海拉尔市蒙古族中学2018-2019学年高三上学期第三次月考试卷数学含答案
通辽蒙古族中学2018-2019学年高三上学期第三次月考试卷数学含答案
通辽蒙古族中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在ABC ∆中,b =3c =,30B =,则等于( )A B . C 或 D .22. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )A .1B .1-C .2D .2- 3. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111]4. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .25. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .76. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A . B.C. D. 7. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34C. D 8. 一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.9. 函数的零点所在区间为( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)10.已知平面向量与的夹角为3π,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D .11.已知角的终边经过点()3P x ,()0x <且cos θ=,则等于( )A .1-B .13- C .3- D .12.在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725- C. 725± D .2425二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.函数1()lg(1)1f x x x=++-的定义域是 ▲ . 14.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 15.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 . 16.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.三、解答题(本大共6小题,共70分。
内蒙古高三高中数学月考试卷带答案解析
内蒙古高三高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.设全集U={1,2,3,4,5},集合A={1,a-2,5},?A={2,4},则a的值为( )UA.3B.4C.5D.62.已知p:2+3=5,q:5<4,则下列判断错误的是( )A.“p或q”为真,“¬p”为假B.“p且q”为假,“¬q”为真C.“p且q”为假,“¬p”为假D.“p且q”为真,“p或q”为假3.函数的定义域为(a,b),导函数在(a,b)内的图像如图所示,则函数在(a,b)内有极小值点的个数为()A.4B.1C.2D.34.曲线y=e x在点A(0,1)处的切线斜率为()A.1B.2C.e D.1/e5.已知函数,含有函数零点的区间是()A.B.C.D.6..函数的图象必不过()A.第一象限B.第二象限C.第三象限D.第四象限7.已知函数,将的图象上各点的横坐标缩短为原来,纵坐标不变,再将所得图象向右平移个单位,得到函数的图象,则函数的解析式为()A.B.C.D.8.的值是()A.B.C.D.9.已知向量,向量,且,则实数等于(A.9B.C.D.10.如图,D、E分别是△ABC的边AB、AC上的点,DE∥BC且,那么与的面积比是() A.B.C.D.11..函数的部分图象如图,则( )A.B.C.D.二、填空题1.已知. 则_____________.2.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则= _______________.3.函数的定义域为 .4..为平面内一点且满足,则为的___________(重心,垂心,内心,外心)三、解答题1.已知曲线,求曲线在点处的切线方程。
2.(本题12分)如右图,在三角形中,,分别为,的中点,为上的点,且. 若,求实数。
3.(本题12分)设函数⑴求的表达式;⑵求的单调区间、极大值、极小值。
高三数学上期第三次月考试题(理科附答案)
2019届高三数学上期第三次月考试题(理科附答案) 2019届高三数学上期第三次月考试题(理科附答案)总分150分,考试用时120分钟。
一、选择题: 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.1.已知全集集合集合,则集合为( )A. B. C. D.2.已知点,则与同方向的单位向量是( )A. B. C. D.3.命题对随意都有的否定是( )A.对随意,都有B.不存在,使得C.存在,使得D.存在,使得4.已知函数的定义域为,则的定义域为( )A. B. C. D.5.已知角的终边上一点坐标为,则角的最小正值为( )A. B. C. D.6.已知函数的导函数为,且满意关系式,则的值等于( )A.2B.C.D.7.已知向量,,则与夹角的余弦值为( )A. B. C. D.8.已知点在圆上,则函数的最小正周期和最小值分别为( )A. B. C. D.9.函数有零点,则实数的取值范围是( )A. B. C. D.10.设分程和方程的根分别为和,函数,则( )A. B.C. D.二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在答题卡上.11.已知,则的值为13. 中,,,三角形面积,14.已知函数在处取得极值10,则取值的集合为15.若关于的方程有实根,则实数的取值范围是三、解答题:本大题共6小题,共75分.请在答题卡指定区域内作答,解答应写出必要的文字说明.证明过程或演算步骤.16.(本小题满分12分)17.(本小题满分12分)已知函数,其中为使能在时取得最大值的最小正整数.(1)求的值;(2)设的三边长、、满意,且边所对的角的取值集合为,当时,求的值域.18.(本小题满分12分)中,设、、分别为角、、的对边,角的平分线交边于, .(1)求证: ;(2)若,,求其三边、、的值.19.(本小题满分12分)工厂生产某种产品,次品率与日产量 (万件)间的关系( 为常数,且 ),已知每生产一件合格产品盈利3元,每出现一件次品亏损1.5元(1)将日盈利额 (万元)表示为日产量 (万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注: )20.(本小题满分13分)已知,当时, .(1)证明 ;(2)若成立,请先求出的值,并利用值的特点求出函数的表达式.21.(本小题满分14分)已知函数 ( 为常数,为自然对数的底)(1)当时,求的单调区间;(2)若函数在上无零点,求的最小值;(3)若对随意的,在上存在两个不同的使得成立,求的取值范围.数学(理)参考答案答案DADCBDBBCA11. 12. 13. 14. 15.16.若命题为真明显或故有或5分若命题为真,就有或命题或为假命题时, 12分17.(1) ,依题意有即的最小正整数值为25分(2) 又即即 8分10分故函数的值域是 12分18.(1)即5分(2) ① 7分又② 9分由①②解得 10分又在中12分19.(1)当时,, 2分当时,4分日盈利额 (万元)与日产量 (万件)的函数关系式为5分(2)当时,日盈利额为0当时,令得或 (舍去)当时,在上单增最大值 9分当时,在上单增,在上单减最大值 10分综上:当时,日产量为万件日盈利额最大当时,日产量为3万件时日盈利额最大20.(1) 时4分(2)由得到5分又时即将代入上式得又8分又时对均成立为函数为对称轴 10分又12分13分21.(1) 时,由得得故的减区间为增区间为 3分(2)因为在上恒成立不行能故要使在上无零点,只要对随意的,恒成立即时, 5分令则再令于是在上为减函数故在上恒成立在上为增函数在上恒成立又故要使恒成立,只要若函数在上无零点,的最小值为 8分(3)当时,,为增函数当时,,为减函数函数在上的值域为 9分当时,不合题意当时,故① 10分此时,当改变时,,的改变状况如下0+↘最小值↗时,,随意定的,在区间上存在两个不同的使得成立,当且仅当满意下列条件即②即③ 11分令令得当时,函数为增函数当时,函数为减函数所以在任取时有即②式对恒成立 13分由③解得④由①④ 当时对随意,在上存在两个不同的使成立2019届高三数学上期第三次月考试题就共享到这里了,更多相关信息请接着关注高考数学试题栏目!。
海拉尔区第三中学2018-2019学年高三上学期11月月考数学试卷含答案
海拉尔区第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( )A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)2. 下列语句所表示的事件不具有相关关系的是()A .瑞雪兆丰年B .名师出高徒C .吸烟有害健康D .喜鹊叫喜3. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z 的值为( )120.51xyzA .1B .2C .3D .44. 在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为()A .4B .4C .2D .25. 在函数y=中,若f (x )=1,则x 的值是()A .1B .1或C .±1D .6. 为得到函数的图象,只需将函数y=sin2x 的图象()A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位7. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .68. 函数y=+的定义域是()A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}9. 已知定义在上的奇函数)(x f ,满足,且在区间上是增函数,则R (4)()f x f x +=-[0,2]A 、 B 、(25)(11)(80)f f f -<<(80)(11)(25)f f f <<-C 、 D 、(11)(80)(25)f f f <<-(25)(80)(11)f f f -<<10.命题“,使得”是“”成立的()0x ∃>a x b +≤a b <A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件11.执行如图的程序框图,如果输入的,100N =班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________则输出的( )x =A . B . 