中考数学 三轮专题复习 数与式-讲评卷
“三轮”复习夯实 “双基”提高能力
“三轮”复习夯实“双基”提高能力搞好初三数学复习教学,对大面积提高数学教学质量起着重要作用。
初三数学总复习应达到以下目的:(1)使所学知识系统化、结构化、让学生将初中三年的数学知识连成一个有机整体,更利于学生理解;(2)少讲多练,巩固基本技能;(3)抓好方法教学,归纳、总结解题方法;(4)做好综合题训练,提高学生综合运用知识分析问题的能力。
如何在较短的时间内达到此目的,也是许多教师长期探究的问题。
结合我校实际情况,我们选用一本总复习资料,拟进行三轮复习,现就初三数学总复习的几点做法和同仁们进行交流:一、夯实基础融汇贯通(第一轮复习:2月中旬-3月中旬,数与式、方程与不等式、函数及其图象;3月中旬-4月中旬,统计与概率、图形的认识、三角形、四边形、相似形;5月上旬-中考前,专题复习与中考模拟;旨在摸清初中数学内容的脉络,开展基础知识系统复习)万丈高楼平地起。
根基扎实,高楼才坚固。
数学也一样,只有把基础知识、基本技能、基本方法学得扎实,运用娴熟,才能为知识的深化、能力的提高创造条件。
1、加强双基,全面复习复习中要依“纲”靠“本”,注重“双基”。
这是一个对知识进行条理化、系统化的过程。
回顾真题,可以发现:中考所有试题,包括最后的综合题,都注重对基础知识、基本技能和基本思想方法的考查。
在教学中,要立足课本,对课本中的数学概念、定理、公式、法则要引导学生从其发生、发展、形成的过程去理解和掌握,充分挖掘和发挥教材例、习题的潜在功能。
引导学生归纳,并达到熟练程度,从而使学生对课本知识有较强的发散、迁移能力和应用能力。
坚持克服那种重难题、重技巧、轻课本、轻基础、轻通法的做法。
2、抓住关键,突出重点根据重点知识重点考查的原则,中考试题中对于与基础知识、基本技能、基本方法相关的重点知识,出现的频率就更高。
可见,考前数学复习必须在坚持立足课本及教学大纲,全面复习的同时还要突出重点,加强能力的培养和提高。
突出重点,不仅仅指突出教材中的重点知识,还要突出不易理解或尚未理解深透的知识,突出数学思想与解题方法。
2023年中考数学专题练——1数与式
2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。
初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习
在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0
即
x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .
九年级数学中考专题复习数与式 试题
卜人入州八九几市潮王学校实数的有关概念◆【根底知识回忆】 1.12-的倒数为〔〕 A .12B .2C .2-D .1-2.某在一次扶贫助残活动中,一共捐款2580000元.将2580000元用科学记数法表示为〔〕 A .72.5810⨯元B .70.25810⨯元C .62.5810⨯元D .625.810⨯元 80 m 记为80 m ,那么向西走60 m 记为〔〕A .-60 mB .︱-60︱mC .-〔-60〕mD .601m 4.2-的相反数是〔〕A .2B .2-C .12D .12-5.-2的绝对值是__________. 【参考答案】1.C2.C3.A4.A ◆【应考知识点】 知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 大纲要求:1.使学生复习稳固有理数、实数的有关概念.2.理解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,理解数的绝对值的几何意义.3.会求一个数的相反数和绝对值,会比较实数的大小.4.画数轴,理解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小.考察重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在中,以非负数a 2、|a|、a (a≥0)之和为零作为条件,解决有关问题.◆【复习目的】理解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,理解数的绝对值的几何意义.注意:〔1〕近似数、有效数字.如0.030是2个有效数字〔3,0〕,准确到千分位;4×105是3个有效数字,准确到千位;万是3个有效数字〔3,1,4〕准确到百位. 〔2〕绝对值2x =的解为2±=x ;而22=-,但少局部同学写成22±=-.〔3〕在中,以非负数a 2、|a|、(a ≥0)之和为零作为条件,解决有关问题.◆【应考重点例举】 1.有理数的意义⑴数轴的三要素为、和.数轴上的点与构成一一对应.⑵实数a 的相反数为________.假设a ,b 互为相反数,那么b a +=. ⑶非零实数a 的倒数为______.假设a ,b 互为倒数,那么ab =.⑷绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸科学记数法:把一个数表示成的形式,其中1≤a <10的数,n 是整数.⑹一般地,一个近似数,四舍五入到哪一位,就说这个近似数准确到哪一位.这时,从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字. 2.数的开方c ba⑴任何正数a a 叫_______________.没有平方根,0的算术平方根为______. ⑵任何一个实数a 都有立方根,记为.⑶=2a ⎩⎨⎧<≥=)0( )0( a a a .3.实数的分类和统称实数. ◆【典型例题及解析】 例1在实数-23,04,2π,-0.1010010001…〔每两个1之间依次多1个0〕,sin30°这8个实数中,无理数有〔〕A .1个B .2个C .3个D .4个【答案】C【解析】对实数分类,不能只为外表形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即“无限不循环小数叫做无理数〞.=2是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如sin30°、tan45°等.而-0.1010010001…尽管有规律,•但它是无限不循环小数,是无理数.2π2π,-0.1010010001…这三个数是无理数,其他五个数都是有理数,应选C.例2〔1〕a 、b 互为相反数,c 、d 互为倒数,e 〔a+b 〕+12cd -2e 0的值; 〔2〕实数a ,b ,c 在数轴上的对应点如下列图,化简【答案】解:〔1〕依题意,有a+b=0,cd=1,e≠0 a+b 〕+12cd -2e 0=0+12-2=-32. 〔2〕由图知a>0,b<c<0,且│b│>│a│, ∴a+b<0,b -c<0,-│b-c│=a-a -b -│c│-〔c -b 〕=a -a -b+c -c+b=0.【解析】相反数、倒数、绝对值都是主要的概念,解答时应从概念蕴含着的数学关系式入手.含有绝对值的代数式的化简,首先要确定绝对值符号内的数或者式的值是正、负还是零,然后再根据绝对值的意义把绝对值的符号去掉,第〔2〕•题是数形结合的题目,解题的关键在于通过观察数轴,弄清数轴上各点所表示的正负性及各实数之间的大小关系,从而才能正确地去掉绝对值符号,到达化简的目的. 例3今年6月,举行了第五届泛珠三角区域经贸洽谈会.据估算,本届大会合同HY 总额达2260亿元.将2260用科学记数法表示为〔结果保存2个有效数字〕〔〕A .32.310⨯ B .32.210⨯C .32.2610⨯D .40.2310⨯【答案】A【解析】准确把握概念.把一个数写成a×10n的形式〔其中1≤│a│<10,n 为整数〕,•这种记数法叫做科学记数法.一个近似数,四舍五入到哪一位,就说这个近似数准确到哪一位.这时,从左边第一个不是0的数字起,到准确的数位止,所有的数字,都叫做这个数的有效数字.根据题意,可知答案为A. 例4假设m n n m -=-,且4m =,3n =,那么2()m n +=.【答案】49或者1;【解析】根据绝对值的定义来进展解答.│a│=(1)(0)(0)aa a a a >⎧⎪=⎨⎪-<⎩.由题意︱m -n ︱=n -m 知道,n>m.而︱m ︱=4,︱n ︱=3故m=±4,n=±m=-4,n=3或者m=-4,n=-3.故〔m+n 〕2=1或者49.例5x 、y +〔y 2-6y+9〕=0,假设axy -3x=y ,那么实数a 的值是〔〕A .14B .-14C .74D .-74〔y -3〕2=0∴3x+4=0,y -3=0∴x=-43,y=3.∵axy-3x=y ,∴-43×3a-3×〔-43〕=3∴a=14∴选A【解析】假设几个非负数之和等于零,那么每个非负数均等于零.这是非负数具有的一个重要性质.此题y -3〕2均为非负数,它们的和为零,只有3x+4=0,且y -3=0,由此可求得x ,y 的值,将其代入axy -3x=y 中,即求得a 的值. ◆【09年中考题分类汇编】 一、选择题1.〔2021年〕-5的相反数是〔〕A .15B .15-C .-5D.52.(2021年)12-的倒数为〔〕 A .12B .2C .2-D .1-3.(2021年)4-的绝对值是〔〕A .4-B .14-C .4D .144.〔2021年〕2021年重点建立工程方案〔草案〕显示,港珠澳大桥工程估算总HY726亿元,用科学记数法表示正确的选项是〔〕A .107.2610⨯元 B .972.610⨯元 C .110.72610⨯元D .117.2610⨯元5.〔2021年内蒙古〕国家体育场“鸟巢〞建筑面积达25.8万平方米,将25.8万平方米用科学记数法〔四舍五入保存2个有效数字〕表示约为〔〕A .42610⨯平方米B .42.610⨯平方米C .52.610⨯平方米D .62.610⨯平方米6.〔2021年〕假设向东走80 m 记为80 m ,那么向西走60 m 记为〔〕A .-60 mB .︱-60︱mC .-〔-60〕mD .601m 7.〔2021年〕在数轴上表示2-的点离点的间隔等于〔〕A .2B .2-C .2±D .48.〔2021年襄樊〕A 为数轴上表示1-的点,将A 点沿数轴向左挪动2个单位长度到B 点,那么B 点所表示的数为〔〕A .3-B .3C .1D .1或者3-9.〔2021年〕假设+20%表示增加20%,那么-6%表示().A .增加14%B .增加6%C .减少6%D .减少26% 10.〔2021年内蒙古〕27的立方根是〔〕A .3B .3-C .9D .9-11.〔2021年〕36的算术平方根是〔〕.A.6B.±6C.6D.±6 二、填空题1.〔2021年〕-2的绝对值是__________.2.〔2021年〕15-的相反数是;立方等于8-的数是.3.(2021年)13-=_________;0(=_________;14-的相反数是_________.4.〔2021年〕假设()2240a c -++-=,那么=+-c b a .5.(2021年)宝岛HY 的面积约为36000平方公里,用科学记数法表示约 为平方公里.6.〔2021年〕有着丰富的旅游资源,如五、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2021年全旅游总收入73亿元,这个数据用科学记数法可表示为. 【参考答案】 选择题1. D2. C3. C4. A5. D 【解析】此题考察科学记数法和有效数字,将一个数用科学记数法表示为()10110na a ⨯≤<的形式,其中a 的有效数字就是10na ⨯的有效数字,且n 等于这个数的整数位数减1。
中考数学复习 数与式专题复习
数与式专题复习一、判断运算正确与否1、下列运算中,计算结果正确的是( )A .632x x x =⋅ B .222+-=÷n n n x x xC . 9234)2(x x =D .633x x x =+ 2、下列因式分解中,结果正确的是( )A .()()2422x x x -=+-B .()()()21213x x x -+=++C .()23222824m n n n m n -=-D .222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭3、下列运算正确的是( )A .ab b a 532=+B .b a b a -=-4)2(2C .22))((b a b a b a -=-+D .222)(b a b a +=+ 4、下列各式:①21()93--=②()02-=1 ③222)(b a b a +=+ ④()622393b a ab =- ⑤x x x -=-432,其中计算正确的是5、下列运算正确的是( )A .(3xy 2)2=6x 2y 4 B .22124xx -= C .(-x )7÷(-x )2=-x 5 D .(6xy 2)2÷3xy =2xy 3 6、下列等式不成立的是( )A.m 2 -16=(m-4)(m+4)B.m 2 +4m=m(m+4)C.m 2-8m+16=(m-4)2D.m 2+3m+9=(m+3)27、下列各式计算正确的是( ) A .m 8÷m 4=m 2 B. a 2∙a 3=a 6 C. yx 2y 1x 1+=+ D. 6÷32= 8、在下列运算中,计算正确的是( )A . 725)(x x =B . 222)(y x y x -=-C . 10313x x x =÷D . 633x x x =+二、近似数和科学计数法1、据某网站报道:一粒废旧纽扣电池可以使600吨水受到污染.某校团委四年来共回收废旧纽扣电池3500粒.若这3 500粒废旧纽扣电池可以使m 吨水受到污染.用科学记数法表示m 为2、我市植树造林成绩显著 截至今年5月8日 全市完成平原造林204 844亩 已超过全年任务的八成.将204 844用科学 记数法表示 ,保留2个有效数字约为3、 2012年3月12日 国家财政部公布全国公共财政收入情况 1-2月累计 全国财政收入20918.28亿元 这个数据用科学记数法表示并保留两个有效数字为4、2012年1月21日 北京市环保监测中心开始在其官方网站上公布PM2.5的研究性监测数据. PM2.5是指大气中直径小于或等于0.0000025米即2.5微米的颗粒物也称为可入肺颗粒物. 把0.0000025用科学记数法表示为5、在日本核电站事故期间 我国某监测点监测到极微量的人工放射性核素碘131,其浓度为0.000 0963贝克/立方米,将 0.000 0963用科学记数法表示6、我国1990年的人口出生数为23784659人。
中考数学专题复习数与式
中考数学专题复习专题一 数与式[基础训练]1.如果a 与2-的和为O ,那么a 是( )B.12 C.12- D.2- 2.234()m m g 等于( ) A.9mB .10mC .12mD .14m3. 若4x =,则5x -的值是( )A .1B .-1C .9D .-94、5-的相反数是 ,9的算术平方根是 ,-3倒数是 . 4.已知(a-b)2=4,ab=21,则(a+b)2= 5.在函数1-=x y 中,自变量x6.若分式12--x x 的值为零,则=x . 7.因式分解:=+-2232xy y x x 9.根据如图所示的程序计算,若输入x 的值为1则输出y 的值为 10.计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+11.已知12+=x ,求代数式xx x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+的值.(第9题图)[精选例题]例题1(1)1:2的倒数是( ) A21 B-21 C ±21D2 (2)写出一个比-1大的负有理数是________,写出一个比-1大的负无理数是_________. (3)若()的值为则n m n m 2,0)3(32+=++- A -4 B -1 C 0 D4 说明:本题考查对数与式基本概念的理解(1)倒数的概念(2)有理数与无理数的概念和大小比较(3)绝对值和完全平方的非负性 例题2(1)如图,在数轴上表示15的点可能是(A 点PB 点QC 点MD 点N (2)当x=_____时,分式33--x x 无意义.(3)已知aaa a -=-112,则a 的取值范围是( ) A a 0≤ B a<0 C 0<a ≤1 Da>0 说明:本题考查对数与式有关性质的掌握(1)实数的大小和数轴上的表示(2)分式在什么时候无意义和绝对值的意义 (3)平方根的意义和性质例题3(1)下列运算正确的是( )A 22a a a =⋅ B 2a a a =+ C 236a a a =÷ D ()623a a =(2)化简a+b+(a-b)的最后结果正确的是( ) A 2a+2b B 2b C 2a D0 (3)下列计算错误的是( )A -(-2)=2B 228=C 222532x x x =+ D ()532a a =(4)先化简41)231(2-+÷-+a a a , 然后请你给a 选取一个合适的值, 再求此时原式的值.说明:本题考查对数与式运算法则的掌握,第(4)题注意解题的规范。
