高考数学一轮复习专题:分类加法计数原理与分步乘法计数原理(教案及同步练习)
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用计数原理解决实际问题的能力。
3. 引导学生通过合作交流,提高思维能力和创新能力。
二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。
(2)学会运用分类加法计数原理解决问题。
2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。
(2)学会运用分步乘法计数原理解决问题。
三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。
(2)分步乘法计数原理的应用。
2. 教学难点:(1)理解分类加法计数原理的含义。
(2)理解分步乘法计数原理的含义。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 运用实例分析,让学生直观理解计数原理。
3. 组织小组讨论,培养学生合作交流能力。
五、教学准备1. 课件、黑板、粉笔等教学工具。
2. 相关实例和练习题。
教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。
2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。
3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。
二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。
2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。
3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。
2. 讲解分类加法计数原理的概念和步骤。
3. 让学生举例说明并计算。
二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。
2. 讲解分步乘法计数原理的概念和步骤。
高三数学人教版A版数学(理)高考一轮复习教案:9.1 分类加法计数原理与分步乘法计数原理 Word版含答案
第一节分类加法计数原理与分步乘法计数原理两个原理分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.知识点两个原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.易误提醒(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步与步之间是相关联的.[自测练习]1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30 B.20 C.10 D.6解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.答案:D2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279解析:0,1,2…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).答案:B考点一分类加法计数原理|1.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A.20B.16C.10 D.6解析:当a当组长时,则共有1×4=4种选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.答案:B2.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:法一:设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A 监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).法二:班级按a,b,c,d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:∴共有9种不同的监考方法.答案:B3.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A.6种B.12种C.18种D.20种解析:分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C23=6(种)情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C24=12(种)情形.所有可能出现的情形共有2+6+12=20(种).答案:D利用加法原理解决问题时的注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复.考点二分步乘法原理|有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这项任务,不同的选法有()A.1 260种B.2 025种C.2 520种D.5 040种[解析]第一步,从10人中选派2人承担任务甲,有C2种选派方法;10第二步,从余下的8人中选派1人承担任务乙,有C18种选派方法;第三步,再从余下的7人中选派1人承担任务丙,有C17种选派方法.根据分步乘法计数原理,知选法为C210·C18·C17=2 520种.[答案] C利用分步乘法计数原理解决问题时应注意(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6个偶函数.答案:18 6考点三两个原理的应用|两个原理的应用类型主要有:1.涂色问题.2.几何问题.3.集合问题.探究一涂色问题1.(2015·湖南十二校联考)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:“1、5、9”的小正方形,涂法有3种;第二步,涂标号为“2、3、6”的小正方形,若“2、6”同色,涂法有2×2种,若“2、6”不同色,涂法有2×1种;第三步:涂标号为“4、7、8”的小正方形,涂法同涂标号为“2、3、6”的小正方形的方法一样.因此符合条件的所有涂法共有3×(2×2+2×1)×(2×2+2×1)=108(种).答案:108探究二几何问题2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36 D.24解析:长方体的6个表面构成的“平行线面组”有6×6=36个,6个对角面构成的“平行线面组”有6×2=12个,共有36+12=48个,故选B.答案:B探究三集合问题3.(2015·保定市高三调研考试)已知集合M={1,2,3,4},集合A,B为集合M的非空子集.若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M 的“子集对”共有______个.解析:当A={1}时,B有23-1种情况,当A={2}时,B有22-1种情况,当A={3}时,B有1种情况,当A={1,2}时,B有22-1种情况,当A={1,3},{2,3},{1,2,3}时,B均有1种情况,所以满足题意的“子集对”共有7+3+1+3+3=17个.答案:17用两个计数原理解决计数问题时,关键是明确需要分类还是分步(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成了任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析.21.分类不当致误【典例】(2016·沈阳模拟)一生产过程有四道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有________种.[解析]按甲先分类,再分步①若甲在第一道工序,则第四道工序只能是丙,其余两道工序的安排方法有4×3=12种,②若乙在第一道工序,则第四道工序从甲、丙两人中选一人.有2种方法,其余两道工序有4×3=12种方法,所以共有12×2=24种方法.综上可知,共有的安排方法有12+24=36种.[答案]36[易错点评]本题解题时分类不当易致误,分类时可按甲在第一道工序与乙在第一道工序分类.[防范措施]利用两个原理解题时,关键是根据要完成的事件恰当地选择唯一标准进行分类,切勿标准不统一,导致多解或少解,从而失误.[跟踪练习]如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析:分两类:①有一条公共边的三角形共有8×4=32(个);②有两条公共边的三角形共有8个.故共有32+8=40(个).答案:40A组考点能力演练1.如果把个位数是1,且恰好有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有()A.9个B.3个C.12个D.6个解析:当重复数字是1时,有C13·C13;当重复数字不是1时,有C13种.由分类加法计数原理,得满足条件的“好数”有C13·C13+C13=12个.答案:C2.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计:3+6+3+3=15个.答案:B3.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).答案:D4.(2015·辽宁五校联考)甲、乙、丙三位志愿者安排在周一至周五参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方案共有()A.20种B.30种C.40种D.60种解析:可将安排方案分为三类:①甲排在周一,共有A24种排法;②甲排在周二,共有A23种排法;③甲排在周三,共有A22种排法,故不同的安排方案共有A24+A23+A22=20种.故选A.答案:A5.从集合{1,2,3,4,…,10}中,选出5个数组成的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析:先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成2×2×2×2×2=32(个).答案:A6.从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是________.解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法,故所求奇数的个数为3×3×2=18.答案:187.如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有________种.(用数字作答)解析:从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D 有4种涂色方法.由分步乘法计数原理可知,共有6×5×4×4=480(种)涂色方法.答案:4808.形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.解析:由题意可得,十位和千位只能是4、5或者3、5.若十位和千位排4、5,则其他位置任意排1、2、3,则这样的数有A22A33=12(个);若十位和千位排5、3,这时4只能排在5的一边且不能和其他数字相邻,1、2在其余位置上任意排列,则这样的数有A22A22=4(个),综上,共有16个.答案:169.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解析:(1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个或B,C袋中各取一个.∴应有1×2+1×3+2×3=11(种).(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4(种).10.现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有多少种?解:先给最上面的一块着色,有4种方法,再给中间左边一块着色,有3种方法,再给中间右边一块着色,有2种方法,最后再给下面一块着色,有2种方法,根据分步乘法计数原理,共有4×3×2×2=48种方法.B组高考题型专练1.(2014·高考大纲全国卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种解析:从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种,故选C.答案:C2.(2014·高考广东卷)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为() A.60 B.90C.120 D.130解析:设t=|x1|+|x2|+|x3|+|x4|+|x5|,t=1说明x1,x2,x3,x4,x5中有一个为-1或1,其他为0,所以有2·C15=10个元素满足t=1;t=2说明x1,x2,x3,x4,x5中有两个为-1或1,其他为0,所以有C25×2×2=40个元素满足t=2;t=3说明x1,x2,x3,x4,x5中有三个为-1或1,其他为0,所以有C35×2×2×2=80个元素满足t=3,从而,共有10+40+80=130个元素满足1≤t≤3.故选D.答案:D3.(2013·高考重庆卷)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).解析:按每科选派人数分3、1、1和2、2、1两类.当选派人数为3、1、1时,有3类,共有C33C14C15+C13C34C15+C13C14C35=200(种).当选派人数为2、2、1时,有3类,共有C23C24C15+C23C14C25+C13C24C25=390(种).故共有590种.答案:590。
高考数学一轮复习(课件+课时作业) (52)
2.用0,1,…,9十个数字,可以组成有重复数字的三位数 的个数为( ) A.243 B.252 C.261 D.279
解析:由分步乘法计数原理知:用0,1,…,9十个数字组 成三位数(可有重复数字)的个数为9×10×10=900,组成没有 重复数字的三位数的个数为9×9×8=648,则组成有重复数字 的三位数的个数为900-648=252,故选B. 答案:B
悟· 技法 利用两个计数原理解决应用问题的一般思路 (1)弄清完成一件事是做什么. (2)确定是先分类后分步,还是先分步后分类. (3)弄清分步、分类的标准是什么. (4)利用两个计数原理求解.
[变式练]——(着眼于举一反三) 1.在三位正整数中,若十位数字小于个位和百位数字,则 称该数为“驼峰数”.比如“102”,“546”为“驼峰数”, 由数字1,2,3,4可构成无重复数字的“驼峰数”有________个.
解析:因为焦点在x轴上,m>n,以m的值为标准分类,分 为四类:第一类:m=5时,使m>n,n有4种选择;第二类:m =4时,使m>n,n有3种选择;第三类:m=3时,使m>n,n有2 种选择;第四类:m=2时,使m>n,n有1种选择.由分类加法 计数原理,符合条件的椭圆共有10个. 答案:10
悟· 技法 1.分类加法计数原理的实质 分类加法计数原理针对的是“分类”问题,完成一件事要分为 若干类,各类的方法相互独立,每类中的各种方法也相对独 立,用任何一类中的任何一种方法都可以单独完成这件事. 2.使用分类加法计数原理遵循的原则 有时分类的划分标准有多个,但不论是以哪一个为标准, 都应遵循“标准要明确,不重不漏”的原则.
