(y﹣4)2=16上,∴(x′)2+(y′﹣4)2=16,∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.∴轨迹C2方程为(x﹣2)2+(y﹣2)2=4;(Ⅱ)由方程组,解得直线CD的方程为x﹣y﹣1=0,圆C1的圆心C1(0,4)到直线CD的距离为,圆C1的半径为4,∴线段CD的长为.20.【解答】解:(Ⅰ)由频率分布直方图得:(a+a+6a+8a+3a+a)×20=1,解得a=0.0025.该校学生每天诵读诗词的时间的平均数为:0.05×10+0.05×30+0.3×50+0.4×70+0.15×90+0.05×110=64.[0,60)的频率为:0.05+0.05+0.3=0.4,[60,80)的频率为:0.4,∴估计该校学生每天诵读诗词的时间的中位数为:60+=65.(Ⅱ)从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,则从每天诵读时间小于20分钟的学生中抽取:5×=1人,从每天诵读时间大于或等于80分钟的所有学生中抽取:5×=4人,现从这5人中随机选取2人,基本事件总数n==10,两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,选取的两人能组成一个“Team”包含的基本事件个数m==4.∴选取的两人能组成一个“Team”的概率p===.21.【解答】解:(1)椭圆C的右顶点(a,0),上顶点(0,1),设直线l的方程为:+y=1,化为:x+ay﹣a=0,∵直线l与圆x2+y2=相切,∴=,a>0,解得a=.∴椭圆C的方程为.(2)当直线AB的斜率不存在时,设A(x0,y0),则B(x0,﹣y0),由k1+k2=2得,得x0=﹣1.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),,得,∴,即,由m≠1,(1﹣k)(m+1)=﹣km⇒k=m+1,即y=kx+m=(m+1)x+m⇒m(x+1)=y﹣x,故直线AB过定点(﹣1,﹣1).[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵直线l的参数方程为(t为参数),∴l的直角坐标方程为+=0,∵曲线C的极坐标方程为ρ2(1+sin2θ)=2,即ρ2+ρ2sin2θ=2,∴C的直角坐标方程为x2+y2+y2=2,即=1.(2)联立,得7x2+12x+4=0,△=144﹣4×7×4=32>0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,∴|AB|==.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)由|x﹣1|>|2x﹣4|,得:x2﹣2x+1>4x2﹣16x+16,解得:<x<3,故不等式的解集是(,3);(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,即存在x∈R,使得2|x|+|2x﹣4|<ax+1成立,当x<0时,﹣4x+4<ax+1即a<﹣4在(﹣∞,0)上有解,故a<﹣4,当x=0时,4<1不成立,当0<x≤2时,4<ax+1即a>在(0,2]上有解,故a>,当x>2时,4x﹣4<ax+1即a>4﹣在(2,+∞)上有解,故a>,综上,a>或a<﹣4.。
2020-2021学年河南省平顶山市高二上学期期末考试数学(理科)试卷及答案
2020-2021学年河南省平顶山市高二上学期期末考试数学(理科)试卷及答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}03M x x =<≤,321xN x x ⎧⎫=≤⎨⎬-⎩⎭,则M N ⋂=()A.(0,1]B.(1,2)C.(0,2]D.(0,1)2.已知{}n a 是公差为2的等差数列,35a =,则1a =()A.10B.7C.6D.13.抛物线22y x =的焦点到准线的距离为()A.18 B.14 C.12 D.14.已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线的倾斜角为30°,且焦距为4,则双曲线的方程为()A.221x y -= B.2212y x -= C.2213x y -= D.2213y x -=5.在正方体1111ABCD A B C D -中,点E 是线段1CC 的中点,则1A E =()A.112AB AD AA ++ B.112AB AD AA +- C.112AB AD AA -+D.112AB AD AA +- 6.设直线l 的方向向量是a ,平面α的法向量是n ,则“l //α”是“a n ⊥ ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知0a >,0b >,2a b +=,则2aa b +()A.有最小值2B.有最大值2C.有最小值3D.有最大值38.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3a =,5b =,2cos c a A =,则cos A =() A.13 B.24 C.33 D.639.数列{}n a 满足11a =,23a =,且11202()n n n a a a n +-++=≥,则{}n a 的前2020项和为()A.8080B.4040C.-4040D.010.已知双曲线22:143x y C -=的两个焦点分别为1F ,2F ,双曲线C 上一点P 在x 轴上的射影为Q ,且1212PQ F F PF PF ⋅=⋅,则12PF PF +=()A.B. C.10D.2011.在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,侧棱13AA =,点D ,E 分别是1CC ,1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,则点1A 到平面ABD 的距离为()C.23312.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =()A.165 B.2C.85D.1二、填空题:本题共4小题,每小题5分,共20分.13.已知变量x ,y 满足约束条件3,3,50,y x x y ≤⎧⎪≤⎨⎪+-≥⎩则23z x y =-的最大值为______.14.已知等比数列{}n a 的前n 项和13n n S λ+=+,则1a λ+=______.15.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.16.已知平面四边形ABCD 为凸四边形(四个内角均小于180°),且1AB =,4BC =,5CD =,2DA =,则平面四边形ABCD 面积的最大值为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.设命题:p 方程22137x y a a +=-+表示双曲线;命题:q 不等式10a x -<对01x <≤恒成立.(Ⅰ)若命题p q ∨为真,求实数a 的取值范围;(Ⅱ)若命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.18.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足()()1211n n n n a b a a +=++,求数列{}n b 的前n 项和n T .19.如图所示,在多面体BC ADE -中,ADE △为正三角形,平面ABCD ⊥平面ADE ,且BC //AD ,60BAD ∠=︒,30CDA ∠=︒,2AB BC ==.(Ⅰ)求证:AD CE ⊥;(Ⅱ)求直线CD 与平面BCE 所成角的正弦值.20.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,cossin 2A b a B =.(Ⅰ)求A ;(Ⅱ)若D 在边BC 上,AD 是BAC ∠的角平分线,3AD =,求ABC △面积的最小值.21.某厂家拟进行某产品的促销活动,根据市场情况,该产品的月销量(即月产量)m 万件与月促销费用x 万元(0)x ≥满足102k m x =-+(k 为常数),如果不搞促销活动,则该产品的月销量是2万件.已知生产该产品每月固定投入为8万元,每生产一万件该产品需要再投入5万元,厂家将每件产品的销售价格定为9.66m m+元,设该产品的月利润为y 万元.注:利润=销售收入-生产投入-促销费用.(Ⅰ)将y 表示为x 的函数;(Ⅱ)月促销费用为多少万元时,该产品的月利润最大?22.已知椭圆2222:1(0)x y C a b a b+=>>的左、右两个焦点分别是1F ,2F ,焦距为2,点M 在椭圆上且满足212MF F F ⊥,123MF MF =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)点O 为坐标原点,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,证明2211||||OA OB +为定值,并求出该定值.数学试题(理科)参考答案1-10DDBCB ACDBB11-12AC 13.014.315.,12⎫⎪⎪⎣⎭16.17.解析(Ⅰ)当命题p 为真时,由题意()()370a a -+<,解得73a -<<.当命题q 为真时,由题意可得min1a x ⎫⎛< ⎪⎝⎭,由此可得1a <.若命题p q ∨为真命题,则73a -<<或1a <,即(,3)a ∈-∞.(Ⅱ)命题p q ∨为真,命题p q ∧为假,则p ,q 一真一假.p 真q 假时,73,1,a a -<<⎧⎨≥⎩13a ∴≤<,p 假q 真时,731,a a , a ≤-≥⎧⎨<⎩或7a ∴≤-,综上,(,7][1,3)a ∈-∞-⋃.18.解(Ⅰ)设数列{}n a 的公比为q ,由条件知32443a a a =+,即2311143a q a q a q =+,整理可得2430q q -+=,解得3q =(1q =舍去),所以11133n n n a a --=⋅=.(Ⅱ)()()()()111122*********3131n n n n n n n n n a b a a ---+⋅===-++++++,所以01121111111313131313131n n n T -⎫⎫⎫⎛⎛⎛=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎝⎝⎭⎭⎭011113131231n n =-=-+++.19.解(Ⅰ)如图,过B 作BF AD ⊥于F ,过C 作CG AD ⊥于G ,连接GE .可得BF //CG ,又因为BC //AD ,在Rt ABF △中,因为60BAD ∠=︒,2AB =,所以1AF =,BF =,所以BF CG ==,2FG BC ==,在Rt CDG △中,30CDG ∠=︒,3GD ==.所以AG GD =,因为ADE △为正三角形,所以GE AD ⊥,因为CG EG G ⋂=,所以AD ⊥平面CGE ,所以AD CE ⊥.(Ⅱ)由(Ⅰ)可知GE ,GD ,GC 两两互相垂直,以G 为坐标原点,GE ,GD ,GC所在直线为x ,y ,z 轴建立空间坐标系,如图所示.则(C,(0,B -,(0,3,0)D,()E ,所以(CE = ,(0,2,0)CB =-,(0,3,CD = ,设平面BCE 的法向量为(,,)n x y z = ,所以0,20,y ⎧-=⎪⎨-=⎪⎩取1x =,可得(1,0,3)n = ,所以cos,20||||CD nCD nCD n⋅〈〉===-,所以直线CD与平面BCE所成角的正弦值为20.20.解(Ⅰ)由正弦定理及条件得sin cos sin sin2AB A B=,因为(0,)Bπ∈,sin0B≠,所以cos sin2sin cos222A A AA==,又(0,)Aπ∈,cos02A≠,所以1sin22A=,从而3Aπ=.(Ⅱ)因为ABC△的面积等于ABD△和ACD△的面积之和,得111sin sin sin22222BAC BACbc BAC c AD b AD∠∠∠=⋅+⋅,又因为3BACπ∠=,233AD=,所以32()bc b c=+,所以32()bc b c=+≥,得169bc≥(当且仅当43b c==时等号成立)所以ABC△的面积1343sin249S bc A bc==≥.所以ABC△面积的最小值为439.21.解(Ⅰ)由题意知当0x=时,2m=,则2102k=-,解得16k=,16102mx=-+.利润9.6685 1.6my m m x m xm+=⨯---=+-,又因为16102mx=-+,所以161.611.62y m x xx=+-=--+,[0,)x∈+∞.(Ⅱ)由(Ⅰ)知1613.6(2)2y xx=--++,因为0x≥时,22x+≥,因为16(2)82xx++≥=+,当且仅当2x=时等号成立.所以13.68 5.6y≤-=,故月促销费用为2万元时,该产品的月利润最大,最大为5.6万元.22.解(Ⅰ)依题意1222F F c ==,所以1c =.由123MF MF =,122MF MF a +=,得132MF a =,212MF a =,于是122F F ====,所以a =,所以2221b a c =-=,因此椭圆C 的方程为2212x y +=.(Ⅱ)当直线l 的斜率存在时,设直线:AB y kx m =+,()11,A x y ,()22,B x y ,由2222,x y y kx m⎧+=⎨=+⎩消去y 得()222124220k x kmx m +++-=,由题意,0∆>,则12221224,1222,12km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩因为OA OB ⊥,所以12120x x y y +=,即()()12120x x kx m kx m +++=,整理得()22321m k =+.而22222222211||||||||||||||||||OA OB AB OA OB OA OB OA OB ++==,设h 为原点到直线l 的距离,则OA OB AB h =⋅,所以222111||||OA OB h+=,而h =22221113||||2k OA OB m ++==.当直线l 的斜率不存在时,设()11,A x y ,则有1OA k =±,不妨设1OA k =,则11x y =,代入椭圆方程得2123x =,所以224||||3OA OB ==,所以22113||||2OA OB +=.综上22113||||2OA OB +=.。
四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案
高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。
2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。
3.考试结束后由监考老师将答题卡收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。
四川省师范大学附属中学2022-2023学年高二上学期期中考试理科数学试题
对于D,由 ,所以 是 和 的最大公约数,因此用更相减损术求294和84的最大公约数时,需做减法的次数是 ,故D错误;
故选:B.
8. 已知一个三棱锥的三视图如图所示,俯视图是等腰直角三角形,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )
A. B. C. D.
A. 63B. 64C. 127D. 128
【答案】C
【解析】
【详解】由 及 是公比为正数的等比数列,得公比q=2,
所以 .
6. 已知命题 “关于 的方程 有实根”,若非 为真命题的充分不必要条件为 ,则实数 的取值范围是( )
A. B.
C. D.
【答案】A
【解析】
【分析】求出当命题 为真命题时 的取值范围,根据已知条件可得出关于实数 的不等式,即可求得 的取值范围.
(1)求样本的容量 及直方图中 的值;
(2)估计参加这次数学竞赛成绩的众数、中位数、平均数.
20. 已知圆 方程为
(1)若 时,求圆 与圆 : 的公共弦所在直线方程及公共弦长;
(2)若圆 与直线 相交于 , 两点,且 ( 为坐标原点),求实数 的值.
21. 如图,正三棱柱 中(底面是正三角形且侧棱与底面垂直的棱柱是正三棱柱),底面边长为 ,若 为 的中点.
A. B. C. D.
【答案】C
【解析】
【分析】根据题意结合零点分析可得 , ,结合等差数列的定义与前 项和公式求 ,再根据恒成立问题结合裂项相消法理解运算.