0.950.98C .D .0.99 1.0012.已知函数(),若数列满足[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩n N ∈{}m a ,数列的前项和为,则( )*()()m a f m m N =∈{}m a m m S 10596S S -=A. B. C. D.909910911912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.二、填空题13.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .14.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 . 15.圆心在原点且与直线相切的圆的方程为_____ .2x y +=【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.16.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)17.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=,现给出以下三个命题:①若 m=,则a 5=2;②若 a 3=3,则m 可以取3个不同的值;③若 m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 . 18.已知正四棱锥的体积为,O ABCD -2则该正四棱锥的外接球的半径为_________三、解答题19.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.20.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE .(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.21.已知函数上为增函数,且θ∈(0,π),,m∈R.(1)求θ的值;(2)当m=0时,求函数f(x)的单调区间和极值;(3)若在上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.22.(本小题满分12分)如图,在直四棱柱中,.1111ABCD A B C D -60,,BAD AB BD BC CD ∠===o(1)求证:平面平面;11ACC A ⊥1A BD (2)若,,求三棱锥的体积.BC CD ⊥12AB AA ==11B A BD -23.设常数λ>0,a >0,函数f (x )=﹣alnx .(1)当a=λ时,若f (x )最小值为0,求λ的值;(2)对任意给定的正实数λ,a ,证明:存在实数x 0,当x >x 0时,f (x )>0. 24.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y=x 的图象上(n ∈N *),(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若c 1=0,且对任意正整数n 都有,求证:对任意正整数n ≥2,总有.ABCDA 1C 1B 1D 1海拉尔区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:f(x)=e x+x﹣4,f(﹣1)=e﹣1﹣1﹣4<0,f(0)=e0+0﹣4<0,f(1)=e1+1﹣4<0,f(2)=e2+2﹣4>0,f(3)=e3+3﹣4>0,∵f(1)•f(2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C.2.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D.【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.3.【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A.【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.4.【答案】A【解析】解:圆x2+y2﹣8x+4=0,即圆(x﹣4)2+y2 =12,圆心(4,0)、半径等于2.由于弦心距d==2,∴弦长为2=4,故选:A.【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.5.【答案】C【解析】解:∵函数y=中,f(x)=1,∴当x≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);当x≥2时,2x=1,解得x=(舍).综上得x=±1故选:C.6.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.7.【答案】C.【解析】解:∵2a=3b=m,∴a=log2m,b=log3m,∵a,ab,b成等差数列,∴2ab=a+b,∵ab≠0,∴+=2,∴=log m2,=log m3,∴log m2+log m3=log m6=2,解得m=.故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用. 8. 【答案】D【解析】解:由题意得:,解得:x ≥﹣1或x ≠3,故选:D .【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题. 9. 【答案】D【解析】∵,∴,∴,(4)()f x f x +=-(8)(4)f x f x +=-+(8)()f x f x +=∴的周期为,∴,)0()80(f f =,()f x 8(25)(1)f f -=-,(11)(3)(14)(1)(1)f f f f f ==-+=--=又∵奇函数)(x f 在区间上是增函数,∴)(x f 在区间上是增函数,[0,2][2,2]-∴,故选D.(25)(80)(11)f f f -<<10.【答案】C 11.【答案】C 【解析】111112233499100x =+++⋅⋅⋅+⨯⨯⨯⨯.111111199(1)()((2233499100100=-+-+-+⋅⋅⋅+-=12.【答案】A.【解析】二、填空题13.【答案】 16 .【解析】解:∵等比数列{a n }的前n 项积为Πn ,∴Π8=a 1•a 2a 3•a 4•a 5a 6•a 7•a 8=(a 4•a 5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键. 14.【答案】 ﹣3<a <﹣1或1<a <3 .【解析】解:根据题意知:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a <﹣1或1<a <3.故答案为:﹣3<a <﹣1或1<a <3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,属中档题. 15.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线的距离,所以2x y +=r d ===.222x y +=16.【答案】 (4) 【解析】解:(1)命题p :菱形的对角线互相垂直平分,为真命题.命题q :菱形的对角线相等为假命题;则p ∨q 是真命题,故(1)错误,(2)命题“若x 2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x 2﹣4x+3<0得1<x <3,则“1<x <3”是“x 2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题. 17.【答案】 ①② .【解析】解:对于①由a n+1=,且a 1=m=<1,所以,>1,,,∴a 5=2 故①正确;对于②由a 3=3,若a 3=a 2﹣1=3,则a 2=4,若a 1﹣1=4,则a 1=5=m .若,则.若a 1>1a 1=,若0<a 1≤1则a 1=3,不合题意.所以,a 3=2时,m 即a 1的不同取值由3个.故②正确;若a 1=m=>1,则a2=,所a3=>1,a4=故在a1=时,数列{a n }是周期为3的周期数列,③错;故答案为:①②【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目 18.【答案】118【解析】因为正四棱锥的体积为2,设外接球的半径为,依轴O ABCD -2R截面的图形可知:22211(2)8R R R =-+∴=三、解答题19.【答案】【解析】解:∵直线x+ay ﹣2=0与圆x 2+y 2=1有公共点∴≤1⇒a2≥1,即a≥1或a≤﹣1,命题p为真命题时,a≥1或a≤﹣1;∵点(a,1)在椭圆内部,∴,命题q为真命题时,﹣2<a<2,由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题即p真q假,则⇒a≥2或a≤﹣2.故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).20.【答案】【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,∴∠CDB=30°,∵EC=DE,∴∠DCE=30°,∠BCE=90°,∴EC⊥BC,又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,∴EC⊥平面ABC,∴EC⊥AB.(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,∵AC=AB,∴AO⊥BC,∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,,0),C(0,﹣,0),D(3,﹣2,0),∴=(0,﹣,﹣1),=(3,﹣,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,,﹣3),又平面BCD的法向量=(0,0,1),∴cos<>==﹣,∴二面角A﹣CD﹣B的余弦值为.【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.21.【答案】【解析】解:(1)∵函数上为增函数,∴g ′(x )=﹣+≥0在,mx ﹣≤0,﹣2lnx ﹣<0,∴在上不存在一个x 0,使得f (x 0)>g (x 0)成立.②当m >0时,F ′(x )=m+﹣=,∵x ∈,∴2e ﹣2x ≥0,mx 2+m >0,∴F ′(x )>0在恒成立.故F (x )在上单调递增,F (x ) max=F (e )=me ﹣﹣4,只要me ﹣﹣4>0,解得m >.故m 的取值范围是(,+∞)【点评】本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.22.