3.在所有的两位数中,个位数字大于十位数字的两位数共 有( ) A.50个 B.45个 C.36个 D.35个
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。
公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。
公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。
分步乘法计数原理的概念和公式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。
2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。
五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。
2. 讲解分类加法计数原理的公式和应用示例。
3. 讲解分步乘法计数原理的公式和应用示例。
4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。
六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。
2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。
3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。
七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。
高考数学一轮复习学案:10.1 分类加法计数原理与分步乘法计数原理(含答案)
高考数学一轮复习学案:10.1 分类加法计数原理与分步乘法计数原理(含答案)10.1分类加法计数原理与分步乘法计数原理分类加法计数原理与分步乘法计数原理最新考纲考情考向分析1.理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”.2.能利用两个原理解决一些简单的实际问题.以理解和应用两个基本原理为主,常以实际问题为载体,突出分类讨论思想,注重分析问题.解决问题能力的考查,常与排列.组合知识交汇;两个计数原理在高考中单独命题较少,一般是与排列组合结合进行考查;两个计数原理的考查一般以选择.填空题的形式出现.1分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有Nmn种不同的方法2分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有Nmn种不同的方法3分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1在分类加法计数原理中,两类不同方案中的方法可以相同2在分类加法计数原理中,每类方案中的方法都能直接完成这件事3在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成4如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法mii1,2,3,,n,那么完成这件事共有m1m2m3mn 种方法5在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的题组二教材改编2P12A组T5已知集合M1,2,3,N4,5,6,7,从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一.第二象限内不同的点的个数是A12B8C6D4答案C解析分两步第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一.二象限内不同点的个数是326,故选C.3P10A组T4已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为A16B13C12D10答案C解析将4个门编号_________为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3412种题组三易错自纠4从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为A24B18C12D6答案B解析分两类情况讨论第1类,奇偶奇,个位有3种选择,位有2种选择,百位有2种选择,共有32212个奇数;第2类,偶奇奇,个位有3种选择,位有2种选择,百位有1种选择,共有3216个奇数根据分类加法计数原理知,共有12618个奇数5.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有A24种B30种C36种D48种答案D解析需要先给C块着色,有4种方法;再给A块着色,有3种方法;再给B块着色,有2种方法;最后给D块着色,有2种方法,由分步乘法计数原理知,共有432248种着色方法6如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个答案12解析由题意知本题是一个分类计数问题当组成的数字有三个1,三个2,三个3,三个4时共有4种情况当有三个1时2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时2221,3331,4441,有3种,根据分类加法计数原理可知,共有12种结果题型一题型一分类加法计数原理的应用分类加法计数原理的应用1xx郑州质检满足a,b1,0,1,2,且关于x 的方程ax22xb0有实数解的有序数对a,b的个数为A14B13C12D10答案B解析当a0时,关于x的方程为2xb0,此时有序数对0,1,0,0,0,1,0,2均满足要求;当a0时,44ab0,ab1,此时满足要求的有序数对为1,1,1,0,1,1,1,2,1,1,1,0,1,1,2,1,2,0综上,满足要求的有序数对共有13个,故选B.2xx济南模拟如果一个三位正整数如“a1a2a3”满足a1a3,则称这样的三位数为凸数如120,343,275等,那么所有凸数的个数为A240B204C729D920答案A解析若a22,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个若a23,则百位数字有两种选择,个位数字有三种选择,则“凸数”有236个若a24,满足条件的“凸数”有3412个,,若a29,满足条件的“凸数”有8972个所以所有凸数有26122030425672240个3xx全国定义“规范01数列”an如下an共有2m项,其中m项为0,m项为1,且对任意k2m,a1,a2,,ak中0的个数不少于1的个数若m4,则不同的“规范01数列”共有A18个B16个C14个D12个答案C解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A24个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C34个,共28414个思维升华分类标准是运用分类加法计数原理的难点所在,应抓住题目中的【关键词】,关键元素,关键位置1根据题目特点恰当选择一个分类标准2分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复3分类时除了不能交叉重复外,还不能有遗漏题型二题型二分步乘法计数原理的应用分步乘法计数原理的应用典例1xx 全国如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A24B18C12D9答案B解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E 点到G点的最短路径有6318条,故选B.2有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有654120种引申探究1本例2中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36729种2本例2中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63216种思维升华1利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事2分步必须满足两个条件一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成跟踪训练一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同除交汇点O外的游览线路有______种用数字作答答案48解析根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法由分步乘法计数原理知,共有64248种不同游览线路题型三题型三两个计数原理的综合应用两个计数原理的综合应用命题点1与数字有关的问题典例xx天津用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个用数字作答答案1080解析当组成四位数的数字中有一个偶数时,四位数的个数为C35C14A44960.当组成四位数的数字中不含偶数时,四位数的个数为A45120.故符合题意的四位数一共有9601201080个命题点2涂色.种植问题典例xx济南质检如图,用4种不同的颜色对图中5个区域涂色4种颜色全部使用,要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________答案96解析按区域1与3是否同色分类1区域1与3同色先涂区域1与3有4种方法,再涂区域2,4,5还有3种颜色有A33种方法区域1与3同色时,共有4A3324种方法2区域1与3不同色第一步涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有1种方法,第四步涂区域5有3种方法共有A2421372种方法故由分类加法计数原理可知,不同的涂色种数为247296.命题点3与几何有关的问题典例1如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是A48B18C24D36答案D解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有21224个;第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个所以正方体中“正交线面对”共有241236个2如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是A60B48C36D24答案B解析长方体的6个表面构成的“平行线面组”的个数为6636,另含4个顶点的6个面非表面构成的“平行线面组”的个数为6212,故符合条件的“平行线面组”的个数是361248.思维升华利用两个计数原理解决应用问题的一般思路1弄清完成一件事是做什么2确定是先分类后分步,还是先分步后分类3弄清分步.分类的标准是什么4利用两个计数原理求解跟踪训练1xx黄山模拟建造一个花坛,花坛分为4个部分如图现要栽种4种不同颜色的花不一定4种颜色都栽种,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有________种用数字作答1234答案108解析先栽第一块地,有4种情况,然后栽第二块地,有3种情况,第三块地有3种情况,第四块地有3种情况,则共有4333108种不同的栽种方法2用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有A144个B120个C96个D72个答案B解析由题意,首位数字只能是4,5,若万位是5,则有3A3472个;若万位是4,则有2A3448个,故比40000大的偶数共有7248120个故选B.利用两个基本原理解决计数问题典例1把3封信投到4个信箱,所有可能的投法共有A24种B4种C43种D34种2某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4次,轮船有3次,问此人的走法可有________种错解展示解析1因为每个信箱有三种投信方法,共4个信箱,所以共有333334种投法2乘火车有4种方法,坐轮船有3种方法,共有3412种方法错误答案1D212现场纠错解析1第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法2因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法共有437种答案1C27纠错心得1应用计数原理解题首先要搞清是分类还是分步2把握完成一件事情的标准,如典例1没有考虑每封信只能投在一个信箱中,导致错误。
高考数学一轮复习 9.1分类加法计算原理和分步乘法计数原理讲解与练习 理 新人教A版
第一节分类加法计数原理和分步乘法计数原理[备考方向要明了]考什么怎么考1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题. 高考中,对于两个计数原理一般不单独考查,多与排列、组合相结合考查,且多为选择、填空题,如2012年北京T6,浙江T6等.[归纳·知识整合]1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,则完成这件事,共有N=m1+m2+…+m n种不同的方法.[探究] 1.选用分类加法计数原理的条件是什么?提示:当完成一件事情有几类办法,且每一类办法中的每一种办法都能独立完成这件事情,这时就用分类加法计数原理.2.分步乘法计数原理完成一件事需要n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,…,完成第n步有m n种不同的方法,那么完成这件事共有N=m1m2…m n种不同的方法.[探究] 2.选用分类乘法计数原理的条件是什么?提示:当解决一个问题要分成若干步,每一步只能完成这件事的一部分,且只有当所有步都完成后,这件事才完成,这时就采用分步乘法计数原理.[自测·牛刀小试]1.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为( )A.182 B.14C.48 D.91解析:选C 由分步乘法计数原理得不同取法的种数为6×8=48.2.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有( ) A.3种B.6种C.7种D.9种解析:选C 分3类:买1本书,买2本书和买3本书.各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7种.3.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有( )A.30 B.20C.10 D.6解析:选D 从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由加法原理得共有N=3+3=6种.4.如图,从A→C有________种不同的走法.解析:分为两类:不过B点有2种方法,过B点有2×2=4种方法,共有4+2=6种方法.答案:65.设集合A中有3个元素,集合B中有2个元素,可建立A→B的映射的个数为________.解析:建立映射,即对于A中的每一个元素,在B中都有一个元素与之对应,有2种方法,故由分步乘法计数原理得映射有23=8个.答案:8分类加法计数原理[例1] (1)(2012·北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24 B.18C.12 D.6(2)将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为( )A.80 B.120C.140 D.50[自主解答] (1)法一:(直接法)本题可以理解为选出三个数,放在三个位置,要求末尾必须放奇数,如果选到了0这个数,这个数不能放在首位,所以n=C23C12A22+C23C12=12+6=18;法二:(间接法)奇数的个数为n=C13C12C12A22-C13C12=18.(2)分两类:若甲组2人,则乙、丙两组的方法数是C13A22,此时的方法数是C25C13A22=60;若甲组3人,则方法数是C35A22=20.根据分类加法计数原理得总的方法数是60+20=80.[答案] (1)B (2)A本例(1)条件不变,求有多少个能被5整除的数?解:能被5整除的数分两类:当个位数是0时,有A23=6个;当个位数是5时,若含有数字0时,则有2个,若不含有0时,则有C12·A22=4个.故共有12个能被5整除的数.———————————————————使用分类加法计数原理计数的两个条件一是根据问题的特点能确定一个适合于它的分类标准,然后在这个标准下进行分类;二是完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.1.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“良数”.例如:32是“良数”,因为32+33+34不产生进位现象;23不是“良数”,因为23+24+25产生进位现象.那么小于1 000的“良数”的个数为( ) A.27 B.36C.39 D.48解析:选D 一位“良数”有0,1,2,共3个;两位数的“良数”十位数可以是1,2,3,两位数的“良数”有10,11,12,20,21,22,30,31,32,共9个;三位数的“良数”有百位为1,2,3,十位数为0的,个位可以是0,1,2,共3×3=9个,百位为1,2,3,十位不是零时,十位个位可以是两位“良数”,共有3×9=27个.根据分类加法计数原理,共有48个小于1 000的“良数”.分步乘法计数原理[例2] 学校安排4名教师在六天里值班,每天只安排一名教师,每人至少安排一天,至多安排两天,且这两天要相连,那么不同的安排方法有________种(用数字作答).[自主解答] 有两名教师要值班两天,把六天分为四份,两个两天连排的是(1,2),(3,4);(1,2),(4,5);(1,2),(5,6);(2,3),(4,5);(2,3),(5,6);(3,4),(5,6),共六种情况,把四名教师进行全排列,有A44=24种情况,根据分步乘法计数原理,共有不同的排法6×24=144种.[答案] 144———————————————————使用分步乘法计数原理计数的两个注意点(1)要按照事件发生的过程合理分步,即分步是有先后顺序的;2各步中的方法互相依存,缺一不可,只有各个步骤都完成才算完成这件事.2.将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i (i =1,2,3)表示第i 行中最大的数,则满足N 1<N 2<N 3的所有排列的个数是________(用数字作答).解析:由已知数字6一定在第三行,第三行的排法种数为A 13A 25=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为A 12A 12=4,由分类乘法计数原理知满足条件的排列个数是240.答案:240两个计数原理的综合应用[例3] 用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.[自主解答] 分步求解.只要在涂好1,5,9后,涂2,3,6即可,若3与1,5,9同色,则2,6的涂法为2×2,若3与1,5,9不同色,则3有两种涂法,2,6只有一种涂法,同理涂4,7,8,1 2 3 4 5 6 789即涂法总数是C13(2×2+C12×1)×(2×2+C12×1)=3×6×6=108.[答案] 108———————————————————应用两个原理解决实际问题的注意点在解决实际问题中,并不一定是单一的分类或分步,而是可能同时应用两个计数原理,即分类的方法可能要运用分步完成,分步的方法可能会采取分类的思想求.