24.4(5)相似三角形的判定
(完整版)相似三角形的判定方法
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
相似三角形的判定条件
相似三角形的判定条件在我们的数学世界中,相似三角形是一个非常重要的概念。
它不仅在解决几何问题时经常出现,还与实际生活中的许多场景有着紧密的联系。
那什么是相似三角形呢?简单来说,如果两个三角形的形状相同,但大小不一定相同,它们就是相似三角形。
而要判断两个三角形是否相似,就需要依据一定的判定条件。
相似三角形的判定条件主要有以下几种:第一种判定条件是“两角分别相等的两个三角形相似”。
这是一个非常重要的判定方法,也比较容易理解。
比如说,有两个三角形,一个三角形的两个角分别是 30 度和 60 度,另一个三角形也有两个角分别是 30 度和 60 度。
因为三角形的内角和是 180 度,所以第三个角的度数也就确定了。
这样一来,这两个三角形的三个角都分别相等,它们的形状就相同,从而可以判定这两个三角形是相似的。
第二种判定条件是“两边成比例且夹角相等的两个三角形相似”。
假设我们有两个三角形,其中一个三角形的两条边的长度分别是 4 和 6,夹角是 60 度;另一个三角形对应的两条边的长度分别是 8 和 12,夹角也是 60 度。
我们可以计算出这两组对应边的比例,4∶8 = 1∶2,6∶12 = 1∶2,比例相等,而且夹角也相等,所以这两个三角形就是相似的。
第三种判定条件是“三边成比例的两个三角形相似”。
比如一个三角形的三条边分别是3、4、5,另一个三角形的三条边分别是6、8、10。
我们来计算一下它们对应边的比例,3∶6 = 1∶2,4∶8 = 1∶2,5∶10 = 1∶2,三边的比例都相等,那么这两个三角形就是相似的。
为了更好地理解和运用这些判定条件,我们来看一些实际的例子。
假设在一个建筑工地上,有一个工人需要测量一个大型三角形广告牌的高度,但他无法直接测量。
不过,他在地面上立了一根已知长度的杆子,然后分别测量出杆子的影子长度和广告牌的影子长度。
通过这种方法,就可以利用相似三角形的知识来计算出广告牌的高度。
在这个例子中,杆子和它的影子以及广告牌和它的影子分别构成了两个直角三角形。
判定相似三角形的方法
判定相似三角形的方法
判定相似三角形的方法有以下几种:
1. AA相似定理:如果两个三角形的两个角分别相等,则它们是相似的。
2. SSS相似定理:如果两个三角形的对应边的长度比例相等,则它们是相似的。
3. SAS相似定理:如果两个三角形的一个角相等,且它们的对应边的长度比例相等,则它们是相似的。
4. 对顶角相等定理:如果两个三角形的一个对顶角相等,则它们是相似的。
5. 直角三角形相似定理:如果两个直角三角形的一个锐角相等,则它们是相似的。
要注意的是,这些定理只是判定相似三角形的方法,而不能确定相似三角形的比例尺。
对于给定的两个相似三角形,我们可以通过这些定理来判断它们是否相似,但要确定它们的比例尺需要知道至少一个对应边的长度。
沪教版数学九年级上册24.4《相似三角形的判定》(第1课时)教学设计
沪教版数学九年级上册24.4《相似三角形的判定》(第1课时)教学设计一. 教材分析《相似三角形的判定》是沪教版数学九年级上册第24章第4节的内容,本节内容是在学生已经掌握了三角形的基本概念、三角形的性质、三角形的判定等知识的基础上进行授课的。
本节课的主要内容是引导学生探究相似三角形的判定方法,让学生通过观察、操作、猜想、证明等过程,体会数学的转化思想,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。
但是,学生对相似三角形的判定方法还没有接触过,对于如何证明两个三角形相似还有一定的困难。
因此,在教学过程中,教师需要引导学生观察、操作、猜想、证明,帮助学生理解和掌握相似三角形的判定方法。
三. 教学目标1.知识与技能目标:使学生掌握相似三角形的判定方法,能够运用相似三角形的性质解决一些简单的问题。