中考数学《数与式》专题测试卷(含答案)
中考数学《数与式》专题测试卷(含答案)(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分)1.下列各数中是有理数的是( )A.πB.0C. 2D.35 2.截至2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿美元,则3.11×104亿表示的原数为( )A.311000亿B.31100亿C.3110亿D.311亿3.用计算器依次按键 3=得到的结果最接近的是( )A.1.5B.1.6C.1.7D.1.84.在实数|-3|,-2,0,π中,最小的数是( )A .|-3|B .-2C .0D .π5.下列各式中正确的是( )A .9=±3B .(-3)2=-3C .39=3 D .12-3= 36.如图,一块砖的A ,B ,C 三个面的面积比是4∶2∶1.如果A ,B ,C 面分别向下放在地上,地面所受压强为p 1,p 2,p 3,压强的计算公式为p =F S,其中p 是压强,F 是压力,S 是受力面积,则p 1,p 2,p 3,的大小关系正确的是( )A .p 1>p 2>p 3B .p 1>p 3>p 2C .p 2>p 1>p 3D .p 3>p 2>p 17.下列等式成立的是( )A .x 2+3x 2=3x 4B .0.00028=2.8×10-3C .(a 3b 2)3=a 9b 6D .(-a +b )(-a -b )=b 2-a 28.已知x 2-3x -4=0,则代数式x x 2-x -4的值是( ) A .3 B .2 C .13 D .129.如图,数轴上有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A .-2B .0C .1D .410.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图1可以得到(a +b )2=a 2+2ab +b 2,那么利用图2所得到的数学等式是( )A .(a +b +c )2=a 2+b 2+c 2B .(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bcC .(a +b +c )2=a 2+b 2+c 2+ab +ac +bcD .(a +b +c )2=2a +2b +2c二、填空题(每小题4分,共24分)11.一个正数的平方根分别是x +1和x -5,则x = .12.计算:18×13-24,其结果是 . 13.定义新运算:a ※b =a 2+b ,例如3※2=32+2=11,已知4※x =20,则x = .14.已知ab =a +b +1,则(a -1)(b -1)的值为 .15.若a -1a =6,则a 2+1a 2的值为 . 16.已知a 1=t t -1,a 2=11-a 1,a 3=11-a 2,…, a n +1=11-a n(n 为正整数,且t≠0,1),则a 2016= .(用含有t 的代数式表示) 三、解答题(共66分)17.(6分)计算:(1)(-1)2018+|1-2|-38;(2)-|4-12|-(π-3.14)0+(1-cos 30°)×(12)-2.18.(8分)先化简,再求值:(a -2b )(a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.19.(8分)已知1x -1y =3,求分式2x -14xy -2y x -2xy -y的值.20.(10分)已知多项式A =2x 2-xy +m y -8,B =-n x 2+xy +y +7,A -2B 中不含有x2项和y 项,求n m +mn 的值.21.(10分)先化简,再求值:(x +1x 2-x -x x 2-2x +1)÷1x,其中x =2+1.22.(12分)已知有理数m ,n 满足(m +n)2=9,(m -n)2=1.求下列各式的值.(1)mn ;(2)m 2+n 2.23.(12分)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x -1x +1,x 2x -1这样的分式就是假分式;再如:3x +1,2x x 2+1这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:x -1x +1=(x +1)-2x +1=1-2x +1; 解决下列问题:(1)分式2x是 分式(填“真”或“假”); (2)将假分式x 2-1x +2化为带分式; (3)如果x 为整数,分式2x -1x +1的值为整数,求所有符合条件的x 的值.答案一、选择题(每小题3分,共30分)1. B2. B3. C4. B5. D6. D7. C8. D9. C10. B二、填空题(每小题4分,共24分)11.212.-613. 4 .14. 2 .15. 8 .16. 1t . 三、解答题(共66分)17.(6分)计算:(1) 解:原式=2-2;(2)解:原式=-1.18.解:原式=4ab,代入得:-4.19.解:4.20.解:m=2,n=-1,n m+mn=-1.21.解:原式=-1(x-1)2,当x=2+1时,原式=-12.22.解:(1)mn=2;(2)m2+n2=5.23.解:(1)分式2x是真分式;(2)原式=x2+2x-2x-1x+2=x-2x+1x+2=x-2(x+2)-3x+2=x-2+3x+2;(3)原式=2(x+1)-3x+1=2-3x+1,由x为整数,分式的值为整数,得到x+1=-1,-3,1,3,解得:x=-2,-4,0,2,则所有符合条件的x值为0,-2,2,-4.。
【试题研究】江苏中考数学复习讲练:第3课时 整式及因式分解(word解析版)
第一章数与式第3课时整式及因式分解江苏~中考真题精选命题点1 代数式及其求值(近3年39套卷,考查6次,考查11次,年考查7次)命题解读代数式及其求值近3年共考查24次,题型以填空题为主,主要考查的形式有:①结合提公因式,完全平方公式求代数式的值;②与方程、函数图象结合求代数式的值;③列代数式和求代数式的最值.1. (苏州9题3分)已知x-1x=3,则4-12x2+32的值为 ( )A .1 B. 32C.52D.722. (盐城9题3分)“x的2倍与5的和”用代数式表示为 .3. (泰州11题3分)若m=2n+1,则m2-4mn+4n2的值是 .4. (连云港11题3分)已知m+n=mn,则(m-1)(n-1)= .5. (淮安14题3分)若m2-2m-1=0,则代数式2m2-4m+3值为 .6. (宿迁16题3分)当x=m或x=n(m≠n)时,代数式x2-2x+3的值相等,则x=m+n时,代数式x2-2x+3的值为 .7. (盐城16题3分)已知x(x+3)=1,则代数式2x2+6x-5的值为 .8. (泰州14题3分)已知a2+3ab+b2=0(a≠0,b≠0),则代数式b aa b的值等于 .9. (淮安18题3分)观察一列单项式:x,3x2,5x3,7x,9x2,11x3,…,则第个单项式是_________.10. (南通18题3分)已知实数m,n满足m-n2=1,则代数式m2+2n2+4m-1的最小值等于_________.11. (南通18题3分)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m-n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于 .命题点2 整式的运算(近3年39套卷,考查12次,考查14次,考查17次)命题解读整式及其运算近3年共考查43次,选择题、填空题主要考查整式的运算,解答题主要考查整式化简及求值.考查的内容有:①下列运算正确的是;②计算XX的结果;化简XX或化简后再求值.1. (淮安2题3分)计算a×3a的结果是()A. a 2B. 3a2C. 3aD. 4a2. (南京2题2分)计算(-xy3)2的结果是()A. x2y6B. -x2y6C. x2y9D.-x2y93. (徐州2题3分)下列各式的运算结果为x6的是()A. x9÷x3B. (x3)3C. x2·x3D. x3+x34. (扬州2题3分)若□×3xy=3x2y,则□内应填的单项式是( )A. xyB. 3xyC. xD. 3x5. (镇江15题3分)计算-3(x-2y)+4(x-2y)的结果是()A. x-2yB. x+2yC. -x-2yD. -x+2y6. (连云港2题3分)下列运算正确的是()A. 2a+3b=5abB. 5a-2a=3aC. a2·a3=a6D. (a+b)2=a2+b27. (苏州11题3分)计算:a4÷a2= .8. (连云港10题3分)计算:(2x+1)(x-3)= .9. (南通13题3分)计算:(x-y)2-x(x-2y)= .10. (镇江11题3分)地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏级地震释放的能量是3级地震释放能量的324倍.11. (无锡19(2)题4分)计算:(x+1)(x-1)-(x-2)2.12. (南通19(2)题5分)化简:[x(x2y2-xy)-y(x2-x3y)]÷x2y.13. (盐城20题8分)先化简,再求值:(a+2b)2+(b+a)(b-a),其中a=-1,b=2.命题点3 因式分解(近3年39套卷,考查7次,考查5次,考查5次)1. (盐城11题3分)分解因式:a2-2a= .2. (苏州12题3分)因式分解:a2+2a+1=.3. (南通12题3分)因式分解:a3b-ab= .4. (南京10题3分)分解因式(a-b)(a-4b)+ab的结果是 .【答案】命题点1 代数式及其求值1. D【解析】∵x-1x=3,∴x2-1=3x,∴x2-3x=1,∴原式=4-12(x2-3x)=4-12=72.2. 2x+5【解析】根据题中表述可得该式应为2x+5.3. 1【解析】∵m=2n+1,∴m-2n=1,∴原式=(m-2n)2=1.4. 1【解析】∵(m-1)(n-1)=mn-m-n+1=mn-(m+n)+1,由已知mn=m+n,得原式=1.5. 5【解析】由m2-2m-1=0得m2-2m=1,所以2m2-4m+3=2(m2-2m)+3=2×1+3=5.6. 3【解析】由题意可知,二次函数y=x2-2x+3的对称轴是直线x=1,则m+n=2,把x=2代入x2-2x+3,得22-2×2+3=3.7. -3【解析】∵x(x+3)=1,∴2x2+6x-5=2x(x+3)-5=2×1-5=2-5=-3.8. -3【解析】∵a2+3ab+b2=0,∴a2+b2=-3ab,∴原式=2233.b a abab ab+-==-9. 4025x3【解析】系数依次为1,3,5,7,9,11,…,2n-1;x的指数依次是1,2,3,1,2,3,可见三个单项式一个循环,故可得第个单项式的系数为4025;∵20133=671,∴第个单项式指数为3,故可得第个单项式是4025x3.10. 4【解析】∵m-n2=1,即n2=m-1≥0,得m≥1,∴原式=m2+2m-2+4m-1=m2+6m+9-12=(m+3)2-12,则代数式m2+2n2+4m-1的最小值等于(1+3)2-12=4.11. 3【解析】∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x=2223+3222m n m n m n+++++=;又∵二次函数y=x2+4x+6的对称轴为直线x=-2,∴3322m n++=-2,∴3m+3n+2=-4,即m+n=-2.∴当x=3(m+n+1)=3(-2+1)=-3时,x2+4x+6=(-3)2+4×(-3)+6=3.命题点2整式的运算1. B【解析】本题主要考查单项式的乘法.单项式乘单项式:把系数和相同字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式.a×3a=3a2.2. A【解析】根据积的乘方运算法则计算可得:(-xy3)2=(-x)2·(y3)2=x2y6.3. A【解析】A. x9÷x3=x9-3=x6,故本选项正确;B. (x3)3=33x⨯=x9,故本选项错误;C.x2·x3=x2+3=x5,故本选项错误;D. x3+x3=2x3,故本选项错误.4. C【解析】根据题意得:3x2y÷3xy=x.5. A【解析】-3(x-2y)+4(x-2y)=x-2y.6. B【解析】本题考查合并同类项、同底数幂的乘法和完全平方公式,通过上述考查点所涉及的运算法则和公式进行逐项分析.选项逐项分析正误A 2a和3b不是同类项,不能合并×B 5a-2a=(5-2)a=3a√C a2·a3=a2+3=a5≠a6×D (a+b)2=a2+2ab+b2≠a2+b2×7. a2【解析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.原式=a4 -2=a2.8. 2x2-5x-3【解析】(2x+1)(x-3)=2x2-6x+x-3=2x2-5x-3.9. y2【解析】(x-y)2-x(x-2y)=x2-2xy+y2-x2+2xy=y2.10. 7【解析】设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n-1=323-1×324=326,得n-1=6,n=7.11. 解:原式=x2-1-x2+4x-4=4x-5…………………………………………………………(4分)12. 解:原式=[x2y(xy-1)-x2y(1-xy)]÷x2y…………………………………………(3分)=x2y(2xy-2)÷x2y=2xy-2.…………………………………………………………………………(5分)13. 解:原式=a2+4ab+4b2+b2-a2……………………………………………………………(3分)=4ab+5b2,………………………………………………………………………(5分)当a=-1,b=2时,原式=4×(-1)×2+5×22=12.……………………………………………(8分)命题点3因式分解1. a(a-2)【解析】提取公因式a,即求得a2-2a=a(a-2).2. (a+1)2【解析】a2+2a+1=(a+1)2.3. ab(a+1)(a-1)【解析】a3b-ab=ab(a2-1)=ab(a+1)(a-1).4. (a-2b)2【解析】化简(a-b)(a-4b)+ab=a2-5ab+4b2+ab=a2-4ab+4b2,再利用完全平方公式因式分解得:a2-4ab+4b2=(a-2b)2.。
中考数学数与式专题知识训练50题含答案