分清完成该事情是分类还是分步,“类”间互相独立,“步”间互相联系.3.如图所示,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有( )A.288种B.264种C.240种D.168种解析:选B 分三类:①B,D,E,F用四种颜色,则有A44×1×1=24种方法;②B,D,E,F用三种颜色,则有A34×2×2+2A34×2×1=192种方法;③B,D,E,F用两种颜色,则有A24×2×2=48,所以共有不同的涂色方法24+192+48=264种.2个区别——两个计数原理的区别分类加法计数原理分步乘法计数原理区别一每类办法都能独立完成这件事.它是独立的、一次的且每次得到的是最后结果,只需一种方法就完成每一步得到的只是其中间结果,任何一步都不能独立完成这件事,缺少任何一步都不可,只有各步骤都完成了才能完成这件事区别二各类办法之间是互斥的,并列的,独立的各步之间是相互依存的,并且既不能重复,也不能遗漏3个注意点——利用两个计数原理解题时的三个注意点(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法;(2)分类时标准要明确,做到不重不漏,有时要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律;(3)混合问题一般是先分类再分步..数学思想——计数原理中的分类讨论从近几年的高考试题来看,两个计数原理的问题重点考查学生分析问题解决问题的能力及分类讨论思想的应用.解决此类问题时,需要分清两个原理的区别,一般情形是考虑问题有几种情况,即分类;考虑每种情况有几个步骤,即分步.要求既要会合理分类,又要能合理分步.[典例] (2012·浙江高考)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种B.63种C.65种D.66种[解析] 对于4个数之和为偶数,可分三类,即4个数均为偶数,2个数为偶数2个数为奇数,4个数均为奇数,因此共有C44+C24C25+C45=66种.[答案] D[题后悟道](1)本题主要考查排列组合计数问题,可通过分类讨论思想进行求解,即把所取的4个数分为三类求解.(2)对于计数问题,有时正确的分类是解决问题的切入点.同时注意分类的全面与到位,不要出现重复或遗漏的现象.[变式训练]1.已知a,b∈{0,1,2,…,9},若满足|a-b|≤1,则称a,b“心有灵犀”.则a,b“心有灵犀”的情形共有( )A.9种B.16种C.20种D.28种解析:选D 当a为0时,b只能取0,1两个数;当a为9时,b只能取8,9两个数,当a为其他数时,b都可以取3个数.故共有28种情形.一、选择题(本大题共6小题,每小题5分,共30分)1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( )A.30个B.42个C.36个D.35个解析:选C ∵a+bi为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.2.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有( )A.16种B.18种C.37种D.48种解析:选C 三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37种.3.(2013·哈尔滨模拟)如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有( )A.9种B.11种C.13种D.15种解析:选C 每个焊接点都有脱落与不脱落两种状态,电路不通可能是1个或多个焊接点脱落,问题比较复杂,但电路通的情况却只有3种,即焊接点2脱落或焊接点3脱落或全不脱落,故满足题意的焊接点脱落的不同情况共有24-3=13种.4.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A.12种B.24种C.30种D.36种解析:选B 从4位同学中选出2人有C24种方法,另外2位同学每人有2种选法,故不同的选法共有C24×2×2=24种.5.(2013·汕头模拟)如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( )A.400种B.460种C.480种D.496种解析:选C 从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,∴不同涂法有6×5×4×(1+3)=480种.6.(2013·杭州模拟)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )A .60B .48C .36D .24解析:选B 长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个.二、填空题(本大题共3小题,每小题5分,共15分)7.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为________.解析:当公比为2时,等比数列可为1、2、4,2、4、8;当公比为3时,等比数列可为1、3、9;当公比为32时,等比数列可为4、6、9.同时,4、2、1和8、4、2,9、3、1,9、6、4也是等比数列,共8个.答案:88.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种(用数字作答).解析:若取出1本画册,3本集邮册,有C 14种赠送方法;若取出2本画册,2本集邮册,有C 24种赠送方法,则不同的赠送方法有C 14+C 24=10种.答案:109.将数字1,2,3,4,5,6排成一列,记第i 个数为a i (i =1,2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法有________种(用数字作答).解析:分两步:第一步,先排a 1,a 3,a 5,若a 1=2,有2种排法;若a 1=3,有2种排法;若a 1=4,有1种排法,所以共有5种排法;第二步再排a 2,a 4,a 6,共有A 33=6种排法,故不同的排列方法有5×6=30种.答案:30三、解答题(本大题共3小题,每小题12分,共36分)10.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法? (2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解:(1)该问题中要完成的事情是4名同学报名,因而可按学生分步完成,每一名同学有3种选择方法,故共有34=81种报名方法.(2)该问题中,要完成的事是三项冠军花落谁家,故可按冠军分步完成,每一项冠军都有4种可能,故可能的结果有43=64种.11.如右图所示三组平行线分别有m,n,k条,在此图形中(1)共有多少个三角形?(2)共有多少个平行四边形?解:(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.12.把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问(1)有多少种不同的涂法?(2)若分割成4块扇形呢?解:(1)不同涂色方法数是:5×4×3=60种;(2)如右图所示,分别用a,b,c,d记这四块,a与c可同色,也可不同色,先考虑给a,c两块涂色,分两类:①给a,c涂同种颜色共5种涂法,再给b涂色有4种涂法,最后给d涂色也有4种涂法,由乘法原理知,此时共有5×4×4种涂法;②给a,c涂不同颜色共有5×4种涂法,再给b涂色有3种方法,最后给d涂色也有3种方法,此时共有5×4×3×3种涂法.故由分类加法计数原理知,共有5×4×4+5×4×3×3=260种涂法.1.三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )A.4种B.5种C.6种D.12种解析:选C 若甲先传给乙,则有:甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲,3种不同的传法;同理甲先传给丙,也有3种不同的传法,共有6种不同的传法.2.在一块并排10垄的田地中,选择2垄分别种值A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法有________种(用数字作答).解析:××××××××××××分两步:第一步,先选垄,如图.共有6种选法;第二步:种植A、B两种作物,有2种选法.因此,由分步乘法计数原理,不同的选垄种植方法有6×2=12种.答案:123.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有________场比赛.解析:小组赛共有2C24场比赛;半决赛和决赛共有2+2=4场比赛;根据分类计数原理共有2C24+4=16场比赛.答案:164.某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法?解:首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:既会排版又会印刷的2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:既会排版又会印刷的2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法.再由分类计数原理知共有6+12=18种选法.第三类:既会排版又会印刷的2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.。
高考数学第一轮复习_分类分步计数原理(例题解析含答案)
分类加法计数原理与分步乘法计数原理基础梳理1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1×m2×…×m n种不同的方法.两个原理分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”.而分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.双基自测1.(人教A版教材习题改编)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有().A.238个B.232个C.174个D.168个解析可用排除法由0,1,2,3可组成的四位数共有3×43=192(个),其中无重复的数字的四位数共有3A33=18(个),故共有192-18=174(个).答案 C2.(2010·广州模拟)已知集合A={1,2,3,4},B={5,6,7},C={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合,则一共可以组成多少个集合().A.24个B.36个C.26个D.27个解析C14C13+C14C12+C13C12=26,故选C.答案 C3.(2012·滨州调研)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有().A.6种B.12种C.24种D.30种解析分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种),故选C.4.(2010·湖南)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为().A.10 B.11 C.12 D.15解析若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24,由分类计数原理知满足条件的信息个数为1+C34+C24=11.5.某电子元件是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有________种.解析法一当线路不通时焊点脱落的可能情况共有2×2×2×2-1=15(种).法二恰有i个焊点脱落的可能情况为C i4(i=1,2,3,4)种,由分类计数原理,当电路不通时焊点脱落的可能情况共C14+C24+C34+C44=15(种).考向一分类加法计数原理【例1】►(2011·全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有().A.4种B.10种C.18种D.20种[审题视点] 由于是两类不同的书本,故用分类加法计数原理.解析赠送一本画册,3本集邮册,共4种方法;赠送2本画册,2本集邮册共C24种方法,由分类计数原理知不同的赠送方法共4+C24=10(种).【训练1】如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个);第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).考向二分步乘法计数原理【例2】►(2011·北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).[审题视点] 组成这个四位数须分4步完成,故用分步乘法计数原理.解析法一用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).法二满足条件的四位数可分为三类:第一类含有一个2,三个3,共有4个;第二类含有三个2,一个3共有4个;第三类含有二个2,二个3共有C24=6(个),因此满足条件的四位数共有2×4+C24=14(个).考向三涂色问题【例3】►如图,用5种不同的颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,求有多少种不同的涂色方法?[审题视点] 根据乘法原理逐块涂色,要注意在不相邻的区域内可使用同一种颜色.解法一如题图分四个步骤来完成涂色这件事:涂A有5种涂法;涂B有4种方法;涂C有3种方法;涂D有3种方法(还可以使用涂A的颜色).根据分步计数原理共有5×4×3×3=180种涂色方法.法二由于A、B、C两两相邻,因此三个区域的颜色互不相同,共有A35=60种涂法;又D 与B、C相邻、因此D有3种涂法;由分步计数原理知共有60×3=180种涂法.【训练3】如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.由题设,四棱锥S-ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).法二以S、A、B、C、D顺序分步染色第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).规范解答20——如何解决涂色问题【问题研究】涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点. 【解决方案】涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.【示例】►(本小题满分12分)用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?[解答示范] 如图所示,将4,第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.(2分)①当第2个、第3个小方格涂不同颜色时,有A24=12种不同的涂法,第4个小方格有3种不同的涂法.由分步计数原理可知,有5×12×3=180种不同的涂法;(6分)②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻西格不同色,因此,第4个小方格也有4种不同的涂法,由分步计数原理可知.有5×4×4=80种不同的涂法.由分类加法计数原理可得,共有180+80=260种不同的涂法.(12分)。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标:1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学重点与难点:1. 教学重点:分类加法计数原理和分步乘法计数原理的理解和应用。
2. 教学难点:如何引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
三、教学方法:1. 采用问题驱动的教学方法,让学生在解决问题的过程中理解分类加法计数原理和分步乘法计数原理。
2. 使用案例分析和小组讨论的方式,培养学生的合作能力和沟通能力。
3. 运用数形结合的方法,帮助学生直观地理解分类加法计数原理和分步乘法计数原理。
四、教学准备:1. 教具准备:黑板、粉笔、多媒体教学设备。
2. 学具准备:学生用书、练习本、文具。
3. 教学素材:相关案例分析题、小组讨论题。
五、教学过程:1. 导入新课:通过一个实际问题,引入分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:解释分类加法计数原理的概念,并通过实例讲解如何运用。
3. 讲解分步乘法计数原理:解释分步乘法计数原理的概念,并通过实例讲解如何运用。
4. 案例分析:给出一个案例,让学生运用分类加法计数原理和分步乘法计数原理解决问题。
5. 小组讨论:学生分组讨论,分享各自解决问题的方法和答案。
7. 课堂练习:给出一些练习题,让学生巩固所学内容。
8. 课后作业:布置一些相关的作业题,让学生进一步巩固所学知识。
9. 课堂小结:对本节课的内容进行小结,强调重点和难点。
六、教学评价:1. 评价目标:通过课堂表现、练习完成情况和课后作业来评价学生对分类加法计数原理和分步乘法计数原理的理解和应用能力。
2. 评价方法:a) 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现。
b) 练习完成情况:检查学生练习题的完成质量,包括解题思路、步骤和答案的正确性。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、分类加法计数原理教案主旨: 学习分类加法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明有3个红色球和4个蓝色球,他想穿一双颜色相同的球,有多少种可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分类加法计数原理的概念: 分类加法计数原理是指在一个问题中,通过将问题进行分类,然后对每个分类进行计数,最后将各个分类的计数结果相加,得到最终的解决方案。
2. 给出示例问题: 一个篮球队有5个队员,一个足球队有6个队员,现在要选出两个队员进行混合比赛,有多少种可能性?三、讲解 (15分钟)1. 分类: 将问题分为篮球队员和足球队员两类。
2. 计数: 分别计算篮球队员和足球队员的可能性,篮球队员有C(5,2)种组合方式,足球队员有C(6,2)种组合方式。
3. 合并: 将篮球队员和足球队员的组合数相加得到最终的解。
四、练习 (15分钟)1. 分发练习册,让学生完成相关练习。
2. 教师巡视督促学生的练习过程,提供必要的帮助和指导。
五、总结 (5分钟)1. 总结分类加法计数原理的步骤:分类、计数、合并。
2. 强调分类加法计数原理在解决实际问题中的应用。
3. 回顾学生在课堂练习中的解题思路和结果。
二、分步乘法计数原理教案主旨: 学习分步乘法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明喜欢穿不同颜色的T恤和裤子,他有3种不同颜色的T恤和4种不同颜色的裤子,他有多少种穿搭可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分步乘法计数原理的概念: 分步乘法计数原理是指在一个问题中,将问题分为多个独立的步骤,然后计算每个步骤的可能性,并将各个步骤的可能性相乘,得到最终的解决方案。