2.过程与方法目标:通过观察、操作、猜想、证明等过程,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:让学生在探究过程中体验数学的转化思想,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点教学重点:相似三角形的判定方法。
教学难点:如何证明两个三角形相似。
五. 教学方法采用问题驱动法、合作学习法、探究学习法、讲授法等教学方法,引导学生观察、操作、猜想、证明,从而掌握相似三角形的判定方法。
六. 教学准备准备一些三角形模型、多媒体教学设备等。
七. 教学过程1.导入(5分钟)教师通过展示一些三角形模型,让学生观察并思考:这些三角形有什么特点?你能找出它们之间的联系吗?从而引导学生进入本节课的主题——相似三角形的判定。
2.呈现(10分钟)教师通过多媒体展示一些相似三角形的图片,让学生观察并回答问题:这些三角形为什么相似?你是如何判断的?引导学生总结出相似三角形的判定方法。
3.操练(10分钟)教师提出一些判断相似三角形的问题,让学生分组进行讨论、操作、证明。
相似三角形的判定与性质
相似三角形的判定与性质相似三角形是数学几何中的一个重要概念,它在解决实际问题和证明定理时起着关键作用。
相似三角形的判定是基于其边比和角相等的条件,而相似三角形的性质则涉及到各个角的对应关系和边的比例关系。
本文将详细介绍相似三角形的判定方法和性质。
一、相似三角形的判定方法在确定两个三角形是否相似时,常用的判定方法有以下几种:1. AA判定法(角-角判定法):如果两个三角形的两个角分别相等,那么它们是相似三角形。
具体来说,如果两个三角形的一个角相等,且对应边的夹角也相等,那么它们是相似的。
2. SSS判定法(边-边-边判定法):如果两个三角形的三边分别成比例,那么它们是相似三角形。
具体来说,如果两个三角形的对应边的长度之比相等,那么它们是相似的。
3. SAS判定法(边-角-边判定法):如果两个三角形的一个角相等,且两个角的对边成比例,那么它们是相似三角形。
这些判定方法是相似三角形性质的基础,通过判定可以确定两个三角形是否相似。
二、相似三角形的性质1. 两个相似三角形的对应角相等,即相应的角相等。
这是相似三角形定义的直接性质,对应角相等是相似三角形的必要条件。
2. 两个相似三角形的对应边成比例。
如果两个三角形相似,则它们的对应边的长度之比等于任意两个对应边的长度之比。
具体来说,设两个相似三角形的对应边分别为AB和A'B'、AC和A'C'、BC和B'C',则有AB/A'B' = AC/A'C' = BC/B'C'。
3. 两个相似三角形的高线成比例。
如果两个相似三角形的高线分别为h和h',那么h/h'等于相应的边的长度之比。
4. 两个相似三角形的面积之比等于对应边长度之比的平方。
设两个相似三角形的面积分别为S和S',对应边的长度之比为k,则有S/S' = k^2。
5. 两个相似三角形的周长之比等于对应边长度之比。
几何中的相似三角形相似三角形的判定条件
几何中的相似三角形相似三角形的判定条件相似三角形是几何学中的重要概念,判断两个三角形是否相似可以通过一系列的条件来确定。
本文将介绍几何中的相似三角形以及相似三角形的判定条件。
一、相似三角形的定义相似三角形是指具有相同形状但不同大小的三角形。
它们的所有对应角度相等,对应边的长度成比例。
二、相似三角形的判定条件在几何学中,有三种主要的判定条件用于确定两个三角形是否相似,它们分别是AA相似定理、SAS相似定理和SSS相似定理。
1. AA相似定理(角-角相似定理)当两个三角形中有两个对应角度相等时,它们是相似三角形。
具体而言,如果两个三角形的一个角度相等,而另一个角度也相等,那么这两个三角形是相似的。
2. SAS相似定理(边-角-边相似定理)当两个三角形的一个角度相等,并且两边成比例,那么它们是相似的。
具体而言,如果两个三角形的一个角度相等,并且与这个角度对应的两边成比例,那么这两个三角形是相似的。