【答案】【解析】(1)证明:∵,,60AB BD BAD =∠=o∴为正三角形,∴.ABD ∆AB AD = ∵,为公共边,CB CD =AC ∴.ABC ADC ∆≅∆∴,∴.CAB CAD ∠=∠AC BD ⊥∵四棱柱是直四棱柱,1111ABCD A B C D -∴平面,∴.1AA ⊥ABCD 1AA BD ⊥∵,∴平面.1AC AA A =I BD ⊥11ACC A ∵平面,∴平面平面.BD ⊂1A BD 1A BD ⊥11ACC A (2)∵∥,∴,1AA 1BB 11111B A BD A BB D A BB D V V V ---==由(1)知.AC BD ⊥∵四棱柱是直四棱柱,1111ABCD A B C D -∴平面,∴.1BB ⊥ABCD 1BB AC ⊥ ∵,∴平面.1BD BB B =I AC ⊥1BB D 记,AC BD O =I∴,11111(22)332A BB D BB D V S AO -∆=⋅=⨯⨯⨯=∴三棱锥.11B A BD -23.【答案】【解析】(1)解:当a=λ时,函数f (x )=﹣alnx=﹣(x >0).f ′(x )=﹣=,∵λ>0,x >0,∴4x 2+9λx+3λ2>0,4x (λ+x )2>0.∴当x >λ时,f ′(x )>0,此时函数f (x )单调递增;当0<x <λ时,f ′(x )<0,此时函数f (x )单调递减.∴当x=λ时,函数f (x )取得极小值,即最小值,∴f ((λ)==0,解得λ=.(2)证明:函数f (x )=﹣alnx=﹣alnx=x ﹣﹣alnx >x ﹣λ﹣alnx .令u (x )=x ﹣λ﹣alnx .u ′(x )=1﹣=,可知:当x >a 时,u ′(x )>0,函数u (x )单调递增,x →+∞,u (x )→+∞.一定存在x 0>0,使得当x >x 0时,u (x 0)>0,∴存在实数x 0,当x >x 0时,f (x )>u (x )>u (x 0)>0.【点评】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于难题.24.【答案】 【解析】(I )解:∵点(a n ,S n )在y=x 的图象上(n ∈N *),∴,当n≥2时,,∴,化为,当n=1时,,解得a1=.∴==.(2)证明:对任意正整数n都有=2n+1,∴c n=(c n﹣c n﹣1)+(c n﹣1﹣c n﹣2)+…+(c2﹣c1)+c1=(2n﹣1)+(2n﹣3)+…+3==(n+1)(n﹣1).∴当n≥2时,==.∴=+…+=<=,又=.∴.【点评】本题考查了等比数列的通项公式与等差数列的前n项和公式、“累加求和”、“裂项求和”、对数的运算性质、“放缩法”、递推式,考查了推理能力与计算能力,属于中档题.。
前郭县蒙古族中学2018-2019学年高三上学期第三次月考试卷数学含答案
前郭县蒙古族中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 2. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 3. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣84. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 5.10y -+=的倾斜角为( )A .150B .120C .60D .30 6. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位7. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C.-1 D .-2 8. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a9. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.10.棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( ) A.= B.0S = C .0122S S S =+ D .20122S S S =11.如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限12.已知a为常数,则使得成立的一个充分而不必要条件是( )A .a >0B .a <0C .a >eD .a <e二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .14.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.15.(文科)与直线10x -=垂直的直线的倾斜角为___________.16.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.三、解答题(本大共6小题,共70分。
2018届内蒙古高三上学期第三次月考数学(文)试题(解析版)
2018届内蒙古高三上学期第三次月考数学(文)试题(解析版)一、单选题1.已知集合2{|60},{|1}M x x x N x x =+-<=<-,则M N ⋂=() A. (-3,2) B. (-1,2) C. (-3,-1) D. (-1,2) 【答案】C【解析】∵集合2{|60}M x x x =+-< ∴集合{|32}M x x =-<< ∵集合,{|1}N x x =<- ∴{|31}M N x x ⋂=-<<- 故选C 2.设1122z i =+,则z =()A.12 B. 2 C. D. 1 【答案】B 【解析】∵1122z i =+ ∴1122z i =-∴2z ==故选B3.已知直线过()()2,4,1,A B m 两点,且倾斜角为45︒,则m =() A. 3 B. 3- C. 5 D. 1-【答案】A【解析】∵直线过()()2,4,1,A B m 两点∴直线的斜率为4412m m -=-- 又∵直线的倾斜角为45︒∴直线的斜率为1,即41m -= ∴3m = 故选A4.已知等差数列{}n a 的前n 项和为n S ,若47a =,520S =,则10a =()A. 16B. 19C. 22D. 25 【答案】D【解析】设当差数列{}n a 的首项为1a ,公差为d ∵47a =,520S = ∴1137{51020a d a d +=+=∴12{3a d =-=∴()231n a n =-+-,即35n a n =- ∴1025a = 故选D5.已知0.81.2612,,log 42a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A. c b a <<B. c a b <<C. b c a <<D. b a c << 【答案】A【解析】∵0.80.8122b -⎛⎫== ⎪⎝⎭, 1.22a =又∵指数函数2x y =是增函数 ∴1a b >>∵66log 4log 61c =<= ∴a b c >> 故选A6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中,正确的命题是()A. //,,//m m n m n βααβ⊂⋂=⇒B. ,,m n m n αβαββ⊥⋂=⊥⇒⊥C. ,,//m n m n αβαβ⊥⊥⇒⊥D. //,//m n m n αα⊂⇒ 【答案】A【解析】对于A ,若//,,m m n βααβ⊂⋂=,根据线面平行的判定⇒//m n ,故正确;对于B ,若,,m n m αβαβ⊥⋂=⊥,因为n 不一定在平面α内,不能得到n β⊥,故错误;对于C ,若,,//m n αβαβ⊥⊥,m n 、不一定垂直,故错误;对于D ,若//,m n αα⊂,m n 、位置关系时可能平行、可能异面,故错误. 故选A7.一个几何体的三视图如图所示,则该几何体的体积为( )A. 1B.12 C. 13 D. 14【答案】C【解析】由三视图知几何体是两个相同的三棱锥的组合体,其直观图如图:且三棱锥的底面是直角边长为1的等腰直角三角形,棱锥的高为;∴几何体的体积111211323V =⨯⨯⨯⨯=故选C点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.8.已知函数()f x =,则下列说法不正确的是() A. ()f x 的一个周期为2π B. ()f x 的图象关于56x π=-对称 C. ()f x 在7,66ππ⎡⎤⎢⎥⎣⎦上单调递减 D. ()f x 向左平移3π个单位长度后图象关于原点对称【答案】D【解析】∵函数()sin f x x x =∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭对于A ,函数()f x 的周期为:221T ππ==,故正确;对于B ,当56x π=-时,552sin 2663f πππ⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭,故正确;对于C ,当7,66x ππ⎡⎤∈⎢⎥⎣⎦,3,322x πππ⎡⎤+∈⎢⎥⎣⎦,故函数单调递减,故正确;对于D ,函数()f x 向左平移3π个单位长度后函数的关系式转化为:()22sin 2sin 333f x x x πππ⎛⎫⎛⎫=++=+⎪ ⎪⎝⎭⎝⎭,函数的图象不关于原点对称,故错误.故选D9.若,x y 满足约束条件0{230 260x y x y x y -≥+-≥+-≤,则2z x y =-的最小值为()A. 6-B. 1-C. 3D. 2- 【答案】D【解析】,x y 满足约束条件0{230 260x y x y x y -≥+-≥+-≤的可行域如图所示:由2z x y =-得1122y x z =-,平移直线1122y x z =- 由图象可知当直线1122y x z =-,过点A 时,直线1122y x z =-的截距最大,此时z 最小,由0{260x y x y -=+-=得()2,2A ,代入目标函数2z x y =-,得2222z =-⨯=-∴目标函数2z x y =-的最小值是2-故选D点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二找、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10.已知向量)()(,0,1,a b c k ==-=,若(2a b - )与c 平行,则k的值为()A. 1B. 1-C. 3D. 3- 【答案】A【解析】∵)(),0,1a b ==-∴)2a b -=∵2a b - 与c 平行,(c k =∴3k =∴1k = 故选A点睛:此题主要考查了向量线性运算的坐标运算,以及两个向量平行的坐标表示与运算,属于中低档题型,也是常考考点.两个向量平行时,有“纵横交错,积相减”,即分别将其中一个向量的纵坐标与另一个向量的横坐标相乘,所得两个积进行相减,差为零.11.