2. 给出示例问题: 一个密码锁有3个拨轮,每个拨轮上分别有0-9的数字,求密码锁的可能组合数。
高三数学一轮复习精品教案3:分类加法计数原理与分步乘法计数原理教学设计
10.6.1 分类加法计数原理与分步乘法计数原理1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题.『梳理自测』一、分类加法计数原理1.(教材改编)从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为()A.6B.5C.3 D.22.设x,y∈N且x+y≤3,则直角坐标系中满足条件的点M(x,y)共有()A.3个B.4个C.5个D.10个『答案』1.B 2.D◆以上题目主要考查了以下内容:完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情共有N=m1+m2+…+m n种不同的方法.二、分步乘法计数原理1.(教材改编)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有() A.238个B.232个C.174个D.168个2.(教材改编)有不同颜色的四件衬衣与不同颜色的三条领带,如果一条领带与一件衬衣配成一套.则不同的配法种数是________.3.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有________种.『答案』1.C 2.12 3.32◆以上题目主要考查了以下内容:完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1·m2·…·m n种不同的方法.『指点迷津』1.两个特点分类加法计数原理的特点是独立、互斥;分步乘法计数原理的特点是关联、连续.解题时经常是两个原理交叉在一起使用,两个原理综合使用时,一般先分类,再分步,分类要标准明确,分步要步骤连续,有的题目也可能出现先分步,在“步”里面再分类.2.两个关键分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的步骤,既要合理分类,又要准确分步.考向一分类加法计数原理(2014·浙江省名校联考)如果正整数a的各位数字之和等于6,那么称a为“好数”(如:6,24,2 013等均为“好数”),将所有“好数”从小到大排成一列a1,a2,a3,…,若a n =2 013,则n=()A.50B.51C.52 D.53『审题视点』 2 013是四位数,故“好数”按四位数,按三大类分首位为0、1、2每一类再分,采用加法原理.『典例精讲』本题可以把数归为“四位数”(含0 006等),因此比2 013小的“好数”为0×××,1×××,2 004,共三类数,其中第一类可分为:00××,01××,…,0 600,共7类,共有7+6+…+2+1=28个数;第二类可分为:10××,11××,…,1 500,共6类,共有6+5+4+3+2+1=21个数,故2 013为第51个数,故n=51,选B.『答案』B『类题通法』(1)分类加法计数原理的特点①根据问题的特点能确定一个适合于它的分类标准;②完成这件事情的任何一种方法必须属于某一类.(2)使用分类加法计数原理应注意的问题分类时标准要明确,分类应做到不重不漏.1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8『解析』选D.当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12,13,23时,也有4个. 考向二 分步乘法原理(2012·高考辽宁卷)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .3×3B .3×(3!)3C .(3!)4D .9!『审题视点』 一家人视为一个整体,采用捆绑法,先排三个家庭,再排每个家庭的三口人.『典例精讲』 第1步:3个家庭的全排列,方法数为3!,第2步:家庭内部3个人全排列,方法数为3!,共3个家庭,方法数为(3!)3; ∴总数为(3!)×(3!)3=(3!)4,故选C.『答案』 C『类题通法』 (1)明确题目中所指的“完成一件事”是什么事,必须要经过几步才能完成这件事;(2)完成这件事需要分成若干个步骤,只有每个步骤都完成了才算完成这件事,缺少任何一步,这件事都不可能完成;(3)解决分步问题时要合理设计步骤、顺序,使各步互不干扰,还要注意元素是否可以重复选取.2.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).『解析』法一:用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).法二:满足条件的四位数可分为三类:第一类含有一个2,三个3,共有4个;第二类含有三个2,一个3共有4个;第三类含有二个2,二个3共有C 24=6(个),因此满足条件的四位数共有2×4+C 24=14(个).『答案』14考向三 两个原理的综合应用(2014·石家庄市模拟)为举办校园文化节,某班推荐2名男生、3名女生参加文艺技能培训,培训项目及人数分别为:乐器1人,舞蹈2人,演唱2人,每人只参加一个项目,并且舞蹈和演唱项目必须有女生参加,则不同的推荐方案的种数为________.(用数字作答)『审题视点』先分两类:参加乐器培训的是女生或男生,每一类中分步选舞蹈或演唱.『典例精讲』若参加乐器培训的是女生,则各有1名男生及1名女生分别参加舞蹈和演唱培训,共有3×2×2=12种方案;若参加乐器培训的是男生,则各有1名男生、1名女生及2名女生分别参加舞蹈和演唱培训,共有2×3×2=12种方案,所以共有24中推荐方案.『答案』24『类题通法』(1)解决此类综合题的关键在于区分该问题是“分类”还是“分步”.(2)解决既有“分类”又有“分步”的综合问题时,应“先分类,后分步”.3.已知集合M∈{1,-2,3),N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是() A.18B.10C.16D.14『解析』选D.M中的元素作点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有2×2个,在第二象限的点共有1×2个.N中的元素作点的横坐标,M中的元素作点的纵坐标,在第一象限的点共有2×2个,在第二象限的点共有2×2个.所求不同的点的个数是2×2+1×2+2×2+2×2=14(个).两个原理不清,分步与排列混淆致误把3封信投到4个信箱,所有可能的投法共有()A.A34种B.C34种C.43种D.34种『正解』第1封信投到信箱中有4种投法;第2封信投到信箱也有4种投法;第3封信投到信箱也有4种投法.只要把这3封信投完,就做完了这件事情,由分步计数原理可得共有43种方法,故选C.『答案』C『易错点』(1)选择的标准出现错误,误认为每个信箱有三种选择,所以可能的投法有34种,没有注意到一封信只能投在一个信箱中.(2)与排列混淆,误认为3封信只能用三个信箱错选为A.(3)与组合混淆,错选为B,C34只表示适用了三个信箱,并没把信放入信箱,事情并没“完成”.『警示』(1)理清题目的条件、结论及完成的“事件”,合理选择分类原理和分步原理.(2)能否独立完成事情是区分分类还是分步的依据,如(1)中,把其中的一封信投到信箱里,并没有完成任务,所以只能看做其中的一步,而不是一类.(3)本题所完成的事是指:把3封信全部投到信箱,可以用一个信箱,也可用2、3个信箱,故采用分步完成.1.(2013·高考山东卷)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.279『解析』选B.0,1,2…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).2.(2012·高考浙江卷)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种『解析』选D.共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).3.(2013·高考福建卷)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10『解析』选B.当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,选B.4.(2012·高考北京卷)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18C.12 D.6『解析』选B.从0,2中选一个数字,分两类:1)取0:此时0只能放在十位,再从1,3,5中任取两个数,在个位与百位进行全排列即可,列式为A23;2)取2:此时2可以放在十位或百位,再从1,3,5中任取两个放在剩余两位进行全排列,列式为2A23,∴满足条件的三位数的个数为A23+2A23=3A23=3×3×2=18.故选B.。
第56讲 分类加法计数原理与分步乘法计数原理(教案)【高考数学-核心考点复习】
第56讲分类加法计数原理与分步乘法计数原理两个计数原理(1)分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.(2)分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.常用结论两个计数原理的区别与联系➢考点1 分类加法计数原理1.从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.一天一人从甲地去乙地,共有________种不同的方法.答案12解析分三类:一类是乘汽车,有8种方法;一类是乘火车,有2种方法;一类是乘飞机,有2种方法,由分类加法计数原理知,共有8+2+2=12种方法.2.如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个(用数字作答).答案12解析组成的数字有三个1,三个2,三个3,三个4,4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9个;当有三个2,三个3或三个4时:2221,3331,4441,有3个,根据分类加法计数原理可知,共有12个结果.3.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为________.答案13解析当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.[举一反三]1.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种答案B解析依题意得,可能剩余一本画册或一本集邮册两种情况.第一类,剩余的是一本画册,此时满足题意的赠送方法共有4种;第二类,剩余的是一本集邮册,此时满足题意的赠送方法共有C24=6(种).因此,满足题意的赠送方法共有4+6=10(种).2.如图所示,某景观湖内有四个人工小岛,为方便游客登岛观赏美景,现计划设计三座景观桥连通四个小岛,每座桥只能连通两个小岛,且每个小岛最多有两座桥连接,则设计方案的种数最多是()A.8 B.12 C.16 D.24解析四个人工小岛分别记为A,B,C,D,对A分有一座桥相连和两座桥相连两种情况,用“-”表示桥.①当A只有一座桥相连时,有A-B-C-D,A-B-D-C,A-C-B-D,A-C-D-B,A-D-B-C,A-D-C-B,共6种方法;②当A有两座桥相连时,有C-A-B-D,D-A-B-C,D-A-C-B,B-A-C-D,B -A-D-C,C-A-D-B,共6种方法.故设计方案最多有6+6=12(种).➢考点2 分步乘法计数原理有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法(六名同学不一定都能参加)?(1)每人只参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.解(1)每人都可以从三个竞赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).(3)每人参加的项目不限,因此每一个项目都可以从这六名同学中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).[举一反三]1.某学校的3个班级将要去甲、乙、丙、丁4个工厂参观学习,要求每个班只能去1个工厂参观学习,且甲工厂必须有班级参观学习,则不同的参观方案有()A.16种B.25种C.37种D.48种解析每个班级都可以从这4个工厂中选1个参观学习,各有4种选择,根据分步乘法计数原理,共有43=64(种)参观方案,若甲工厂没有班级参观学习,此时每个班级都可以从其余3个工厂中选1个参观学习,各有3种选择,共有33=27(种)参观方案,所以甲工厂必须有班级参观学习,不同的参观方案有64-27=37(种).2.(多选)有4位同学报名参加三个不同的社团,则下列说法正确的是()A.每位同学限报其中一个社团,则不同的报名方法共有34种B.每位同学限报其中一个社团,则不同的报名方法共有43种C.每个社团限报一个人,则不同的报名方法共有24种D.每个社团限报一个人,则不同的报名方法共有33种答案AC解析对于A,第1个同学有3种报法,第2个同学有3种报法,后面的2个同学也有3种报法,根据分步乘法计数原理知共有34种结果,A正确,B错误;对于C,每个社团限报一个人,则第1个社团有4种选择,第2个社团有3种选择,第3个社团有2种选择,根据分步乘法计数原理知共有4×3×2=24(种)结果,C正确,D错误.3.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).答案336解析甲有7种站法,乙有7种站法,丙有7种站法,故不考虑限制共有7×7×7=343(种)站法,其中三个人站在同一级台阶上有7种站法,故符合本题要求的不同站法有343-7=336(种).4.某次活动中,有30个人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为.(用数字作答)答案7 200解析最先选出的1个人有30种方法,则这个人所在的行和列不能再选人,还剩一个5行4列的队形,可知选第2个人有20种方法,则该人所在的行和列也不能再选人,还剩一个4行3列的队形,可知选第3个人有12种方法,根据分步乘法计数原理,总的选法种数是30×20×12=7 200.➢考点3 两个计数原理的综合应用2.解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.[典例]角度1与数字有关的问题例用0,1,2,3,4,5,6这7个数字可以组成________个无重复数字的四位偶数(用数字作答).答案420解析要完成的“一件事”为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分类,再分步.第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.根据分步乘法计数原理,有3×4×5×4=240(种)取法.第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除首位数字的任意一个偶数数字,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.根据分步乘法计数原理,有3×3×5×4=180(种)取法.根据分类加法计数原理,共可以组成240+180=420(个)无重复数字的四位偶数.角度2与几何有关的问题例如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36答案D解析在正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.角度3涂色问题例如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解法一按所用颜色种数分类.第一类:5种颜色全用,共有A55种不同的方法;第二类:只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类:只用3种颜色,则A与C,B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法种数为A55+2×A45+A35=420(种).法二以S,A,B,C,D顺序分步染色.第一步:S点染色,有5种方法;第二步:A点染色,与S在同一条棱上,有4种方法;第三步:B点染色,与S,A分别在同一条棱上,有3种方法;第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类:当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).[举一反三]1.(2022·杭州调研)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279答案B解析0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),故有重复数字的三位数有900-648=252(个).2.如图所示,积木拼盘由A,B,C,D,E五块积木组成,若每块积木都要涂一种颜色,且为了体现拼盘的特色,相邻的区域需涂不同的颜色(如:A与B为相邻区域,A与D为不相邻区域),现有五种不同的颜色可供挑选,则不同的涂色方法的种数是()A.780 B.840 C.900 D.960答案D解析先涂A,则A有C15=5(种)涂法,再涂B,因为B与A相邻,所以B的颜色只要与A 不同即可,有C14=4(种)涂法,同理C有C13=3(种)涂法,D有C14=4(种)涂法,E有C14=4(种)涂法,由分步乘法计数原理,可知不同的涂色方法种数为5×4×3×4×4=960.。
6.1 分类加法计数原理与分步乘法计数原理(第一课时)(同步训练)(附答案)