3. SSS相似定理(边-边-边相似定理)当两个三角形的三边成比例时,它们是相似的。
具体而言,如果两个三角形的三边长度成比例,那么这两个三角形是相似的。
三、相似三角形的性质相似三角形具有一些重要的性质,可以应用于解决几何问题。
1. 对应角相等性质相似三角形的对应角相等,即它们的三个角度一一对应相等。
2. 对应边成比例性质相似三角形的对应边长度成比例,即它们的三个边按比例相等。
3. 高度性质相似三角形的对应边上的高度成比例,即它们的高度按比例相等。
4. 重心性质相似三角形的重心重合,即它们的重心位置一致。
四、应用举例下面通过一个实例来演示相似三角形的判定过程。
例题:已知∠ABC = 60°,∠ACB = 40°,AB = 8 cm,BC = 6 cm,是否可以判定△ABC与△DEF相似?解答:根据角度相等的条件,我们可以得知∠ABC = ∠DEF = 60°以及∠ACB = ∠DFE = 40°。
相似三角形的性质与判定
相似三角形的性质与判定相似三角形在几何学中是一个重要的概念,它们具有一些特殊的性质和判定条件。
本文将介绍相似三角形的性质和判定方法。
一、相似三角形的性质相似三角形是指具有相同形状但可能不同大小的三角形。
相似三角形的性质有以下几个方面:1. 对应角相等:如果两个三角形的对应角相等,那么它们一定是相似的。
具体来说,如果两个三角形的三个内角两两相等,那么它们是相似的。
2. 对应边成比例:如果两个三角形的对应边成比例,那么它们一定是相似的。
具体来说,如果两个三角形的三条边各自成比例,那么它们是相似的。
3. 高度比例相等:如果两个相似三角形之间的高度比例相等,那么它们的面积比例也相等。
换句话说,如果两个三角形的高度比例相等,那么它们的面积比例也相等。
二、相似三角形的判定方法判定两个三角形是否相似有以下几种方法:1. AA判定法:如果两个三角形的两个对应角分别相等,那么它们是相似的。
这是相似三角形的基本判定法。
2. AAA判定法:如果两个三角形的三个内角两两相等,那么它们是相似的。
这是相似三角形的充要条件,也是最常用的判定法。
3. SSS判定法:如果两个三角形的三条边各自成比例,那么它们是相似的。
这是相似三角形的另一种判定法。
4. SAS判定法:如果两个三角形的两个对应边成比例,且夹角也相等,那么它们是相似的。
三、应用示例下面通过一个具体的示例来说明相似三角形的性质和判定方法。
假设有两个三角形ABC和XYZ,已知∠A = ∠X,∠B = ∠Y,且AB/XY = BC/YZ。
根据AA判定法可知,∠A = ∠X 和∠B = ∠Y,所以三角形ABC 与三角形XYZ相似。
根据对应边成比例可知,AB/XY = BC/YZ,所以三角形ABC与三角形XYZ相似。
因此,根据相似三角形的性质和判定方法,可以得出三角形ABC 与三角形XYZ是相似的。
结论:相似三角形具有相同形状但可能不同大小的特点。
判定两个三角形是否相似可以使用AA判定法、AAA判定法、SSS判定法和SAS判定法。
相似三角形的判定口诀
相似三角形的判定口诀
两角对应相等,两个三角形相似。
两边对应成比例且夹角相等,两个三角形相似。
三边对应成比例,两个三角形相似。
三边对应平行,两个三角形相似。
斜边与直角边对应成比例,两个直角三角形相似。
1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)
4.两三角形三边对应平行,则两三角形相似。
(简叙为:三边对应平行,两个三角形相似。
)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
(简叙为:斜边与直角边对应成比例,两个直角三角形相似。
)
6.如果两个三角形全等,那么这两个三角形相似(相似比为1:1)。
(简叙为:全等三角形相似)。
相似三角形的判定方法
相似三角形的判定方法在几何学中,相似三角形是指具有相同形状但大小不同的三角形。
判定两个三角形是否相似是解决几何学问题中的基本步骤之一。
下面将介绍三种常用的相似三角形的判定方法。