【详解】当 时,令 ,则 ,即 ,
由题意可得: ,
则 ,
∴ ,即 ,
故数列 是以首项为0,公差为1的等差数列,则 ,
当 时,则 ,
高中数学选择性必修二 北京市昌平区新学道临川学校高二上学期期末考试数学(理)试题(含答案)
高二数学理科试卷
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在等差数列 中,若 , ,则 =()
A. B. C. D.
【答案】C
【解析】
【分析】由等差数列通项公式可求得 ,由 可求得结果.
【详解】设等差数列 的公差为 ,则 , .
【详解】抛物线 ( )的准线为: ,
因为准线经过点 ,可得 ,即 ,
所以抛物线为 ,焦点坐标为 ,
故选:B.
11.椭圆 内有一点 过点 的弦恰好以 为中点,那么这弦所在直线的方程为()
A. B.
C. D.
【答案】B
【解析】
【分析】利用点差法得到直线斜率和中点之间的关系,即可得解.
【详解】设弦的两个端点为 ,
即曲线C右侧部分的点到原点的距离都不超过 ,
再根据对称性可知,曲线C上的所有点到原点的距离都不超过 ,②正确;
对于③,因为在x轴上方,图形面积大于四点(﹣1,0),
(1,0),(1,1),(﹣1,1)围成的矩形面积1×2=2,
在x轴下方,图形面积大于三点(﹣1,0),(1,0),(0,﹣1)围成的等腰直角三角形的面积 ×2×1=1,
故选:C.
2.在等比数列 中, , ,则 与 的等比中项是()
A. B. C. D.
【答案】A
【解析】
【分析】计算出 的值,利用等比中项的定义可求得结果.
【详解】由已知可得 ,由等比中项的性质可得 ,
因此, 与 的等比中项是 .
故选:A.
3.若△ABC中,a=4,A=45°,B=60°,则边b的值为( )
人教版高二(理科)第一学期期末考试数学试题-含答案
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷Word版含解析
北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y 2=2,则其圆心和半径分别为( )A .(1,0),2B .(﹣1,0),2C .D .2.抛物线x 2=4y 的焦点到准线的距离为( )A .B .1C .2D .43.双曲线4x 2﹣y 2=1的一条渐近线的方程为( )A .2x+y=0B .2x+y=1C .x+2y=0D .x+2y=14.在空间中,“直线a ,b 没有公共点”是“直线a ,b 互为异面直线”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知A ,B 为圆x 2+y 2=2ax 上的两点,若A ,B 关于直线y=2x+1对称,则实数a=( )A .B .0C .D .16.已知直线l 的方程为x ﹣my+2=0,则直线l ( )A .恒过点(﹣2,0)且不垂直x 轴B .恒过点(﹣2,0)且不垂直y 轴C .恒过点(2,0)且不垂直x 轴D .恒过点(2,0)且不垂直y 轴7.已知直线x+ay ﹣1=0和直线ax+4y+2=0互相平行,则a 的取值是( )A .2B .±2C .﹣2D .08.已知两直线a ,b 和两平面α,β,下列命题中正确的为( )A .若a ⊥b 且b ∥α,则a ⊥αB .若a ⊥b 且b ⊥α,则a ∥αC .若a ⊥α且b ∥α,则a ⊥bD .若a ⊥α且α⊥β,则a ∥β9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : . 12.椭圆x 2+9y 2=9的长轴长为 .13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 .14.如图,在四棱锥P ﹣ABCD 中,底面四边形ABCD 的两组对边均不平行.①在平面PAB 内不存在直线与DC 平行;②在平面PAB 内存在无数多条直线与平面PDC 平行;③平面PAB 与平面PDC 的交线与底面ABCD 不平行;上述命题中正确命题的序号为 .15.已知向量,则与平面BCD 所成角的正弦值为 .16.若某三棱锥的三视图如图所示,则该棱锥的体积为 ,表面积为 .三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC 的三个顶点坐标为A (0,0),B (8,4),C (﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.19.已知椭圆G:的离心率为,经过左焦点F1(﹣1,0)的直线l与椭圆G相交于A,B两点,与y轴相交于C点,且点C在线段AB上.(Ⅰ)求椭圆G的方程;(Ⅱ)若|AF1|=|CB|,求直线l的方程.北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y2=2,则其圆心和半径分别为()A.(1,0),2 B.(﹣1,0),2 C.D.【考点】圆的标准方程.【分析】利用圆的标准方程的性质求解.【解答】解:圆(x+1)2+y2=2的圆心为(﹣1,0),半径为.故选:D.2.抛物线x2=4y的焦点到准线的距离为()A.B.1 C.2 D.4【考点】抛物线的简单性质.【分析】直接利用抛物线方程求解即可.【解答】解:抛物线x2=4y的焦点到准线的距离为:P=2.故选:C.3.双曲线4x2﹣y2=1的一条渐近线的方程为()A.2x+y=0 B.2x+y=1 C.x+2y=0 D.x+2y=1【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由双曲线的渐近线方程y=±x,即可得到所求结论.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得a=,b=1,由双曲线的渐近线方程y=±x,可得所求渐近线方程为y=±2x.故选:A.4.在空间中,“直线a,b没有公共点”是“直线a,b互为异面直线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】空间中直线与直线之间的位置关系.【分析】利用空间中两直线的位置关系直接求解.【解答】解:“直线a,b没有公共点”⇒“直线a,b互为异面直线或直线a,b为平行线”,“直线a,b互为异面直线”⇒“直线a,b没有公共点”,∴“直线a,b没有公共点”是“直线a,b互为异面直线”的必要不充分条件.故选:B.5.已知A,B为圆x2+y2=2ax上的两点,若A,B关于直线y=2x+1对称,则实数a=()A.B.0 C.D.1【考点】直线与圆的位置关系.【分析】根据题意,圆心C(a,0)在直线y=2x+1上,C的坐标并代入直线2x+y+a=0,再解关于a的方程,即可得到实数a的值.【解答】解:∵A,B为圆x2+y2=2ax上的两点,A,B关于直线y=2x+1对称,∴圆心C(a,0)在直线y=2x+1上,∴2a+1=0,解之得a=﹣故选:A.6.已知直线l的方程为x﹣my+2=0,则直线l()A.恒过点(﹣2,0)且不垂直x轴 B.恒过点(﹣2,0)且不垂直y轴C.恒过点(2,0)且不垂直x轴D.恒过点(2,0)且不垂直y轴【考点】直线的一般式方程.【分析】由直线l的方程为x﹣my+2=0,令y=0,解得x即可得出定点,再利用斜率即可判断出与y轴位置关系.【解答】解:由直线l的方程为x﹣my+2=0,令y=0,解得x=﹣2.于是化为:y=﹣x﹣1,∴恒过点(﹣2,0)且不垂直y轴,故选:B.7.已知直线x+ay﹣1=0和直线ax+4y+2=0互相平行,则a的取值是()A.2 B.±2 C.﹣2 D.0【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可得1×4﹣a•a=0,解得a值排除重合可得.【解答】解:∵直线x+ay﹣1=0和直线ax+4y+2=0互相平行,∴1×4﹣a•a=0,解得a=2或a=﹣2,经验证当a=﹣2时两直线重合,应舍去故选:A8.已知两直线a,b和两平面α,β,下列命题中正确的为()A.若a⊥b且b∥α,则a⊥α B.若a⊥b且b⊥α,则a∥αC.若a⊥α且b∥α,则a⊥b D.若a⊥α且α⊥β,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】利用空间线面平行、线面垂直以及面面垂直的性质定理和判定定理对选项分别分析选择.【解答】解:对于A,若a⊥b且b∥α,则a与α位置关系不确定;故A错误;对于B,若a⊥b且b⊥α,则a与α位置关系不确定;可能平行、可能在平面内,也可能相交;故B 错误;对于C,若a⊥α且b∥α,根据线面垂直和线面平行的性质定理,可以得到a⊥b;故C正确;对于D ,若a ⊥α且α⊥β,则a ∥β或者a 在平面β内,故D 错误;故选:C .9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .【考点】抛物线的简单性质.【分析】求出P 的坐标,设P 在x 轴上的射影为C ,则tan ∠APC==,可得∠APB=120°,即可求出cos ∠APB .【解答】解:由题意,|PB|=|PF|=PA|,∴P 的横坐标为3,不妨取点P (3,2),设P 在x 轴上的射影为C ,则tan ∠APC==, ∴∠APC=30°,∴∠APB=120°,∴cos ∠APB=﹣. 故选:C .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3【考点】点、线、面间的距离计算.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1P 的长度的最大值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设P (a ,b ,0),则D 1(0,0,2),E (1,2,0),B 1(2,2,2),=(a ﹣2,b ﹣2,﹣2),=(1,2,﹣2), ∵B 1P ⊥D 1E ,∴=a ﹣2+2(b ﹣2)+4=0,∴a+2b ﹣2=0,∴点P 的轨迹是一条线段,当a=0时,b=1;当b=0时,a=2,设CD 中点F ,则点P 在线段AF 上,当A 与P 重合时,线段B 1P 的长度为:|AB 1|==2; 当P 与F 重合时,P (0,1,0),=(﹣2,﹣1,﹣2),线段B 1P 的长度||==3, 当P 在线段AF 的中点时,P (1,,0),=(﹣1,﹣,﹣2),线段B 1P 的长度||==. ∴线段B 1P 的长度的最大值为3.故选:D .二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : ∃x ∈R ,x 2<0 . 【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题p :“∀x ∈R ,x 2≥0”,则¬p :∃x ∈R ,x 2<0. 故答案为:∃x ∈R ,x 2<0.12.椭圆x 2+9y 2=9的长轴长为 6 .【考点】椭圆的简单性质.【分析】将椭圆化为标准方程,求得a=3,即可得到长轴长2a .【解答】解:椭圆x 2+9y 2=9即为+y 2=1,即有a=3,b=1,则长轴长为2a=6.故答案为:6.13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 (2,+∞) .【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,由题意可得m >0且m ﹣2>0,解不等式即可得到所求范围.【解答】解:曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,可得﹣=1,即有m>0,且m﹣2>0,解得m>2.故答案为:(2,+∞).14.如图,在四棱锥P﹣ABCD中,底面四边形ABCD的两组对边均不平行.①在平面PAB内不存在直线与DC平行;②在平面PAB内存在无数多条直线与平面PDC平行;③平面PAB与平面PDC的交线与底面ABCD不平行;上述命题中正确命题的序号为①②③.【考点】棱锥的结构特征.【分析】①用反证法利用线面平行的性质即可证明.②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,即可判断;③用反证法利用线面平行的性质即可证明.【解答】解:①用反证法.设在平面PAB内存在直线与DC平行,则CD∥平面PAB,又平面ABCD∩平面PAB=AB,平面ABCD∩平面PCD=CD,故CD∥AB,与已知矛盾,故原命题正确;②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,故在平面PAB内存在无数多条直线与平面PDC平行,命题正确;③用反证法.设平面PAB与平面PDC的交线l与底面ABCD平行,则l∥AB,l∥CD,可得:AB∥CD,与已知矛盾,故原命题正确.故答案为:①②③.15.已知向量,则与平面BCD所成角的正弦值为.【考点】直线与平面所成的角.【分析】求出平面BCD的法向量,利用向量法能求出与平面BCD所成角的正弦值.【解答】解:∵向量,∴==(﹣1,2,0),==(﹣1,0,3),设平面BCD的法向量为=(x,y,z),则,取x=6,得=(6,3,2),设与平面BCD所成角为θ,则sinθ===.∴与平面BCD所成角的正弦值为.故答案为:.16.若某三棱锥的三视图如图所示,则该棱锥的体积为,表面积为3.【考点】由三视图求面积、体积.【分析】几何体为三棱锥,棱锥底面为等腰三角形,底边为2,底边的高为1,棱锥的高为.棱锥顶点在底面的射影为底面等腰三角形的顶点.【解答】解:由三视图可知几何体为三棱锥,棱锥顶点在底面的射影为底面等腰三角形的顶点,棱锥底面等腰三角形的底边为2,底边的高为1,∴底面三角形的腰为,棱锥的高为.∴V==,S=+××2+=3.故答案为,三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.【考点】直线与圆的位置关系;直线的斜率;圆的一般方程.【分析】(1)证明•=﹣16+16=0,可得⊥,即可证明△ABC 是直角三角形;(2)求出△ABC 的外接圆的方程,利用△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,可得圆心到直线的距离d=4,即可求m 的值.【解答】(1)证明:∵A (0,0),B (8,4),C (﹣2,4),∴=(8,4),=(﹣2,4),∴•=﹣16+16=0,∴⊥,∴ABC 是直角三角形;(2)解:△ABC 的外接圆是以BC 为直径的圆,方程为(x ﹣3)2+(y ﹣4)2=25,∵△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,∴圆心到直线的距离d=4=,∴m=﹣4或﹣44.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)推导出CC 1∥AA 1,AD ∥BC ,从而平面AA 1D ∥平面CC 1B ,由此能证明AE ∥平面CC 1B . (Ⅱ)法1:推导出AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,以AB ,AD ,AA 1分别x ,y ,z 轴建立空间直角坐标系,利用向量法能证明A 1D ⊥平面ABE .