6.1 分类加法计数原理与分步乘法计数原理(第一课时)(同步训练)一、选择题1.某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有()A.24种B.9种C.3种D.26种2.已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是()A.1B.3C.6D.93.(2022年葫芦岛期末)算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的两枚算珠,可以表示不同整数的个数为()A.8B.10C.15D.164.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.105.某体育场南侧有4个大门,北侧有3个大门,小李到体育场看比赛,则他进、出门的方案有()A.12种B.7种C.14种D.49种6.从3名女同学和2名男同学中选出一人主持本班一次班会,则不同的选法种数为()A.6B.5C.3D.27.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b,组成复数a+bi,其中虚数有()A.36个B.42个C.30个D.35个8.某校教学大楼共有五层,每层均有两个楼梯,一学生由一层到五层的走法有()A.10种B.25种C.52种D.24种9.(多选)现有不同的黄球5个,黑球6个,蓝球4个,则下列说法正确的是()A.从中任选1个球,有15种不同的选法B.若每种颜色选出1个球,有120种不同的选法C.若要选出不同颜色的2个球,有31种不同的选法D.若要不放回地选出任意的2个球,有240种不同的选法二、填空题10.在所有的两位数中,个位数字大于十位数字的两位数的个数为________11.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有______个.12.“渐升数”是指每个数字比它左边的数字大的正整数(如1 458),若把四位“渐升数”按从小到大的顺序排列,则第30个数为________13.清代诗人黄伯权的《茶壶回文诗》(如图)以连环诗的形式展现,20个字绕着茶壶围成一圆环,不论顺着读还是逆着读,皆成佳作.数学中也有这种特性的数字,如2020年02月02日(20200202)被称为世界完全对称日(公历纪年日期中数字左右完全对称的日期),数学上把20200202这样的对称数称为回文数,如两位数的回文数共有9个(11,22,…,99),则四位数的回文数有______个,在所有四位数的回文数中,出现奇数的概率为________.三、解答题14.从1,2,3,4中选三个数字,组成无重复数字的整数,则分别满足下列条件的数有多少个?(1)三位数;(2)三位数的偶数.15.现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?16.现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有多少种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有多少种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有多少种不同的选法?参考答案及解析:一、选择题1.B解析:不同的杂志本数为4+3+2=9(种),从其中任选一本阅读,共有9种选法.2.D解析:这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个值x,有3种方法;第二步,在集合{-31,-24,4}中任取一个值y,有3种方法.根据分步乘法计数原理,不同的点有3×3=9(个).3.A解析:拨动梁下下位两珠,或十位两珠,能组成的整数为2,20,共2个;从个位的梁上、梁下,十位的梁上、梁下四个位置中选两个,拨动选中的这两个位置各一珠,能组成的整数为6,51,60,15,11,55,共6个.所以不同整数的个数为2+6=8.故选A.4.B 解析:由已知得ab≤1.当a=-1时,b=-1,0,1,2,有4种可能;当a=0时,b=-1,0,1,2,有4种可能;当a=1时,b=-1,0,1,有3种可能;当a=2时,b=-1,0,有2种可能.所以有序数对(a,b)的个数为4+4+3+2=13.5.D6.B7.A 解析:∵a,b互不相等且为虚数,∴所有b只能从{1,2,3,4,5,6}中选一个有6种,a从剩余的6个选一个,有6种,∴根据分步乘法计数原理知虚数有6×6=36(个).8.D解析:共分四步,一层到二层2种,二层到三层2种,三层到四层2种,四层到五层2种,一共24种.9.AB解析:对于A,从中任选1个球,不同的选法共有5+6+4=15(种),故A正确;对于B,每种颜色选出1个球,可分步从每种颜色分别选择,不同的选法共有5×6×4=120(种),故B 正确;对于C,若要选出不同颜色的2个球,首先按颜色分黄黑、黄蓝、黑蓝三类,再进行各类分步选择,不同的选法共有5×6+5×4+6×4=74(种),故C错误;对于D,若要不放回地选出任意的2个球,直接分步计算,不同的选法共有15×14=210(种),故D错误.故选AB.二、填空题10.答案:3611.答案:36 解析:第一步取b的数,有6种方法,第二步取a的数,也有6种方法,根据分步乘法计数原理,共有6×6=36种方法.故不同的虚数有36个.12.答案:1 359解析:“渐升数”由小到大排列,形如30个必为1 359,所以应填1 359.13.答案:90,59解析:四位数的回文数只用排列前两位数字,后面的数字就可以确定,但是第一位数不能为0,有9种情况,第二位数有10种情况,故四位数的回文数的个数为9×10=90.四位数的回文数的第一位数是奇数,有5种情况,第二位数有10种情况,故四位数的回文数中奇数的个数为5×10=50,在所有四位数的回文数中,出现奇数的概率为59. 三、解答题14.解:(1)三位数有三个数位, 百位 十位 个位故可分三个步骤完成:第1步,排个位,从1,2,3,4中选1个数字,有4种方法;第2步,排十位,从剩下的3个数字中选1个,有3种方法;第3步,排百位,从剩下的2个数字中选1个,有2种方法.依据分步乘法计数原理,满足要求的三位数共有4×3×2=24(个).(2)分三个步骤完成:第1步,排个位,从2,4中选1个,有2种方法;第2步,排十位,从余下的3个数字中选1个,有3种方法;第3步,排百位,从余下的2个数字中选1个,有2种方法.故三位数的偶数共有2×3×2=12(个).15.解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法,所以共有不同的选法N =7+8+9+10=34(种).(2)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长.所以共有不同的选法N =7×8×9×10=5040(种).(3)分六类,每类又分两步:从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以共有不同的选法N =7×8+7×9+7×10+8×9+8×10+9×10=431(种).16.解:(1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理,不同的选法共有5+2+7=14(种).(2)分为三步:国画、油画、水彩画各有5种,2种,7种不同的选法.根据分步乘法计数原理,不同的选法共有5×2×7=70(种).(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,不同的选法有5×2=10(种);第二类是一幅选自国画,一幅选自水彩画,不同的选法有5×7=35(种);第三类是一幅选自油画,一幅选自水彩画,不同的选法有2×7=14(种).所以不同的选法共有10+35+14=59(种).。
2024届高考一轮复习数学教案(新人教B版):基本计数原理
§10.1基本计数原理考试要求1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题.知识梳理基本计数原理(1)分类加法计数原理:完成一件事,如果有n 类办法,且:第一类办法中有m 1种不同的方法,第二类办法中有m 2种不同的方法……第n 类办法中有m n 种不同的方法,那么完成这件事共有N =m 1+m 2+…+m n 种不同的方法.(2)分步乘法计数原理:完成一件事,如果需要分成n 个步骤,且:做第一步有m 1种不同的方法,做第二步有m 2种不同的方法……做第n 步有m n 种不同的方法.那么完成这件事共有N =m 1×m 2×…×m n 种不同的方法.常用结论两个计数原理的区别与联系分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种数不同点分类、相加分步、相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事情(每步中的每一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,缺一不可思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,某两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,只有各步骤都完成后,这件事情才算完成.(√)(4)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)教材改编题1.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为()A.16B.13C.12D.10答案C解析将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,不同走法共有4×3=12(种).2.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有()A.8种B.9种C.10种D.11种答案B解析设四位监考教师分别为A,B,C,D,所教班级分别为a,b,c,d.假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法.由分类加法计数原理可知,共有3+3+3=9(种)不同的监考方法.3.由于用具简单、趣味性强,象棋成为流行极为广泛的棋艺活动.某棋局的一部分如图所示,若不考虑这部分以外棋子的影响,且“马”和“炮”不动,“兵”只能往前走或左右走,每次只能走一格,从“兵”吃掉“马”的最短路线中随机选择一条路线,其中也能把“炮”吃掉的可能路线有()A.10条B.8条C.6条D.4条答案C解析由题意可知,“兵”吃掉“马”的最短路线需横走三步,竖走两步;其中也能把“炮”吃掉的路线可分为两步:第一步,横走两步,竖走一步,有3种走法;第二步,横走一步,竖走一步,有2种走法.所以所求路线共有3×2=6(条).题型一分类加法计数原理例1(1)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种答案B解析赠送1本画册,3本集邮册.需从4人中选取1人赠送画册,其余赠送集邮册,有4种方法.赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有6种方法.由分类加法计数原理可知,不同的赠送方法共有4+6=10(种).(2)如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.答案240解析若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),……,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数共有2+6+12+20+30+42+56+72=240(个).思维升华使用分类加法计数原理的两个注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.跟踪训练1(1)(2023·太原模拟)现有拾圆、贰拾圆、伍拾圆的人民币各一张,一共可以组成的币值有()A.3种B.6种C.7种D.8种答案C解析由题意得,三种币值取一张,共有3种取法,币值分别为拾圆、贰拾圆、伍拾圆;三种币值取两张,共有3种取法,币值分别为叁拾圆、陆拾圆、柒拾圆;三种币值全取,共有1种取法,币值为捌拾圆.一共可以组成的币值有3+3+1=7(种).(2)设I={1,2,3,4},A与B是I的子集,若A∩B={1,2},则称(A,B)为一个“理想配集”.若将(A,B)与(B,A)看成不同的“理想配集”,则符合此条件的“理想配集”有________个.答案9解析对子集A分类讨论:当A是二元集{1,2}时,B可以为{1,2,3,4},{1,2,4},{1,2,3},{1,2},共4种情况;当A是三元集{1,2,3}时,B可以为{1,2,4},{1,2},共2种情况;当A是三元集{1,2,4}时,B可以为{1,2,3},{1,2},共2种情况;当A是四元集{1,2,3,4}时,B取{1,2},有1种情况.根据分类加法计数原理可知,共有4+2+2+1=9(种)结果,即符合此条件的“理想配集”有9个.题型二分步乘法计数原理例2(1)数独是源自18世纪瑞士的一种数学游戏.如图是数独的一个简化版,由3行3列9个单元格构成.玩该游戏时,需要将数字1,2,3(各3个)全部填入单元格,每个单元格填一个数字,要求每一行、每一列均有1,2,3这三个数字,则不同的填法有()A.12种B.24种C.72种D.216种答案A解析先填第一行,有3×2×1=6(种)不同填法,再填第二行第一列,有2种不同填法,当该单元格填好后,其他单元格唯一确定.根据分步乘法计数原理可知,共有6×2=12(种)不同的填法.(2)(多选)(2022·武汉模拟)现安排高二年级A,B,C三名同学到甲、乙、丙、丁四个工厂进行社会实践,每名同学只能选择一个工厂,且允许多人选择同一个工厂,则下列说法正确的是()A.共有43种不同的安排方法B.若甲工厂必须有同学去,则不同的安排方法有37种C.若A同学必须去甲工厂,则不同的安排方法有12种D.若三名同学所选工厂各不相同,则不同的安排方法有24种答案ABD解析对于A,A,B,C三名同学到甲、乙、丙、丁四个工厂进行社会实践,每个学生有4种选法,则三个学生有4×4×4=43(种)选法,故A正确;对于B,三人到4个工厂,有43=64(种)情况,其中甲工厂没有人去,即三人全部到乙、丙、丁三个工厂的情况有33=27(种),则甲工厂必须有同学去的安排方法有64-27=37(种),故B正确;对于C,若同学A必须去甲工厂,剩下2名同学安排到4个工厂即可,有42=16(种)安排方法,故C错误;对于D,若三名同学所选工厂各不相同,有4×3×2=24(种)安排方法,故D正确.思维升华利用分步乘法计数原理解题的策略(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成.跟踪训练2(1)教学大楼共有五层,每层均有两个楼梯,则由一层到五层不同的走法有() A.10种B.25种C.52种D.24种答案D解析每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理可知,共有24种不同的走法.(2)(多选)有4位同学报名参加三个不同的社团,则下列说法正确的是()A.每位同学限报其中一个社团,则不同的报名方法共有34种B.每位同学限报其中一个社团,则不同的报名方法共有43种C.每个社团限报一个人,则不同的报名方法共有24种D.每个社团限报一个人,则不同的报名方法共有43种答案AD解析对于A,B,第1个同学有3种报法,第2个同学有3种报法,后面的2个同学也有3种报法,根据分步乘法计数原理知共有34种结果,A正确,B错误;对于C,D,每个社团限报一个人,则第1个社团有4种选择,第2个社团有4种选择,第3个社团有4种选择,根据分步乘法计数原理知共有43种结果,D正确,C错误.题型三基本计数原理的综合应用例3(1)有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是()A.14B.23C.48D.120答案C解析分两步:第1步,取多面体,有5+3=8(种)不同的取法;第2步,取旋转体,有4+2=6(种)不同的取法.所以不同的取法种数是8×6=48.(2)(2023·南平质检)甲与其他四位同事各有一辆私家车,车牌尾数分别是9,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为________.答案80解析5日至9日,日期尾数分别为5,6,7,8,9,有3天是奇数日,2天是偶数日.第一步,安排偶数日出行,每天都有2种选择,共有2×2=4(种)用车方案;第二步,安排奇数日出行,分两类,第一类,选1天安排甲的车,另外2天安排其他车,有3×2×2=12(种)用车方案,第二类,不安排甲的车,每天都有2种选择,共有23=8(种)用车方案,共计12+8=20(种)用车方案.根据分步乘法计数原理可知,不同的用车方案种数为4×20=80.思维升华利用基本计数原理解题时的三个注意点(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事.(2)分类时,标准要明确,做到不重不漏,有时要恰当画出示意图或树状图.(3)对于复杂问题,一般是先分类再分步.跟踪训练3(1)有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.需选择一套服装参加“五一”节歌舞演出,则不同的选择方式种数为()A.24B.14C.10D.9答案B解析第一类:一件衬衣,一件裙子搭配一套服装有4×3=12(种)选择方式;第二类:选2套连衣裙中的一套服装有2种选法,由分类加法计数原理可知,共有12+2=14(种)选择方式.(2)如图,a省分别与b,c,d,e四省交界,且b,c,d互不交界,在地图上分别给各省地域涂色,要求相邻省涂不同色,现有5种不同颜色可供选用,则不同的涂色方案种数为()A.480B.600C.720D.840答案C解析依题意,按c与d涂的颜色相同和不同分成两类:若c与d涂同色,先涂d有5种方法,再涂a有4种方法,涂c有1种方法,涂e有3种方法,最后涂b有3种方法,由分步乘法计数原理得到不同的涂色方案有5×4×1×3×3=180(种),若c与d涂不同色,先涂d有5种方法,再涂a有4种方法,涂c有3种方法,涂e,b也各有3种方法,由分步乘法计数原理得到不同的涂色方案有5×4×3×3×3=540(种),所以,由分类加法计数原理得不同的涂色方案共有180+540=720(种).课时精练1.小黑点表示网络的结点,结点之间的连线表示它们有网络相连.连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现在从结点A向结点B传递信息,信息可分开沿不同的路线同时传递,则单位时间内传递的最大信息量为()A.9B.21C.12D.8答案D解析由图形可以看出,从A→B,可以分成两种情况,A→D→B或A→C→B,这两类方法中各自包含的单位时间内通过的信息量分别是5,3,根据分类加法计数原理可知,传递的最大信息量为5+3=8.2.(2023·济宁模拟)某省新高考采用“3+1+2”模式:“3”为全国统考科目语文、数学、外语,所有学生必考;“1”为首选科目,考生须在物理、历史科目中选择1个科目;“2”为再选科目,考生可在思想政治、地理、化学、生物4个科目中选择2个科目.已知小明同学必选化学,那么他可选择的方案共有()A.4种B.6种C.8种D.12种答案B解析根据题意得,分两步进行分析:①小明必选化学,则必须在思想政治、地理、生物中再选出1个科目,选法有3种;②小明在物理、历史科目中选出1个,选法有2种.由分步乘法计数原理知,小明可选择的方案共有3×2=6(种).3.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8答案D解析以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这四个数列顺序颠倒,又得到4个新数列,所以所求的数列共有2×(2+1+1)=8(个).4.中国古代将物质属性分为“金、木、土、水、火”五种,其相互关系是“金克木,木克土,土克水,水克火,火克金”.将五种不同属性的物质任意排成一列,则属性相克的两种物质不相邻的排法种数为()A.8B.10C.15D.20答案B解析由题意知,可看作五个位置排列五个元素,第一个位置有5种排列方法,不妨假设是金,则第二个位置只能从土与水两者中选一种排放,有2种选择,不妨假设排的是水,则第三个位置只能排木,第四个位置只能排火,第五个位置只能排土,因此,总的排列方法种数为5×2×1×1×1=10.5.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,三位同学按甲、乙、丙的顺序依次选一个作为礼物,如果让三位同学选取的礼物都满意,那么不同的选法有() A.360种B.50种C.60种D.90种答案B解析第一类:甲同学选择牛,乙有2种选法,丙有10种选法,选法有1×2×10=20(种);第二类:甲同学选择马,乙有3种选法,丙有10种选法,选法有1×3×10=30(种),所以共有20+30=50(种)选法.6.(2023·宿州模拟)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数为()A.12B.24C.36D.48答案C解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).7.用0,1,2,3,4,5,6这7个数字可以组成无重复数字的四位偶数的个数为()A.180B.240C.420 D.480答案C解析以末位数字进行分类:当末位数字为0时,共有6×5×4=120(个);当末位数字是2,4,6中的某个数时,共有3×5×5×4=300(个),故共有120+300=420(个)不同的数字.8.(多选)现有4个数学课外兴趣小组,第一、二、三、四组分别有7人、8人、9人、10人,则下列说法正确的是()A.