设()f x 是R 上的偶函数,且在()0,+∞上是减函数,若10x <且120x x +>,则()A. ()()12f x f x ->-B. ()()12f x f x -=-C. ()()12f x f x -<-D. ()1f x -与()2f x -大小不确定 【答案】A【解析】∵()f x 是R 上的偶函数,且在()0,∞+上是减函数 ∴()f x 在(),0∞-上是增函数 ∵10x <且120x x +> ∴210x x -<< ∴()()12f x f x >- 又∵()()11f x f x -= ∴()()12f x f x ->- 故选A12.已知函数()f x '是函数()f x 的导函数,()11f e=,对任意实数都有()()0f x f x -'>,设()()xf x F x e =则不等式()21F x e<的解集为() A. (),1-∞ B. ()1,+∞ C. ()1,e D. (),e +∞ 【答案】B 【解析】∵()()xf x F x e=∴()()()()()2x xxxf x e f x e f x f x F x ee'-=='-'∵对任意实数都有()()0f x f x -'> ∴()0F x '<,即()F x 在R 上为单调减函数又∵()11f e =∴()211F e=∴不等式()21F x e <等价于()()1F x F < ∴不等式()21F x e<的解集为()1,+∞故选B点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e=,()()0f x f x '+<,构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x +<'构造()()g x xf x =等.二、填空题13.若直线1x ya b+=,(0,0)a b >>过点()1,2,则2a b +的最小值为__________. 【答案】8【解析】∵直线1x ya b+=过点()1,2∴121a b+= ∴()124422224b a b a a b a b a b a b a b ⎛⎫+=++=+++=++⎪⎝⎭∵0,0a b >>∴44b a a b +≥,当且仅当42b a a b ==,即12a =,1b =时取等号 ∴2a b +的最小值为814.关于x 的不等式20x ax b -+<的解集为{}|12x x <<,则不等式5bx a +>的解集为__________.【答案】()(),41,-∞-⋃+∞【解析】∵不等式20x ax b -+<的解集为{}|12x x << ∴1x =或2是方程20x ax b -+=的解,即3a =,2b = ∴23bx a x +=+ ∵5bx a +>∴235x +<-或235x +> ∴4x <-或1x >∴不等式5bx a +>的解集为()(),41,-∞-⋃+∞ 故答案为()(),41,-∞-⋃+∞15.在公比为{}n a 中,若()142sin 5a a =,则()25cos a a 的值是__________.【答案】1725【解析】∵等比数列{}n a∴2514142a a a a = ∵()142sin 5a a =∴()()()22251414217cos cos 212sin 12525a a a a a a ⎛⎫==-=-⨯= ⎪⎝⎭故答案为172516.在正方体1111ABCD A B C D -中,,M N 分别为111,A B BB 的中点,则异面直线AM 与CN 所成角的余弦值为__________.【答案】25【解析】由题意得11AM AA AM =+ ,CN CB BN =+∴()()11111112AM CN AA A M CB BN AA CB AA BN A M CB A M BN ⋅=+⋅+=⋅+⋅+⋅+⋅=又∵5,cos ,4AM CN AM CN AM CN ⋅=〈〉=〈〉∴51cos ,42AM CN 〈〉= ∴2cos ,5AM CN 〈〉=故答案为25点睛:本题主要考查正方体的性质以及异面直线所成的角,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.三、解答题17.已知平面内两点()()8,6,2,2A B -.(1)求过点()2,3P -且与直线AB 平行的直线l 的方程; (2)求线段AB 的垂直平分线方程. 【答案】(1)4310x y ++= (2)34230x y --=【解析】试题分析:(1)求出直线的斜率,利用点斜式方程求解即可;(2)求出线段AB 的中点坐标,求出斜率然后求解垂直平分线方程. 试题解析:(1)∵点()()8,6,2,2A B - ∴624823AB k --==-- ∴由点斜式()4323y x +=--得直线l 的方程4310x y ++= (2)∵点()()8,6,2,2A B - ∴线段AB 的中点坐标为()5,2-∵43AB k =-∴线段AB 的垂直平分线的斜率为34∴由点斜式()3254y x +=-得线段AB 的垂直平分线的方程为34230x y --= 18.在锐角三角形ABC 中,,,a b c 分别是角,,A B C 的对边,向量()()()2,c o s ,c o s ,m b c C n A a π=--=,且m n ⊥. (1)求角A 的大小;(2)求函数1cos21,,262y B B B ππ⎛⎫=-+∈ ⎪⎝⎭的值域. 【答案】(1)3π(2)3,22⎛⎤ ⎥⎝⎦【解析】试题分析:(1)由m n ⊥,知0m n ⋅= ,再根据正弦定理将边化角及三角形是锐角三角形即可求出角A 的大小;(2)根据和(差)角公式得到sin 216y B π⎛⎫=-+ ⎪⎝⎭,根据,62B ππ⎛⎫∈ ⎪⎝⎭,即可求出值域.试题解析:(1)∵向量()()()2,cos ,cos ,m b c C n A a π=--=,且m n ⊥∴()()2cos cos 0m n b c A a C π⋅=-+-= ,即()2cos cos 0m n b c A a C ⋅=--=根据正弦定理可得()2sin sin cos sin cos 0B C A A C --=,即2sin cos sin B A B = ∵三角形ABC 为锐角三角形∴1cos 2A =,即3A π=(2)∵函数1cos212y B B =-+ ∴sin 216y B π⎛⎫=-+ ⎪⎝⎭∵,62B ππ⎛⎫∈ ⎪⎝⎭∴52,666B πππ⎛⎫-∈ ⎪⎝⎭∴1sin 2,162B π⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦∴函数1cos21,,262y B B B ππ⎛⎫=-+∈ ⎪⎝⎭的值域为3,22⎛⎤ ⎥⎝⎦ 19.在数列{}n a 中,14a =,()()1121n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭为等差数列,并求出数列{}n a 通项公式n a ;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)222n a n n =+(2)()21n nS n =+【解析】试题分析:(1)将()()1121n n na n a n n +-+=+两边同时除以()1n n +,即可证明数列n a n ⎧⎫⎨⎬⎩⎭为等差数列,再根据14a =,即可求出数列{}n a 通项公式n a ;(2)根据(1)写出数列1n a ⎧⎫⎨⎬⎩⎭的通项公式,结合数列的特点,利用裂项相消求数列和即可求出数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .试题解析:(1)∵()()1121n n na n a n n +-+=+ ∴121n na a n n+-=+ ∴n a n ⎧⎫⎨⎬⎩⎭是以公差为2的等差数列 ∵14a = ∴()42122na n n n=+-=+,即222n a n n =+ (2)∵222n a n n =+ ∴2111112221n a n n n n ⎛⎫==- ⎪++⎝⎭∴数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()1231111111111222334n n n nS a a a a n n n n⎛⎫=+++⋅⋅⋅+=-+-+-+⋅⋅⋅+-=⨯= ⎪+++⎝⎭20.已知:正三棱柱111ABC A B C -中,13AA =,2AB =,N 为棱AB 的中点.(1)求证:1//AC 平面1NB C .(2)求证:平面1CNB ⊥平面11ABB A .(3)求四棱锥111C ANB A -的体积.【答案】(1)见解析(2)见解析(3)2【解析】试题分析:(1)连结1BC ,交1CB 于点O ,连结ON ,由三棱柱111ABC A B C -为正三棱柱及N 为棱AB 的中点,可得ON ∥1AC ,即可证明1AC ∥平面1NB C ;(2)根据正三棱柱的定义,可证CN AB ⊥,1CN BB ⊥,即可证明平面1CNB ⊥平面11ABB A ;(3)先求底面11ANB A 的面积,再求高CN ,即可求出四棱锥的体积.试题解析:(1)连结1BC ,交1CB 于点O ,连结ON∵三棱柱111ABC A B C -为正三棱柱∴O 为1BC 的中点∵N 为棱AB 的中点∴ON ∥1AC∵ON ⊂平面1NB C ,1AC ⊄平面1NB C∴1AC ∥平面1NB C(2)∵三棱柱111ABC A B C -为正三棱柱∴三角形ABC 为正三角形,侧棱1BB ⊥平面ABC∵N 为棱AB 的中点,CN ⊂平面ABC∴CN AB ⊥,1CN BB ⊥∵1AB BB B ⋂=,AB ⊂平面11ABB A ,1BB ⊂平面11ABB A∴CN ⊥平面11ABB A∵CN ⊂平面1CNB∴平面1CNB ⊥平面11ABB A(3)∵11ANB A 是直角梯形,1AN =,112A B =,13A A =∴四边形11ANB A 的面积为92∵CN ⊥平面11ABB A∴四棱锥111C ANB A -的体积为1932⨯= 21.已知不等式2112x x -+-<的解集为.M(Ⅰ)求集合M ;(Ⅱ)若整数m M ∈,正数,,a b c 满足42a b c m ++=,证明:1118.a b c++≥ 【答案】(1)4|03M x x ⎧⎫=<<⎨⎬⎩⎭ (2)1118a b c ++≥ 【解析】试题分析:(1)对x 的范围进行讨论去掉绝对值符号解不等式;(2)把()1142a b c =++代入不等式左边,利用基本不等式得出结论. 试题解析:(1)①当1x ≥时,原不等式等价于2112x x -+-<,解得43x <,所以413x ≤<; ②当112x ≤<时,原不等式等价于2112x x -+-<,解得2x <,所以112x ≤<; ③当12x <时,原不等式等价于1212x x -+-<,解得0x >,所以10.2x << 综上, 403x <<,即4|03M x x ⎧⎫=<<⎨⎬⎩⎭(2)因为4|03M x x ⎧⎫=<<⎨⎬⎩⎭,整数m M ∈,所以42a b c ++= 所以()11422a b c a b c a b c a b c a b c a b c a b c ++++++⎛⎫⎛⎫++=++++=++ ⎪ ⎪⎝⎭⎝⎭14416622b a c a c b a b a c b c ⎛⎛⎫=++++++≥+ ⎪ ⎝⎭⎝ ()1624482=+++= 当且仅当2a b c == 时,等号成立,所以1118a b c++≥ 点睛:本题主要考查带有绝对值的函数,绝对值三角不等式的应用,比较2个数大小的方法,属于中档题.