中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)__一、单选题1.下列说法正确的是( )A .最小的有理数是0B .任何有理数都可以用数轴上的点表示C .绝对值等于它的相反数的数都是负数D .整数是正整数和负整数的统称 2.5的相反数是( )A .5-B .5C .15D .|5| 3.单项式22xy -的系数和次数分别为( )A .2,2B .2,3C .-2,2D .-2,3 4.下列计算正确的是( )A .3a 2﹣6a 2=﹣3B .(﹣2a )•(﹣a )=2a 2C .10a 10÷2a 2=5a 5D .﹣(a 3)2=a 65.火星具有和地球相近的环境,与地球最近时候的距离约55000000km ,将数字55000000用科学记数法表示为( )A .555010⨯B .65510⨯C .75.510⨯D .80.5510⨯ 6.2019年3月25日,为加强中法两国友好关系,两国签署价值300亿美元的“空中客车”飞机大单,其中300亿用科学记数法表示为( )A .3×108B .300×108C .0.3×1011D .3×1010 7.下列各式计算正确的是( )A 2=-B =C =D .2=8.下列各式的值最小的是( )A .13-B .22-C .40-⨯D .|5|-9.5的相反数是( )A .-5B .5C .±5D .1510.下列二次根式是最简二次根式的是( )AB C D 11.高州市投入环保资金3730000万元,3730000万元用科学记数法表示为( )万元A .537.310⨯B .63.7310⨯C .70.37310⨯D .437310⨯ 12.下列说法中错误的是( )①0既不是正数,也不是负数; ①0是自然数,也是整数,也是有理数;①数轴上原点两侧的数互为相反数; ①两个数比较,绝对值大的反而小.A .①①B .①①C .①①D .①①①13.下列运算正确的是( )A .a ab --b b a -=1 B .m n m n a b a b --=- C .11b b a a a +-= D .2221a b a b a b a b+-=--- 14.下列计算正确的是( )A .4a 3·2a 2=8a 6B .2x 4·3x 4=6x 8C .3x 2·4x 2=12x 2D .(2ab 2)·(-3abc)=-6a 2b 315.函数y =) A .2x ≥- B .21x C .1x > D .2x ≥-且1x ≠ 16.6-的相反数是( )A .16-B .6--C .6D .1617.下列各数中比-1小1的数是( )A .-1B .-2C .1D .-318.已知b>0,化简-1]∞(,的结果是( )A .-B .C .-D .19 )A .3与4之间B .5与6之间C .6与7之间D .28与30之间 20.如果a 是负数,那么2a 的算术平方根是( ).A .aB .a -C .a ±D .二、填空题21x 的取值范围是__________.22.当x =__________________.23.若|x|=5,则x ﹣3的值为_____.24.上海世博会预计约有69 000 000人次参观,69 000 000用科学记数法表示为_________.25.计算:222a b a b b a+=--____________. 26.用科学记数法表示:0.000832-=________.27.计算:a2•a3=_____.2823x =-,则x 的范围是_____________.29.对于任意不相等的两个数a ,b ,定义一种运算①如下:a ①b 3①2==4①8=________. 30.若4a b =+,则222a ab b -+的值是______________.31.“KN95”口罩能过滤空气中95%的直径约为0.0000003m 的非油性颗粒,数据0.0000003用科学记数法表示为____________.32.已知x 、y 均为实数,且5x y +=,2211x y +=,则xy =______. 33.若分式22x 有意义,则x 的取值范围是________.34.计算:02(3)π-+-=______________.35=b+2,那么a b =_____.36______________________=____________37_______,π=_______38.计算:(2a b -)3·(2b a -)2=____________(结果用幂的形式表示)39100,...,==根据其变化规律,解答问题:若1.02102,则x =____________.三、解答题40.计算:x 2•x 3+(﹣x )5+(x 2)3.41.张师傅承揽了某栋公寓楼的装修任务,他准备铺地时,发现这栋公寓楼户型结构相同,但地面卫生间和客厅的宽分别有几个类型,他将房子地面结构图按下图进行表示(单位:米).(1)请你用含x ,y 的式子,帮张师傅把地面的总面积表示出来;(单位:平方米) (2)已知 4.5x =,2y =这类型的房子有五户,铺地砖的费用为80元/平方米,请求出这个类型的房子铺地砖的总费用.42.已知2a +2的立方根是-2,a +b +4的算术平方根是3,c(1)求a ,b ,c 的值.(2)求22a ab c -+的平方根.43.计算:(1)(22 44.计算:032243.45.在等式2y ax bx c =++中,当1x =时,0y =;当=1x -时,=2y -:当2x =时,7y =.(1)求a ,b ,c 的值;(2)求当3x =-时,y 的值.46.计算:()()2242x y y x y x x ⎡⎤-+--÷⎣⎦.47.在ABCD 中,120BAD ∠=︒,DE 平分ADC ∠交射线AB 于点E ,线段BE 绕点E 顺针旋转60°得到线段EP ,连接AC ,PC .(1)如图1,当点E 在线段AB 上时,①PBC ∠的大小为______;①判断APC △的形状并说明理由;(2)当4BC =,2BE =时,直接写出AC 的长.48.已知:243M a ab =+-,269N a ab =-+.(1)化简:M N +;(2)若()2210a b ++-=,求M N +的值.49.操作题(1)如图①所示是一个长为2a ,宽为2b 的矩形,若把此图沿图中虚线用剪刀均分为四块小长方形,然后按图①的形状拼成一个正方形,请问:这两个图形的 不变.图①中阴影部分的面积用含a 、b 的代数式表示为_________________;(2)由(1)的探索中,可得到的结论是:在周长一定的矩形中,___________时,面积最大;(3)若一矩形的周长为36 cm ,则当边长为多少时,该图形的面积最大?最大面积是多少?参考答案:1.B【详解】分析:利用有理数的概念、数轴上点与有理数的关系、相反数的求法、整数等知识对各选项进行判断;解:A 选项有理数包括了正数、0、负数,所以没有最小的有理数,故是错误的; B 选项数轴上的点与有理数是一一对应的关系,故是正确的;C 选项绝对值等于它的相反数的数有0和负数,故是错误的;D 选项整数包括了正整数、0和负整数,故是错误的;故选B .2.A【分析】直接利用互为相反数的定义得出答案.【详解】解:5的相反数是:-5.故选:A .【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.3.D【分析】单项式的系数包括系数前面的符号,次数指所有未知数的次数之和.根据以上规律直接可以读出结果.【详解】单项式22xy -的系数为-2,次数包括x 和y 的次数之和,总共为3,所以单项式22xy -的系数和次数分别为-2,3,故选D【点睛】此题重点考察学生对单项式系数和次数的把握,抓住次数包括所有未知数的次数是解题的关键.4.B【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确;选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确;选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确;选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确.故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.5.C【分析】直接根据科学记数法表示即可.【详解】755000000 5.510=⨯,故选C【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:300亿=3000000000=3×1010.故选D .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C【分析】先对各选项进行计算后再进行判断.【详解】A 22=-=||,故计算错误;BC =D选项:2故选C.【点睛】考查了二次根式的加法、化简,解题关键是熟记加法法则和二次根式的性质. 8.B【分析】原式各项计算得到结果,比较即可.【详解】A 、原式=-2,B 、原式=-4,C 、原式=0,D 、原式=5,①-4<-2<0<5,则各式的值最小为-4,故选B .【点睛】此题考查了有理数的大小比较,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.9.A【分析】根据相反数的定义即可求解.【详解】解:5的相反数是-5,故选A .【点睛】本题考查了相反数的定义(只有符号不同的两个数叫做互为相反数),是一个基础的题目.10.B【分析】根据最简二次根式的定义:被开方数不含能开方开的尽的因数或因式,被开方数不含分母,进行判断即可.【详解】A ==不符合题意;BC =,被开方数含分母,不是最简二次根式,不符合题意;D a ,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意; 故选:B .【点睛】本题考查最简二次根式的定义,熟练掌握概念是解题的关键.11.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,看小数点移动了多少位,n 的绝对值与小数点移动的位数相同.小数点向左移动时,n 是正整数;小数点向右移动时,n 是负整数.【详解】解:63730000 3.7310=⨯,故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.解题关键是正确确定a 的值以及n 的值.12.B【分析】根据相反数,绝对值的定义进行判断.【详解】解:①0既不是正数,也不是负数正确,不符合题意.①0是自然数,也是整数,也是有理数正确,不符合题意.①数轴上原点两侧的数互为相反数,说法不正确,符合题意.①两个数比较,绝对值大的反而小,说法不正确,符合题意.①说法不正确的是①①,故选B .【点睛】主要考查相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 13.D【分析】根据分式的加减运算法则逐项判断即可的解. 【详解】根据分式的减法法则,可知:a b a b a b a b b a a b a b a b +-=+=-----,A 错误; 由异分母的分式相加减,可知m n bm an bm an a b ab ab ab --=-=,B 错误; 由同分母分式的加减,可知11b b a a a+-=-,C 错误; 由分式的加减法法则,先因式分解再通分,可得:2222()1()()()()()()a b a b a b a b a b a b a b a b a b a b a b a b a b++++-=-==--+-+-+--,D 正确. 故选D .【点睛】本题考查分式的加减运算,熟知分式的加减运算法则是解题的关键.14.B【详解】A. ① 4a 3·2a 2=8a 5 ,故不正确;B. ① 2x 4·3x 4=6x 8 ,故正确;C. ① 3x 2·4x 2=12x 4 ,故不正确;D. ① (2ab 2)·(-3abc)=-6a 2b 3c ,故不正确;故选B.15.D【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:根据题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥-2且1x≠.故选D.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.C【分析】只有符号不同的两个数是互为相反数,根据定义解答.【详解】6-的相反数是6,故选择:C.【点睛】本题考查相反数的定义及求一个数的相反数,熟记定义是解题的关键.17.B【分析】根据有理数的减法,即可解答.【详解】−1−1=−2,故选B.【点睛】此题考查有理数的减法,解题关键在于结合题意列式计算.18.C【分析】首先根据二次根式有意义的条件,判断a≤0,再根据二次根式的性质进行化简.【详解】①b>0,30a b-≥,①0.a≤①原式==-故选C.【点睛】考查二次根式有意义的条件以及二次根式的化简,得到a≤0是解题的关键. 19.B【分析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】25<①56<<,5与6之间.故选:B .【点睛】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键. 20.B【详解】当a a a ==-.故选B.21.x≥-5【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【详解】解:根据题意得:x+5≥0,解得x≥-5.【点睛】主要考查了二次根式的意义和性质.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22. 6 0【分析】根据被开方数为非负数可得.【详解】①当0a =0)a ≥的最小值为0,①当60x -=,即6x =0.故答案为:6, 0.【点睛】本题考查了二次根式的定义,解题的关键是利用二次根式的被开方数是非负数解题.23.﹣8或2【分析】由|x|=5可求出x 的值,再代入x ﹣3计算即可.【详解】解:①|x|=5,①x =5或﹣5,当x =5时,x ﹣3=2,当x =﹣5时,x ﹣3=﹣8,综上,x﹣3的值为﹣8或2.故答案为:﹣8或2.【点睛】本题考查了绝对值的意义,正确求出x的值是解题的关键.24.76.910⨯【详解】解:69000000=6.9×107.故答案为:76.910⨯25.1【分析】变异分母为同分母【详解】解:222a ba b b a+=--221222a b a ba b a b a b--==---故答案为:126.48.3210--⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.0008328.3210--=-⨯故答案为:48.3210--⨯【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.27.a5.【详解】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.28.32 x≥【分析】根据二次根式的性质可得230x-≥,解不等式即可求解.【详解】根据题意,得2x-3≥0,解得:x 32≥. 【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.29. 【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得===故答案为: 【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.30.16【分析】根据已知条件可得出a b -的值;因为2222a ab b a b ,带入即可得出答案.【详解】解:由4a b =+,可得:4a b -=;①2222a ab b a b , 将4a b -=可得:()22224162=-==-+a b a ab b ;故答案为:16.