法2:推导出AA 1⊥AB ,AB ⊥AD ,从而AB ⊥A 1D ,再由AE ⊥A 1D ,能证明A 1D ⊥平面ABE .(Ⅲ)推导出平面EFD ⊥平面ABE ,从而二面角D ﹣EF ﹣B 为90°,设,且λ∈[0,1],则G (2,2,3λ),再由A 1D ⊥BG ,能求出CG 的长.【解答】证明:(Ⅰ)因为CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,所以CC 1∥AA 1,因为ABCD 是正方形,所以AD∥BC,因为AA1∩AD=A,CC1∩BC=C,所以平面AA1D∥平面CC1B.因为AE⊂平面AA1D,所以AE∥平面CC1B.(Ⅱ)法1:因为AA1⊥平面ABCD,所以AA1⊥AB,AA1⊥AD,因为ABCD是正方形,所以AB⊥AD,以AB,AD,AA1分别x,y,z轴建立空间直角坐标系,则由已知可得B(2,0,0),D(0,2,0),A1(0,0,2),E(0,1,1),,,因为,所以,所以A1D⊥平面ABE.法2:因为AA1⊥平面ABCD,所以AA1⊥AB.因为ABCD是正方形,所以AB⊥AD,所以AB⊥平面AA1D,所以AB⊥A1D.因为E为棱A1D中点,且,所以AE⊥A1D,所以A1D⊥平面ABE.(Ⅲ)因为A1D⊥平面ABE,且A1D⊂平面EFD,所以平面EFD⊥平面ABE.因为平面ABE即平面BEF,所以二面角D﹣EF﹣B为90°.设,且λ∈[0,1],则G(2,2,3λ),因为A1D⊥平面ABE,BG⊂平面ABE,所以A1D⊥BG,所以,即,所以.19.已知椭圆G :的离心率为,经过左焦点F 1(﹣1,0)的直线l 与椭圆G 相交于A ,B 两点,与y 轴相交于C 点,且点C 在线段AB 上.(Ⅰ)求椭圆G 的方程;(Ⅱ)若|AF 1|=|CB|,求直线l 的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆焦距为2c ,运用离心率公式和a ,b ,c 的关系,即可得到椭圆方程;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),代入椭圆方程,运用韦达定理和向量共线的坐标表示,解方程即可得到所求方程.【解答】解:(Ⅰ)设椭圆焦距为2c ,由已知可得,且c=1,所以a=2,即有b 2=a 2﹣c 2=3,则椭圆G 的方程为;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),由消y ,并化简整理得(4k 2+3)x 2+8k 2x+4k 2﹣12=0,由题意可知△>0,设A (x 1,y 1),B (x 2,y 2),则,因为点C ,F 1都在线段AB 上,且|AF 1|=|CB|,所以,即(﹣1﹣x 1,﹣y 1)=(x 2,y 2﹣y C ),所以﹣1﹣x 1=x 2,即x 1+x 2=﹣1,所以,解得,即.所以直线l的方程为或.。
黑龙江省哈尔滨工业大学附属中学校2021-2022学年高二上学期期末考试数学(理)试题(解析版)
哈工大附中2021~2022学年度第一学期期末考试试题高二理科数学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知复数,则的虚部为( )A. B. C. D. 【答案】C 【解析】【分析】利用复数的除法运算化简,再由共轭复数的定义即可得,进而可得虚部.【详解】,所以,的虚部为,故选:C.2. 已知直线和直线互相平行,则等于( )A. 2 B. C. D. 0【答案】C 【解析】【分析】根据题意可得,即可求出.【详解】显然时,两直线不平行,不符合,则,解得.经检验满足题意故选:C.3. 设是两条不同的直线,是两个不同的平面,且,则下列命题正确的是( )① 若 ,则 ②若,则 ③若,则 ④若,则13i1iz +=-z 122-1-z z ()()()()13i 1i 13i 24i12i 1i 1i 1i 2z +++-+====-+--+12i z =--z 2-10x ay +-=410ax y ++=a 2-2±1141a a -=≠0a =1141a a -=≠2a =±,m n ,αβ,m n αβ⊂⊂//,//m n βα//αβm β⊥αβ⊥//αβ//,//m n βααβ⊥,m n βα⊥⊥A. ①③B. ①④C. ②③D. ②④【答案】C 【解析】【分析】① 面面平行需要满足面内两条相交直线分别平行另外一个平面;②面内的一条直线垂直另外一个平面,则线面垂直;③面面平行,面内的直线平行另外一个平面; ④面面垂直面内的直线垂直于两个平面的交线,则线面垂直.【详解】① 面面平行需要满足面内两条相交直线分别平行另外一个平面, 不在同一平内,有可能平行,所以不正确;②面内的一条直线垂直另外一个平面,则线面垂直,所以命题正确;③面面平行,面内的直线平行另外一个平面,所以命题正确; ④面面垂直面内的直线垂直于两个平面的交线,则线面垂直,没出与交线垂直,所以命题不正确.故选:C.4. 已知双曲线:(的渐近线方程为( )A. B. C. D. 【答案】A【解析】【分析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果.【详解】∵双曲线的离心率,∴.又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为.故选:A,m n C 22221x y a b-=0,0a b >>C 2y x =±y =12y x =±y x=±2b a =22220x y a b-=b y x a =±c e a ===2ba=22220x y a b-=b y x a =±22221x y a b-=0,0a b >>b y x a =±2y x =±5. 已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是( )A.B.C. D. 【答案】B 【解析】【分析】根据导数的几何意义,求出切线方程,求出切线和横截距a 和纵截距b,面积为.【详解】由题意可得,所以,则所求切线方程为.令,得;令,得.故所求三角形的面积为.故选:B6. 若方程表示椭圆,则下面结论正确的是( )A. B. 椭圆的焦距为C. 若椭圆的焦点在轴上,则 D. 若椭圆的焦点在轴上,则【答案】C 【解析】【分析】利用椭圆方程与椭圆位置特征逐项分析、计算即可判断作答.【详解】因方程表示椭圆,则有,,且,即,A 错误;2()e (1)x f x x =++()y f x =(0,(0))f 12231212ab ()()()02e 21xf f x x '=,=++()03f '=32y x =+0x =2y =0y =23x -=1222233⨯⨯=22191x y k k +=--C ()1,9k ∈C C x ()1,5k ∈C x ()5,9k ∈90k ->10k ->91k k -≠-()()1,55,9k ∈焦点在轴上时,,解得,D 错误,C 正确;焦点在轴上时,则,焦点在轴上时,,B错误. 故选:C7. 已知抛物线的焦点为F ,准线为,过点F与抛物线C 交于点M (M 在x 轴的上方),过M 作于点N ,连接交抛物线C于点Q ,则( )A.B.C. 3D. 2【答案】D 【解析】【分析】设出直线,与抛物线联立,可求出点坐标,在利用抛物线的定义可得,再利用抛物线的对称性求出,则可求.【详解】如图:相关交点如图所示,由抛物线,得 ,则,与抛物线联立得,即,解得x 910k k ->->()1,5k ∈x ()291102c k k k =---=-y ()219210c k k k =---=-2:2(0)C y px p =>l l 'MN l ⊥NF ||||=NQ QF MF M 2M pMN NF MF x ∴===+FQ ||||NQ QF 2:2(0)C y px p =>(,0)2pF :)2p MF y x =-22y px =22122030x px p -+=()()6230x p x p --=3,26M A p p x x ==,60MN l MFx ︒⊥∠=, 又则为等边三角形,,由抛物线的对称性可得,故选:D.8. 若点P 是曲线上任意一点,则点P 到直线的最小距离为( )A. 0B.C.D.【答案】D 【解析】【分析】由导数的几何意义求得曲线上与直线平行的切线方程的切线坐标,求出切点到直线的距离即为所求最小距离.【详解】点是曲线上的任意一点,设,令,解得1或(舍去),,∴曲线上与直线平行的切线的切点为,点到直线的最小距离故选:D.二、多选题(本题共4小题,每小题5分,共20分;在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分)9. 函数的导函数的图象如图所示,则下列说法正确的( )60NMF ︒=∴∠MN MF=NMF V 22M pMN NF MF x p ∴===+=60OFA NFO ︒=∠=∠ 6Q A p x x ==24,,6233p p p p QF NQ NF QF ∴=+=∴=-=||2||NQ QF ∴=2ln y x x =-1y x =-121y x =- P 2ln y x x =-()1,,2(0)P x y y x x x∴=->'121y x x'=-=x =12x =-1x ∴=1y x =-()1,1P P 1y x =-min d ()y f x =A. 为函数的单调递增区间B. 为函数的单调递减区间C. 函数在处取得极小值D. 函数在处取得极大值【答案】ABC 【解析】【分析】利用导数和函数的单调性之间的关系,以及函数在某点取得极值的条件,即可求解,得到答案.【详解】由题意,函数的导函数的图象可知:当时,,函数单调递减;当时,,函数单调递增;当时,,函数单调递减;当时,,函数单调递增;所以函数f (x )单调递减区间为:,,递增区间为,,且函数在和取得极小值,在取得极大值.故选:ABC.10. 已知曲线:,则( )A. 时,则的焦点是,B. 当时,则的渐近线方程为C. 当表示双曲线时,则的取值范围为D. 存在,使表示圆()1,3-()y f x =()3,5()y f x =()y f x =5x =()y f x =0x =()y f x =1x <-()0f x '<()f x 13x -<<()0f x '>()f x 35x <<()0f x '<()f x 5x >()0f x '>()f x (),1-∞-(3,5)(1,3)-(5,)+∞()f x 1x =-5x =3x =C 22142x y m m+=-+2m =C (1F (20,F 6m =C 2y x =±C m 2m <-m C【答案】ABD 【解析】【分析】AB 选项,代入的值,分别得出是什么类型的曲线,进而作出判断;C 选项,要想使曲线表示双曲线要满足;D 选项,求出曲线表示圆时m 的值.【详解】当时,曲线:,是焦点在y 轴上的椭圆,且,所以交点坐标为,,A 正确;当时,曲线:,是焦点在在y 轴上的双曲线,则的渐近线为,B 正确;当表示双曲线时,要满足:,解得:或,C 错误;当,即时,,表示圆,D 正确故选:ABD11. 已知圆和圆相交于、两点,下列说法正确的为( )A. 两圆有两条公切线 B. 直线的方程为C. 线段的长为D. 圆上点,圆上点,的最大值为【答案】ABD 【解析】【分析】由给定条件判断圆O 与圆M 的位置关系,再逐项分析、推理、计算即可作答.【详解】圆的圆心,半径,圆的圆心,,,于是得圆O 与圆M 相交,圆O 与圆M 有两条公切线,A 正确;由得:,则直线的方程为,B 正确;圆心O 到直线:的距离,则,C 不正确;m C ()()420m m -+<C 2m =C 22124x y +=2422c =-=(1F(20,F6m =C 22182-=y x C2yx =±C ()()420m m-+<4m>2m <-42m m -=+1m =223x y +=22:4O x y +=22:4240M x y x y +-+=+A B AB 24y x =+AB 65O E M F EF 3+22:4O x y +=(0,0)O 12r =22:(2)(1)1M x y ++-=(2,1)M -21r =||OM ==1212||r r OM r r -<<+222244240x y x y x y ⎧+=⎨++-+=⎩4280x y -+=AB 24y x =+AB 240x y -+=d ==||AB ===,当且仅当点E ,O ,M ,F 四点共线时取“=”,如图,因此,当点E ,F 分别是直线OM 与圆O 交点,与圆M 交点时,,D 正确.故选:ABD12. 已知椭圆:上有一点,、分别为左、右焦点,,的面积为,则下列选项正确的是( )A. 若,则;B. 若,则满足题意的点有四个;C. 椭圆内接矩形周长的最大值为20;D. 若为钝角三角形,则;【答案】BCD 【解析】【分析】由题可得,,结合选项利用面积公式可得可判断ABD ,设椭圆内接矩形的一个顶点为,利用辅助角公式可得周长的范围可判断C.【详解】∵椭圆:,∴,∴,设,则,,若,则,所以不存在,故A错误;12||||||||||||||3EF EO OF EO OM MF r OM r ≤+≤++=++=+E 'F 'max ||3EF =C 221169x y +=P 1F 2F 12F PF θ∠=12PF F △S S 9=90θ=︒3S =P C 12PF F △S ⎛∈ ⎝4,3a b ==c =11(,)P x y 1y C (4cos ,3sin )(02πααα<<C 221169x y +=4,3a b ==c =12128,PF PF F F +==11(,)P x y 12112S F F y =⋅⋅13y ≤S 9=13y =>12PF F △若,则,可得,故满足题意的点有四个,故B正确;设椭圆内接矩形的一个顶点为,则椭圆内接矩形周长为其中,由得,∴椭圆内接矩形周长的范围为,即,故C 正确;由上知不可能为钝角,由对称性不妨设是钝角,先考虑临界情况,当为直角时,易得,此时当为钝角三角形时,,所以,故D 正确.故选:BCD三、填空题(本大题共4小题,每小题5分,共20分)13. 椭圆:的离心率为_____﹒【解析】【分析】根据椭圆的几何性质求解即可﹒【详解】∵椭圆为,∴,∴﹒﹒14. 已知两点和则以为直径的圆的标准方程是__________.3S =11y y ==1x =P C (4cos ,3sin )(0)2πααα<<C 4(4cos 3sin )20sin(),αααϕ+=+43sin ,cos 55ϕϕ==02πα<<(,)2παϕϕϕ+∈+C (20sin(),20sin ]22ππϕ+(12,20]θ12PF F ∠12PF F ∠194y =12112S F F y =⋅⋅=12PF F △194y <S ⎛∈ ⎝C 22132y x +=22132y x +=1a c ===c e a ==()4,9A ()6,3B AB【答案】【解析】【分析】根据的中点是圆心,是半径,即可写出圆的标准方程.【详解】因为和,故可得中点为,又,则所求圆的标准方程是:.故答案为:.15. 已知是抛物线上一点,是抛物线的焦点,若点满足,则的取值范围是______.