一、AA判定法AA判定法是通过两个三角形的两个角分别相等来判定它们是否相似的方法。
具体步骤如下:1. 选择两个角分别在两个三角形中进行比较。
2. 如果两个三角形的两个角分别相等,则可以得出它们是相似三角形的结论。
二、SSS判定法SSS判定法是通过两个三角形的三条边的对应边成比例来判定它们是否相似的方法。
具体步骤如下:1. 选择两个三角形的三条边分别进行比较。
2. 如果两个三角形的三条边的对应边成比例,则可以得出它们是相似三角形的结论。
三、SAS判定法SAS判定法是通过两个三角形的一对相等的角以及夹在它们之间的两条边的比值相等来判定它们是否相似的方法。
具体步骤如下:1. 选择两个三角形中的一个角,以及与其相对应的两边。
2. 比较另一个三角形中与已知角相对应的两边和刚刚选择的两边的比值。
3. 如果两个三角形的这两个比值相等,则可以得出它们是相似三角形的结论。
需要注意的是,判定相似三角形时,除了以上三种方法,还可以使用其他几何性质的判定方法,例如:尺规作图、对称性等。
根据题目描述和给出的条件,选择合适的判定方法进行分析和解决。
在实际应用中,相似三角形的判定方法有助于解决问题,例如测量远处高塔的高度、计算阴影的长度等。
总结相似三角形的判定方法是解决几何学问题的重要手段之一。
通过AA判定法、SSS判定法和SAS判定法,可以准确判断两个三角形是否相似。
在实际应用中,正确运用相似三角形的判定方法,可以帮助我们解决各种测量和计算问题。
理解这些判定方法并熟练运用,有助于提高几何学问题的解决能力。
相似三角形的判定方法,为现实生活中的计算提供了重要的参考和途径。
通过理论和实践相结合,我们能够更好地应用这些判定方法,解决实际问题。
掌握相似三角形的判定方法,将为我们的学习和工作带来便利,丰富我们的几何学知识。
相似三角形判断条件
相似三角形判断条件相似三角形是指两个三角形,他们彼此的所有内角和外角都相等。
相似三角形的几何原理是三角形具有相似性的基本原理,它指的是两个三角形所有内角和外角都相等。
在几何原理中,最重要的一点是如何证明两个三角形是相似的。
下面我们就来详细看看相似三角形的判断条件。
首先,相似三角形的判断条件是:(1)两个三角形的外角是相等的。
(2)两个三角形的内角是相等的。
(3)两个三角形的边长比相等。
假设三角形ABC,DEF两者的所有角和边长都是已知的,那么在证明他们是否为相似三角形的时候,可以用到几何定理,如半周长定理:两个三角形的半周长比等于它们的定点外角的正弦值的乘积;三角形外角公式:所有三角形的外角之和是180°;三角形内角公式:任何三角形的内角之和是180°;三角形边长比公式:任意一条边的长度比等于两两比的其他两边的比值的乘积;以及内部三角形内外角公式:内部三角形的外角是内角的两倍。
由以上几何定理可以推出,相似三角形存在条件即:(1)两个三角形的外角都相等。
(2)两个三角形的内角都相等。
(3)两个三角形的边长比都相等。
另外,如果有一个相似三角形,它的定点坐标(x1,y1),(x2,y2),(x3,y3),可以用三个定点距离来证明它的相似性,即用三个定点距离的比值等于三角形的边比的平方;用定点外角的正弦值的比值等于三角形的边比。
总之,判断两个三角形是否为相似三角形的原则是:它们的所有外角和内角都相等,它们的边比都相等,或者可以用三个定点距离的比值等于三角形的边比的平方,用定点外角的正弦值的比值等于三角形的边比来证明它们的相似性。
综上所述,相似三角形的判断条件就包括了三角形的外角、内角和边比都相等,以及可以用三个定点距离的比值等于三角形的边比的平方,用定点外角的正弦值的比值等于三角形的边比来证明它们的相似性。
相似三角形是几何原理中的基本概念,在几何中有很多应用。
例如,它可以用于解决以下问题:(1)最小外接圆半径:给定三角形ABC,找出最小外接圆半径;(2)最大内接圆半径:给定三角形ABC,求出最大内接圆半径;(3)多边形面积计算:给定由三角形ABC的共同点组成的多边形,计算多边形的面积;(4)共轭多边形:给定三角形ABC,求出其共轭多边形;(5)三角形的中心:给定三角形ABC,找出它的中心点;(6)三角形的重心:给定三角形ABC,找出它的重心;以及(7)三角形的切线:给定三角形ABC,求出三条切线。