选1人为负责人的选法种数为34B.每组选1名组长的选法种数为5400C.若推选2人发言,这2人需来自不同的小组,则不同的选法种数为420D.若另有3名学生加入这4个小组,加入的小组可自由选择,且第一组必须有人选,则不同的选法有37种答案AD解析对于A,4个数学课外兴趣小组共有7+8+9+10=34(人),故选1人为负责人的选法共有34种,A对;对于B,分四步:第一、二、三、四步分别为从第一、二、三、四组中各选1名组长,所以不同的选法共有7×8×9×10=5040(种),B错;对于C,分六类:从第一、二组中各选1人,有7×8种不同的选法;从第一、三组中各选1人,有7×9种不同的选法;从第一、四组中各选1人,有7×10种不同的选法;从第二、三组中各选1人,有8×9种不同的选法;从第二、四组中各选1人,有8×10种不同的选法;从第三、四组中各选1人,有9×10种不同的选法.所以不同的选法共有7×8+7×9+7×10+8×9+8×10+9×10=431(种),C错;对于D,若不考虑限制条件,每个人都有4种选法,共有43=64(种)选法,其中第一组没有人选,每个人都有3种选法,共有33=27(种)选法,所以不同的选法有64-27=37(种),D对.9.如图所示,在由连接正八边形的三个顶点构成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).答案40解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形,共有8×4=32(个);第二类,有两条公共边的三角形,共有8个.由分类加法计数原理可知,共有32+8=40(个).10.(2023·保定模拟)算筹是一根根同样长短和粗细的小棍子,是中国古代用来记数、列式和进行各种数与式演算的一种工具,是中国古代的一项伟大、重要的发明.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如表所示:数字123456789方式纵式横式用算筹计数法表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,知“”表示的三位数为________;如果把5根算筹以适当的方式全部放入下面的表格中,那么可以表示能被5整除的三位数的个数为________.答案62114解析由题意,结合表格中的数据和图形,知“”表示的三位数为621;共有5根算筹,要能被5整除,则个位数必须为0或5,①当个位数为5时,不符合题意;②当个位数为0时,则5根算筹全部放在十位和百位,若百位有1根,十位有4根,则共有1×2=2(个)三位数;若百位有2根,十位有3根,则共有2×2=4(个)三位数;若百位有3根,十位有2根,则共有2×2=4(个)三位数;若百位有4根,十位有1根,则共有2×1=2(个)三位数;若百位有5根,十位有0根,则共有2个三位数.所以共有2+4+4+2+2=14(个)三位数.11.如图是在“赵爽弦图”的基础上创作出的一个“数学风车”平面模型,图中正方形ABCD 内部为“赵爽弦图”(由四个全等的直角三角形和一个小正方形组成),△ABE,△BCF,△CDG,△DAH这4个三角形和“赵爽弦图”ABCD涂色,且相邻区域(即图中有公共点的区域)不同色,已知有4种不同的颜色可供选择.则不同的涂色方法种数是()A.48B.54C.72D.108答案C解析设“赵爽弦图”ABCD为①区,△ABE,△BCF,△CDG,△DAH这4个三角形分别为②,③,④,⑤区.第一步给①区涂色,有4种涂色方法.第二步给②区涂色,有3种涂色方法.第三步给③区涂色,有2种涂色方法.第四步给④区涂色,若④区与②区同色,⑤区有2种涂色方法.若④区与②区不同色,则④区有1种涂色方法,⑤区有1种涂色方法.所以共有4×3×2×(2+1×1)=72(种)涂色方法.12.(2022·怀化模拟)世界杯参赛球队共32支,现分成8个小组进行单循环赛,决出16强(各组的前2名小组出线),这16支队伍按照确定的程序进行淘汰赛,决出8强,再决出4强,直到决出冠、亚军和第三名、第四名,则比赛进行的总场数为________.答案64解析因为8个小组进行单循环赛,每小组进行6场小组赛,所以小组赛的场数为8×6=48,因为16支队伍按照确定的程序进行淘汰赛,所以淘汰赛的场数为8+4+2+2=16,因此比赛进行的总场数为48+16=64.13.几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝A,B,C;(2)乙在下落的过程中依次撞击到树枝D,E,F;(3)丙在下落的过程中依次撞击到树枝G,A,C;(4)丁在下落的过程中依次撞击到树枝B,D,H;(5)戊在下落的过程中依次撞击到树枝I,C,E,则这九根树枝从高到低不同的顺序共有() A.23种B.24种C.32种D.33种答案D解析不妨设A,B,C,D,E,F,G,H,I代表树枝的高度,九根树枝从上至下共九个位置,根据甲依次撞击到树枝A,B,C;乙依次撞击到树枝D,E,F;丙依次撞击到树枝G,A,C;丁依次撞击到树枝B,D,H;戊依次撞击到树枝I,C,E,可得G>A>B,且G,A,B 在前四个位置,C>E>F,D>E>F,且E,F一定排在后四个位置,(1)若I排在前四个位置中的一个位置,前四个位置有4种排法,若第五个位置排C,则第六个位置一定排D,后三个位置共有3种排法,若第五个位置排D,则后四个位置共有4种排法,所以I排在前四个位置中的一个位置时,共有4×(3+4)=28(种)排法;(2)若I不排在前四个位置中的一个位置,则G,A,B,D按顺序排在前四个位置,由于I>C>E>F,所以后五个位置的排法就是H的不同排法,共5种排法,即若I不排在前四个位置中的一个位置共有5种排法,由分类加法计数原理可得,这九根树枝从高到低不同的顺序有28+5=33(种).14.若m,n均为非负整数,在做m+n的加法时,各位均不进位(例如:134+3802=3936),则称(m,n)为“简单的”有序数对,m+n为有序数对(m,n)的值,那么值为1942的“简单的”有序数对的个数是________.答案300解析第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理可知,值为1942的“简单的”有序数对的个数为2×10×5×3=300.。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 引导学生通过观察、分析、归纳和推理,形成数学概念。
二、教学内容1. 分类加法计数原理:通过实例让学生理解分类加法计数原理,即在计数时,将事物按照某种特征进行分类,将各类别的事物数量相加。
2. 分步乘法计数原理:通过实例让学生理解分步乘法计数原理,即在计数时,将一个复杂的问题分解成几个简单的步骤,将每一步的数量相乘。
三、教学重点与难点1. 教学重点:让学生掌握分类加法计数原理和分步乘法计数原理的概念及应用。
2. 教学难点:引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析、归纳和推理,形成数学概念。
2. 利用实例讲解,让学生在实际问题中体验和理解分类加法计数原理和分步乘法计数原理。
3. 设计练习题,让学生巩固所学知识,提高解决问题的能力。
五、教学准备1. 教学课件:制作课件,展示实例及练习题。
2. 教学素材:准备相关实例,如水果、动物等分类计数问题,以及需要分步解决的问题,如制作午餐、完成作业等。
3. 练习题:设计分类加法计数原理和分步乘法计数原理的练习题。
六、教学过程1. 导入新课:通过一个简单的实例,如计数教室里的学生,引出分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:展示实例,让学生观察并分析,引导学生归纳出分类加法计数原理。
3. 讲解分步乘法计数原理:展示实例,让学生观察并分析,引导学生归纳出分步乘法计数原理。
5. 总结:对本节课的内容进行总结,强调分类加法计数原理和分步乘法计数原理的应用。
七、课堂练习a) 班级里有男生20人,女生15人,一共有多少人?b) 水果店里有苹果、香蕉和橙子,苹果有10个,香蕉有5个,橙子有8个,一共有多少个水果?a) 小明做作业,一共需要完成3个任务,每个任务需要1小时,一共需要多少小时?b) 小华准备午餐,需要炒菜、煮饭和洗碗,炒菜需要10分钟,煮饭需要30分钟,洗碗需要15分钟,一共需要多少分钟?八、课后作业a) 学校里有小学生、初中生和高中生,小学生有180人,初中生有200人,高中生有150人,一共有多少人?b) 动物园里有鸟类、哺乳动物和爬行动物,鸟类有100只,哺乳动物有200只,爬行动物有50只,一共有多少只动物?a) 小红要做家务,需要打扫卫生、洗衣服和整理房间,打扫卫生需要30分钟,洗衣服需要1小时,整理房间需要45分钟,一共需要多少分钟?b) 小刚准备参加篮球比赛,一共需要进行3场比赛,每场比赛需要40分钟,一共需要多少分钟?九、教学反思1. 反思本节课的教学内容,是否清晰易懂,学生是否掌握分类加法计数原理和分步乘法计数原理。
[精品]新高中高考数学一轮复习12.1分类加法计数原理与分步乘法计数原理优质课教案
第十二章排列组合、二项式定、概率高考导航知识络12.1 分类加法计原与分步乘法计原典例精析题型一分类加法计原的应用【例1】在1到20这20个整中,任取两个相加,使其和大于20,共有种取法.【解析】当一个加是1时,另一个加只能是20,有1种取法;当一个加是2时,另一个加可以是19,20,有2种取法;当一个加是3时,另一个加可以是18,19,20,有3种取法; ……当一个加是10时,另一个加可以是11,12,…,19,20,有10种取法;当一个加是11时,另一个加可以是12,13,…,19,20,有9种取法; ……当一个加是19时,另一个加只能是20,有1种取法.由分类加法计原可得共有1+2+3+…+10+9+8+…+1=100种取法.【点拨】采用列举法分类,先确定一个加,再利用“和大于20”确定另一个加.【变式训练1】(2013济南市模拟)从集合{1,2,3,…,10}中任意选出三个不同的,使这三个成等比列,这样的等比列的个为( ) A.3 B.4 C.6 D.8 【解析】当公比为2时,等比列可为1,2,4或2,4,8;当公比为3时,等比列可为1,3,9;当公比为32时,等比列可为4,6,9.同,公比为12、13、23时,也有4个.故选D. 题型二 分步乘法计原的应用【例2】 从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有种.【解析】能去张家界的有4人,依此能去韶山、衡山、桃花源的有5人、4人、3人.则由分步乘法计原得不同的选择方案有4×5×4×3=240种.【点拨】根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步之间既不能重复也不能遗漏. 【变式训练2】(2010湘潭市调研)要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有种不同的排法.【解析】依题意,值班表须一天一天分步完成.第一天有5人可选有5种方法,第二天不能用第一天的人有4种方法,同第三天、第四天、第五天也都有4种方法,由分步乘法计原共有5×4×4×4×4=1 280种方法.题型三分类和分步计原综合应用【例3】(2012长郡中学)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种有.【解析】方法一:由题意知,有且仅有两个区域涂相同的颜色,分为4类:1与5同;2与5同;3与5同;1与3同.对于每一类有A44种涂法,共有4A44=96种方法.方法二:第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种有4×3×2×(1×1+1×3)=96种.【点拨】染色问题是排列组合中的一类难题.本题能运用两个基本原求解,要注意的是分类中有分步,分步后有分类.【变式训练3】(2009深圳市调研)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边)小正方形所涂颜色都不相同,且1,5,9号小正方形涂相同颜色,则符合条件的所有涂法有多少种?【解析】第一步,从三种颜色中选一种颜色涂1,5,9号有C13种涂法;第二步,涂2,3,6号,若2,6同色,有4种涂法,若2,6不同色,有2种涂法,故共有6种涂法;第三步,涂4,7,8号,同第二步,共有6种涂法.由分步乘法原知共有3×6×6=108种涂法.总结提高分类加法计原和分步乘法计原回答的都是完成一件事有多少种不同方法或种的问题,其区别在于:分类加法计原是完成一件事要分若干类,类与类之间要互斥,用任何一类中的任何一种方法都可以独立完成这件事;分步乘法计原是完成一件事要分若干步,步骤之间相互独立,各个步骤相互依存,缺少其中任何一步都不能完成这件事,只有当各个步骤都完成之后,才能完成该事件.因此,分清完成一件事的方法是分类还是分步,是正确使用这两个基本计原的基础.天星教育来源:天星教育Tesoon来源:天~星~教~育~。
分类加法计数原理与分步乘法计数原理 精讲附配套练习
第十章计数原理、概率、随机变量及其分布[深研高考·备考导航]为教师授课、学生学习提供丰富备考资源[五年考情]综合近5年全国卷高考试题,我们发现高考命题在本章呈现以下规律:1.从考查题型看:一般有1~2个客观题,1个解答题;从考查分值看,占10~22分,基础题主要考查对基础知识和基本方法的应用意识,中档题主要考查转化与化归思想及运算求解能力.2.从考查知识点看:主要考查计数原理、排列与组合、二项式定理、随机事件的概率、古典概型与几何概型、离散型随机变量及其分布列、离散型随机变量的均值与方差.3.从命题思路上看:(1)计数原理、排列组合与古典概型相结合考查.(2)几何概型与线性规划、定积分等知识相结合考查.(3)随机事件的概率、离散型随机变量及其分布列、离散型随机变量的均值与方差和统计知识交汇考查.(4)相互独立事件、二项分布、超几何分布、正态分布、实际问题等其他知识交汇考查.[导学心语]1.全面系统复习,深刻理解知识本质(1)重视计数原理、二项式定理的理解,深刻把握排列组合、随机事件、古典概型、几何概型、离散型随机变量及其分布列、条件概率、二项分布、离散型随机变量的均值与方差、正态分布等概念,研究事件的概率,注意该事件的特征,用适当的概率模型求解.(2)注意各类概率公式和概率模型的理解和应用,掌握其适用条件和用法.2.抓住重点、针对训练通过对近5年全国卷高考试题分析,可以预测,在2017年,本章问题考查的重点是:(1)计数原理、二项式定理、古典概型、几何概型.(2)离散型随机变量及其分布列、期望与方差.做针对性训练,通过小题强化概率各种题型的计算,通过解答题训练巩固离散型随机变量及分布列问题.3.重视转化与化归思想的应用研究计数原理、概率、随机变量及其分布列问题,转化与化归思想贯穿始终,首先需要将实际问题转化为相应的计数问题、排列组合问题、概率计算问题、离散型随机变量的分布列与均值、方差等的计算问题,其次将概率的计算转化为计数问题、长度或面积的计算问题,将求分布列问题转化为概率的计算问题,将复杂事件的概率计算转化为简单事件的概率计算.第一节分类加法计数原理与分步乘法计数原理[考纲传真] 1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()[答案](1)×(2)√(3)√(4)×2.(教材改编)从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30 B.20C.10D.6D[从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类:①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.]3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有()A.30个 B.42个C.36个D.35个C[∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.]4.(2016·全国卷Ⅱ)如图10-1-1,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()图10-1-1A.24 B.18C.12D.9B[分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路程.]5.现有4种不同的颜色要对如图10-1-2所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有________种.图10-1-248[按A→B→C→D顺序分四步涂色,共4×3×2×2=48种不同的着色方法.](1)经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有() A.4种 B.6种C.10种D.16种(2)(2017·青岛二中月考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b =0有实数解的有序数对(a,b)的个数为()【导学号:01772376】A.14 B.13C.12D.10(1)B(2)B[(1)分两类:甲第一次踢给乙时,满足条件有3种方法(如图),甲乙丙乙甲甲乙甲丙甲同理,甲先传给丙时,满足条件有3种方法.由分类加法计数原理,共有3+3=6种传递方法.(2)①当a=0时,有x=-b2,b=-1,0,1,2,有4种可能;②当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)当a=-1时,b=-1,0,1,2,有4种可能;(ⅱ)当a=1时,b=-1,0,1,有3种可能;(ⅲ)当a=2时,b=-1,0,有2种可能.∴有序数对(a,b)共有4+4+3+2=13个.][规律方法] 1.第(2)题常见的错误:(1)想当然认为a≠0;(2)误认为a≠b.2.分类标准是运用分类计数原理的难点所在,应抓住题目中的关键词、关键元素、关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.[变式训练1]从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3 B.4C.6D.8D[以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2(2+1+1)=8个.]6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的情况有()A.C26·45种 B.A26·54种C.C26·A45种 D.C26·54种(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.(1)D(2)120[(1)有两个年级选择甲博物馆共有C26种情况,其余四个年级每个年级各有5种选择情况,故有且只有两个年级选择甲博物馆的情况有C26×54种.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120种.][规律方法] 1.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.2.在第(1)题中,除仅有两个年级选择甲博物馆外,其余4个年级易错误认为有45种选择方法.导致错选A项.[变式训练2](1)设集合A={-1,0,1},B={0,1,2,3},定义A*B={(x,y)|x ∈A∩B,y∈A∪B},则A*B中元素的个数为________.(2)将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为________.(用数字作答)(1)10(2)8[(1)易知A∩B={0,1},A∪B={-1,0,1,2,3},∴x有2种取法,y有5种取法,由分步乘法计数原理,A*B的元素有2×5=10个.(2)第1步把甲、乙分到不同班级有A22=2种分法.第2步分丙、丁:①丙、丁分到同一班级有2种分法,②丙、丁分到两个不同的班级有A22=2种分法.