【答案】【解析】【分析】根据抛物线的解析式,得出焦点坐标,且由题意可知,进而根据向量的坐标运算求出,再根据向量的数量积求得,从而可求出的取值范围.【详解】解:由题可知,抛物线的焦点坐标,且,由于是抛物线上一点,则,,,,且,解得:,所以的取值范围是.故答案为:.()()225610x x -+-=AB 2AB ()4,9A ()6,3B AB ()5,6AB ==()()225610x x -+-=()()225610x x -+-=()00,M x y 24y x =F ()1,0P -0MF MP ⋅< 0x )2⎡-⎣()1,0F ()200040y x x =≥()()00001,,1,MF x y MP x y →→=--=---200410MF MP x x →→⋅=+-<0x 24y x =()1,0F()1,0P -()00,M x y 24y x =()200040y xx =≥()()00001,,1,MF x y MP x y →→∴=--=---()()2222000000011141MF MP x x y x y x x →→∴⋅=---+=+-=+-0MF MP →→⋅< 200410x x ∴+-<00x ≥002x ≤<-0x )2⎡-⎣)2⎡-⎣16. 已知函数,若,且恒成立,则实数a 的取值范围为_________.【答案】【解析】【分析】由题意得到,由,得到,所以,构造函数,利用导数求出的最小值即可.【详解】由题可知当时,函数单调递增,,当时,,设,则必有,所以,所以,所以,设,则,则时,,函数单调递减,当时,,函数单调递增,所以,所以的最小值为.所以恒成立,即,所以.故答案为:【点睛】本题主要考查利用导数解决双变量问题,将一个变量由另一个变量表示,构造新的函数即可求解,注意变量的范围,考查学生分析转化能力,属于中档题.四、解答题(本大题共6小题,共70分,解答应写出文字说明,说明过程或演算步骤)17. 在中,角所对的边分别为.(1)求角;(2)若,的面积为,求.1ln ,1(){11,122x x f x x x +≥=+<12x x ≠()()12122,2f x f x x x a +=+-≥12ln 2a ≤-121x x <<12()()2f x f x +=1212ln x x =-122212ln x x x x +=-+()12ln (1)g x x x x =-+>()g x 1≥x ()f x min ()(1)1f x f ==1x <()1f x <12x x <121x x <<1212121113()1(ln ln 2222)2f x f x x x x x +=+++=++=1212ln x x =-122212ln x x x x +=-+()12ln (1)g x x x x =-+>22()1x g x x x+'-=-=12x <<()0g x '<()g x 2x >()0g x '>()g x min ()(2)g x g ==12ln2232ln2-+=-12x x +32ln2-122x x a +-≥122a x x ≤+-12ln 2a ≤-12ln 2a ≤-ABC V ,,A B C ,,abc cos sin C c B =C 2b =ABC V c【答案】(1)(2)【解析】【分析】(1),进而得在求解即可得答案;(2)由面积公式得,进而根据题意得,,再根据余弦定理求解即可.【小问1详解】,,因为,,即因为,所以.小问2详解】解:因为的面积为,,所以,即,因为,所以,所以,解得.所以.18. 1.已知圆:,其中.(1)如果圆与圆外切,求的值;(2)如果直线与圆相交所得的弦长为的值.【答案】(1)20 (2)8【解析】【分析】(1)两圆外切,则两圆的圆心距等于两圆半径之和,列出方程,进行求解;(2)先用点到直线距离公式,求出圆的圆心到直线的距离,再用垂径定理列出方程,求出的值.【3C π=c =cos sin sin B C C B =tan C =8ab =2b =4a =cos sin C c B =cos sin sin B C C B =()0,,sin 0B B π∈≠sin C C =tan C =()0,C π∈3C π=ABC V 3C π=1sin 2S ab C ===8ab =2b =4a =2222201cos 2162a b c c C ab +--===c =c =C 22(3)(4)36x y m -+-=-m ∈R C 221x y +=m 30x y +-=C m C 30x y +-=m【小问1详解】圆的圆心为,若圆与圆外切,故两圆的圆心距等于两圆半径之和,【小问2详解】圆的圆心到直线的距离为,由垂径定理得:,解得:19. 书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,估计这100位年轻人每天阅读时间的平均数(单位:分钟);(同一组数据用该组数据区间的中点值表示)(2)采用分层抽样的方法从每天阅读时间位于分组,和的年轻人中抽取5人,再从中任选2人进行调查,求其中至少有1人每天阅读时间位于的概率.【答案】(1); (2).【解析】【分析】(1)由频率之和为1求参数a ,再根据直方图求均值.C ()3,4C 221x y +=1=+20m =C 30x y +-=d 222d =-8m =x [)50,60[)60,70[)80,90[)80,9074710(2)由分层抽样的比例可得抽取的5人中,和分别为:1人,2人,2人,再应用列举法求古典概型的概率即可.【小问1详解】根据频率分布直方图得:∴,根据频率分布直方图得:,【小问2详解】由,和的频率之比为:1∶2∶2,故抽取的5人中,和分别为:1人,2人,2人,记的1人为,的2人为,,的2人为,故随机抽取2人共有,,,,,,,,,10种,其中至少有1人每天阅读时间位于的包含7种,故概率.20. 如图,在四棱锥中,底面为菱形,平面,为的中点,为的中点.(1)求证:平面平面;(2)若,求平面与平面夹角的余弦值.【答案】(1)证明见解析[)50,60[)60,70[)80,90()0.0050.0120.045101a +++⨯=0.02a =()550.01650.02750.045850.02950.00510x =⨯+⨯+⨯+⨯+⨯⨯74=[)50,60[)60,70[)80,90[)50,60[)60,70[)80,90[)50,60a [)60,70b c [)80,90A B(),a b (),a c (),a A (),a B (),b c (),b A (),b B (),c A (),c B (),A B [)80,90710P =P ABCD -ABCD PA ⊥,60ABCD ABC ∠= E BC F PC AEF ⊥PAD 2PA AB ==AEF CEF(2)【解析】【分析】(1)通过证明和得平面,再利用面面垂直判定定理求解;(2)建立空间直角坐标系求两个平面的法向量代入二面角公式求解.【小问1详解】因为底面是菱形,,所以△为等边三角形,所以平分,所以,所以,又因为平面,所以,且,所以平面,又平面,所以平面平面;【小问2详解】据题意,建立空间直角坐标系如图所示:因为,所以,设平面一个法向量为,平面一个法向量为,因为,则,即,取,则,,所以,又因为,则,即,取,则,所以,所以AE AD ⊥PA AE ⊥AE ⊥PAD ABCD 60ABC ∠=︒ABC AE BAC ∠()6018060902EAD ︒∠=︒-︒-=︒AE AD ⊥PA ⊥ABCD PA AE ⊥PA AD A ⋂=AE ⊥PAD AE ⊂AEF AEF ⊥PAD 2PA AB ==())())0,0,0,,0,0,2,,A EP C1,12⎫⎪⎪⎭F AEF ()1111,,n x y z = EFC ()2222,,n x y z =)1,,12AE AF ⎫==⎪⎪⎭,01100AE n AF n ⎧⋅=⎪⎨⋅=⎪⎩1111020y z =++=12y =10x =11z =-()10,2,1n =-()10,1,,,12EC EF ⎛⎫== ⎪ ⎪⎝⎭0 2200EC n EF n ⎧⋅=⎪⎨⋅=⎪⎩ 22220102y x y z =⎧⎪⎨++=⎪⎩22x =220,y z ==(2n =u u r121212cos ,n n n n n n ⋅<>===⋅由图形知,二面角为钝角,故二面角夹角的余弦值为21. 已知椭圆的中心是坐标原点,左右焦点分别为,设是椭圆上一点,满足轴,,椭圆(1)求椭圆的标准方程;(2)过椭圆左焦点且不与轴重合的直线与椭圆相交于两点,求内切圆半径的最大值.【答案】(1)(2)【解析】【分析】(1)利用是椭圆上一点,满足轴,.列出方程组,求出,即可得到椭圆方程.(2)由(1)可知,设直线为,,联立直线与椭圆方程,消元列出韦达定理,即可得到,从而得到,再根据,即可得到,再利用基本不等式求出最值即可;【小问1详解】()2222:10x y C a b a b+=>>O 12,F F P C 2PF x ⊥212PF =C C C 1F x l ,A B 2ABF V 2214x y +=12P C 2PF x ⊥21||2PF =a b 28ABF C =V l x my =-()11,A x y ()22,B x y 12y y -2121212ABF S F F y y =⋅-V 2182ABF S R =⨯⨯V R =解:由题意是椭圆上一点,满足轴,所以,解得所以.【小问2详解】解:由(1)可知,,设直线为,消去得,设,,则,所以所以,令内切圆的半径为,则,即,令,则,当且仅当,,即时等号成立,所以当时,取得最大值;22. 已知函数,.(1)当时,求函数在处的切线方程;(2)讨论函数的单调性;(3)当函数有两个极值点,,且.证明:P C 2PF x ⊥21||2PF =222212c a b a c a b⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩21a b c ⎧=⎪=⎨⎪=⎩2214x y +=()1F 222112248ABF C AB AF BF AF BF AF BF a =++=+++==V l x my =-2214x my x y ⎧=-⎪⎨+=⎪⎩x ()22410m y +--=()11,A x y ()22,B x y 12y y +=12214y y m -=+12y y -===2121212ABFS F F y y =⋅-=V R 2182ABF S R =⨯⨯V R =t =12R ==≤=3t t =t =m =m =R 12()21ln 2f x x ax x =-+-a R ∈1a =()f x 1x =()f x ()f x 1x 2x 12x x <()()124213ln 2f x f x -≤+【答案】(1) (2)答案见解析 (3)证明见解析【解析】【分析】(1)根据导数的几何意义进行求解即可;(2)根据一元二次方程根判别式,结合导数的性质进行分类讨论求解即可;(3)根据极值定义,给合(2)的结论,构造新函数,再利用导数的性质, 新函数的单调性进行证明即可.【小问1详解】当时,.∴.,..∴在处的切线方程.小问2详解】的定义域.;①当时,即,,此时在单调递减;②当时,即或,(i )当时,∴在,单调递减,在单调递增.(ii )当时,的的【2230x y +-=1a =()21ln 2f x x x x =-+-()11f x x x'=-+-()'11f =-()111221f =-+=()()11122302y x x y -=--⇒+-=()f x 1x =2230x y +-=()f x ()0,∞+()211x ax f x x a x x-+'=-+-=-240a -≤22a -≤≤()0f x '≤()f x ()0,∞+240a ->2a >2a <-2a >()f x ⎛ ⎝⎫+∞⎪⎪⎭()f x 2a <-∴单调递减;综上所述,当时,在单调递减;当时,在,单调递减,在单调递增.【小问3详解】由(2)知,当时,有两个极值点,,且满足:,由题意知,.∴令.则.在单调递增,在单调递减.∴.即.在()f x ()0,∞+2a ≤()f x ()0,∞+2a >()fx ⎛ ⎝⎫+∞⎪⎪⎭()fx 2a >()f x 1x 2x 12121x x ax x +=⎧⎨⋅=⎩1201x x <<<()()221211122211424ln 2ln 22f x f x x ax x x ax x ⎛⎫⎛⎫-=-+---+- ⎪ ⎪⎝⎭⎝⎭22111222244ln 22ln x ax x x ax x =-+-+-+()()221112122122244ln 22ln x x x x x x x x x x =-++-+-++2222226ln 2x x x =-++()()2226ln 21g x x x x x=-++>()3462g x x x x'=--+=()g x ()+∞()2max 213ln 2g x g==-++=+()()124213ln 2f x f x -≤+。
(完整)高二上学期期末理科数学试题及答案,推荐文档
高二年级理科数学卷20161225一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若命题p :0x ∃>,2320x x -+>,则命题p ⌝为A. 0x ∃>,2320x x -+≤B. 0x ∃≤,2320x x -+≤ C. 0x ∀>,2320x x -+≤D. 0x ∀≤,2320x x -+≤2、公比为2的等比数列{n a } 的各项都是正数,且 41016a a =,则6a =A .1B .2C .4D .8 3、在ABC ∆中,如果bc a c b c b a 3))((=-+++,那么角A 等于 A .ο30 B .ο60 C .ο120 D .ο1504、已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则23z x y =+的取值范围是A. [8,4]-B. [8,2]-C. [4,2]-D. ]4,8[--5、已知双曲线221916x y -=上一点M 到A (5,0)的距离为3,则M 到左焦点的距离等于 A .6 B .7 C .8 D .9 6、已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则=+++821111S S S Λ A. 87B. 98C. 89D. 9107、设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下列向量中是平面α的法向量的是A.(-1,-2,5)B.(-1,1,-1)C.(1, 1,1)D.(1,-1,-1)8、空间四点A,B,C,M 互不重合且无三点共线,O 为空间任意一点,则使向量MA u u u r 、MB u u u r 、MC u u uu r 可能成为空间一组基底的关系是A .111333OM OA OB OC =++u u u u r u u u r u u u r u u u rB .MA MB MC =+u u u r u u u r u u u u rC .OM OA OB OC =++u u u u r u u u r u u u r u u u rD .32MA MB MC =-u u u r u u u r u u u u r9、已知直线m 、n 和平面α,则n m //的一个必要不充分条件是A .αα////n m 且B .α//m 且n α⊥C .m 、n 与α成等角D .m α⊥且n α⊥10、如果满足∠ABC=060,AC=12,BC=k 三角形恰有一个,那么k 的取值范围是A .38=kB .120≤<kC .12≥kD .120≤<k 或38=k11、已知双曲线的顶点与焦点分别是椭圆的22221y x a b+=(0a b >>)焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为A .13 B .12C .3D .2212.如果满足方程y tx t y x 322222+=+++的实数对),(y x 一定满足不等式||x y ≥,则常数t 的取值范围是A .]223,223[--- B .]223,223[++- C .]223,223[-+- D .]223,223[+--二、填空题.(本大题共 4小题,每小题 5分,共 20 分 )13、已知向量(5,3,1)a =r ,2(2,,)5b t =--r ,若向量a r 与b r 的夹角为锐角,则t 的取值范围是14、等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = .15、抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则p 的值为_____________16、已知命题p :ABC ∆中, B A >是B A sin sin >的充要条件;命题q : 0>>b a 是ab ba >+2的充分不必要条件。