相似三角形的判定方法
相似三角形的判定方法相似三角形是指两个三角形的对应角度相等,对应边长成比例关系的情况。
这种形状相似的关系在现实世界中十分常见,例如地图上的缩放、建筑物的设计与施工、电子工程中的放大与缩小等都与相似三角形有关。
判定两个三角形是否相似,可以使用以下几种方法。
1. AA相似法则:如果两个三角形的两个角分别相等,那么这两个三角形是相似的。
具体来说,如果两个三角形的两个角分别对应相等,那么这两个三角形是相似的。
比如,如果\angle A_1 = \angle A_2,\angle B_1 = \angle B_2,那么\triangle ABC与\triangle A_1B_1C_1是相似的。
2. SAS相似法则:如果两个三角形的一个角相等,且这两个角之间的对边与对应边的比例相等,那么这两个三角形是相似的。
具体来说,如果一个角相等且两个对应边的比例相等,那么这两个三角形是相似的。
比如,如果\angle A_1 = \angle A_2, \frac{AB}{A_1B_1}=\frac{AC}{A_2C_2},那么\triangle ABC与\triangle A_1B_1C_1是相似的。
3. SSS相似法则:如果两个三角形的对应边比例相等,那么这两个三角形是相似的。
具体来说,如果三个对应边的比例相等,那么这两个三角形是相似的。
比如,如果\frac{AB}{A_1B_1}=\frac{BC}{B_1C_1}=\frac{AC}{A_2C_2},那么\triangle ABC与\triangle A_1B_1C_1是相似的。
4. 相似比的性质:如果两个三角形是相似的,那么它们的对应边长的比例是相等的。
具体来说,如果\triangle ABC与\triangle A_1B_1C_1是相似的,那么\frac{AB}{A_1B_1}=\frac{BC}{B_1C_1}=\frac{AC}{A_2C_2}。
利用上述三种相似三角形的判断方法,可以在实际问题中应用相似三角形的性质进行解题。
相似三角形的五种判定方法
相似三角形的五种判定方法
1.两角分别对应相等的两个三角形相似;
2、两边成比例且夹角相等的两个三角形相似;
3、三边成比例的两个三角形相似;
4、一条直角边与斜边成比例的两个直角三角形相似;
5、用一个三角形的两边去比另一个三角形与之相对应的两边,分别对应成比例,如果三组对应边相比都相同,则三角形相似。
方法一:定理法,即平行于三角形一边的直线和其他俩边(或他的延长线)相交,所截得的三角形与原三角形相似,俗话来讲就是一个大的三角形包含一个小的三角形,小的三角形两边延长就成为了大三角形的两边;
方法二:俩角对应相等的三角形相似,俗话来讲先找到这两个三角形的对应
边,间接找出三角形三组对应角有俩组相等则相似;
方法三:两边对应成比例且夹角相等的三角形相似,俗话来讲:先找到各对应边对应角,一一对应后会很方便。
两边对应成比例:两组对应边之比相等,即按同一种比法相比。
夹角相等:即所成比例的两边之间的那个角相等;方法四:三边
对应成比例,俗话来讲:如上均先找到对应边对应角,将其一一对应。
三边对应成比例:就是三组对应边之比相等,比法均一致;
判定五:只适用于直角三角形:直角边和斜边对应成比例则这俩个三角形相
似,俗话来讲俗话来讲:某种意义上直角三角形一个直角边和一个斜边对应成比例也同时代表着另外一个直角边也对应成比例。
相似三角形的判定(解析版)
相似三角形的判定(解析版)相似三角形的判定(解析版)相似三角形是指具有相同形状但尺寸不同的两个或多个三角形。
判定两个三角形是否相似有多种方法,本文将介绍三种常见的相似三角形判定方法,并以解析的方式解释其原理和应用。
一、AA相似判定法AA相似判定法是通过两个三角形的相似角和对应边的比值来判定它们是否相似。