【点睛】本题考查代数式求值,结合利用完全平方公式因式分解,观察已知条件与要求的式子之间的联系是此类题目解题关键,平时也要多积累经验.31.7310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.0000003310,故答案是:7310-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<, n 为由原数左边起第一个不为零的数字前面的0的个数所决定.32.7【分析】根据5x y +=可得出2()25x y +=,再展开,将2211x y +=代入,即可求出xy 的值.【详解】解:①5x y +=①2()25x y +=,①22225x y xy ++=,将2211x y +=代入上式,得:11225xy +=①7xy =.故答案为:7.【点睛】本题考查完全平方公式和代数式求值.利用整体代入的思想是解题的关键. 33.2x ≠-【分析】根据分母不等于0,即可求出答案.【详解】解:①分式22x 有意义,①20x +≠,①2x ≠-;故答案为:2x ≠-.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于0.34.3【详解】【分析】先分别进行绝对值化简、0次幂的计算,然后再进行加法计算即可得.【详解】()02π3-+-=2+1=3,故答案为3.【点睛】本题考查了实数的运算,熟知任何非0数的0次幂为1是解题的关键.35.19 【分析】根据二次根式中的被开方数必须是非负数可得关于a 的不等式组,进一步即可求出a 的值,进而可得b 的值,然后代入所求式子计算即可.【详解】解:由题意,得:3030a a -≥⎧⎨-≥⎩,解得a =3,则b +2=0,解得:b =﹣2. 所以ab =3-2=19. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件、一元一次不等式组的解法和负整数指数幂的运算,属于基本题型,熟练掌握二次根式的被开方数非负和负整数指数幂的运算法则是解题关键.36. 0 15 6-【分析】根据算术平方根的定义及性质和立方根的定义及性质直接求解即可得到答案.【详解】解:①200=,0=;①()215225±=,算术平方根非负,15;①()36216-=-,6-;故答案为:0;15;6-.【点睛】本题考查算术平方根和立方根,熟练掌握算术平方根的定义及性质,立方根的定义及性质是解决问题的关键.37. 2± 4π-4=,进而求得4的平方根,根据4π<,化简绝对值即可.【详解】解:4=,①4的平方根是2±,①4π<①4ππ=-故答案为:2±,4π-【点睛】本题考查了求一个数的算术平方根,平方根,化简绝对值,掌握算术平方根和平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.38.()52a b -【分析】把2a b -看成底数, ()()222=2b a a b --,再根据同底数幂乘法法则计算即可.【详解】(2a b -)3·(2b a -)2=()52a b -,故答案为: ()52a b -.【点睛】本题主要考查同底数幂乘法法则,解决本题的关键是要熟练掌握同底数幂乘法法则. 39.10404【分析】根据已知运算规律计算即可;【详解】 1.02=102=,100 1.02=⨯==①10404x =;故答案是:10404.【点睛】本题主要考查了二次根式计算和数字规律,准确计算是解题的关键.40.6x【分析】直接利用同底数幂的乘法法则和幂的乘方运算法则计算得出答案.【详解】解:x 2•x 3+(﹣x )5+(x 2)3=x 5﹣x 5+x 6=x 6.【点睛】本题考查了整式的运算,掌握乘方、同底数幂的乘法、幂的乘方是解题的关键. 41.(1)18+2y +6x ;(2)这个类型的房子铺地砖的总费用为18000元.【分析】(1)将四个长方形的面积相加即可得到答案;(2)将x =4.5,y =2代入(1),再乘以80即可得到总费用.【详解】解:(1)地面总面积=3×(2+2)+2y +(6-3)×2+6x=(18+2y +6x )平方米;(2)铺21m 地砖的平均费用为80元,当x =4.5,y =2,(18+2×2+6×4.5)×80=(18+4+27)×80=3920(元)①这个类型的房子铺地砖的总费用为3920元.【点睛】此题考查了列代数式,已知字母的值求代数式的值,正确掌握求几何图形的面积是解题的关键.42.(1)a=-5,b=10,c=3;(2)a2-ab+2c的平方根为±9.【分析】(1)直接利用立方根以及算术平方根的定义得出a,b,c的值;(2)利用(1)中所求,代入求出答案.(1)解:①2a+2的立方根是-2,①2a+2=-8,①2a=-10,①a=-5,①a+b+4的算术平方根是3,①a+b+4=9,-5+b+4=9,b=10,①c,①c=3;(2)22-+a ab c解:①a=-5,b=10,c=3,①a2-ab+2c= (-5)2- (-5)×10+2×3=81,①a2-ab+2c的平方根为.【点睛】此题主要考查了估算无理数的大小以及平方根、算术平方根和立方根,正确把握相关定义是解题关键.43.(1)(2)1122【详解】试题分析:(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用完全平方式和二次根式的乘法计算,再合并即可.试题解析:(1)原式=(2)原式=8+2+1-11-44.7【分析】根据乘方,二次根式和零指数幂的运算法则化简,然后再计算即可.【详解】解:原式821=-+7=.【点睛】本题主要考查了乘方,二次根式和零指数幂的运算法则,熟练掌握运算法则是解题的关键.45.(1)213a b c =⎧⎪=⎨⎪=-⎩(2)12【分析】(1)根据题设条件,得到关于a ,b ,c 的三元一次方程组,利用加减消元法解之即可,(2)结合(1)的结果,得到关于x 和y 的等式,把3x =-代入,计算求值即可.【详解】(1)根据题意得:02427a b c a b c a b c ++=⎧⎪-+=-⎨⎪++=⎩①②③,①+①得:1a c +=-①①+①×2得:21a c +=①,①-①得:2a =,把2a =代入①得:21c +=-,解得:3c =-,把2a =,3c =-代入①得:230b +-=,解得:1b =,方程组的解为:213a b c =⎧⎪=⎨⎪=-⎩;(2)根据题意得:223y x x =+-,把3x =-代入得:22(3)3312y =⨯---=,即y 的值为12.【点睛】本题考查了解三元一次方程组,解题的关键:(1)正确掌握加减消元法,(2)正确掌握代入法.46.122x - 【分析】先根据完全平方公式和单项式乘以多项式进行运算,合并同类项,再利用多项式除以单项式即可.【详解】()()2242x y y x y x x ⎡⎤-+--÷⎣⎦()2222242x xy y xy y x x =-++--÷ ()242x x x =-÷122x =-. 【点睛】本题考查了整式的混合运算以及完全平方公式的应用,能灵活运用运算法则进行化简是解此题的关键.47.(1)①120︒;①APC △为等边三角形;理由见解析(2)【分析】(1)①利用平行四边形的性质证明60,ABC ∠=︒再利用旋转的性质证明BEP △是等边三角形,可得60,PBE 从而可得答案;①先证明18060120,AEP 再证明,AE AD =可得,AE BC 证明,PBC PEA ≌ 可得,,PC PA BPC EPA 证明60,APC BPE 从而可得结论;(2)需要分①当点E 在线段AB 上时,过A 作AF BC ⊥于F ,和①当点E 在线段AB 的延长线上时,两种情况讨论.同样的思路和方法,根据平行四边形对边相等可得4BC AD ==,邻角互补得60,ABC ∠=︒所以30BAF ∠=︒,132BFAB 或1,再两次应用勾股定理即可解答.(1)①①ABCD ,①,AD BC ∥ 而120BAD ∠=︒,18012060,ABC ADC由旋转的性质可得:,60,EB EP BEP①BEP △是等边三角形,①60,PBE①6060120.PBC PBE ABC①APC △为等边三角形.理由如下:①60,BEP①18060120,AEP①60,ADC DE 平分,ADC ∠①30,ADE CDE①18030,AED BAD ADE ADE ①,AE AD = 而,AD BC =①,AE BC①PBE △为等边三角形,①,60PE PB BPE①120,AEP PBC①,PBC PEA ≌①,,PC PA BPC EPA①60,APC EPA EPC BPC EPC BPE ①APC △为等边三角形.(2)①当点E 在线段AB 上时,如图,过A 作AF BC ⊥于F , ①4,2,AE AD BC BE ====①6,AB =①60,ABC ∠=︒①30,BAF①13,2BFAB 22226333,AF AB BF ①431,CF①222827AC AF CF .①当点E 在线段AB 的延长线上时,如图,过A 作AF BC ⊥于F ,方法同①得4AEBC AD ,60ABF ∠=︒, ①422AB AE EB ,30BAF ∠=︒, ①112BF AB ==,413FC BC BF , ①2223AF AB BF , ①2223323AC AF FC .综上所述:AC 的长是【点睛】本题考查的是旋转的性质,等边三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,勾股定理的应用,含30︒的直角三角形的性质,二次根式的化简,熟悉基本几何图形的性质是解本题的关键.48.(1)2226a ab -+(2)18【分析】(1)根据整式的加减混合运算法则进行计算即可;(2)根据非负数相加和为0,则这几个非负数分别为0,先求出a 和b 的值,再代入求解即可.【详解】(1)解:①243M a ab =+-,269N a ab =-+,①()()224369M a N a ab a b =++-+-+224369a ab a ab =+-+-+2226a ab =-+.(2)①()2210a b ++-=,①20,10a b +=-=,解得:2,1a b =-=,把2,1a b =-=代入得: 2226M a N ab +=-+()()2222216=⨯--⨯-⨯+846=++ 18=.【点睛】本题考查了非负数的性质,整式加减中的化简求值,掌握合并同类项法则是解题的关键.49.(1)周长,2()a b -;(2)长等于宽;(3)当边长为9cm 时,最大面积为81cm 2.【分析】(1)根据长方形、正方形的周长公式和面积公式进行解答;(2)由完全平方公式进行计算分析;(3)根据第(2)的结论解答.【详解】(1)①图①长方形的周长=2a +2b ,图①正方形的周长=2(a +b )=2a +2b , ①周长相等;阴影部分的面积=正方形的面积-长方形的面积,=(a +b )2-4ab =a 2-2ab +b 2=(a -b )2,故填:周长,(a -b )2 ;(2)正方形面积为(a +b )2、长方形的面积为4ab ,①(a +b )2-4ab =(a -b )2≥0,①(a+b)2≥4ab,即:在周长一定的长方形中,当长和宽相等时,面积最大;(3)①在周长一定的长方形中,当长和宽相等时,面积最大,①当周长为36cm时,长和宽为9cm时,该图形的面积最大,最大面积为:9×9=81(cm2).【点睛】掌握乘法公式与几何图形的面积结合.。
中考数学复习《数与式》考点及测试题(含答案)
中考数学复习《数与式》考点及测试题(含答案)【专题分析】本专题的主要考点有实数的有关概念,科学记数法,非负数的性质,实数的运算;幂的运算,整式的运算,因式分解;分式的概念,分式的加减,分式的混合运算;二次根式的有关概念,二次根式的性质,二次根式的运算等.中考中数与式的考查一般以客观张题为主,但分式的化简求值经常有开放型题目.数与式的考查常见题型以选择题或填空题为主,整式和分式的化简求值一般以解答题的形式进行考查.数与式在中考中所占比重约为20%~25%. 【解题方法】解决数与式问题的常用方法有数形结合法,特殊值法,分类讨论法,整体代入法,设参数法,逆向思维法等. 【知识结构】【典例精选】:计算:2-1-3tan 60°+(π-2 015)0+⎪⎪⎪⎪⎪⎪-12.【思路点拨】根据负整数指数幂、特殊角的三角函数、零次幂以及绝对值的概念计算即可.【自主解答】解:原式=12-3×3+1+12=-1.把x 2y -2y 2x +y 3分解因式正确的是( )A.y(x2-2xy+y2) B.x2y-y2(2x-y)C.y(x-y)2 D.y(x+y)2【思路点拨】首先提取公因式y,再利用完全平方公式进行二次分解即可.答案:C规律方法:利用两种方法结合的分解因式题目,提公因式后不要忘记利用公式法二次分解,分解因式要在规定的范围内分解彻底.先化简,再求值:(x+3)(x-3)+2(x2+4),其中x= 2.【思路点拨】原式第一项利用平方差公式展开,第二项去括号,合并同类项得到最简结果,将x的值代入计算即可求出代数式的值.【自主解答】解:原式=x2-9+2x2+8=3x2-1.当x=2时,原式=3×(2)2-1=5.规律方法:整式的计算,要根据算式的特点选择合适的方法,可先选择乘法公式展开,然后合并;或先因式分解,然后计算.先化简,再求值:m-33m2-6m÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+3x+1=0的根.【思路点拨】在化简时要先算括号里面的,再把除法变为乘法,然后分解因式并约分,最后相乘.【自主解答】解:原式=m-33m m-2÷m2-9m-2=m-33m m-2×m-2m+3m-3=13m m+3.∵m是方程x2+3x+1=0的根,∴m2+3m+1=0,∴m2+3m=-1,即m(m+3)=-1,∴原式=13×-1=-13.规律方法:1.本题采用了整体代入法求解,这是求代数式的值常用的方法,体现了整体思路的应用.2.分式的化简求值是先化简,再求值;化简时一定要化到最简,结果是最简分式或整式.【能力评估检测】一、选择题1.已知空气的单位体积质量是0.001 239 g/cm 3,则用科学记数法表示该数为( A )A .1.239×10-3g/cm 3B .1.239×10-2 g/cm 3C .0.123 9×10-2 g/cm 3D .12.39×10-4 g/cm 3 2.下列运算错误的是( B )A. ⎝ ⎛⎭⎪⎫120=1 B .x 2+x 2=2x 4C .|a |=|-a | D. ⎝ ⎛⎭⎪⎫b a 23=b3a63.下列运算错误的是( D )A.a -b 2b -a2=1 B.-a -ba +b=-1 C. 0.5a +b 0.2a -0.3b =5a +10b 2a -3b D. a -b a +b =b -a b +a4.下列二次根式中,不能与2合并的是( C ) A.12B. 8C. 12D.18 5.若m =22×(-2),则有( C )A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-26.(2015·绍兴鲁迅中学模拟)下列三个分式12x 2,5x -14m -n ,3x的最简公分母是( D )A .4(m -n )xB .2(m -n )x 2C. 14x2m -nD .4(m -n )x 27.已知x -1x =3,则4-12x 2+32x 的值为( D )A .1 B. 32 C. 52 D. 72【解析】把x -1x =3两边同乘x ,得x 2-1=3x ,即x 2-3x =1,所以4-12x 2+32x =4-12(x 2-3x )=4-12×1=72. 8.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252【解析】观察前四个表格中的数字,第1个表格中 9=2×4+1,第2个表格中20=3×6+2,第3个表格中35=4×8+3,第4个表格中54=5×10+4,且每个表格中左下角的数字是右上角数字的一半,左上角的数字比左下角数字小1,所以b =12×20=10,a =b -1=9,x =20×10+9=209.故选C.答案: C9.实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b |的结果为( C )A .a +bB .a -bC .b -aD .