关键是通过分区间讨论的方法,去掉绝对值号,然后利用均值不等式求解即可.22.已知函数()ln a x f x x+=在点()(),e f e 处的切线与直线210x e y ++=平行. (1)求a 的值; (2)若函数()f x 在区间(),1m m +上不单调,求实数m 的取值范围;(3)求证:对任意()(]1,,,1x b ∈+∞∈-∞时,()21b f x x >+恒成立. 【答案】(1)1a =(2)01m <<(3)见解析【解析】试题分析:(1)求出()21ln a x f x x -'-=,由题意得()21f e e '=-,即可求出a 的值;(2)由()2ln x f x x=-',得到()f x 的单调性,再根据()f x 在区间(),1m m +上不单调,即可求出实数m 的取值范围;(3)构造函数()()()1ln 1x x g x x ++=,则()2ln x x g x x -'=,再令()ln h x x x =-,由导数的性质得()g x 在()1,+∞上为增函数,再结合(],1b ∈-∞,由此可以证明()21bf x x >+恒成立.试题解析:(1)∵()ln a x f x x +=∴()21ln a x f x x-'-= ∴()2a f e e'=- ∵函数()ln a x f x x+=在点()(),e f e 处的切线与直线210x e y ++=平行 ∴221a e e-=- ∴1a =(2)∵1a =∴()2ln x f x x=-' 令()0f x '<,得1x >,()f x 在()1,+∞上单调递减令()0f x '>,得01x <<,()f x 在()0,1上单调递增∵函数()f x 在区间(),1m m +上不单调∴1{ 11m m <+>∴01m <<(3)当()1,x ∈+∞时,1ln 11x x x +>+ 令()()()1ln 1x x g x x++=,则()()()()()'22[1ln 1]1ln 1ln x x x x x x x g x x x ++-++-==' 再令()ln h x x x =-,则()11h x x '=-∵()1,x ∈+∞∴()0h x '>,即()h x 在()1,+∞上为增函数∴()()11h x h >=∴当1x >时,()0g x '>,即()g x 在()1,+∞上为增函数∴()()12g x g >=∴()()1ln 12x x x ++>,即1ln 21x x x +>+ ∵(],1b ∈-∞∴22b ≥,即2211b x x ≥++ ∴对任意()(]1,,,1x b ∈+∞∈-∞时,()21b f x x >+恒成立. 点睛:本题主要考查导数与切线的对应关系,考查利用函数导数求解不等式恒成立问题,考查二阶导数的应用.考查与切线有关的问题,关键在于切点和斜率;在第三问在构造新函数()()()1ln 1x x g x x ++=且求导后,发现无法写出单调区间,故需要利用二阶导数来解决.。
高三上学期第三次月考数学试卷(附答案解析)
高三上学期第三次月考数学试卷(附答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________第I卷(选择题)一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,0,1,2,},B={x∈Z|x−2x≤0},则A∩B=( )A. {0,1}B. {1,2}C. {−1,1,2}D. {0,1,2}2. 若复数z=a+2i2−i(a∈R)为纯虚数,则a=( )A. −4B. −2C. −1D. 13. 已知向量a=(1,−1),b=(1,t),若〈a,b〉=π3,则t=( )A. 2−3B. 2+3C. 2+3或2−3D. −14. 若函数f(x)=1−cosxsinx(x∈[π3,π2]),则f(x)的值域为( )A. [3,+∞)B. [33,+∞)C. [1,3]D. [33,1]5. 正四面体S−ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为( )A. 64B. 33C. 263D. 36. 在给某小区的花园绿化时,绿化工人需要将6棵高矮不同的小树在花园中栽成前后两排,每排3棵,则后排的每棵小树都对应比它前排每棵小树高的概率是( )A. 13B. 16C. 18D. 1127. 如图,圆内接四边形ABCD中,DA⊥AB,∠D=45°,AB=2,BC=22,AD=6.现将该四边形沿AD旋转一周,则旋转形成的几何体的体积为( )A. 84π3B. 30πC. 92π3D. 40π8. 函数f(x)的定义域为R,且f(x)−f(x+4)=0,当−2≤x<0时,f(x)=(x+1)2,当0≤x<2时,f(x)=1−x,则n=12022f(n)=( )A. 1010B. 1011C. 1012D. 1013二、多选题(本大题共4小题,共20分。
海拉尔区高中2018-2019学年上学期高三数学10月月考试题
海拉尔区高中2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1.设a=0.5,b=0.8,c=log20.5,则a、b、c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.b<a<c2.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.设a,b∈R,那么“>1”是“a>b>0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.执行如图的程序框图,则输出的s=()A.B.﹣C.D.﹣5.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()A .y=x+2B .y=C .y=3xD .y=3x 36. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 7. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .4 8. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( )A .S 18=72B .S 19=76C .S 20=80D .S 21=849. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43C.53D .210.已知复数z 满足(3+4i )z=25,则=( )A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i11.以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.12.2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.14.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 15.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.16.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .三、解答题(本大共6小题,共70分。
海拉尔区一中2018-2019学年高三上学期11月月考数学试卷含答案
海拉尔区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下面的结构图,总经理的直接下属是()A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部2. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725-C. 725±D .24253. 如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°4. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()A .92%B .24%C .56%D .5.6%5. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( )A .B .C .D . 6. 已知命题p :存在x 0>0,使2<1,则¬p 是()A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1D .存在x 0≤0,使2<17. ()0﹣(1﹣0.5﹣2)÷的值为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.﹣B.C.D.8.一个椭圆的半焦距为2,离心率e=,则它的短轴长是()A.3B.C.2D.69.已知双曲线﹣=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.B.C.3D.510.己知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是()A.B.或C.D.或11.若函数是R上的单调减函数,则实数a的取值范围是()A.(﹣∞,2)B.C.(0,2)D.12.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有()A.a>b B.a<bC.a=b D.a,b的大小与m,n的值有关二、填空题13.若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|= .14.已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为 .15.集合A={x|﹣1<x<3},B={x|x<1},则A∩B= .16.(若集合A⊊{2,3,7},且A中至多有1个奇数,则这样的集合共有 个.17.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________①②③④⑤18.已知tanβ=,tan(α﹣β)=,其中α,β均为锐角,则α= .三、解答题19.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:x①ππf(x)010﹣10(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.20.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x )件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?21.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;(Ⅱ)求点D到平面AMP的距离.22.如图,已知边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2,M 为BC 的中点(Ⅰ)试在棱AD 上找一点N ,使得CN ∥平面AMP ,并证明你的结论.(Ⅱ)证明:AM ⊥PM .23.(本题满分13分)已知函数.x x ax x f ln 221)(2-+=(1)当时,求的极值;0=a )(x f (2)若在区间上是增函数,求实数的取值范围.)(x f ]2,31[a【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.24.设函数,若对于任意x∈[﹣1,2]都有f(x)<m成立,求实数m的取值范围.海拉尔区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C A B C C A D C A B题号1112答案B C二、填空题13. 5 .14. .15. {x|﹣1<x<1} .16. 6 17.①②③④18. .三、解答题19.20.21.22.23.24.。