具体步骤如下:1. 选取两个三角形,分别记为△ABC和△DEF。
2. 观察两个三角形中的对应角,如果∠A = ∠D 且∠B = ∠E(或∠C = ∠F),则可以得出两个三角形的相似角。
3. 检查两个三角形中对应边的比值,如果AB/DE = BC/EF(或AC/DF)成立,则可以得出两个三角形相似。
通过AA相似判定法,我们可以快速判定两个三角形是否相似,并且可以进一步得出它们对应边的比值关系。
二、SSS相似判定法SSS相似判定法是通过两个三角形的边长比值来判定它们是否相似。
具体步骤如下:1. 选取两个三角形,分别记为△ABC和△DEF。
2. 检查两个三角形中各对应边的比值,如果AB/DE = BC/EF =AC/DF成立,则可以得出两个三角形相似。
通过SSS相似判定法,我们可以根据三个对应边的比值关系来判断两个三角形是否相似。
三、SAS相似判定法SAS相似判定法是通过两个三角形的两组对应边的比值和夹角的相等关系来判定它们是否相似。
具体步骤如下:1. 选取两个三角形,分别记为△ABC和△DEF。
2. 检查两个三角形中对应边的比值和夹角的相等关系。
如果AB/DE = AC/DF,并且∠A = ∠D,则可以得出两个三角形相似。
SAS相似判定法是一种灵活且常用的判定方法,通过两组对应边的比值和夹角的相等关系来判断两个三角形是否相似。
结论:通过以上三种相似三角形的判定方法,我们可以准确地判断两个三角形是否相似。
在实际应用中,相似三角形的判定对于解决实际问题具有重要意义。
例如,在建筑、地图测量和航空导航中,我们需要利用相似三角形的性质来进行距离和高度的估算。
相似三角形的判定方法
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
《24.4相似三角形的判定》作业设计方案-初中数学沪教版上海九年级第一学期
《相似三角形的判定》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在初中数学课程中对于相似三角形判定的理解,能够熟练运用相关定理和性质,通过实际操作和练习,提升学生对相似三角形问题的分析和解决能力。
二、作业内容(一)理论复习学生需回顾相似三角形的定义、性质及判定定理,如AA相似、SSS相似等,并尝试通过例题理解各种判定方法的应用场景。
(二)练习题设计1. 基础题:选择、填空题,涉及相似三角形的概念及基本判定方法。
2. 综合题:设计实际问题,要求学生通过画图、计算、推理等步骤,判断三角形的相似性。
3. 拓展题:提供复杂图形,要求学生运用所学知识,分析并判定多个三角形之间的相似关系。
(三)实践操作学生需自行寻找或绘制实际生活中的相似三角形实例,如地图上的建筑物与实地建筑物的关系等,并尝试用所学知识解释其相似性。
三、作业要求1. 理论复习部分:学生需自行总结相似三角形的判定方法,并尝试举一反三,通过典型例题加深理解。
2. 练习题部分:要求学生在规定时间内独立完成,综合题和拓展题需有详细的解题步骤和思路说明。
3. 实践操作部分:学生需拍摄或绘制实例的照片或草图,附在作业中,并简要说明其相似性的判定过程。
4. 作业需整洁、字迹清晰,解答过程逻辑严谨,表达准确。
四、作业评价1. 教师根据学生完成情况,对理论复习部分进行批改,并给出相应的指导建议。
2. 对练习题部分进行评分,重点关注学生的解题思路和步骤是否正确,表达是否清晰。
3. 对实践操作部分进行评价,关注学生是否能从实际生活中找到相似三角形的例子,并正确分析其相似性。
五、作业反馈1. 教师将批改后的作业发回给学生,让学生了解自己的不足之处。
2. 对于共性问题,教师将在课堂上进行讲解,帮助学生解决疑惑。
3. 鼓励学生之间互相交流学习,分享解题经验和思路。
4. 定期收集学生的作业反馈,了解学生的学习需求和困难,以便调整教学策略和作业设计。
通过以上作业设计旨在通过多维度、多层次的练习,帮助学生全面掌握相似三角形的判定方法,并能够灵活运用所学知识解决实际问题。
24.4相似三角形的判定
求证:△OAD∽△OBC.