四川省遂宁市2021-2022学年高二上学期期末考试数学试卷(理科)(解析版)
四川省遂宁市2021-2022学年高二上学期期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知三维数组,,且,则实数k的值为()A.﹣2B.2C.D.﹣92.(5分)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有一个黑球与都是红球B.至少有一个红球与都是红球C.至少有一个红球与至少有1个黑球D.恰有1个红球与恰有2个红球3.(5分)已知直线x+ay﹣2=0和直线ax+y+1=0互相平行,则a等于()A.±1B.﹣1C.1D.04.(5分)设α、β是两个不同的平面,m、n是两条不同的直线,且m⊂α,n⊂β,下列命题正确的是()A.如果m∥β,那么α∥βB.如果α∥β,那么m∥nC.如果m⊥β,那么α⊥βD.如果α⊥β,那么m⊥β5.(5分)过点P(1,1)可以向圆x2+y2+2x﹣4y+k﹣2=0引两条切线,则k的范围是()A.k>2B.0<k<7C.k<7D.2<k<76.(5分)《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学.“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如下流程框图,若输入的a,b分别为91,39,则输出的a=()A.3B.7C.13D.217.(5分)在直三棱柱ABC﹣A1B1C1中,已知AB⊥BC,AB=BC=2,,则异面直线AC1与A1B1所成的角为()A.30°B.45°C.60°D.90°8.(5分)甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图所示:下列说法错误的是()A.从平均数和方差相结合看,甲波动比较大,乙相对比较稳定B.从折线统计图上两人射击命中环数走势看,甲更有潜力C.从平均数和命中9环及9环以上的次数相结合看,甲成绩较好D.从平均数和中位数相结合看,乙成绩较好9.(5分)若直线y=kx与圆(x+2)2+(y﹣1)2=1的两个交点关于直线2x﹣y+b=0对称,则k,b的值分别为()A.,b=5B.,b=﹣3C.,b=﹣4D.k=2,b=510.(5分)甲、乙两艘轮船都要在某个泊位停靠6个小时,假定它们在一昼夜的时间中随机到达,若两船有一艘在停泊位时,另一艘船就必须等待,则这两艘轮船停靠泊位时都不需要等待的概率为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC所有顶点都在球O的球面上,且SA⊥平面ABC,若SA=AB=AC=BC=1,则球O的表面积为()A.B.5πC.D.12.(5分)已知f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于点(1,0)对称,若不等式f()+f(2﹣k(x+2))≤0的解集为区间〖a,b〗,且b﹣a=2,则k=()A.B.C.2D.﹣2二、填空题:本大题共4小题,每小题5分,共20分。
2018-2019学年四川省内江市高二(上)期末数学试卷(理科)解析版
2018-2019学年四川省内江市高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.在空间直角坐标系中,点A(1,-1,1)关于坐标原点对称的点的坐标为()A. B. C. D. 1,2.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=()A. 45B. 54C. 90D. 1263.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A. 56B. 60C. 120D. 1404.图为某个几何体的三视图,则该几何体的表面积为()A. 32B.C. 48D.5.如图的正方体ABCD-A1B1C1D1中,异面直线A1B与B1C所成的角是()A.B.C.D.6.已知a、b、c是直线,β是平面,给出下列命题:①若a⊥b,b⊥c则a∥c;②若a∥b,b⊥c则a⊥c;③若a∥β,b⊂β,则a∥b;④若a与b异面,且a∥β则b与β相交;其中真命题的个数是()A. 1B. 2C. 3D. 47.直线x-2y+1=0关于直线x=1对称的直线方程是()A. B. C. D.8.已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6,}.则直线l1与l2的交点位于第一象限的概率为()A. B. C. D.9.若变量x,y满足,则x2+y2的最大值是()A. 18B. 20C.D.10.与圆O1;x2+y2+4x-4y+7=0,圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A. 3B. 1C. 2D. 411.如图,边长为2的正方形ABCD中,点E、F分别是AB、BC的中点,将△ADE,△EBF,△FCD分别沿DE,EF,FD折起,使得A、B、C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的表面积为()A. B. C. D.12.已知圆O:x2+y2=1,直线l:y=ax+2,在直线l上存在点M,过点M作圆O的两条切线,切点为A、B,且四边形OAMB为正方形,则实数a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.如图茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为______,______.14.执行如图所示的程序框图若输人x的值为3,则输出y的值为______.15.在平面直角坐标系xOy中,以点(2,0)为圆心,且与直线ax-y-4a-2=0(a∈R)相切的所有圆中,半径最大的圆的标准方程为______.16.正四棱锥(底面是正方形,顶点在底面上的射影是底面中心)S-ABCD的底面边长为4,高为4,点E、F、G分别为SD,CD,BC的中点,动点P在正四棱锥的表面上运动,并且总保持PG∥平面AEF,则动点P的轨迹的周长为______.三、解答题(本大题共6小题,共70.0分)17.(1)求经过直线3x+4y-2=0与直线x-y+4=0的交点P,且垂直于直线x-2y-1=0的直线方程;(2)求过点P(-1,3),并且在两坐标轴上的截距相等的直线方程.18.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥平面AB1C.19.已知一圆经过点A(3,1),B(-1,3),且它的圆心在直线3x-y-2=0上.(1)求此圆的方程;(2)若点D为所求圆上任意一点,且点C(3,0),求线段CD的中点M的轨迹方程.20.(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2012年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2020年农村居民家庭人均纯收入.附:参考公式:=,=.=.21.如图:高为1的等腰梯形ABCD中,AM=CD=1,AB=3,现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB、AC.(1)在AB边上是否存在点P,使AD∥平面MPC?(2)当点P为AB边中点时,求点B到平面MPC的距离.22.已知圆O:x2+y2=2,直线.l:y=kx-2.(1)若直线l与圆O相切,求k的值;(2)若直线l与圆O交于不同的两点A,B,当∠AOB为锐角时,求k的取值范围;(3)若,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,探究:直线CD 是否过定点.答案和解析1.【答案】B【解析】解:空间坐标关于原点对称,则所有坐标都为原坐标的相反数,即点A(1,-1,1)关于坐标原点对称的点的坐标为(-1,-1,-1),故选:B.根据空间坐标的对称性进行求解即可.本题主要考查空间坐标对称的计算,结合空间坐标的对称性是解决本题的关键.比较基础.2.【答案】C【解析】解:A种型号产品所占的比例为=,18,故样本容量n=90.故选:C.由分层抽样的特点,用A种型号产品的样本数除以A种型号产品所占的比例,即得样本的容量n.本题考查分层抽样的定义和方法,各层的个体数之比等于各层对应的样本数之比,属于基础题.3.【答案】D【解析】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频数为:0.7×200=140,故选:D.根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.本题考查的知识点是频率分布直方图,难度不大,属于基础题目.4.【答案】B【解析】解:根据几何体的三视图,得;该几何体是底面边长为4,高为2的正四棱锥,所以该四棱锥的斜高为=2;所以该四棱锥的侧面积为4××4×2=16,底面积为4×4=16,所以几何体的表面积为16+16.故选:B.根据几何体的三视图,得出该几何体是正四棱锥,结合图中数据,即可求出它的表面积.本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.5.【答案】C【解析】解:连接A1D,由正方体的几何特征可得:A1D∥B1C,则∠BA1D即为异面直线A1B与B1C所成的角,连接BD,易得:BD=A1D=A1B故∠BA1D=60°故选:C.连接A1D,根据正方体的几何特征及异面直线夹角的定义,我们可得∠BA1D即为异面直线A1B与B1C所成的角,连接BD后,解三角形BA1D即可得到异面直线A1B与B1C所成的角.本题考查的知识点是异面直线及其所成的角,其中根据正方体的几何特征及异面直线夹角的定义判断出∠BA1D即为异面直线A1B与B1C所成的角,是解答本题的关键.6.【答案】A【解析】解:①利用正方体的棱的位置关系可得:a与c可以平行、相交或为异面直线,故不正确;②若a∥b,b⊥c,利用“等角定理”可得a⊥c,故正确;③若a∥β,b⊂β,则a与平面β内的直线可以平行或为异面直线,不正确;④∵a与b异面,且a∥β,则b与β相交,平行或b⊂β,故不正确.综上可知:只有②正确.故选:A.①利用正方体的棱的位置关系即可得出;②若a∥b,b⊥c,利用“等角定理”可得a⊥c;③若a∥β,b⊂β,利用线面平行的性质可得:a与平面β内的直线可以平行或为异面直线;④由a与b异面,且a∥β,则b与β相交,平行或b⊂β,即可判断出.熟练掌握空间空间中线线、线面的位置关系是解题的关键.7.【答案】D【解析】解:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于x=1对称点为(2-x,y)在直线x-2y+1=0上,∴2-x-2y+1=0化简得x+2y-3=0故选答案D.解法二:根据直线x-2y+1=0关于直线x=1对称的直线斜率是互为相反数得答案A或D,再根据两直线交点在直线x=1选答案D故选:D.设所求直线上任一点(x,y),关于x=1的对称点求出,代入已知直线方程,即可得到所求直线方程.本题采用两种方法解答,一是相关点法:求轨迹方程法;法二筛选和排除法.本题还有点斜式、两点式等方法.8.【答案】A【解析】解:设事件A为“直线l1与l2的交点位于第一象限”,由于直线l1与l2有交点,则b≠2a.联立方程组解得x=,y=,∵直线l1与l2的交点位于第一象限,则x=>0,y=>0,解得b>2a.a,b∈{1,2,3,4,5,6}的总事件数为36种.满足条件的实数对(a,b)有(1,3)、(1,4)、(1,5)、(1,6)、(2,5)、(2,6)共六种.∴P(A)==即直线l1与l2的交点位于第一象限的概率为.故选:A.本题是一个等可能事件的概率,试验发生包含的事件数是36,满足条件的事件是两条直线的交点在第一象限,写出两条直线的交点坐标,根据在第一象限写出不等式组,解出结果,根据a,b之间的关系写出满足条件的事件数,得到结果.本题考查等可能事件的概率,考查两条直线的交点在第一象限的特点,本题是一个综合题,在解题时注意解析几何知识点的应用.9.【答案】C【解析】解:作出不等式组对应的平面区域如图:设z=x2+y2,则z的几何意义是区域内的点到原点的距离的平方,由图象知,C点到原点的距离最大,由得,即C (,),此时x2+y2=,故选:C.作出不等式组对应的平面区域,利用z=x2+y2的几何意义是区域内的点到原点的距离的平方,利用数形结合进行求解即可.本题主要考查线性规划的应用,利用两点间距离的几何意义,以及数形结合是解决本题的关键.10.【答案】A【解析】解:圆的圆心坐标为(-2,2),半径为1,圆的圆心坐标为(2,5),半径为4,两个圆心之间的距离d=5,等于半径和,故两圆外切,故公切线共有3条,故选:A.根据已知中圆的方程,求出圆心坐标和半径,判断出两圆外切,可得答案.本题考查的知识点是圆的位置关系,圆的一般方程,难度中档.11.【答案】B【解析】解:由题意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.三棱锥的底面A′EF扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,正四棱柱的对角线的长度就是外接球的直径,直径为:=.∴球的半径为,∴球的表面积为=6π.故选:B.把棱锥扩展为正四棱柱,求出正四棱柱的外接球的半径就是三棱锥的外接球的半径,从而可求球的表面积.本题考查几何体的折叠问题,几何体的外接球的半径的求法,考查球的表面积,考查空间想象能力.12.