由计数原理,不同的分法为2×(2+2)=8种.]M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.【导学号:01772377】(2)如图10-1-3,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.图10-1-3(1)17(2)260[(1)当A={1}时,B有23-1种情况;当A={2}时,B有22-1种情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1种情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况,所以满足题意的“子集对”共有7+3+1+3+3=17(个).(2)区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法,所以共有5×4×4+5×4×3×3=260种涂色方法.][规律方法] 1.(1)注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.(2)注意对于较复杂的两个原理综合应用的问题,可恰当地画出示意图或列出表格,使问题形象化、直观化.2.解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成,第(2)题中,由于共边的区域不同色,从而是按区域A与区域C是否同色分类处理的.[变式训练3](2017·厦门市联考)用a代表红球,b代表蓝球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取,“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)B.(1+a5)(1+b+b2+b3+b4+b5)C.(1+a)5(1+b+b2+b3+b4+b5)D.(1+a5)(1+b5)A[分两步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有1+a+a2+a3+a4+a5种不同的取法.第二步,5个无区别的蓝球都取出或都不取出,则有1+b5种不同取法.由分步乘法计数原理,共有(1+a+a2+a3+a4+a5)(1+b5)种取法.][思想与方法]1.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.2.涉及加法与乘法原理的混合问题一般是先分类再分步.3.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.[易错与防范]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.课时分层训练(七) 二次函数与幂函数A 组 基础达标(建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( ) 【导学号:01772040】A.12B.1C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3B.13C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m 4,由函数f (x )的增减区间可知m 4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B.m =1或m =2 C .m =2 D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则c a <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( )A .-1B.1C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,∴函数的最大值在区间的端点取得.∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧ -a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0,所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1, 由a 2-2a +1≤4,解得-1≤a ≤3, 又a ≥2,所以2≤a ≤3.] 三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即2=2(m 2+m )-1, ∴m 2+m =2,解得m =1或m =-2.4分 又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞), 并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分10.已知函数f (x )=x 2+(2a -1)x -3, (1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],2分 ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15, ∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分(2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;8分 ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意. 综上可知a =-13或-1. 12分B 组 能力提升 (建议用时:15分钟)1.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b >0,ab <0,则f (a )+f (b )的值( )【导学号:01772043】A .恒大于0B.恒小于0C .等于0 D.无法判断A [∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意, ∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数. 又∵a ,b ∈R ,且a +b >0,∴a >-b , 又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0, 又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]3.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. [解] (1)由题意知 ⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.2分所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].6分(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,8分令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).12分第三节 基本不等式[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +ab ≥2(a ,b 同号且不为零); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)⎝⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( )(3)x >0,y >0是x y +yx ≥2的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值为2a .( ) [答案] (1)× (2)× (3)× (4)×2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2D [∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +ab ≥2b a ·a b =2.]3.(2016·安徽合肥二模)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b 的最小值为( )A .7 B.8 C .9D.10C [∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号,故选C.]4.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) 【导学号:01772209】A .1+ 2 B.1+ 3 C .3D.4C [当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,选C.]5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m 2.25 [设矩形的一边为x m ,矩形场地的面积为y , 则另一边为12×(20-2x )=(10-x )m , 则y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25, 当且仅当x =10-x ,即x =5时,y max =25.](1)(2015·湖南高考)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2B.2 C .2 2D.4(2)(2017·郑州二次质量预测)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是__________.(1)C (2)3 [(1)由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.(2)由x 2+2xy -3=0得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x =3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.] [规律方法] 1.利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.2.在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.[变式训练1] (1)(2016·湖北七市4月联考)已知a >0,b >0,且2a +b =1,若不等式2a +1b ≥m 恒成立,则m 的最大值等于( )A .10 B.9 C .8D.7(2)(2016·湖南雅礼中学一模)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为__________.(1)B (2)-4 [(1)∵2a +1b =2(2a +b )a +2a +b b =4+2b a +2a b +1=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+2×2b a ×a b =9,当且仅当a =b =13时取等号.又2a +1b ≥m ,∴m ≤9,即m的最大值等于9,故选B.(2)∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n=-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn =-4,当且仅当m =n =-12时,1m +1n 取得最大值-4.]已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab ≥8; (2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. [证明] (1)1a +1b +1ab =2⎝ ⎛⎭⎪⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +ba ≥2+2=4,3分 ∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).5分 (2)法一:∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a ,同理1+1b =2+ab , ∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,10分∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9(当且仅当a =b =12时等号成立).12分 法二:⎝⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab ,由(1)知,1a +1b +1ab ≥8,10分故⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab ≥9.12分 [规律方法] 1.“1”的代换是解决问题的关键,代换变形后能使用基本不等式是代换的前提,不能盲目变形.2.利用基本不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用基本不等式时等号能否取到.[变式训练2] 设a ,b 均为正实数,求证:1a 2+1b 2+ab ≥2 2.【导学号:01772210】[证明] 由于a ,b 均为正实数, 所以1a 2+1b 2≥21a 2·1b 2=2ab ,3分当且仅当1a 2=1b 2,即a =b 时等号成立, 又因为2ab +ab ≥22ab ·ab =22, 当且仅当2ab =ab 时等号成立, 所以1a 2+1b 2+ab ≥2ab +ab ≥22,8分当且仅当⎩⎪⎨⎪⎧1a 2=1b 2,2ab =ab ,即a =b =42时取等号.12分制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.[解](1)设所用时间为t=130x(h),y=130x×2×⎝⎛⎭⎪⎫2+x2360+14×130x,x∈[50,100].2分所以这次行车总费用y关于x的表达式是y=130×18x+2×130360x,x∈[]50,100.(或y=2 340x+1318x,x∈[]50,100).5分(2)y=130×18x+2×130360x≥26 10,当且仅当130×18x=2×130360x,即x=1810,等号成立.8分故当x=1810千米/时,这次行车的总费用最低,最低费用的值为2610元.12分[规律方法] 1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[变式训练3]某化工企业2016年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).(1)用x表示y;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解](1)由题意得,y=100+0.5x+(2+4+6+ (2x)x,即y =x +100x +1.5(x ∈N *).5分 (2)由基本不等式得: y =x +100x +1.5≥2x ·100x +1.5=21.5,8分当且仅当x =100x ,即x =10时取等号.故该企业10年后需要重新更换新的污水处理设备.12分[思想与方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.2.基本不等式的两个变形:(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号). (2)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号).[易错与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.“当且仅当a =b 时等号成立”的含义是“a =b ”是等号成立的充要条件,这一点至关重要,忽视它往往会导致解题错误.3.连续使用基本不等式求最值要求每次等号成立的条件一致.课时分层训练(七) 二次函数与幂函数A 组 基础达标 (建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )【导学号:01772040】A.12 B.1 C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3 B.13 C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m4,由函数f (x )的增减区间可知m4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2 B.m =1或m =2 C .m =2D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则ca <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B.1 C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧-a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0, 所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1,由a 2-2a +1≤4,解得-1≤a ≤3, 又a ≥2,所以2≤a ≤3.] 三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即2=2(m 2+m )-1, ∴m 2+m =2,解得m =1或m =-2.4分 又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞), 并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分10.已知函数f (x )=x 2+(2a -1)x -3,(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],2分 ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15, ∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分(2)对称轴为x =-2a -12.①当-2a-12≤1,即a≥-12时,f(x)max=f(3)=6a+3,∴6a+3=1,即a=-13满足题意;8分②当-2a-12>1,即a<-12时,f(x)max=f(-1)=-2a-1,∴-2a-1=1,即a=-1满足题意.综上可知a=-13或-1. 12分B组能力提升(建议用时:15分钟)1.(2017·江西九江一中期中)函数f(x)=(m2-m-1)x4m9-m5-1是幂函数,对任意的x1,x2∈(0,+∞),且x1≠x2,满足f(x1)-f(x2)x1-x2>0,若a,b∈R,且a+b>0,ab<0,则f(a)+f(b)的值()【导学号:01772043】A.恒大于0 B.恒小于0C.等于0 D.无法判断A[∵f(x)=(m2-m-1)x4m9-m5-1是幂函数,∴m2-m-1=1,解得m=2或m=-1.当m=2时,指数4×29-25-1=2 015>0,满足题意.当m=-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意,∴f(x)=x2 015.∴幂函数f(x)=x2 015是定义域R上的奇函数,且是增函数.