-a -b【解析】由图可知,a <0,b >0,所以a -b <0,所以 |a -b |=-(a -b ),C 正确.10.如图,在边长为2a 的正方形中央剪去一边长为 (a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )第1个 第2个 第3个 第4个 … … …A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2【解析】平行四边形的面积为(2a )2-(a +2)2=4a 2-(a 2+4a +4)=4a 2-a 2-4a -4=3a 2-4a -4.故选C.11.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”,其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边的长为1x,矩形的周长为2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x (x >0),解得x =1.这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小, 因此x +1x (x >0)的最小值是2.模仿张华的推导,你求得式子x 2+9x(x >0)的最小值是( )A .2B .4C .6D .10【解析】∵x >0,∴在原式中分母分子同除以x ,即x 2+9x =x +9x ,在面积是9的矩形中设矩形的一边长为x ,则另一边长为9x ,矩形的周长为2⎝⎛⎭⎪⎫x +9x ;当矩形成为正方形时,就有x =9x (x >0),解得x =3.这时矩形的周长2⎝⎛⎭⎪⎫x +9x =12最小,因此x +9x(x >0)的最小值是6.故选C.答案: C 二、填空题12.分解因式:9x 3-18x 2+9x =9x (x -1)2 . 13.若式子2-xx有意义,则实数x 的取值范围是x ≤2且x ≠0 .14.计算:-36+214+327=-32. 15.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为12.【解析】由题意知,∵(a +6)2≥0,b 2-2b -3≥0.而(a +6)2+b 2-2b -3=0,∴(a +6)2=0且b 2-2b -3=0.整理,得a =-6,b 2-2b =3,∴2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.三、解答题16.计算:||-3-12+2sin 60°+⎝ ⎛⎭⎪⎫13-1.解:原式=3-23+2×32+3=3. 17.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2. 当x =-1,y =33时,原式=-1+1=0. 18.先化简,再求值:⎝⎛⎭⎪⎫1-1x +2÷x 2+2x +1x +2,其中x =3-1. 解:原式=x +1x +2÷x +12x +2=x +1x +2·x +2x +12=1x +1. 当x =3-1时,原式=13-1+1=13=33.19.探究下面的问题:(1)在图甲中,阴影部分的面积和为a 2-b 2(写成两数平方差的形式); (2)将图甲中的第①块割下来重新与第②块拼成如图乙所示的一个长方形,那么这个长方形的长是a +b ,宽是 a -b ,它的面积是(a +b )(a -b )(写成两个多项式的形式);(3)由这两个图可以得到的乘法公式是(a +b )(a -b )=a 2-b 2(用式子表示);(4)运用这个公式计算:(x -2y +3z )(x +2y -3z ).(x -2y +3z )(x +2y -3z )=[x -(2y -3z )]·[x +(2y -3z )]=x 2-(2y -3z )2=x 2-4y 2+12yz -9z 2.20.如果10b =n ,那么b 为n 的劳格数,记为b =d (n ),由定义可知:10b=n 与b =d (n )所表示的b ,n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)=1,d (10-2)=-2; (2)劳格数有如下运算性质:若m ,n 为正数,则d (mn )=d (m )+d (n ),d ⎝ ⎛⎭⎪⎫m n =d (m )-d (n ).根据运算性质,填空:d a 3d a=3(a 为正数),若d (2)=0.301 0,则d (4)=0.602 0,d (5)=0.6990,d (0.08)=-1.097.(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27 d (x ) 3a -b +c 2a -ba +c1+a -b -c3-3a -3c4a -2b3-b -2c6a -3b解:(1)1 -2(2)d a 3d a =3d a d a=3.由运算性质可得,d (4)=0.602 0,d (5)=d (10)-d (2)= 1-0.301 0=0.699 0,d (0.08)=-1.097.(3)若d (3)≠2a -b ,则d (9)=2d (3)≠4a -2b ,d (27)=3d (3)≠6a -3b ,从而表中有三个劳格数是错误的,与题设矛盾,∴d (3)=2a -b ;若d (5)≠a +c ,则d (2)=1-d (5)≠1-a -c , ∴d (8)=3d (2)≠3-3a -3c ,d (6)=d (3)+d (2)≠1+a -b -c ,表中也有三个劳格数是错误的,与题设矛盾.∴d(5)=a+c.∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)-1=3a-b+c-1,d(12)=d(3)+2d(2)=2-b-2c.。
中考数学专题复习《数与式》测试卷(附带答案)
中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。
中考数学《数与式》+《方程(组)与不等式(组)》专题测试卷
2022年中考数学专题测试卷【一】《数与式》+《方程(组)与不等式(组)》(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分) 1.下列各数中是有理数的是( )A.πB.0C. 2D.35 2.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( )A. 0.69×107B. 69×105C. 6.9×105D. 6.9×106 3.在实数|-3|,-2,0,π中,最小的数是( )A.|-3|B.-2C.0D.π 4.下列等式成立的是( )A.x 2+3x 2=3x 4B.0.00028=2.8×10-3C.(a 3b 2)3=a 9b 6D.(-a +b)(-a -b)=b 2-a 25.世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 以下所列方程中正确的选项是〔 〕A .128)% 1(1682=+aB .128)% 1(1682=-aC .128)% 21(168=-aD .128)% 1(1682=-a6.假设函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),那么当函数值y =8时,自变量x 的值是〔 〕A 6B .4C 6或4D .46 7.函数x y =1,34312+=x y .当21y y >时, x 的范围是〔 〕 A .x <-1 B .-1<x <2 C .x <-1或者x >2 D .x >2 8.已知x 2-3x -4=0,则代数式xx 2-x -4的值是( )A.3B.2C.13D.129.已知方程0120212=+-x x 的两个根分别为x 1,x 2,则2212021x x -的值为( ) A.1 B.-1 C.2021 D.-202110.已知a ≥2,m 2-2am +2=0,n 2-2an +2=0,m ≠n ,则(m -1)2+(n -1)2的最小值是( )A.6 B .3 C .-3 D .0 二、填空题(每小题3分,共18分)11.一个正数的平方根分别是x +1和x -5,则x =12.定义新运算:a ※b =a 2+b ,例如3※2=32+2=11,已知4※x =20,则x = 13.关于x 的分式方程的解为正实数,则k 的取值范围是________14.若a -1a =6,则a 2+1a2的值为 .15.假设关于x 的不等式325m x -<的解集是2x >,那么实数m 的值是____________ 16.已知a 1=t t -1,a 2=11-a 1,a 3=11-a 2,…,a n +1=11-a n(n 为正整数,且t≠0,1),则a 2016=___________(用含有t 的代数式表示) 三、解答题(本题含9道小题,共72分) 17.(6分)计算:(1)-|4-12|-(π-3.14)0+(1-cos30°)×(12)-2.(2)计算:|1﹣|﹣×+﹣()﹣2;18.(12分)解方程〔组〕、不等式〔组〕(1)x 2-4x-12=0 (2)13321++=+x xx x(3)34194x y x y +=⎧⎨-=⎩ (4)110334(1)1x x +⎧-⎪⎨⎪--<⎩≥19.(1)(8分)先化简,再求值:(a-2b)(a+2b)-(a-2b)2+8b2,其中a=-2,b=1 2 .(2)先化简,再求值:(x+1x2-x-xx2-2x+1)÷1x,其中x=2+1.20.(6分)已知1x-1y=3,求分式2x-14xy-2yx-2xy-y的值.21.(6分)已知有理数m,n满足(m+n)2=9,(m-n)2=1.求下列各式的值.(1)mn; (2)m2+n2.22.(8分)用※定义一种新运算:对于任意实数m和n ,规定,如:.(1)求;(2)若,求m的取值范围,并在所给的数轴上表示出解集.23.(6分)若数a 使关于x 的不等式组⎩⎨⎧x 3-2≤14x -7,6x -2a>51-x有且仅有三个整数解,且使关于y 的分式方程1-2y y -1-a1-y =-3的解为正数,则所有满足条件的整数a 的值之和是多少?24. (10分)君实机械厂为青扬公司消费A 、B 两种产品,该机械厂由甲车间消费A 种产品, 乙车间消费B 种产品,两车间同时消费.甲车间每天消费的A 种产品比乙车间每天消费的B 种产品多2件,甲车间3天消费的A 种产品与乙车间4天消费的B 种产品数量一样. (1)求甲车间每天消费多少件A 种产品?乙车间每天消费多少件B 种产品?(2)君实机械厂消费的A 种产品的出厂价为每件200元,B 种产品的出厂价为每件180元.现 青扬公司需一次性购置A 、B 两种产品一共80件,君实机械厂甲、乙两车间在没有库存的情况下只消费8天,假设青扬公司按出厂价购置A 、B 两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购置方案.25. (10分)近年来,政府大力HY 改善的办学条件,并实在加强对学生的平安管理和平安 教育.某中学新建了一栋教学大楼,进出这栋教学大楼一共有2道正门和2道侧门,其中两道正门大小一样,两道侧门大小也一样.平安检查中,对4道门进展了测试:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生;当同时开启一道正门和两道侧门时,3分钟可以通过840名学生.(1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.平安检查规定:在紧 急情况下,全大楼的学生应在5分钟内通过这4道门平安撤离.假设这栋教学大楼的教 学室里最多有1500名学生,试问建造的这4道门是否符合平安规定?请说明理由.。
中考数学数与式专题知识训练50题-含答案
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为( )A .35.510⨯B .35510⨯C .45.510⨯D .55.510⨯2.2021年“国庆”假期,某景点共接待游客77600人次,77600用科学记数法表示为( ) A .277610⨯B .47.7610⨯C .377.610⨯D .40.77610⨯3.比﹣2大5的数是( ) A .﹣7 B .﹣3C .3D .74.“1625的算术平方根是45”,用式子表示为( )A .±45B ±45C 45D .45 5.2021年5月11日,第七次全国人口普查主要数据结果公布,数据显示,全国人口共141178万人,比2010年增加7206万人,数据“7206万”用科学记数法表示正确的是( ) A .0.7206×108B .7.206×108C .7.206×107D .72.06×1076.下列根式中,属于最简二次根式的是( ).A B C D 7.下列运算中,错误的是( )A =B 1697=-=C .D 3=8.下列各式中,正确的是( )AB .C D .9a 能取到的最小值为( ) A .0B .1C .2D .2.510.(2x +1)(2x -1)等于( ) A .4x 2-1B .2x 2-1C .x 2-1D .2x 2+111.实数a ,b ,c 在数轴上的对应点的位置如图所示,下列选项正确的是( )A .c a >B .c a b a b c -=-+-C .0a b c ++=D .a b a c b c -=---12.下列式子一定是二次根式的是( )AB C D 13.在实数0、π、2273.1010010001中,无理数的个数有( ) A .1个B .2个C .3个D .4个14.如图,被阴影覆盖的可能是下面哪一个数( )AB C D .以上都不对15.若x <0,1x x-=1x x +的值为( )A .﹣3B .﹣1C .1D .316.如果()2210x a x x b +=-+,那么a.b 的值分别为( ) A .2;4B .5;-25C .-2;25D .-5;2517.下列运算正确的是( ) A .325a a a +=B .236a a a ⋅=C .23356()a b a b =D .236()a a =18.下列说法:①相反数等于本身的数只有0;①若||||||a b a b ,则0ab <;①一列数:-2,4,-8,16,-32…按规律.第n 个数为2n -;①|8||2|12x x -++=,则10x =.其中正确的说法的个数是( )A .1B .2C .3D .419.数轴上点A 表示的数为B A 、B 之间表示整数的点有( ) A .21个B .20个C .19个D .18个20.已知.(a +b )2=9,ab = -112,则a 2+b2的值等于( )A .84B .78C .12D .6二、填空题21.某餐厅3月份营业额是2万元,税率是5%,应缴纳营业税( )元. 22.将0.000 001 22用科学记数法表示为___.238,则x 的值是________________. 24.计算:322m m m-+=_______. 25.已知2x y -=,则221122x xy y -+=___________.26.据不完全统计,今年“十一”黄金周期间,某风景区累计接待游客138.3万人次,138.3万用科学记数法可表示为__________. 27.已知x =2,|y |=5,且x >y ,则x +y =_________.28.一潜艇所在高度为-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在高度为________米. 29.化简:22816x x +=-______. 30.(-a 3b )2=________.31.在计算:“11103--”时,甲同学的做法如下:在上面的甲同学的计算过程中,开始出错的步骤是______(写出错误所在行.....的序号),这一步依据的运算法则应当:同号两数相加,_____________________________. 32.多项式2x 3y +与多项式x y -的差是______.33.