【答案】B【解析】解:根据题意,圆O:x2+y2=1,圆心为O(0,0),半径r=1,若过点M作圆O的两条切线,切点为A、B,且四边形OAMB为正方形,则|OM|=,则M的轨迹为以O为圆心,为半径为圆,其方程为x2+y2=2,若在直线l上存在点M,则直线l与圆x2+y2=2有交点,则有d=≤,解可得:a≤-1或a≥1,即a的取值范围为(-∞,-1][1,+∞);故选:B.根据题意,由正方形的性质可得|OM|=,分析可得M的轨迹为以O为圆心,为半径为圆,其方程为x2+y2=2,进而可得若在直线l上存在点M,则直线l与圆x2+y2=2有交点,则有d=≤,解可得a的取值范围,即可得答案.本题考查直线与圆的位置关系,涉及与圆有关的轨迹问题,关键是分析M的轨迹,属于基础题.13.【答案】5 8【解析】解:根据茎叶图中的数据,得:∵甲组数据的中位数为15,∴x=5;又∵乙组数据的平均数为16.8,∴=16.8,解得:y=8;综上,x、y的值分别为5、8.故答案为:5 8.根据茎叶图中的数据,结合中位数与平均数的概念,求出x、y的值.本题考查了利用茎叶图求数据的中位数与平均数的问题,是基础题.14.【答案】63【解析】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y的值为63.故答案为:63.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.【答案】(x-2)2+y2=8【解析】解:根据题意,直线ax-y-4a-2=0,即y+2=a(x-4),恒过定点(4,-2),设P为(4,-2)设要求圆的半径为r,其圆心C的坐标为(2,0),分析可得:以点(2,0)为圆心,且与直线ax-y-4a-2=0(a∈R)相切的所有圆中,半径最大为CP,此时r2=|CP|2=(4-2)2+(-2-0)2=8,则要求圆的方程为(x-2)2+y2=8,故答案为:(x-2)2+y2=8.根据题意,将直线的方程变形,分析可得其恒过点(4,-2),结合直线与圆的位置关系可得以点(2,0)为圆心,且与直线ax-y-4a-2=0(a∈R)相切的所有圆中,半径最大的圆的半径为CP,求出圆的半径,结合圆的标准方程分析可得答案.本题考查直线与圆的位置关系,涉及直线过定点问题,注意分析直线所过的定点,属于基础题.16.【答案】2+.【解析】解:取SB,AB中点H,P,连接HG,PC,取PB中点Q,连接HQ,GQ,因为E、F分别为SD,CD中点,所以EF∥SC,SC∥HG,所以HG∥EF,HG不在面AEF内,所以HG∥面AEF.因为QG是中位线所以QG∥PC,PC∥AF,所以QG∥AF,因为QG不在面AEF 内,所以QG∥面AEF,因为HG∩QG=G,所以面HQG∥面AEF.动点P在正四棱锥的表面上运动,并且总保持PG∥平面AEF,则动点P的轨迹的周长为△HQG 的周长.正四棱锥S-ABCD的底面边长为4,高为4,所以QG=,HG=,SP=2,HQ=,所以动点P的轨迹的周长为2+.过G做一个平面与面AEF平行,且与正四棱锥的表面相交,交线之和即为动点P的轨迹的周长.本题考查面面平行的位置关系,属于中档题.17.【答案】解:(1)联立,解得,∴两直线的焦点坐标为(-2,2),直线x-2y-1=0斜率为,则所求直线的斜率为-2.∴直线方程为y-2=-2(x+2),即2x+y+2=0;(2)当直线过原点时,直线方程为y=-3x;当直线不过原点时,设直线方程为x+y=a,则-1+3=a,即a=2.是求直线方程为x+y=2.∴所求直线方程为3x+y=0或x+y-2=0.【解析】(1)联立直线方程求出点的坐标,再求出所求直线的斜率,代入直线方程点斜式得答案;(2)当直线过原点时,直线方程为y=-3x;当直线不过原点时,设直线方程为x+y=a,把点的坐标代入求得a,则直线方程可求.本题考查直线方程的求法,体现了分类讨论的数学思想方法,是基础题.18.【答案】证明:(1)因为四边形BB1C1C为正方形,B1C∩BC1=E,所以E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是三棱柱,AA1⊥底面ABC所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以B1C⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面AB1C.【解析】(1)由正方形性质得E为B1C的中点,从而DE∥AC,由此能证明DE∥平面AA1C1C.(2)由线面垂直得AC⊥CC1,由AC⊥BC,得AC⊥平面BCC1B1,由此能证明BC1⊥平面AB1C.本题考查线面平行的证明,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.19.【答案】解:(1)由已知可设圆心N(a,3a-2),又由已知得|NA|=|NB|,从而有=a=2.于是圆N的圆心N(2,4),半径r=.所以,圆N的方程为(x-2)2+(y-4)2=10.(2)设M(x,y),又点D是圆N:(x-2)2+(y-4)2=10上任意一点,可设D(2+cosα,4+sinα).∵C(3,0),点M是线段CD的中点,∴有x=,y=,消去参数α得:(x-)2+(y-2)2=.故所求的轨迹方程为:(x-)2+(y-2)2=【解析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M的坐标,利用中点得到点D坐标,代入圆的方程整理化简得到的中点M的轨迹方程.本题考查圆的方程,考查参数法,圆的方程一般采用待定系数法,属于中档题.20.【答案】解:(1)==4,==4.3,===0.5,=-×=4.3-0.5×4=2.3,y关于t的线性回归方程为:=0.5x+2.3.(2)2012年至2018年该地区农村居民家庭人均纯收入逐步提高,翻了一番.当t=8时,y=0.5×8+2.3=6.3千元.∴预测该地区2020年农村居民家庭人均纯收入为6.3千元.【解析】(1)根据公式计算可得:=0.5x+2.3.(2)t=8代入计算可得.本题考查了线性回归方程,属中档题.21.【答案】解:(1)在AB边上存在点P,满足PB=2PA,使AD∥平面MPC.连接BD,交MC于O,连接OP,则由题意,DC=1,MB=2,又∵DC∥MB,∴△MOB∽△COD,∴OB:OD=MB:DC,∴OB=2OD,∵PB=2PA,∴OP∥AD,∵AD⊄平面MPC,OP⊂平面MPC,∴AD∥平面MPC;(2)由题意,AM⊥MD,平面AMD⊥平面MBCD,∴AM⊥平面MBCD,∴P到平面MBC的距离为,△MBC中,MC=BC=,MB=2,∴MC⊥BC,∴S△MBC=×=1,△MPC中,MP==CP,MC=,∴S△MPC=×=.设点B到平面MPC的距离为h,则由等体积可得,∴h=.【解析】(1)在AB边上存在点P,满足PB=2PA,使AD∥平面MPC,证明AD∥OP,即可证明AD∥平面MPC?(2)当点P为AB边中点时,利用等体积方法,即可求点B到平面MPC的距离.本题考查线面平行的判定,考查点到平面距离的计算,考查体积的计算,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.22.【答案】解:(1)∵圆O:x2+y2=2,直线l:y=kx-2.直线l与圆O相切,∴圆心O(0,0)到直线l的距离等于半径r=,即d==,解得k=±1.(2)设A,B的坐标分别为(x1,y1),(x2,y2),将直线l:y=kx-2代入x2+y2=2,整理,得(1+k2)x2-4kx+2=0,∴ ,,△=(-4k)2-8(1+k2)>0,即k2>1,当∠AOB为锐角时,=x1x2+y1y2=x1x2+(kx1-2)(kx2-2)==>0,解得k2<3,又k2>1,∴-<<或1<k<.故k的取值范围为(-,)(1,).(3)由题意知O,P,C,D四点共圆且在以OP为直径的圆上,设P(t,),其方程为x(x-t)+y(y-)=0,∴,又C,D在圆O:x2+y2=2上,∴l CD:tx+,即(x-)t-2y-2=0,由,得,∴直线CD过定点(,).【解析】(1)由直线l与圆O相切,得圆心O(0,0)到直线l的距离等于半径r=,由此能求出k.(2)设A,B的坐标分别为(x1,y1),(x2,y2),将直线l:y=kx-2代入x2+y2=2,得(1+k2)x2-4kx+2=0,由此利用根的判断式、向量的数量积公式能求出k的取值范围.(3)由题意知O,P,C,D四点共圆且在以OP为直径的圆上,设P(t,),其方程为,C,D在圆O:x2+y2=2上,求出直线CD:(x-)t-2y-2=0,联立方程组能求出直线CD过定点().本题考查实数的取值范围的求法,考查直线是否过定点的判断与求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.。
安徽省马鞍山市含山中学高二上学期期末考试数学(理)试题 PDF版含答案
15.中国古代数学经典《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳 马,将四个面都为直角三角形的三棱锥称之为鳖臑(biē nào) .若三棱锥������ − ������������������ 为鳖臑,且������������⊥ 平面������������������ , ������������ = ������������ = 2,又该鳖臑的外接球的表面积为24������,则该鳖臑的体积为 16.抛物线 x 2 py( p 0) 的焦点为 F ,其准线与双曲线
D. , 2 2 2
B.45°
2,
D.90°
B1 A1
C1
8.如图所示,在正三棱柱������������������ − ������1 ������1 ������1 中,������是������������的中点,������������1 = √2������������,则异面直 线������������1 与������������所成的角为 C.60°
x2 y2 y2 x2 1 表示焦点在������ 轴上的椭圆,命题������:双曲线 1 的离心率 2m 9 m 5 m
-2-
e(
6 , 2 ) ,若“������ ∧ ������”为假命题,“������ ∨ ������”为真命题,则������的取值范围是__________. 2
1
B.5+2 3 D.4+2 3
1
1
1
正视图
1
侧视图
俯视图
-1-
7.已知圆 O: x y 4 上到直线 l : x y a 的距离等于 1 的点至少有 2 个,则 a 的取值范围为
陕西省西安中学2019_2020学年高二数学上学期期末考试试题理(含解析)
西安中学2019-2020学年度第一学期期末考试高二数学(理)一、选择题(共12小题;共60分) 1.抛物线y =4x 2的焦点坐标是( ) A. (0,1)B. (1,0)C. 1(0,)16D.1(,0)16【答案】C 【解析】 【分析】将抛物线方程化为标准形式,即可得到焦点坐标.【详解】抛物线24y x =的标准方程为214x y =,即18p =,开口向上,焦点在y 轴的正半轴上,故焦点坐标为10,16⎛⎫⎪⎝⎭.故选:C.【点睛】本题考查抛物线的标准方程,把抛物线方程化为标准形式是解题的关键,属于基础题.2.已知(2,1,2),(4,2,)a b x =-=-v v ,且//a b r r ,则x=( )A. 5B. 4C. -4D. -5【答案】C 【解析】 【分析】由向量平行,坐标对应成比例可求得x. 【详解】由题意可知,因为//a b rr,所以21242x-==-,所以x=-4,选C. 【点睛】本题考查空间向量平行的坐标关系,两向量平行,坐标对应成比例. 3.给出下列命题:①若空间向量,a b r r 满足a b =r r ,则a b =r r ;②空间任意两个单位向量必相等;③对于非零向量c r,由a c b c ⋅=⋅r r rr,则a b =rr;④在向量的数量积运算中()()a b c a b c ⋅⋅=⋅⋅r r r r r r.其中假.命题的个数是( ) A 1 B. 2C. 3D. 4【答案】D 【解析】 【分析】结合向量的性质,对四个命题逐个分析,可选出答案.【详解】对于①,空间向量,a b rr 的方向不一定相同,即a b =rr不一定成立,故①错误; 对于②,单位向量的方向不一定相同,故②错误;对于③,取()0,0,0a =r ,()1,0,0b =r ,()0,1,0c =r ,满足0a c b c ⋅=⋅=r r rr ,且0c ≠r r ,但是a b ≠r r ,故③错误;对于④,因为a b ⋅r r 和b c ⋅r r 都是常数,所以()a b c ⋅⋅r r r 和()a b c ⋅⋅r r r 表示两个向量,若a r 和c r 方向不同,则()a b c ⋅⋅r r r 和()a b c ⋅⋅r r r不相等,故④错误.故选:D.【点睛】本题考查向量的概念与性质,考查向量的数量积,考查学生的推理论证能力,属于基础题.4.下列命题,正确的是( )A. 命题“0x R ∃∈,使得2010x -<”的否定是“x R ∀∈,均有210x ->”B. 命题“存在四边相等的空间四边形不是正方形”,该命题是假命题C. 命题“若22x y =,则x y =”的逆否命题是真命题D. 命题“若3x =,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠” 【答案】D 【解析】对于选项A,正确的是“,x R ∀∈ 均有210x -≥”; 对于选项B,命题是真命题,存在四边相等的空间四边形不是正方形,比如正四面体,选项B 错; 对于选项C,由于原命题为假命题,所以其逆否命题为假命题,选项C 错; 对于选项D,从否命题的形式上看,是正确的.故选D. 点睛:本题以命题的真假判断应用为载体, 考查了四种命题, 特称命题等知识点,属于中档题. 解题时要认真审题, 仔细解答.5.过抛物线26y x =的焦点F 作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么||AB =( )A. 10B. 9C. 6D. 4【答案】B 【解析】 【分析】依据抛物线的定义,可以求出点A ,B 到准线距离,即可求得AB 的长. 【详解】抛物线26y x =的准线方程是32x =-,所以132AF x =+, 232BF x =+,1239AB AF BF x x =+=++=,故选B . 【点睛】本题主要考查抛物线定义的应用以及过焦点弦的弦长求法.6.设,a b r r 是非零向量,则“存在实数λ,使得λa b =r r”是“a b a b +=+r r r r ”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】 【分析】由题意结合向量共线的性质分类讨论充分性和必要性是否成立即可. 【详解】存在实数λ,使得λa b =r r,说明向量,a b r r 共线,当,a b r r同向时,a b a b +=+r r r r 成立, 当,a b r r反向时,a b a b +=+r r r r 不成立,所以,充分性不成立.