海拉尔区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
海拉尔区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知向量,,,若为实数,,则( )(1,2)a =r (1,0)b =r (3,4)c =r λ()//a b c λ+r r rλ=A . B . C .1D .214122. 若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A .B .C .D .63. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .04. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个5. 满足下列条件的函数中,为偶函数的是( ))(x f )(x f A.B.C. D.()||xf e x =2()x xf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.6. 若函数在上是单调函数,则的取值范围是( )2()48f x x kx =--[5,8]k A . B . C .D .(][),4064,-∞+∞U [40,64](],40-∞[)64,+∞7. 已知集合,且使中元素和中的元素{}{}421,2,3,,4,7,,3A k B a a a ==+*,,a N x A y B ∈∈∈B 31y x =+A 对应,则的值分别为( )x ,a k A . B . C . D .2,33,43,52,58. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( )A .1个B .2个C .3个D .4个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知、、的球面上,且,,球心到平面的距离为A B C AC BC ⊥30ABC ∠=oO ABC 1,点是线段的中点,过点作球的截面,则截面面积的最小值为( )M BC MO A B .CD .34π3π10.若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( )A .﹣1B .0C .1D .﹣1或111.圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是()A .外离B .相交C .内切D .外切12.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )[]90,100A .20,2 B .24,4 C .25,2 D .25,4二、填空题13.已知函数f (x )=x m 过点(2,),则m= . 14.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .15.已知线性回归方程=9,则b= .16.若函数y=ln (﹣2x )为奇函数,则a= .17.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .18.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .A D OCB三、解答题19.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
内蒙古数学高三理数第三次(4月)联考试卷
内蒙古数学高三理数第三次(4月)联考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高一上·舒城月考) 已知集合,则()A . [-2,-1]B . [-1,2)C . [-1,1]D . [1,2)2. (2分) (2017高二下·太原期中) 已知复数2i﹣3是方程2x2+px+q=0的一个根,则实数p,q的值分别是()A . 12,0B . 24,26C . 12,26D . 6,83. (2分) (2019高一上·长沙月考) 下列关系式中正确的是()A . sin21°<cos20°<sin158°B . sin21°<sin158°<cos20°C . sin158°<cos20°<sin21°D . sin158°<sin21°<cos20°4. (2分) (2019高一上·丰台期中) “ ”是“ ”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件5. (2分) (2020高一上·临夏期中) 函数与g(x)=-x+a的图象大致是()A .B .C .D .6. (2分) (2018高二下·佛山期中) 已知双曲线的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为()A .B .C .D .7. (2分)(2017·青岛模拟) 已知实数x∈[1,10],执行如图所示的程序框图,则输出的x不大于63的概率为()A .B .C .D .8. (2分)设变量x,y满足约束条件,则目标函数z=2y-3x的最大值为()A . -3B . 2C . 4D . 59. (2分)(2017·重庆模拟) 一个几何体的三视图如图所示,则该几何体的表面积为()A . 4π+8B . +24C . 4π+24D . +810. (2分)(2018·河北模拟) 函数与的图象上存在关于轴对称的点,则实数的取值范围是()A .B .C .D .11. (2分) (2019高一上·合肥月考) 已知,分别是定义在上的偶函数和奇函数,且,则()A . -3B . -1C . 1D . 312. (2分)甲乙丙3位同学选修课程,从4门课程中选。
海拉尔区民族中学2018-2019学年高三上学期11月月考数学试卷含答案
1. 已知正方体 ABCD﹣A1B1C1D1 中,点 E 为上底面 A1C1 的中心,若 为( ) D.x= ,y=1 + ,则 x、y 的值分别
A.x=1,y=1 B.x=1,y= C.x= ,y= 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________
2. 设函数 f x 1 x 1 ,g x ln ax 2 3x 1 ,若对任意 x1 [0 , ) ,都存在 x2 R ,使得
f x1 f x2 ,则实数的最大值为(
) C.
A.
9 4
﹣
B.
9 2
D.4
3. 已知双曲线 C:
二、填空题
13.过点(0,1)的直线与 x2+y2=4 相交于 A、B 两点,则|AB|的最小值为 . 14. 如图, 在三棱锥 P ABC 中, PA PB PC , PA PB , PA PC , △PBC 为等边三角形, 则 PC 与平面 ABC 所成角的正弦值为______________.
第 1 页,共 12 页
9. 函数 f(x)= A.-1 C.2
kx+b,关于点(-1,2)对称,且 f(-2)=3,则 b 的值为(
x+1 B.1 D.4 )
)
10.若 a>0,b>0,a+b=1,则 y= + 的最小值是( A.2 11.已知 B.3 C.4 D.5
海拉尔市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 (2)
海拉尔市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( )A .14 B .12C .1D .2 2. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z <<3. 已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=- D .6x π=4. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)(5. 已知,则tan2α=( )A .B .C .D .6. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-547. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.8. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .39. 在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 10.已知集合,则A0或 B0或3C1或D1或311.已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位12.过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=0二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.14.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 16.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.三、解答题(本大共6小题,共70分。
海拉尔市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案