若 a b ,且 a 、b 是两个连续的整数,则 ab =___________.34.12的相反数是_____;122-的倒数是_____. 35.已知,a b 互为相反数,,c d 互为倒数,21,||2x y ==,则19992()a b x cd y ++--的值 ______________36.计算:30(2)(15)π---= ______________ 37.4(3)-的底数是________.38.数据0.0005用科学记数法表示为______.39.很多代数公式都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式等.【提出问题】如何用表示几何图形面积的方法计算:3333123n ++++=?【规律探究】观察下面表示几何图形面积的方法:【解决问题】请用上面表示几何图形面积的方法写出3333123n ++++=______=______(用含n 的代数式表示); 【拓展应用】根据以上结论,计算:3333246(2)n ++++的结果为________.40.已知下列各数: 3.14-,24,27+,172-,516,0.01-,0其中整数有____个.三、解答题 41.计算(1)(2x 2y )3•(-3xy 2)÷6xy(2)2a 2(3a 2-2a +1)+4a 342.计算:2020(1)|1-+43.(﹣8)57×0.12555. 44.计算:(1)12(18)(7)15--+--; (2)11112462⎛⎫+-⨯ ⎪⎝⎭45.计算:[](2)(3)5(3)(71)2-⨯----+--÷.46.先化简,再求值:23(1)(1)(1)x x x x x +-+-+,其中x=2.47.计算: (). 48.计算:(1)-12019+(-3)3+①-5①÷15(2)(-24)×(16+114-0.75) 49.先化简,再求值:22151939x x x x x x --⎛⎫÷- ⎪---⎝⎭,其中2sin601x =︒+. 50.把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:若代数式M =a 2﹣2ab +2b 2﹣2b +2,利用配方法求M 的最小值:a 2﹣2ab +2b 2﹣2b +2=a 2﹣2ab +b 2+b 2﹣2b +1+1=(a ﹣b )2+(b ﹣1)2+1. ①(a ﹣b )2≥0,(b ﹣1)2≥0,①当a =b =1时,代数式M 有最小值1. 请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ; (2)若代数式M =214a +2a +1,求M 的最小值;(3)已知a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c +2=0,求代数式a +b +c 的值.参考答案:1.C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:55000=5.5×104. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2.B【分析】根据科学记数法的定义即可得. 【详解】解:4776007.7610=⨯, 故选:B .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 3.C【分析】直接利用有理数的加法运算法则计算得出答案. 【详解】解:比﹣2大5的数是:﹣2+5=3. 故选:C .【点评】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键. 4.C【详解】1625的算术平方根是45, 45. 故选C. 5.C【分析】根据科学记数法的表示形式即可完成. 【详解】7206万=72060000=7.206×107 故选:C【点睛】本题考查了科学记数法,用科学记数法表示绝对值大于1的数,其形式为10n a ⨯,其中110a ≤<,n 为正整数,且n 是原数的整数数位与1的差.6.D【分析】根据最简二次根式的定义:①被开方数不含有分母,①被开方数不含有能开得尽方的因数或因式,逐个判断即可.【详解】A,不是最简二次根式,故本选项不符合题意;B =C =,不是最简二次根式,故本选项不符合题意;D 故选:D【点睛】本题考查了最简二次根式,熟记最简二次根式的定义是解此题的关键. 7.B【分析】按照二次根式的加减乘除运算法则计算.【详解】A =B =C 、D 3,正确; 故选:B.【点睛】本题考查二次根式的运算法则,熟练掌握基本法则是关键. 8.C【分析】根据平方根和算术平方根的定义解答即可.【详解】解:A 2=,原计算错误,不符合题意;B 、,原计算错误,不符合题意;C ==3,正确,符合题意;D ==3,原计算错误,不符合题意;故选:C .【点睛】本题考查平方根和算术平方根,熟练掌握平方根和算术平方根的定义是解题关键. 9.C【分析】根据二次根式的定义求出a 的范围,再得出答案即可.a-2≥0, 即a≥2,所以a 能取到的最小值是2, 故选C .【点睛】本题考查了二次根式的定义,能熟记二次根式的定义是解此题的关键. 10.A【详解】根据平方差公式可得:(2x +1)(2x -1)=4x 2-1,故选A. 11.D【分析】先根据数轴上a ,b ,c 的位置关系得出303a b c <-<<<<,再结合各个选项逐一分析即可得出答案.【详解】解:由数轴可知:303a b c <-<<<<c a ∴<,A 选项错误,不符合题意; c a c b b a -=-+-,B 选项错误,不符合题意;根据数轴关系不能得出0a b c ++=,C 选项错误,不符合题意;a b b a -=-,a c c a -=-,b c c b -=-a cbc ∴--- ()c a c b =--- c a c b =--+b a a b =-=-,D 选项正确,符合题意;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上的点离原点的距离判断绝对值的大小.也考查了整式的加减运算. 12.D【分析】根据二次根式有意义的条件:被开方数是非负数,据此解题.【详解】解:A ,当2x 10-+<时,二次根式无意义,故A 不正确; B ,当x 0<时,二次根式无意义,故B 不正确;C ,当2x 10-<时,二次根式无意义,故C 不正确;D ,2x 10+>D 正确,故选:D .【点睛】本题考查二次根式的定义,涉及二次根式有意义的条件,是基础考点,难度较易,掌握相关知识是解题关键. 13.B【详解】无理数是无限不循环小数,根据无理数的定义可得在实数0、π、2273.1010010001中,π故选B. 14.B【分析】根据图中阴影部分可知,这个无理数在1到3之间,结合选项进行排除即可.【详解】解:①21-<-,23<,3>,① 故选:B .【点睛】本题主要考查的是估算无理数的大小,根据平方根的定义,对选项中的无理数进行正确的估算是解决本题的关键. 15.A【分析】结合题意,根据完全平方公式的性质计算,得x 221x +的值;再结合完全平方公式的性质计算,即可得到答案.【详解】①x 1x-=, ①(x 1x-)2=5,①x 2﹣221x +=5,①x 221x +=7, ①x 2+221x +=9, ①(x 1x +)2=9,①x 1x+=±3,①x <0, ①10x< ①x 1x +<0,①x 1x+=-3,故选:A .【点睛】本题考查了完全平方公式的知识;解题的关键是熟练掌握完全平方公式的性质,从而完成求解. 16.D【分析】已知等式左边利用完全平方公式展开,再利用多项式相等的条件求出a 与b 的值即可.【详解】已知等式整理得:x 2+2ax+a 2=x 2-10x+b , 可得2a=-10,a 2=b , 解得:a=-5,b=25, 故选D .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 17.D【分析】利用合并同类项,同底数幂乘法,幂的乘方与积的乘方逐一计算验证即可. 【详解】A 选项中,32a a +中的两个项不是同类项,不能合并,因此A 中计算错误; B 选项中,23235a a a a +⋅==,因此B 中计算错误; C 选项中,23369()a b a b =,因此C 中计算错误; D 选项中,23236()a a a ⨯==,因此D 中计算正确; 故选D.【点睛】本题考查了合并同类项及幂的运算,熟记同类项的概念和幂的运算的性质是解题18.A【分析】利用相反数的定义对①进行判断;根据值的意义对①进行判断;根据数列的规律对①进行判断;运用验证法可对①进行判断.【详解】解:①相反数等于本身的数只有0,所以①正确;①若||||||a b a b ,则0ab ≤,所以①错误;①一列数:-2,4,-8,16,-32…按规律.第n 个数为(2)n -,所以①错误;①当x=10时,|8||2||108||102|1412x x -++=-++=≠,所以①错误;正确的说法只有1个,故选:A .【点睛】本题考查了相反数的定义,绝对值的性质以及数的规律,综合性较强,有一定的难度.19.C【分析】先设AB 之间的整数是x ,于是-105<x <77,而-11<105<-10,8<77<9,从而可求-11<x <9,进而可求A 、B 之间整数的个数.【详解】解:设A 、B 之间的整数是x ,那么x -11<-10,8<9,①-11<x <9,AB 之间的整数有19个.故选C .【点睛】本题主要考查了无理数的估量,解题关键是确定无理数的整数部分即可解决问题.20.C【详解】解:根据完全平方式()2222a b a ab b ±=±+可由(a +b )2=9,ab = -112知a 2+b 2=(a +b )2-2ab =9+3=12故选C.【分析】用营业额乘以税率即可算出营业税.【详解】解:依题意得,应缴纳营业税为:20000×5%=1000(元).故答案是:1000.【点睛】本题考查有理数的乘法,正确理解题意是解题的关键.22.61.2210-⨯.【分析】根据科学记数法的定义和负整数指数幂的性质,即可得到答案.【详解】0.000 00122611.22 1.22101000000-=⨯=⨯. 故答案为:61.2210-⨯.【点睛】本题主要考查绝对值小于1的数的科学记数法,掌握科学记数法的形式10n a ⨯(110a ≤<,n 为整数),是解题的关键.23.65【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8①x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.24.3【分析】同分母的分式的加减运算:分母不变,把分子相加减,再约分即可. 【详解】解:3223223 3.m m m m m m m 故答案为:3 【点睛】本题考查的是同分母分式的加减运算,掌握“同分母分式的加减运算的运算法则”是解本题 关键.25.2 【分析】先把221122x xy y -+变形为21()2x y -,再整体代入求解即可.【详解】①222221111(2)()2222x xy y x xy y x y -+=-+=-,①当2x y -=时,原式21222=⨯=.故答案为:2.【点睛】本题考查利用因式分解进行整式求值,解题的关键是利用完全平方公式进行因式分解.26.1.383×106【分析】先将138.3万还原成1383000,再根据科学记数法表示出来即可.【详解】解:138.3万=1383000=1.383×106,故答案为:1.383×106.【点睛】本题考查了科学记数法,知道任何绝对值大于10的数都可以表示为10n a ⨯的形式(其中110a ≤<,n 为整数),正确确定a 的值与n 的值是解题的关键.27.-3【分析】根据有理数的加法运算以及绝对值的性质即可求出答案.【详解】解:①x =2,|y |=5,①x =2,y =5或x =2,y =-5,①x >y ,①x =2,y =-5,①x +y =2-5=-3,故答案为:-3.【点睛】本题考查有理数的加法,解题的关键是熟练运用有理数的加法运算,本题属于基础题型.28.-50【分析】根据题意列出算式,计算即可得到结果.【详解】根据题意得:−80+30=−50(米),则鲨鱼所在的高度为−50米.故答案为−50.【点睛】本题主要考查了有理数的加法,牢牢掌握有理数的加法法则是解答本题的关键. 29.24x - 【分析】根据最简分式的概念,先将分子分母分别进行因式分解,使分子分母不含有公因式即可得出答案.【详解】解:原式2(4)2(4)(4)4x x x x +==+--. 故答案为:24x -. 【点睛】本题考查了分式的化简,把分子分母因式分解,然后确定有无公因式是解题的关键.30.a 6b 2##b 2a 6【分析】根据幂的乘方和积的乘方的运算法则进行计算求解.【详解】解:()()2233262a b a b a b -=-=. 故答案为:a 6b 2.【点睛】本题考查了幂的乘方和积的乘方的运算法则.理解运算法则是解答关键. 31. ①; 取相同的符号,并把绝对值相加【分析】减去两个有理数,相当于加上这两个数的相反数的和. 【详解】解:1110322-- 1110(3)22=+-- 10(4)=+-6=故①步错.故答案为:①,取相同的符号,并把绝对值相加.【点睛】本题考查有理数加减运算,熟练掌握运算法则是解题的关键.32.x 4y +【分析】直接利用多项式的加减运算法则计算得出答案.【详解】多项式2x 3y +与多项式x y -的差是:()2x 3y x y +--2x 3y x y =+-+x 4y =+.故答案为x 4y +.【点睛】此题主要考查了多项式,正确掌握多项式的加减运算法则是解题关键. 33.8【分析】由被开方数7 的范围,进而求出a 与b 的值,代入原式计算即可解答.【详解】① ,①2<3,①a 、b 是两个连续的整数,①a =2,b =3,①ab =23=8.故答案为8.【点睛】此题考查估算无理数的大小,难度不大.34. 12- 25【详解】试题解析:12的相反数是12-; 11522222-==,52的倒数是25,故122-的倒数是25. 考点:1.相反数;2.倒数.35.-4【分析】利用相反数,倒数的定义,平方根的定义,零指数幂的运算以及绝对值的性质,求出a+b ,cd ,x ,y 的值,代入原式计算即可得到结果.【详解】解:①21,||2x y ==,①1,2x y =±=±,又易知0,1a b cd +==故原式=()()()0199921124±+--±=-. 故答案为:-4【点睛】此题考查了代数式求值,相反数,倒数,平方根的定义,零指数幂的运算及绝对值的性质,熟练掌握各自的定义是解本题的关键.36.11【分析】根据算术平方根、乘方、零次幂的性质计算即可求解.【详解】解:30(2)(15)π---=4×5-8-1=20-8-1=11,故答案为:11.【点睛】本题考查了算术平方根、乘方、零次幂,熟练掌握运算法则是解本题的关键. 37.3-【分析】根据乘方的定义解答即可,求n 个相同因数a 的积的运算叫做乘方,其中a 叫做底数,n 叫做指数.【详解】4(3)-的底数是3-,故答案为:3-.【点睛】本题考查了有理数乘方的概念,熟练掌握其概念内容是解题的关键. 38.5510⨯﹣【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0005=5510⨯﹣故答案为5510⨯﹣.【点睛】此题考查科学记数法—表示较小的数,解题关键在于掌握其一般形式.39.规律探究26;解决问题2(123)n +++⋅⋅⋅+;22(1)4n n +;拓展应用222(1)n n +或432242n n n ++.