D A
O
B
C
例 3、已知如图,点 D 是△ABC 的边 AB 上的一点,且 AC2 AD • AB ,求证:△ACD∽△ABC.
A
D
C
B
猜想
3:在△ABC
与△
A1B1C1 中,如果
AB A1B1
BC B1C1
CA C1 A1
,那么△ABC
与△
A1B1C1 相似吗?为什么?
8.如图,在△ABC 中,CD,AE 是三角形的两条高,写出图中所有相似的三角形,简要说明理由.
9.如图,D,E 是 AB 边上的三等分点,F,G 是 AC 边上的三等分点,•写出图中的相似 三角形,并求出对应的相似比.
6
2.相似三角形的等价关系: (1)反身性:对于任一△ABC,都有△ABC∽△ABC; (2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC (3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。 3、三角形相似的判定 (1)三角形相似的判定方法 ①定义法:对应角相等,对应边成比例的两个三角形相似 ②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ③判定定理 1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两 角对应相等,两三角形相似。 ④判定定理 2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相 似,可简述为两边对应成比例且夹角相等,两三角形相似。 ⑤判定定理 3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为 三边对应成比例,两三角形相似 课程引入:
三角形相似的判断方法
三角形相似的判断方法
一。
相似三角形是初中数学中的重要内容,掌握其判断方法对于解决相关问题至关重要。
1.1 定义法。
如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似。
这就好比两个人,长相相似,身材比例也差不多,那我们就说他们像。
1.2 两角对应相等。
如果两个三角形有两个角分别对应相等,那它们就相似。
就像一个模子里刻出来的,有了这关键的两个角一样,整个形状也就差不多了。
二。
2.1 两边对应成比例且夹角相等。
好比两根棍子,长度比例合适,夹角也一样,那它们组成的三角形就相似。
这是个很实用的判断方法。
2.2 三边对应成比例。
当两个三角形的三条边对应成比例时,它们就是相似的。
这就像做衣服,布料按照相同的比例裁剪,做出来的款式就相似。
2.3 直角三角形的斜边和一条直角边对应成比例。
对于直角三角形,斜边和一条直角边对应成比例,那它们就相似。
这可是解决直角三角形相似问题的“法宝”。
3.1 实际应用。
在实际生活中,相似三角形的判断方法用处可大了。
比如测量高楼的高度,我们通过相似三角形的原理,就能轻松搞定。
3.2 学习要点。
要想熟练掌握这些判断方法,得多做练习题,见多识广,才能在遇到问题时“手到擒来”。
相似三角形的判定和性质
相似三角形的判定和性质
性质:
1.相似三角形对应角相等,对应边成比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3.相似三角形周长的比等于相似比。
4.相似三角形面积的比等于相似比的平方。
5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
判定:
1.两角分别对应相等的两个三角形相似。
2.两边成比例且夹角相等的两个三角形相似。
3.三边成比例的两个三角形相似。
4.—条直角边与斜边成比例的两个直角三角形相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形与全等三角形判定方法的联 系
全等的 判定
SAS
SSS
AAS(ASA) 直角三角形
相似的 两边成 三边对 判定 比例夹 应成
角相等
两角相等 一直角边与 斜边 比例 对应成比例
4、相似三角形的判定定理的作用:
①可以用来判定两个三角形相似; ②间接证明角相等、线段成比例; ③间接地为计算线段的长度及角的大小创造 条件.