当a b a b +=+r r r r 成立时,有,a b r r 同向,存在实数λ,使得λa b =r r成立,必要性成立,即“存在实数λ,使得λa b =r r”是“a b a b +=+r r r r ”的必要而不充分条件.故选B .【点睛】本题主要考查向量共线的充分条件与必要条件,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.7.椭圆221102x y m m +=--的焦距为4,则m 等于( )A. 4B. 8C. 4或8D. 12【答案】C 【解析】 【分析】分焦点在x 轴上和y 轴上两种情况讨论,分别求出2a 、2b 的表达式,结合2224a b c +==可求出答案.【详解】因为221102x ym m +=--为椭圆,所以10020102m m m m ->⎧⎪->⎨⎪-≠-⎩,即()()2,66,10m ∈U , 若椭圆的焦点在x 轴上,则210a m =-,22b m =-,故()21021224c m m m =---=-=,解得4m =,符合题意;若椭圆的焦点在y 轴上,则22a m =-,210b m =-,故()22102124c m m m =---=-=,解得8m =,符合题意.故选:C.【点睛】本题考查椭圆的性质,考查学生的计算求解能力,属于基础题.8.(2016新课标全国Ⅱ理科)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为B.32D. 2【答案】A【解析】试题分析:由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.9.已知点A(0,1,0),B(-1,0,-1),C(2,1,1),点P(x,0,z),若PA⊥平面ABC ,则点P 的坐标为( ) A. (1,0,-2) B. (1,0,2) C. (-1,0,2) D. (2,0,-1)【答案】C 【解析】 【分析】利用PA u u u r ⊥AB u u u r ,PA u u u r ⊥AC u u ur ⇔0PA AB PA AC ⋅=⋅=u u u r u u u r u u u r u u u r .即可得出.【详解】∵()111AB =---u u u r ,,,()201AC =u u u r ,,,()1PA x z =--u u u r,,. ∵PA u u u r ⊥AB u u u r ,PA u u u r ⊥AC u u u r ,∴0PA AB PA AC ⋅=⋅=u u u r u u u r u u u r u u u r.∴1020x z x z -+=⎧⎨--=⎩,解得12x z =⎧⎨=-⎩.∴P (-1,0,2) . 故选C .【点睛】本题考查向量数量积与垂直的关系,考查运算能力,属于基础题.10.已知12,F F 是椭圆()222210x y a b a b+=>>的两焦点,P 是椭圆上任意一点,过一焦点引12F PF ∠的外角平分线的垂线,垂足为Q ,则动点Q 的轨迹为( ▲ )A. 圆B. 椭圆C. 双曲线D. 抛物线【答案】A 【解析】【详解】不妨设过焦点1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,延长F 1Q 交F 2P 与M 点,连OQ ,则21211()=22OQ F M F P PF a ==+,所以动点Q 的轨迹为圆,选A. 11.如图所示,直三棱柱111ABC A B C -的侧棱长为3,底面边长11111A C B C ==,且11190A C B ∠=o,D 点在棱1AA 上且12AD DA =,P 点在棱1C C 上,则1PD PB ⋅u u u r u u u r的最小值为( )A.52B. 14-C.14D. 52-【答案】B 【解析】 【分析】由题易知1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示空间直角坐标系,设()03PC a a =≤≤,可知()0,0,P a ,进而可得1,PD PB u u u r u u u r的坐标,然后求得1PD PB ⋅u u u r u u u r 的表达式,求出最小值即可.【详解】由题意可知,1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系,则()10,1,3B ,()1,0,2D ,设()03PC a a =≤≤,则()0,0,P a ,所以()1,0,2P a D =-u u u r ,()10,1,3a PB =-u u u r,则()()2151 002324a a aPD PB⎛⎫=++--=--⎪⎝⋅⎭u u u r u u u r,当52a=时,1PD PB⋅u u u r u u u r取得最小值14-.故选:B.【点睛】本题考查两个向量的数量积的应用,考查向量的坐标运算,考查学生的计算求解能力,属于中档题.12.已知椭圆2222:1(0)x yE a ba b+=>>的右焦点为F.短轴的一个端点为M,直线:340l x y-=交椭圆E于,A B两点.若4AF BF+=,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.3B.3(0,]4C.3D.3[,1)4【答案】A【解析】试题分析:设1F是椭圆的左焦点,由于直线:340l x y-=过原点,因此,A B两点关于原点对称,从而1AF BF是平行四边形,所以14BF BF AF BF+=+=,即24a=,2a=,设(0,)M b,则45bd=,所以4455b≥,1b≥,即12b≤<,又22224c a b b=-=-,所以03c<≤3ca<≤.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.二、填空题(共4小题;共20分)13.O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB OC t =++u u u r u u u r u u u r u u u r,若P ,A ,B ,C 四点共面,则实数t =______.【答案】18【解析】 【分析】根据四点共面的充要条件即可求出t 的值.【详解】P ,A ,B ,C 四点共面,且3148OP OA OB OC t =++u u u r u u u r u u u r u u u r,31148t ++=,解得18t =. 故答案为: 18【点睛】本题考查四点共面,掌握向量共面的充要条件是解题的关键,属于基础题.14.设P 是椭圆221169x y +=上一点,12,F F 分别是椭圆的左、右焦点,若12||.||12PF PF =,则12F PF ∠的大小_____. 【答案】60o 【解析】 【分析】1PF m =,2PF n =,利用椭圆的定义、结合余弦定理、已知条件,可得22122812282m n a mn m n mncos F PF+==⎧⎪=⎨⎪=+-∠⎩,解得121cos 2F PF ∠=,从而可得结果.【详解】椭圆221 169xy+=,可得28a=,设1PF m=,2PF n=,可得2221228124282m n amnc m n mncos F PF+==⎧⎪=⎨⎪==+-∠⎩,化简可得:121cos2F PF∠=,1260F PF∴∠=o,故答案为60o.【点睛】本题主要考查椭圆的定义以及余弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cosa b c bc A=+-;(2)222cos2b c aAbc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用.15.如图,二面角lαβ--等于120︒,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC l⊥,BD l⊥,且1AB AC BD===,则CD的长等于______.【答案】2【解析】【分析】由已知中二面角α﹣l﹣β等于120°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由22()CD CA AB BD=++u u u r u u u r u u u r u u u r,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l ﹣β的平面角θ等于120°,且AB =AC =BD =1,∴0CA AB AB BD ⋅=⋅=u u u r u u u r u u u r u u u r ,CA DB =u u u r u u u r <,>60°,1160CA BD cos ⋅=⨯⨯︒u u u r u u u r∴22()CD CA AB BD =++u u u r u u u r u u u r u u u r2222422=CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ||2CD =u u u r故答案为2.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用22()CD CA AB BD =++u u u r u u u r u u u r u u u r ,结合向量数量积的运算,是解答本题的关键.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为6,渐近线方程为13y x =±,动点M 在双曲线左支上,点N 为圆22:(1E x y ++=上一点,则2||||MN MF +的最小值为_______【答案】9 【解析】 【分析】求得双曲线的a ,b ,可得双曲线方程,求得焦点坐标,运用双曲线的定义和三点共线取得最小值,连接1EF ,交双曲线于M ,圆于N ,计算可得所求最小值. 【详解】解:由题意可得26a =,即3a =,渐近线方程为13y x =±,即有13b a =,即1b =,可得双曲线方程为2219x y -=,焦点为1(F 0),2F ,0),由双曲线的定义可得211||2||6||MF a MF MF =+=+,由圆22:(1E x y +=可得(0,E ,半径1r =, 21||||6||||MN MF MN MF +=++,连接1EF ,交双曲线于M ,圆于N ,可得1||||MN MF +取得最小值,且为1||6104EF =+=, 则则2||||MN MF +的最小值为6419+-=. 故答案为:9.【点睛】本题考查双曲线的定义、方程和性质,考查圆的方程的运用,以及三点共线取得最值,考查数形结合思想和运算能力,属于中档题. 三、解答题(共12小题;共70分) 17.根据下列条件求曲线的标准方程: (1)准线方程为32y =-的抛物线; (2)焦点在坐标轴上,且过点(3,27-、()62,7--的双曲线.【答案】(1)26x y =;(2)2212575y x -=【解析】 【分析】(1)设抛物线的标准方程为22(0)x py p =>,利用准线方程为32y =-,可求出p 的值,即可求出抛物线的标准方程;(2)设所求双曲线的方程为221(0)mx ny mn +=<,将点(3,27-、()62,7--代入方程,可求出,m n ,进而可求出双曲线的标准方程. 【详解】(1)设抛物线的标准方程为22(0)x py p =>. 其准线方程为32y =-,所以有322p -=-,故3p =. 因此抛物线的标准方程为26x y =.(2)设所求双曲线的方程为221(0)mx ny mn +=<,因为点()3,27-、()62,7--在双曲线上,所以点的坐标满足方程,由此得928172491m n m n +=⎧⎨+=⎩,解得175125m n ⎧=-⎪⎪⎨⎪=⎪⎩,因此所求双曲线的方程为2212575y x -=.【点睛】本题考查抛物线与双曲线的标准方程的求法,考查学生的计算求解能力,属于基础题.18.如图,在正方体1111ABCD A B C D -中,E 为棱1DD 的中点.求证:(1)1BD ⊥平面1AB C ; (2)平面EAC ⊥平面1AB C .【答案】(1)证明见解析;(2)证明见解析 【解析】 【分析】(1)以D 为原点,建立如图所示的空间直角坐标系D xyz -,求出平面1AB C 的法向量m u r ,通过证明1//BD m u u u u r u r,可得出1BD ⊥平面1AB C ;(2)结合(1),平面1AB C 的法向量是m u r ,然后求出平面EAC 的法向量n r,进而可证明m n ⊥u r r,从而可知平面EAC ⊥平面1AB C .【详解】(1)以D 为原点,建立如图所示的空间直角坐标系D xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,1E ,()2,0,0A ,()0,2,0C ,()12,2,2B ,()2,2,0B ,()10,0,2D ,所以()2,2,0AC =-u u u r,()2,0,1AE =-u u u r ,()10,2,2AB =u u u r ,()12,2,2BD =--u u u u r , 设平面1AB C 的法向量(),,m x y z =u r,则1220220m AC x y m AB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩u u u r r u u u r r ,取1x =,得()1,1,1m =-u r . 因为12BD m =-u u u u r u r ,所以1//BD m u u u u r u r,所以1BD ⊥平面1AB C ;(2)设平面AEC 的法向量(),,n x y z '''=r,则20220n AE x z n AC x y ⎧''⋅=-+=⎪⎨''⋅=-+=⎪⎩r u u u r r u u u r ,取1x '=,得()1,1,2n =r , 1120m n ⋅=+-=Q u r r, ∴平面EAC ⊥平面1AB C.【点睛】本题考查线面垂直、面面垂直的证明,利用空间向量法是解决本题的较好方法,考查学生的计算求解能力与推理论证能力,属于基础题.19.如图,在直三棱柱111ABC A B C -中,已知12AA =,1AC BC ==,且AC BC ⊥,M 是11A B 的中点.(1)求证:1//CB 平面1AC M ;(2)设AC 与平面1AC M 的夹角为θ,求sin θ. 【答案】(1)证明见解析;(2)23【解析】 【分析】(1)易知1,,CA CB CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系C xyz -,求得平面1AC M 的法向量n r,从而可证明1n CB ⊥u u u r r ,又1CB ⊄平面1AC M ,即可证明1//CB 平面1AC M ;(2)由(1)可得AC u u u r 及平面1AC M 的法向量为n r ,设AC u u u r 和n r的夹角为α,可得sin cos A nnC AC θα==⋅⋅u u u r r u u u r r ,求解即可.【详解】(1)由题易知,1,,CA CB CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系C xyz -,则()0,0,0C ,()10,0,2C ,()1,0,0A ,()10,1,2B ,()11,0,2A , M Q 是11A B 的中点,11,,222M ⎛⎫∴⎪⎝⎭. 