【分析】规律探究:计算333123++=36=大正方形面积,然后直接求大正方形面积即可; 解决问题:3333123n +++⋯+转化为大正方形面积,其边长为1+2+3+…+n ,再求面积化简即可;拓展应用:()33332462n +++⋯+提公因式8转化为8(3333123n +++⋯+),再用规律计算即可【详解】解:规律探究:333123++=1+8+27=36=大正方形面积=()221+2+3=6; 故答案为:62解决问题:由上面表示几何图形的面积探究知,()23333123123n n +++⋯+=+++⋯+,又(1)1232n n n ++++⋯+=, 2223333(1)(1)12324n n n n n ++⎡⎤∴+++⋯+==⎢⎥⎣⎦; 故答案为:222(1)(123),4n n n ++++⋯+; 拓展应用:()33333333324622123n n +++⋯+=⨯+++⋯+⎡⎤⎣⎦, 223333(1)1234n n n ++++⋯+=, ()()()223233332432124622212424n n n n n n n n +∴+++⋯+=⨯=+=++. 故答案为:222(1)n n +或432242n n n ++.【点睛】本题考查实践探索问题,仔细观察图形与算式的关系,发现规律为立方数的和等于最大正方形面积,再利用面积公式求是解题关键.40.3【分析】根据整数的定义从所给的数中找出符合题意的数即可【详解】解:整数有24,+27,0;故答案为3.【点睛】此题考查了有理数的分类,用到的知识点是正数、非正数、整数的定义,在解答时要注意不要漏数.41.(1)-4x 6y 4;(2)6a 4+2a 2.【分析】(1)先根据指数幂的运算性质对等式进行分别运算,再进行乘除运算,即可得到答案;(2)先进行多项式与单项式的乘法运算,再进行加法运算,即可得到答案.【详解】解:(1)原式=8x 6y 3•(-3xy 2)÷6xy =-4x 6y 4;(2)原式=6a 4-4a 3+2a 2+4a 3=6a 4+2a 2.【点睛】本题考查指数幂的乘除运算和多项式与单项式的混合运算,解题的关键是熟练掌握指数幂的乘除运算和多项式与单项式的混合运算.42【分析】根据实数的性质进行化简即可求解.【详解】解:2020(1)|1-+1122=-+=【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.43.-64【分析】把57(8)-拆成255(8)(8)-⨯-,把550.125化成551()8,先用55551(8)()8-⨯,再与2(8)-进行乘法运算. 【详解】原式255551(8)(8)()8=-⨯-⨯ 255551(8)(8)()8⎡⎤=-⨯-⨯⎢⎥⎣⎦ 2(8)(1)=-⨯-64=-.【点睛】本题考查考查幂的乘方与积的乘方以及同底数幂的乘法,解题关键是把57(8)-拆成255(8)(8)-⨯-,把550.125化成551()8,运用积的乘方化简运算. 44.(1)8(2)1-【分析】(1)根据有理数的加减法可进行求解;(2)利用乘法分配律进行求解即可.【详解】(1)解:12(18)(7)15--+--1218(7)(15)=++-+-8=;(2)解:原式1111212123261462.【点睛】本题主要考查有理数的加减法及乘法运算,熟练掌握各个运算法则是解题的关键.45.-6【分析】去括号,再进行混合运算即可.【详解】解:[](2)(3)5(3)(71)2-⨯----+--÷[]653(8)2=-++-÷684=--6=-.【点睛】本题考查有理数的混合运算.掌握有理数的混合运算法则是解答本题的关键. 46.221x -,7.【分析】根据乘法公式和单项式乘以多项式法则先化简,再代入求值即可.【详解】解:原式=22331x x x x -+-+=221x -;当x=2时,原式=2221⨯-=7.【点睛】本题考查整式的混合运算—化简求值,掌握运算法则正确计算是解题关键.476 【分析】根据二次根式的性质,分母有理化,利用平方差公式进行化简,计算求值即可;【详解】解:-()=[2-2]【点睛】本题考查了二次根式的化简求值,解题的关键是熟练掌握二次根式的性质,以及运算法则.48.(1)-3;(2)-16【分析】(1)先计算乘方以及去绝对值,进行有理数的除法运算,再进行有理数的加法运算即可;(2)先把小数化为分数,再进行分配律计算即可.【详解】解:(1)原式=-1-27+5÷15=-3;(2)原式=15324+24+24-644⎛⎫⨯⨯⨯ ⎪⎝⎭(-)(-)(-)=-4-30+18=-16 故答案为(1)-3;(2)-16.【点睛】本题考查了有理数的加减乘除混合运算以及乘方运算,熟练掌握运算法则是解题的关键.49.11x - 【分析】先计算括号内的分式减法,再计算分式除法,然后计算特殊角的正弦值得出x 的值,最后代入求解即可.【详解】原式()()()()()()1(3)51333333x x x x x x x x x x ⎡⎤-+-=÷-⎢⎥+-+-+-⎢⎥⎣⎦ ()()()()1(3)(51)3333x x x x x x x x -+--=÷+-+-()()()()21213333x x x x x x x --+=÷+-+- ()()()()()2113333x x x x x x --=÷+-+- ()()()()()2331331x x x x x x +--=⋅+--11x =-当2sin 601211x =︒+==时,原式=. 【点睛】本题考查了分式的化简求值、特殊角的正弦值等知识点,掌握分式的运算法则是解题关键.50.(1)4;(2)M 的最小值为﹣3;(3)a +b +c=122. 【分析】(1)根据常数项等于一次项系数的一半进行配方即可;(2)先提取14,将二次项系数化为1,再配成完全平方,即可得答案; (3)将等式左边进行配方,利用偶次方的非负性可得a ,b ,c 的值,从而问题得解.【详解】(1)①a 2+4a+4=(a+2)2故答案为4;(2)M =21a 4+2a+1 =14(a 2+8a+16)﹣3 =14(a+4)2﹣3 ①M 的最小值为﹣3(3)①a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c+2=0,①(a ﹣b )2+(b ﹣1)2+(2c ﹣1)2=0,①a ﹣b =0,b ﹣1=0,2c ﹣1=0①a=b=1,1c=2,①a+b+c=122.【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.答案第16页,共16页。
中考数学复习数与式
中考复习数与式2一.代数式的概念— 单项式—整式—— 有理式— — 多项式代数式 — —分式— 无理式(根式)1.单项式(1)单项式:数与代表数的字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。
注意:数与字母之间是乘积关系。
例:3x 2也是数与字母的积(32与x 的积)。
特征:分母中无字母。
(2)单项式的系数:单项式中的数字因数。
如:2xy 的系数是2;-5zy 的系数是-5 。
2πab 的系数是2π 如果一个单项式,只含有字母因数,则有:带正号的单项式(例如ab 2)的系数为1;带负号的单项式(例如:-ab 2)的系数为-1。
(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例题:1、单项式322y x -的系数是 ,次数是 。
2、单项式n m 3π-的系数是 ,次数是 。
2.多项式(1)多项式:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项。
某项的次数是几,该项就叫几次项。
不含字母的项叫做常数项,也叫零次项。
一个多项式有几项就叫做几项式。
多项式中的符号,看作各项的性质符号(正负号)。
(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
根据次数和项数把该多项式叫做几次几项式。
(3)多项式的排列:1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。
例题:1、多项式a b a a 3323--23b b +是 次 项式,按b 的降幂排列为 。
2、对于代数式:1,r ,11+x ,312+x ,)(22b a -π,πx 2;属于单项式的有 ,属于多项式的有 。
课堂练习:1.下列各式中是多项式的是 ( )A .21- B .y x + C .3ab D .22b a - 2.下列说法中正确的是( )A .x 的次数是0B .y 1是单项式 C .21是单项式 D .a 5-的系数是5 3.整式:单项式和多项式统称为整式。
数与式综合测试卷(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)
数与式综合测试卷考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2023·青海西宁·统考中考真题)算式―3□1的值最小时,□中填入的运算符号是()A.+B.-C.×D.÷2.(3分)(2023·江苏宿迁·统考中考真题)下列运算正确的是()A.2a―a=1B.a3⋅a2=a5C.(ab)2=ab2D.(a2)4=a63.(3分)(2023·浙江衢州·统考中考真题)手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm),则下列信号最强的是()A.―50B.―60C.―70D.―804.(3分)(2023·河北·统考中考真题)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km.下列正确的是()A.9.46×1012―10=9.46×1011B.9.46×1012―0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数5.(3分)(2023·重庆·×)A.4和5之间B.5和6之间C.6和7之间D.7和8之间6.(3分)(2023·天津·统考中考真题)计算1x―1―2x2―1的结果等于()A.―1B.x―1C.1x+1D.1x2―17.(3分)(2023·山东·统考中考真题)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b―a)<0B.b(c―a)<0C.a(b―c)>0D.a(c+b)>08.(3分)(2023·河北·统考中考真题)若k为任意整数,则(2k+3)2―4k2的值总能()A .被2整除B .被3整除C .被5整除D .被7整除9.(3分)(2023·四川德阳·统考中考真题)在“点燃我的梦想,数学皆有可衡”数学创新设计活动中,“智多星”小强设计了一个数学探究活动:对依次排列的两个整式m ,n 按如下规律进行操作:第1次操作后得到整式串m ,n ,n ―m ;第2次操作后得到整式串m ,n ,n ―m ,―m ;第3次操作后…其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m +nB .mC .n ―mD .2n10.(3分)(2023·四川内江·统考中考真题)对于正数x ,规定f(x)=2xx+1,例如:f(2)=2×22+1=43,=2×1212+1=23,f(3)=2×33+1=32,=2×1313+1=12,计算:+++⋯+++f(1)+f(2)+f(3)+⋯+f(99)+f(100)+f(101)=( )A .199B .200C .201D .202二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2023·四川巴中·统考中考真题)在0,,―π,―2四个数中,最小的实数是.12.(3分)(2023·江苏·统考中考真题)若圆柱的底面半径和高均为a ,则它的体积是 (用含a 的代数式表示).13.(3分)(2023·江苏泰州·统考中考真题)若2a ―b +3=0,则2(2a +b)―4b 的值为 .14.(3分)(2023·山东潍坊·统考中考真题)从―(□+○)2÷“□”与“○”中,计算该算式的结果是 .(只需写出一种结果)15.(3分)(2023·黑龙江大庆·统考中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,(a+b)7展开的多项式中各项系数之和为.16.(3分)(2023·湖南娄底·统考中考真题)若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n个同学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a米,再左右调整位置,使这(n+2)个同学之间的距离与原来n个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这(n+2)个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移米(请用关于a的代数式表示),才能使得这(n+3)个同学之间的距离与原来n个同学之间的距离相等.三.解答题(共7小题,满分52分)17.(6分)(2023·江苏无锡·统考中考真题)(1)计算:(―3)2―+|―4|(2)化简:(x+2y)(x―2y)―x(x―y)18.(6分)(2023·广东广州·统考中考真题)已知a>3,代数式:A=2a2―8,B=3a2+6a,C=a3―4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.19.(8分)(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为S1,S2.(1)请用含a的式子分别表示S1,S2;当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.20.(8分)(2023·四川攀枝花·统考中考真题)2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行18决赛,14决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.(1)本届世界杯分在C 组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个C 组分组积分赛对阵表(不要求写对阵时间).(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?(3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?21.(8分)(2023·福建厦门·统考模拟预测)“歌唱家在家唱歌”“蜜蜂酿蜂蜜”这两句话从左往右读和从右往左读,结果完全相同.文学上把这样的现象称为“回文”,数学上也有类似的“回文数”,比如252,7887,34143,小明在计算两位数减法的过程中意外地发现有些等式从左往右读的结果和从右往左读的结果一样,如:65―38=83―56;91―37=73―19;54―36=63―45.数学上把这类等式叫做“减法回文等式”.(1)①观察以上等式,请你再写出一个“减法回文等式”;②请归纳“减法回文等式”的被减数ab (十位数字为a ,个位数字为b )与减数cd 应满足的条件,并证明.(2)两个两位数相乘,是否也存在“乘法回文等式”?如果存在,请你直接写出“乘法回文等式”的因数xy 与因数mn 应满足的条件.22.(8分)(2023·山东青岛·统考中考真题)如图①,正方形ABCD 的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D的面积为______;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D的面积为______;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为______.23.(8分)(2023·山东潍坊·统考中考真题)[材料阅读]用数形结合的方法,可以探究q +q 2+q 3+...+q n +…的值,其中0<q <1.例求12+++⋯++⋯的值.方法1:借助面积为1的正方形,观察图①可知12+++⋯++⋯的结果等于该正方形的面积,即12+++⋯++⋯=1.方法2:借助函数y =12x +12和y =x 的图象,观察图②可知12+++⋯++⋯的结果等于a 1,a 2,a 3,…,a n …等各条竖直线段的长度之和,即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1,所以,12+++⋯++⋯=1.【实践应用】任务一 完善23+++⋯++⋯的求值过程.方法1:借助面积为2的正方形,观察图③可知23+++⋯++⋯=______.方法2:借助函数y =23x +23和y =x 的图象,观察图④可知因为两个函数图象的交点的坐标为______,所以,23+++⋯++⋯=______.任务二 参照上面的过程,选择合适的方法,求34+++⋯++⋯的值.任务三 用方法2,求q +q 2+q 3+⋯+q n +⋯的值(结果用q 表示).【迁移拓展】的矩形是黄金矩形,将黄金矩形依次截去一个正方形后,得到的新矩形仍是黄金矩形.观察图⑤+++⋯++⋯的值.。