又∵a,b∈R,且a+b>0,∴a>-b,又ab<0,不妨设b<0,则a>-b>0,∴f(a)>f(-b)>0,又f(-b)=-f(b),∴f(a)>-f(b),∴f(a)+f(b)>0.故选A.]2.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]3.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. [解] (1)由题意知 ⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.2分所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].6分(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,8分令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类加法计数原理与分步乘法计数原理【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)1.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279答案B解析由分步乘法计数原理知,用0,1,…,9十个数字组成三位数(可用重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252.故选B.2.(教材改编)已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是() A.12 B.8 C.6 D.4答案C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为() A.14 B.13 C.12 D.10答案B解析当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,故选B.4.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为() A.24 B.18 C.12 D.6答案B解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理,知共有12+6=18(个)奇数.5.(教材改编)5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种.答案32解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,知总的报名方法共2×2×2×2×2=32(种).题型一分类加法计数原理的应用例1高三一班有学生50人,其中男生30人,女生20人;高三二班有学生60人,其中男生30人,女生30人;高三三班有学生55人,其中男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?解(1)完成这件事有三类方法:第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法.根据分类加法计数原理,任选一名学生任学生会主席共有50+60+55=165(种)不同的选法.(2)完成这件事有三类方法:第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法.根据分类加法计数原理,共有30+30+20=80(种)不同的选法.思维升华分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.(2016·全国丙卷)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有() A.18个B.16个C.14个D.12个答案C解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A24个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C34个,共2+8+4=14(个).题型二分步乘法计数原理的应用例2(1)(2016·全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.答案(1)B(2)120解析(1)从E点到F点的最短路径有6种,从F点到G点的最短路径有3种,所以从E点到G点的最短路径为6×3=18(种),故选B.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).引申探究1.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).2.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.(1)用0,1,2,3,4,5可组成无重复数字的三位数的个数为________.(2)(2017·石家庄质检)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种.答案(1)100(2)4554解析(1)可分三步给百、十、个位放数字,第一步:百位数写有5种放法;第二步:十位数字有5种放法;第三步:个位数字有4种放法,根据分步乘法计数原理,三位数个数为5×5×4=100.(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.题型三两个计数原理的综合应用例3(1)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.答案(1)260(2)36解析(1)区域A有5处涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260(种)涂色方法.(2)第1类,对于每一条棱,都可以与两个侧面均成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).思维升华利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.(2017·济南质检)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________.答案96解析按区域1与3是否同色分类:(1)区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24(种)方法.(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72(种)方法.故由分类加法计数原理,不同的涂色种数为24+72=96.13.利用两个基本原理解决计数问题典例(1)把3封信投到4个信箱,所有可能的投法共有()A.24种B.4种C.43种D.34种(2)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4次,轮船有3次,问此人的走法可有________种.错解展示解析(1)因为每个信箱有三种投信方法,共4个信箱,所以共有3×3×3×3=34(种)投法.(2)乘火车有4种方法,坐轮船有3种方法,共有3×4=12(种)方法.答案(1)D(2)12现场纠错解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法共有4+3=7(种).答案(1)C(2)7纠错心得(1)应用计数原理解题首先要搞清是分类还是分步.(2)把握完成一件事情的标准,如典例(1)没有考虑每封信只能投在一个信箱中,导致错误.1.(2016·三门峡模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有()A.8种B.9种C.10种D.11种答案B解析设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理,共有3+3+3=9(种)不同的监考方法.2.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,则不同的摆法有()A.4种B.5种C.6种D.9种答案B解析记反面为1,正面为2,则正反依次相对有12121212,21212121两种;有两枚反面相对有21121212,21211212,21212112三种,共5种摆法,故选B.3.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,则不同的安排方案共有()A.12种B.10种C.9种D.8种答案A解析第一步,选派一名教师到甲地,另一名到乙地,共有C12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,有C24=6(种)选派方法.由分步乘法计数原理,不同的选派方案共有2×6=12(种).4.(2015·四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个答案B解析由题意知,首位数字只能是4,5,若万位是5,则有3×A34=72(个);若万位是4,则有2×A34=48(个),故比40 000大的偶数共有72+48=120(个).故选B.5.将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有()A.1种B.3种C.6种D.9种答案C解析因为只有三种颜色,又要涂六条棱,所以应该将四面体的对棱涂成相同的颜色.故有3×2×1=6(种)涂色方案.6.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种答案A解析先排第一列,由于每列的字母互不相同,因此共有A33种不同排法.再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·2·1=12(种)不同的排列方法.7.(2016·大连模拟)将数字1,2,3,4填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有________种.答案9解析编号为1的方格内填数字2,共有3种不同填法;编号为1的方格内填数字3,共有3种不同填法;编号为1的方格内填数字4,共有3种不同填法.于是由分类加法计数原理,得共有3+3+3=9(种)不同的填法.8.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.答案13解析四个焊点共有24种情况,其中使线路通的情况有:1,4都通,2和3至少有一个通时线路才通,共3种可能.故不通的情况有24-3=13(种)可能.9.(2017·日照调研)从1,2,3,4,7,9六个数中,任取两个数作为对数的底数和真数,则所有不同对数值的个数为________.答案17解析当所取两个数中含有1时,1只能作真数,对数值为0,当所取两个数不含有1时,可得到A25=20(个)对数,但log23=log49,log32=log94,log24=log39,log42=log93,综上可知,共有20+1-4=17(个)不同的对数值.10.(2016·天津模拟)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.答案(1)90(2)9×10n解析(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共计9×10=90(种)填法,即4位回文数有90个.(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n种填法.11.有一项活动需在3名老师,6名男同学和8名女同学中选人参加.(1)若只需一人参加,有多少种不同选法?(2)若需一名老师,一名学生参加,有多少种不同选法?(3)若需老师,男同学,女同学各一人参加,有多少种不同选法?解(1)只需一人参加,可按老师,男同学,女同学分三类各自有3,6,8种方法,总方法数为3+6+8=17.(2)分两步,先选教师共3种选法,再选学生共6+8=14(种)选法,由分步乘法计数原理知,总方法数为3×14=42.(3)教师,男同学,女同学各一人可分三步,每步方法依次为3,6,8种.由分步乘法计数原理知总方法数为3×6×8=144(种).12.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解方法一设染色按S-A-B-C-D的顺序进行,对S,A,B染色,有5×4×3=60(种)染色方法.由于C点的颜色可能与A同色或不同色,这影响到D点颜色的选取方法数,故分类讨论:C与A同色时(此时C对颜色的选取方法唯一),D应与A(C),S不同色,有3种选择;C与A不同色时,C 有2种可选择的颜色,D也有2种颜色可供选择.从而对C、D染色有1×3+2×2=7(种)染色方法.由分步乘法计数原理,不同的染色方法种数为60×7=420.方法二根据所用颜色种数分类,可分三类.第一类:用3种颜色,此时A与C,B与D分别同色,问题相当于从5种颜色中选3种涂三个点,共A35=60(种)涂法;第二类:用4种颜色,此时A与C,B与D中有且只有一组同色,涂法种数为2A45=240(种);第三类:用5种颜色,涂法种数共A55=120(种).综上可知,满足题意的染色方法种数为60+240+120=420.*13.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数?其中偶函数有多少个?(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?解(1)a的取值有5种情况,b的取值6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180(个)不同的二次函数.若二次函数为偶函数,则b=0,故有5×6=30(个).(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c 可以表示2×6×6=72(个)图象开口向上的二次函数.第十章计数原理第1讲分类加法计数原理与分步乘法计数原理一、选择题1.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )A BCDA.72种.48种C.24种 D.12种解析先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种.答案 A2.如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( ).A.400种 B.460种C.480种 D.496种解析从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C.答案 C3.某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团.且同学甲不参加“围棋苑”,则不同的参加方法的种数为().A.72 B.108 C.180 D.216解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C24A33种方法,故共有C14C24A33种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C24种方法,甲与丁、戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法;综合(1)(2),共有C14C24A33+C24A33=180种参加方法.答案C4.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )A.8种 B.9种C.10种 D.11种解析分四步完成,共有3×3×1×1=9种.答案 B5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有().A.300种B.240种C.144种D.96种解析甲、乙两人不去巴黎游览情况较多,采用排除法,符合条件的选择方案有C46A44-C12 A35=240.答案B6.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有( ).A.12种 B.24种 C.30种 D.36种种不同选法,第二步给解析分三步,第一步先从4位同学中选2人选修课程甲.共有C24第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共×2×2=24(种).有C24答案 B二、填空题7.将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设Ni(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是________.(用数字作答)解析由已知数字6一定在第三行,第三行的排法种数为A13A25=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为A12A12=4,由分步计数原理满足条件的排列个数是240.答案2408.数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.解析必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.答案129.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理得共有“好数”C13+C13C13=12个.答案1210.给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示)答案 21;43三、解答题11.如图所示三组平行线分别有m、n、k条,在此图形中(1)共有多少个三角形?(2)共有多少个平行四边形?解(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.12.设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M.(1)P可以表示多少个平面上的不同的点?(2)P可以表示多少个第二象限内的点?(3)P可以表示多少个不在直线y=x上的点?解(1)分两步,第一步确定横坐标有6种,第二步确定纵坐标有6种,经检验36个点均不相同,由分步乘法计数原理得N=6×6=36(个).(2)分两步,第一步确定横坐标有3种,第二步确定纵坐标有2种,根据分步乘法计数原理得N=3×2=6个.(3)分两步,第一步确定横坐标有6种,第二步确定纵坐标有5种,根据分步乘法计数原理得N=6×5=30个.13.现安排一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?解可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人.星期一:可分给5人中的任何一人,有5种分法;星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法;同理星期四和星期五都有4种不同的分法,由分步计数原理共有5×4×4×4×4=1 280种不同的排法.14.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).(3)分为如下四类:第一类,A中每一元素都与1对应,有1种方法;第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C24·C12=12种方法;第三类,A中有两个元素对应2,另两个元素对应0,有C24·C22=6种方法;第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C14·C13=12种方法.所以不同的f共有1+12+6+12=31(个).。