海拉尔市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259B .2516C .6116D .31152. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.3. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N == 4. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[]C[]D[]5. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.6. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( ) A .3 B .72 C. D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.7. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 8. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >> 9. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.10.某几何体的三视图如图所示,则此几何体不可能是( )A. B . C. D.11.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .B .12+C .122+ D .122+ 12.设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为( )A .B . C. D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 14.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.15.= .16.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.三、解答题(本大共6小题,共70分。
海拉尔区第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案
海拉尔区第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A . B . C . D .2. 下列命题中正确的是( )A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”3. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为()A .20B .25C .22.5D .22.754. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 25. 函数f (x )=,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )kx +b x +1A .-1B .1C .2D .46. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)7. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( )A .S 10B .S 9C .S 8D .S 78. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .4849. 已知定义域为的偶函数满足对任意的,有,且当R )(x f R x ∈)1()()2(f x f x f -=+时,.若函数在上至少有三个零点,则]3,2[∈x 18122)(2-+-=x x x f )1(log )(+-=x x f y a ),0(+∞实数的取值范围是()111]班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .22,0(33,0(55,0()66,0(10.已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣11.已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 111ABC A B C 1A ABC BC 则异面直线与所成的角的余弦值为()AB 1CCA B D .3412.若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( )A .{2}B .{0,2}C .{﹣1,2}D .{﹣1,0,2}二、填空题13.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .14.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .15.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .16.下列函数中,①;②y=;③y=log 2x+log x 2(x >0且x ≠1);④y=3x +3﹣x ;⑤;⑥;⑦y=log 2x 2+2最小值为2的函数是 (只填序号)17.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .18.如图,已知,是异面直线,点,,且;点,,且.若,分m n A B m ∈6AB =C D n ∈4CD =M N别是,的中点,与所成角的余弦值是______________.AC BD MN =m n【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.三、解答题19.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:生二胎不生二胎合计70后30154580后451055合计7525100(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.参考数据:P (K 2>k )0.150.100.050.0250.0100.005k 2.0722.7063.8415.0246.6357.879(参考公式:,其中n=a+b+c+d )20.已知函数f (x )=ax 2+blnx 在x=1处有极值.(1)求a ,b 的值;(2)判断函数y=f (x )的单调性并求出单调区间.21.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ(cos θ+sin θ)﹣6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点P (x ,y )是圆C 上动点,试求x+y 的最大值,并求出此时点P 的直角坐标.22.(本小题满分12分)已知抛物线:,过其焦点作两条相互垂直且不平行于轴的直线,分别交抛物线于点、C x y 42=F x C 1P 2P 和点、,线段、的中点分别为、.3P 4P 21P P 43P P 1M 2M (1)求面积的最小值;21M FM ∆(2)求线段的中点满足的方程.21M M P 23.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t 0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t 0,试确定t 0的取值范围24.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.海拉尔区第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
海拉尔区高中2018-2019学年高三下学期第三次月考试卷数学
海拉尔区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1) D .[﹣9,1)2. 设x ,y ∈R,且满足,则x+y=( )A .1B .2C .3D .43. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞4. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( ) A.B.C.D .25. 设集合P={3,log 2a},Q={a ,b},若P ∩Q={0},则P ∪Q=( ) A .{3,0}B .{3,0,1}C .{3,0,2}D .{3,0,1,2}6. 函数f (x )=1﹣xlnx 的零点所在区间是( ) A .(0,) B.(,1) C .(1,2) D .(2,3)7. 设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥βC .若b ⊂α,b ∥c ,则c ∥αD .若c ∥α,c ⊥β,则α⊥β8. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l9. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 310.三角函数()sin(2)cos 26f x x x π=-+的振幅和最小正周期分别是( )A2πBπC2πDπ班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,2612.四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .二、填空题13.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .14.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.15.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).16.若与共线,则y= .17.某工程队有5项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后立即进 行那么安排这5项工程的不同排法种数是 .(用数字作答)18.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .三、解答题19.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?20.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.(1)求椭圆的方程;(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.21.如图,在几何体SABCD中,AD⊥平面SCD,BC⊥平面SCD,AD=DC=2,BC=1,又SD=2,∠SDC=120°.(1)求SC与平面SAB所成角的正弦值;(2)求平面SAD与平面SAB所成的锐二面角的余弦值.22.已知命题p :方程表示焦点在x 轴上的双曲线.命题q :曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点,若p ∧q 为假命题,p ∨q 为真命题,求实数m 的取值范围.23.在△ABC 中,内角A ,B ,C 的对边分别为a 、b 、c ,且bsinA=acosB .(1)求B ;(2)若b=2,求△ABC 面积的最大值.24.