5、判定两三角形相似的基本图形: 判定两三角形相似的基本图形: 判定两三角形相似的基本图形 平行型:如图1 ①平行型:如图1,“A”型即公共角对的边平 行,“×”型即对顶角对的边平行,都可推出两个 型即对顶角对的边平行, 三角形相似; 三角形相似; 相交线型:如图2 公共角对的边不平行, ②相交线型:如图2,公共角对的边不平行, 即相交或延长线相交或对顶角所对边延长相交. 即相交或延长线相交或对顶角所对边延长相交.图 中几种情况只要配上一对角相等,或夹公共角( 中几种情况只要配上一对角相等,或夹公共角(或 对顶角)的两边成比例, 对顶角)的两边成比例,就可以判定两个三角形相 似.
1、
M A1
4、如图,在△ABC中,AD、 BE分别是BC、AC上的高,AD、 BE相交于H,则图中相似的三角形 共有( )对
A.3
B.4
C.5
D.6
练习5如图,D是△ABC一边BC上的 一点,△ABC∽△DBA的条件是( )
练习6 、已知过平行四边形ABCD 的顶点C作一直线CF交BD于点E, 交DA的延长线于点F,交AB于点M. 求证: 2 = EF • EM EC
D E A M F B C
课堂小结 1.关于三角形的判定方法 2.判定定理的适用范围 3.相似三角形与全等三角形判定方 法的联系 4、相似三角形的判定定理的作用 5、三角形相似的基本图形
AD 例5、已知,在 ∆ABC, ∆ABC1 中, ⊥ BC, AD1 ⊥ BC1, 1 1 1 1
垂足 D, D1 分别在 BC , B1C1边上,且 求证:ABC ∽ ∆A1 B1C1 ∆
AB AD AC = = A1 B1 A1 D1 A1C1
A
A1
B
D
C
B1
D1
C1
例题6、已知:A B1、C1、点分别在射线PM、 B1C1 A1 B1 PN、PT上,AB// ,BC// 求证: ∆ABC ∽ ∆A1 B1C1
2.判定定理的适用范围 2.判定定理的适用范围
(1)已知有一角相等时,可选择判定定理1与 判定定理2. (2)有两边对应成比例时,可选择判定定理2 与判定定理3. (3)直角三角形判定先考虑判定直角三角形相 直角三角形判定先考虑判定直角三角形相 似的方法.还可以考虑一般三角形相似的方 似的方法 还可以考虑一般三角形相似的方 法 • 说明:一般不用定义来判定三角形的相似.
(6)直角三角形判定的方法 (6)直角三角形判定的方法
• ①以上各种判定方法均适用 • ②如果一个直角三角形的斜边和一条直角 如果一个直角三角形的斜边和一条直角 边与另一个直角三角形的斜边和直角对应 成比例, 成比例,那么这两个直角三角形相似 • ③直角三角形被斜边上的高分成的两个直 角三角形和原三角形相似
24.4( 24.4(5)相似三角形的判定
知识梳理
• 关于三角形的判定方法 • (1)定义法:对应角相等、对应边成比例 • (2)预备定理:平行于三角形一边的直线和它 平行于三角形一边的直线和它 两边(或两边延长线)相交, 两边(或两边延长线)相交,所构成的三角形 和原三角形相似. 和原三角形相似. • (3)判定定理1.两角对应相等两三角形相似 两角对应相等两三角形相似 • (4)判定定理2.两边对应成比例且夹角相等, 两边对应成比例且夹角相等, 两边对应成比例且夹角相等 两三角形相似 • (5)判定定理3.三边对应成比例的两三角形相 三边对应成比例的两三角形相 似