专题复习总结卷:数与式专题
数与式专题一、填空题1.若+=+|2c-6|,则b c+a的值为____.【答案】-32.若规定一种运算=ad-bc,则化简=________【答案】-5x3.已知a,b,c是△ ABC的三边,化简=_________.【答案】2c4.若0<a<1,则-的值为_______.【答案】-2a5.一个正数的平方根为2﹣m与3m﹣8,则m的值为_____.【答案】36.当|x-2|+|x-3|的值最小时,|x-2|+|x-3|-|x-1|的值最大是______,最小是______.【答案】0 17.已知x、y为正偶数,且,则__________.【答案】408.下列结论:①不论为何值时都有意义;②时,分式的值为0;③若的值为负,则的取值范围是;④若有意义,则x的取值范围是x≠﹣2且x≠0.其中正确的是________【答案】①③9.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=.给出下列关于F()的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若是一个完全平方数,则F()= 1.上述4个说法正确的有_______个.【答案】210.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一个奇数是347,则m的值是_____.【答案】19;二、选择题11.已知x m=3 ,x n=5,则x m+n的值为()A.8 B.15 C.53D.35【答案】B12.无论x取任何实数,代数式都有意义,则m的取值范围是()A.B.C.D.【答案】C13.中国倡导“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口约为44亿人,数据44亿用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.44×1010【答案】B14.计算()2+的结果是( )A.1B.-1C.2x-5D.5-2x【答案】D15.化简(-2)2018·(+2)2019的结果为( )A.-1 B.-2 C.+2 D.--2【答案】C16.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【答案】A17.某人将2008看成了一个填数游戏式:2□□8.于是,他在每个框中各填写了一个两位数与,结果发现,所得到的六位数恰是一个完全立方数.则+=()A.40 B.50 C.60 D.70【答案】D18.求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,则2S=2+22+23+24+…22019,因此2S﹣S=22019﹣1,即S=22019﹣1.依照以上的方法,计算出1+5+52+53+…52017的值为()A.52018﹣1 B.52019﹣1 C.D.【答案】C19.设S=,则不大于S的最大整数[S]等于()A.98 B.99 C.100 D.101【答案】B20.如图所示,每个小立方体的棱长为1,图1中共有1个立方体,其中1个看得见,0个看不见;图2中共有8个小立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;……;则第10个图形中,其中看得见的小立方体个数是()A.270 B.271 C.272 D.273【答案】B三、解答题21.利用因式分解计算或说理:(1)523-521能被120整除吗?(2)817-279-913能被45整除吗?【答案】(1)523-521能被120整除;(2)817-279-913能被45整除.22.某能源研究所做了一个统计:1km2的土地上,一年内从太阳得到的能量相当于燃烧1.2×108kg煤所产生的能量.那么5×105km2的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?【答案】6×1013kg.23.阅读材料,解答下列问题.例:当a>0时,如a=6,则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=-6,则|a|=|-6|=6=―(―6),故此时a的绝对值是它的相反数.因此综合起来一个数的绝对值要分三种情况,即这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照上面的分类讨论的方法,分析实数的各种展开的情况;(2)猜想与|a|的大小关系.【答案】(1)详见解析;(2)24.我国现行的二代身份证号码是18位数字,由前17位数字本体码...组成.校验码通过前17位数.....和最后1位校验码字根据一定规则计算得出,如果校验码不符合这个规则,那么该号码肯定是假号码.现将前17位数字本体码.....记为,其中表示第位置上的身份证号码数字值,按下表中的规定..分别给出每个位置上的一个对应的值.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 177 9 10 5 8 4 2 1 6 3 7 9 10 5 8 4 24 4 05 2 4 1 9 8 0 0 1 0 1 0 0 1现以号码为例,先将该号码的前17位数字本体码.....填入表中(现已填好),依照以下操作步骤计算相应的校验码...进行校验:(1)对前17位数字本体码.....,按下列方式求和,并将和记为:.现经计算,已得出,继续求得____;(2)计算,所得的余数记为,那么____;(3)查阅下表得到对应的校验码(其中为罗马数字,用来代替10):值0 1 2 3 4 5 6 7 8 9 10校验码 1 0 9 8 7 6 5 4 3 2所得到的校验码为____,与号码中的最后一位进行对比,由此判断号码是____(填“真”或“假”)身份证号.【答案】196;9;3,假.25.已知a=,求的值.【答案】1-.26.对于三位正整数:121、253、374、495、583、671、880、…,它们都能11整除.若设百位数字是十位数字是个位数字是(1)观察这些三位数,根据你的观察、总结,应满足的关系式是__________;(2)为了说明满足上述关系式的三位正整数都能被11整除,请利用代数式的运算证明你得出的结论的正确性;(3)除此之外,还有一类三位正整数,例:429、506、528、638、517、759、…,它们也能被11整除.请观察这组数字的特点,发现有什么规律?再自选一个异于上面3个数字且满足“规律”的三位数,来验证你所发现的“规律”的正确性.【答案】(1)a+c=b;(2)见解析;(3)a+c-11=b.27.一点从数轴上表示的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第次移动后这个点在数轴上表示的数;(3)如果第次移动后这个点在数轴上表示的数为56,求的值.【答案】(1)3;(2);(3)54.28.计算:.【答案】29.已知,.(1)化简:;(2)当与互为相反数时,求(1)中化简后的式子值.【答案】(1);(2).30.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:=|1+|=1+解决问题:①模仿上例的过程填空:=_________________=________________=_________________②根据上述思路,试将下列各式化简:(1); (2).【答案】①,,3+;②(1)5-;(2) .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学三轮专题复习数与式-讲评卷
一、选择题(本大题共6道小题)
1. 单项式-5ab的系数是()
A.5
B.-5
C.2
D.-2 【答案】B
易组卷:100022 难度:1 使用次数:0 入库日期:2020-05-27
考点:整式与因式分解
2. 下列实数中,有理数是()
A. 8
B. 3
4 C.
π
2 D. 0.1010010001
【答案】D【解析】A,B,C都是无理数,所以都是错误的.
易组卷:100806 难度:2 使用次数:0 入库日期:2020-06-04
考点:实数及其运算
3. 据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿人民币.“88.9万亿”用科学记数法表示为()
A.8.89×1013
B.8.89×1012
C.88.9×1012
D.8.89×1011
【答案】A
易组卷:100112 难度:3 使用次数:0 入库日期:2020-05-27
考点:实数及其运算
4. 如果m+n=1,那么代数式+·(m2-n2)的值为()
A.-3
B.-1
C.1
D.3
【答案】D[解析]·(m2-n2)=·(m+n)(m-n)=·(m+n)(m-n)=3(m+ n),
∵m+n=1,
∴原式=3,
故选D.
1/ 5
易组卷:100061 难度:3 使用次数:0 入库日期:2020-05-27
考点:分式及其运算
5. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a,b的值分别是()
A. a=2,b=3
B. a=-2,b=-3
C. a=-2,b=3
D. a=2,b=-3
【答案】B【解析】(x+1)(x-3)=x2+ax+b,即x2-2x-3=x2+ax+b,所以a=-2,b=-3,故选B.
易组卷:100866 难度:4 使用次数:0 入库日期:2020-06-04
考点:整式与因式分解
6. a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=-1,-1的差倒数为=.已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,a2019的值是()
A.5
B.-C .D .
【答案】D[解析]∵a1=5,∴a2===-,a3===,a4===5,…∴这些数以5,-三个数依次不断循环.
∵2019÷3=673,∴a2019=a3=,故选D.
易组卷:100019 难度:7 使用次数:1 入库日期:2020-05-27
考点:实数及其运算
二、填空题(本大题共6道小题)
7. 计算的结果是.
【答案】0
易组卷:100052 难度:1 使用次数:0 入库日期:2020-05-27
考点:数的开方与二次根式
8. 已知x2+x-5=0,则代数式(x-1)2-x(x-3)+(x+2)(x-2)的值为________.
【答案】2【解析】∵x2+x-5=0,∴x2+x=5,∴(x-1)2-x(x-3)+(x+2)(x-2)=x2-2x+1-x2+3x+x2-4=x2+x-3=5-3=2.
易组卷:100875 难度:3 使用次数:0 入库日期:2020-06-04
2/ 5
3 / 5 考点:整式与因式分解
9.
测试项目 创新能力 综合知识 语言表达 测试成绩(分)
70
80
92
,则该应聘者的总成绩是________分.
【答案】77.4 【解析】5+3+2=10,70×
510+80×310+92×2
10
=35+24+18.4=77.4.
易组卷:100821 难度:3 使用次数:0 入库日期:2020-06-04
考点:实数及其运算
10. 多项式x 2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是
________(任写一个符合条件的即可).
【答案】2x (或-2x 或14x 4) 【解析】x 2+2x +1=(x +1)2;x 2-2x +1=(x -1)2;14
x 4+x 2
+1=(1
2
x 2+1)2.
易组卷:100850 难度:4 使用次数:0 入库日期:2020-06-04 考点:14.2 乘法公式 整式与因式分解
11. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],
例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .
【答案】1.1
[解析]根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=1.1,故答案
为:1.1.
易组卷:100123 难度:6 使用次数:1 入库日期:2020-05-27 考点:实数及其运算
12. 观察下列运算过程:
===
=-1; ==
=
=
;
……
请运用上面的运算方法计算:
+++…++=. 【答案】(-1)
[解析]原式=+…++
=[(-1)+()+()+…+()+()]
=(-1).
易组卷:100057 难度:7 使用次数:1 入库日期:2020-05-27
考点:数的开方与二次根式
三、解答题(本大题共5道小题)
13. 计算:(1-π)0+||-+-1.
【答案】
解:原式=1+-2=1-.
易组卷:100638 难度:1 使用次数:0 入库日期:2020-06-02
考点:实数及其运算
14. 分解因式:22
49()16()
m n m n
+--
【答案】
(113)(311)
m n m n
++
【解析】原式[][]
7()4()7()4()
m n m n m n m n
=++-+--(113)(311)
m n m n
=++
易组卷:100752 难度:5 使用次数:0 入库日期:2020-06-04
考点:整式与因式分解
15. 分解因式:22
()()
a x y
b y x
-+-
【答案】
()()()
x y a b a b
--+
【解析】2222
()()()()()()()
a x y
b x y x y a b x y a b a b
---=--=--+
4/ 5
5 / 5 易组卷:100757 难度:5 使用次数:0 入库日期:2020-06-04 考点:整式与因式分解
16. 分解因式:()()4(1)x y x y y +-+-
【答案】
(2)(2)x y x y -++-
【解析】22222244(44)(2)(2)(2)x y y x y y x y x y x y =-+-=--+=--=-++-
易组卷:100755 难度:7 使用次数:0 入库日期:2020-06-04 考点:整式与因式分解
17. 分解因式: 2122()()()2()()n n n x y x z x y y x y z +----+--,n 为正整数.
【答案】
2()()n x y y z --
【解析】n 是正整数时,2n 是偶数,22()()n n x y y x -=-;21n +是奇数,2121()()n n x y y x ++-=--.
2122()()()2()()n n n x y x z x y y x y z +----+--
[]2()()()2()n x y x y x z y z =----+-2()()n x y y z =--.
易组卷:100744 难度:7 使用次数:0 入库日期:2020-06-04 考点:整式与因式分解。