已知函数f (x )=log a (1﹣x )+log a (x+3),其中0<a <1. (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为﹣4,求a 的值.25.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明1212x x +≥.26.已知函数f (x )=x ﹣1+(a ∈R ,e 为自然对数的底数).(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (Ⅱ)求函数f (x )的极值;(Ⅲ)当a=1的值时,若直线l :y=kx ﹣1与曲线y=f (x )没有公共点,求k 的最大值.海拉尔区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减, 由于函数的值域为(﹣∞,1], 则lg (1﹣x )≤1, 则有0<1﹣x ≤10, 解得,﹣9≤x <1. 则定义域为[﹣9,1), 故选D .【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.2. 【答案】D【解析】解:∵(x ﹣2)3+2x+sin (x ﹣2)=2, ∴(x ﹣2)3+2(x ﹣2)+sin (x ﹣2)=2﹣4=﹣2, ∵(y ﹣2)3+2y+sin (y ﹣2)=6,∴(y ﹣2)3+2(y ﹣2)+sin (y ﹣2)=6﹣4=2, 设f (t )=t 3+2t+sint ,则f (t )为奇函数,且f'(t )=3t 2+2+cost >0,即函数f (t )单调递增.由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2,即f (x ﹣2)+f (y ﹣2)=2﹣2=0, 即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),∵函数f (t )单调递增 ∴x ﹣2=2﹣y , 即x+y=4, 故选:D . 【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性质.3. 【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8kx =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海拉尔市蒙古族中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( ) A .2+B .1+C.D.2. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞3. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-4. 设复数1i z =-(i 是虚数单位),则复数22z z+=( )A.1i -B.1i +C. 2i +D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 5. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-1 7. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.8. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 9. 已知集合,则A0或 B0或3C1或D1或310.已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .则几何体的体积为( )34意在考查学生空间想象能力和计算能 50的样本进行调 800人,则应从青年人抽取的人数为( ) C .30 D .40分.把答案填写在横线上)0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,)的稳定点.则下列结论中正确的是 .(填上所有②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.14.设x ,y满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .15.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 16.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||MF =(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.18.(本小题满分12分)如图,四棱柱1111ABCD A B C D -中,侧棱1A A ^底面ABCD ,//AB DC , AB AD ^,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.(Ⅰ)证明:11B C ^面1CEC ;(II )设点M 在线段1C E 上,且直线AM 与平面11ADD A所成角的正弦值为6,求线段AM 的长.11119.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分别记为,,,,A B C D E ,其频率分布直方图如下图所示.(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在,,C D E 三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自C 组的概率.20.已知等差数列满足:=2,且,成等比数列。
(1) 求数列的通项公式。
(2)记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明理由.21.(本题10分)解关于的不等式2(1)10ax a x -++>.22.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.海拉尔市蒙古族中学2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形, ∴原四边形为直角梯形, 且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A .2. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12a ≤时,12a -≥-,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11,33B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧≤⎪⎨⎪<⎩或1211133a a ⎧>⎪⎪⎨⎪+<⎪⎩,∴2a <,选A .3. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .4. 【答案】A 【解析】5. 【答案】D【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,∴sin θcos θ<0,cos θ>0,∴sin θ<0, ∴θ是第四象限角. 故选:D .【点评】本题考查了象限角的三角函数符号,属于基础题.6. 【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质. 7. 【答案】C【解析】由题意,得甲组中78888486929095887m +++++++=,解得3m =.乙组中888992<<,所以9n =,所以12m n +=,故选C .8. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 9. 【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
10.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣. 故选:C .【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.11.【答案】D 【解析】12.【答案】B 【解析】试题分析:设从青年人抽取的人数为800,,2050600600800x x x ∴=∴=++,故选B . 考点:分层抽样.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.【答案】 ①②⑤【解析】解:对于①,令g (x )=x ,可得x=或x=1,故①正确;对于②,因为f (x 0)=x 0,所以f (f (x 0))=f (x 0)=x 0,即f (f (x 0))=x 0,故x 0也是函数y=f (x )的稳定点,故②正确;对于③④,g (x )=2x 2﹣1,令2(2x 2﹣1)2﹣1=x ,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x ﹣1)(2x+1)(4x 2+2x ﹣1)=0还有另外两解,故函数g (x )的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f (x )有不动点x 0,显然它也有稳定点x 0;若函数y=f (x )有稳定点x 0,即f (f (x 0))=x 0,设f (x 0)=y 0,则f (y 0)=x 0 即(x 0,y 0)和(y 0,x 0)都在函数y=f (x )的图象上,假设x 0>y 0,因为y=f (x )是增函数,则f (x 0)>f (y 0),即y 0>x 0,与假设矛盾; 假设x 0<y 0,因为y=f (x )是增函数,则f (x 0)<f (y 0),即y 0<x 0,与假设矛盾; 故x 0=y 0,即f (x 0)=x 0,y=f (x )有不动点x 0,故⑤正确. 故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.14.【答案】 ﹣6 .【解析】解:由约束条件,得可行域如图,使目标函数z=2x ﹣3y 取得最小值的最优解为A (3,4), ∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6. 故答案为:﹣6.15.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫'< ⎪⎝⎭来验证.求出()f x 表达式后,就可以求出13f ⎛⎫⎪⎝⎭.1 16.【答案】5 【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f ′(x )>0或f ′(x )<0求单调区间;第二步:解f ′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.三、解答题(本大共6小题,共70分。