由此可得,11,,222AM ⎛⎫=- ⎪⎝⎭u u u u r ,111,,022C M ⎛⎫= ⎪⎝⎭u u u u r ,()10,1,2CB =u u u r,设向量(),,n x y z =r为平面1AC M 的一个法向量,则1112211222n C M x yn AM x y z⎧⋅=+=⎪⎪⎨⎪⋅=-++=⎪⎩u u u u rru u u u rr,取2x=,得2y=-,1z=,()2,2,1n∴=-r为平面1AC M的一个法向量.1·2021120n CB=⨯-⨯+⨯=u u u rrQ,1n CB∴⊥u u u rr,1CB⊄Q平面1AC M,1//CB∴平面1AC M.(2)()1,0,0AC=-u u u r,平面1AC M的一个法向量为()2,2,1n=-r,AC与平面1AC M的夹角为θ,设AC u u u r和n r的夹角为α,则()222212sin cos312(2)1ACACnnθα⨯-====⨯+-⋅+⋅u u u r ru u u r r.【点睛】本题考查线面平行的证明,考查线面角的求法,利用空间向量法是解决本题的较好方法,考查学生的计算求解能力与推理论证能力,属于中档题.20.一个圆经过点()2,0F,且和直线20x+=相切.(1)求动圆圆心的轨迹C的方程;(2)已知点()1,0B-,设不垂直于x轴的直线l与轨迹C交于不同的两点P Q、,若x轴是PBQ∠的角平分线,证明直线l过定点.【答案】(1)28y x=;(2)证明见解析【解析】【分析】(1)圆心到定点()2,0F 与到定直线2x =-的距离相等,可知圆心的轨迹是以点F 为焦点的抛物线,求出方程即可;(2)易知直线l 斜率存在且不为零,可设直线():0l my x n m =+≠,设()11,P x y ,()22,Q x y ,联立直线l 与抛物线方程,可得关于y 的一元二次方程,由x 轴是PBQ ∠的角平分线,可得121211y y x x -=++,整理可求得128y y =-,再结合韦达定理128y y n =,从而可求得n 的值,进而可求得直线l 过定点.【详解】(1)由题意,圆心到定点()2,0F 与到定直线2x =-的距离相等, 根据抛物线的定义可知,圆心的轨迹是以点F 为焦点的抛物线,其方程为28y x =. (2)由题可知,直线l 与C 有两个交点且不垂于于x 轴,所以直线l 斜率存在且不为零,设直线():0l my x n m =+≠,()11,P x y ,()22,Q x y ,联立28my x n y x=+⎧⎨=⎩,可得2880y my n -+=,则264320m n ∆=->,且1280y y m +=≠,128y y n =,又2118y x =,2228y x =,x 轴是PBQ ∠的角平分线,所以12122212121188y y y y x x y y --=⇒=++++,整理可得128y y =-, 所以1288y y n ==-,即1n =-,此时满足>0∆,故l :1my x =-, 所以,直线PQ 过定点()1,0.【点睛】本题考查抛物线的定义,考查直线与抛物线位置关系的应用,考查直线恒过定点问题,考查学生的计算求解能力,属于中档题.21.如图,正三角形ABE 与菱形ABCD 所在的平面互相垂直,2AB =,60ABC ∠=o ,M 是AB 的中点.(1)求证:EM AD ⊥;(2)求二面角A BE C --的余弦值;(3)在线段EC 上是否存在点P ,使得直线AP 与平面ABE 所成的角为45o ,若存在,求出EPEC的值;若不存在,说明理由. 【答案】(1)证明见解析;(2)5 ;(3) 在线段EC 上存在点P ,理由见解析. 【解析】 【分析】(1)推导出EM AB ⊥,从而EM ⊥平面ABCD ,由此能证明EM AD ⊥.(2)推导出EM MC ⊥,MC AB ⊥,从而MB 、MC 、ME 两两垂直,建立空间直角坐标系M xyz -,利用向量法能求出二面角A BE C --的余弦值.(3)求出AP u u u r和平面ABE 的法向量,利用向量法能示出在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o ,且23EP EC =. 【详解】证明:(Ⅰ)EA EB =Q ,M 是AB 的中点,EM AB ∴⊥,Q 平面ABE ⊥平面ABCD ,平面ABE I 平面ABCD AB =,EA ⊂平面ABE ,EM ∴⊥平面ABCD ,AD ⊂平面ABCD ,.EM AD ∴⊥解:(2) EM ⊥Q 平面ABCD ,EM MC ∴⊥,ABC QV 是正三角形,.MC AB MB ∴⊥∴、MC 、ME 两两垂直.建立如图所示空间直角坐标系.)M xyz -则(0,M 0,0),(1,A -0,0),(1,B 0,0),()C ,(0,E 0,()BC =-u u u r ,(1,BE =-u u u r,设(,m x =ry ,)z 是平面BCE 的一个法向量,则0m BC x m BE x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩u u u v r u u u v r , 令1z =,得)m =r,y Q 轴与平面ABE 垂直,(0,n ∴=r1,0)是平面ABE的一个法向量.cos ,5m n m n m n ⋅===⋅r rr rr r ,∴二面角A BE C --(3)假设在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o .(1,AE =u u u r0,(EC =u u u r ,设(),EP EC λ==u u u r u u u r,()001λ≤≤,则()AP AE EP =+=u u u r u u u r u u u r,Q 直线AP 与平面ABE 所成的角为45o ,sin 45,2AP n cos AP n AP n ⋅∴====⋅ou u u r ru u u r r u u u r r , 由01λ≤≤,解得23λ=, ∴在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o ,且2.3EP EC =【点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查满足条件的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查化归与转化思想、函数与方程思想、数形结合思想,考查创新意识、应用意识,是中档题.22.已知()13,0F -是椭圆C :()222210x y a b a b+=>>的左焦点,O 为坐标原点,22,2P -⎭为椭圆上的点. (1)求椭圆C 的标准方程;(2)若点,A B 都在椭圆C 上,且AB 中点M 在线段OP (不包括端点)上,求AOB V 面积的最大值,及此时直线AB 的方程.【答案】(1)2214x y +=;(2)AOB V 面积的最大值为1, 此时直线AB 的方程为112y x =- 【解析】 【分析】(1)依题意可得222221123a ba b ⎧+=⎪⎨⎪-=⎩,求出,a b ,即可得到椭圆C 的标准方程; (2)设()11,A x y ,()22,B x y ,()00,M x y ,易知直线AB 的斜率存在,设为k ,将,A B 两点坐标分别代入椭圆方程,所得两式相减,可得到004x y k +⋅=,进而可求出k 的值,从而设出直线AB 的方程,并与椭圆方程联立,得到关于x 的一元二次方程,分别表示出弦长AB 及点O 到直线AB 的距离d ,从而可求得AOB V 面积的表达式,进而求出最大值,并求得此时直线的方程.【详解】(1)依题意可得222221123a ba b ⎧+=⎪⎨⎪-=⎩, 即42230b b +-=,解得21b =,则24a =.故椭圆C 的标准方程为2214x y +=;(2)设()11,A x y ,()22,B x y ,()00,M x y , 依题意可知,直线AB 的斜率存在,设为k ,则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以2222121204x x y y -+-=,即()()()()1212121204x x x x y y y y -++-+=,又1202x x x +=,1202y y y +=,2121y y k x x -=-,所以0004x y k +⋅=,又直线OP :12y x =-,M 在线段OP 上,所以0012y x =-,所以12k =.设直线AB 的方程为12y x m =+, 联立方程221214y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,可得222220x mx m ++-=,,122x x m +=-,21222x x m =-,且12002x x ∆>⎧⎪⎨<<+⎪⎩,即()()22024220m m m ⎧∆=--><-<⎪⎨⎪⎩,解得0m <<,21 所以12x x -====,122AB x x =-== 又点O 到直线AB的距离d ==所以221121222OAB m m S AB d -+=⨯⨯==≤=V , 当且仅当222m m -=,即1(1m m =-=舍去)时,等号成立,此时直线方程为112y x =-. 所以AOB V 面积的最大值为1,此时直线AB 的方程为112y x =-. 【点睛】本题考查椭圆方程的求法,考查三角形面积,考查直线与椭圆位置关系的应用,考查学生的计算求解能力,属于难题.。
2022-2023学年四川省成都外国语学校高二上学期12月月考数学(理)试题 (解析版)
A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数小于乙的成绩的中位数
C.甲的成绩的方差大于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差
【答案】D
【解析】
【分析】根据条形统计图可分别计算出甲、乙的平均数、中位数、极差,从而判断出 的正误;根据成绩的分散程度可判断 的正误.
【详解】同时掷3枚硬币,至少有1枚正面包括有一正两反,两正一反,三正三种情况,
最多有1枚正面包括一正两反,三反,两种情况,故A不正确,
最多有1枚正面包括一正两反,三反与恰有2枚正面是互斥的但不是对立事件,故B不正确,
至多1枚正面一正两反,三反,至少有2枚正面包括2正和三正,故C正确,
至少有2枚正面包括2正和三正,与恰有1枚正面是互斥事件,故D不正确,
成都外国语学校高2024届2022-2023学年度12月月考
理科数学
一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.命题“ , ”的否定为()
A. , B. ,
C. , D. ,
【答案】A
【解析】
【分析】含有一个量词的命题的否定步骤为:改量词,否结论.
甲的成绩的极差大于乙的成绩的极差,故 不正确.
本题正确选项:
【点睛】本题考查根据条形统计图判断平均数、中位数、极差和方差的问题,属于基础题.
5.已知 的三个顶点分别为 , , ,则 边上的中线长为()
A. B. C. D.
【答案】B
【解析】
【分析】求得 的中点坐标,利用两点间的距离公式即可求得答案.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上学期数学(理科)第二次考试试题
参考答案
一、CDABA DCCDB
二、11.8;12.34150x y -+=和3x
=;13.)3,2(;14.60;
三、 15.解: 若m = 0时,l 1: x = -6,l 2: 2x -3y = 0, 此时l 1与l 2相交;
若313120=-==-≠m m m m m
或有,由
,由36
23±==m m
m 有; 故i)当m
m m m 3
1231≠-≠-≠时,且, l 1与l 2相交; ii)当m = -1时,
m m m
-=≠
21326
, l 1与l 2平行; (iii)当m = 3时m m m
-==
21326
, l 1与l 2重合. 16.证明://,////EH BCD FG BCD EH BCD BD BCD EH BD EH FG ⊄⎫⎪
⊂⇒⊂⇒⎬⎪⎭
17.解:解:(1)方程即167)41()
3(2222
++-=-++--t t t y t x 16722++-=t t r >0 ∴7
1
-
<t <1 (2) ∵1672
++-=t t
r
∴当t=
7
3时,
77
4max =r ,此时圆面积最大,所对应圆的方程是
222413167497x y -
++=()()
18.解:⑴分析:要证PD ⊥平面ABCD ,只需证PD 垂直于平面ABCD 内的两条相交线,而所给已知
量都是数,故可考虑勾股定理的逆定理
⑴证明:∵PD=a ,AD=a ,P A=
2a ,∴PD 2+DA 2=P A 2,
同理∴∠PDA =90°.
即PD ⊥DA ,PD ⊥DC ,∵AO ∩DC=D ,∴PD ⊥平面ABCD .
⑵分析:从图形的特殊性,应先考虑PB 与AC 是否垂直,若不垂直然后再转化
⑵解:连结BD ,∵ABCD 是正方形∴BD ⊥AC ∵PD ⊥平面ABCD ∴PD ⊥AC ∵PD ∩BD=D
∴AC ⊥平面PDB ∵PB ⊂平面PDB ∴AC ⊥PB ∴PB 与AC 所成的角为90° ⑶分析:由于AC ⊥平面PBD ,所以用垂线法作出二面角的平面角
⑶解:设AC ∩BD =0,过A 作AE ⊥PB 于E ,连接OE ∵AO ⊥平面PBD ∴OE ⊥PB ∴∠AEO 为二面角 A -PB -D 的平面角∵PD ⊥平面ABCD ,AD ⊥AB ∴P A ⊥AB 在Rt △PDB 中,
PB PD BD a =+=223,在Rt △P AB 中,∵AE PB AB PA S ⋅⋅=⋅=
2
1
21
∴a a a a PB AB PA AE 3
232=⋅=⋅=,AO AC a ==1222
在Rt △AOE 中,sin ∠=
=AEO AO AE 32
,∴∠AEO =60°∴二面角A -PB -D 的大小为60.
19.解:如图建立坐标系,在AB 上任取一点P ,分别向 CD 、DE 作垂线划得
一长方形土地,则直线AB 的方程为120
30=+y
x
设)3
220,(x
x P -,则长方形的面积为
3
506000)5(32)]3220(80)[100(2++--=-
--=x x x S ∴当X =5时Smax ≈6017
20.解:设M 、N 的坐标分别为11(,)x y 、(,)x y ,
由题设||||120OM ON ⋅=,
120 (*)
当M 不在y 轴上时,10x ≠,0x ≠,于是有11
y y x x =
设
1
1
y y x x ==k ,代入(*),化简得 21||(1)120x x k += 因1x 与x 同号,于是12120(1)x k x =
+,1
2120(1)k
y k x
=+ 代入22
680x y x y +--=并化简,可得34600(0)x y x +-=≠
当10x =时,18y =,点N (0,15)也在直线34600x y +-=上
所以,点N 的轨迹方程为34600x y +-=.
)
3,3(-P )
3,3(1-P。