2018届高考数学二轮复习立体几何空间向量与立体几何(理)专题卷(全国卷1)

合集下载

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

2018年高考文数立体几何真题精选

2018年高考文数立体几何真题精选

2018年高考文数——立体几何一、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π2.【2018全国一卷9】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172B .52C .3D .23.【2018全国一卷10】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .834.【2018全国二卷9】在正方体中,为棱的中点,则异面直线与所成角的正切值为A .B .C .D .5.【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是6.【2018全国三卷12】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为 A .B .C .D .1111ABCD A B C D -E 1CC AE CD 22325272A B C D ,,,ABC △93D ABC -1231832435437.【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形个数为A.1B.2C.3D.4第7题图 第8题图8.【2018浙江卷3】某几何体的三视图如图所示,则该几何体的体积是 A .2B .4C .6D .89.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A ) 4 (B )8 (C )12 (D )16 二、填空题1.【2018全国二卷16】已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.2.【2018天津卷11】如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.3.【2018江苏10】如图正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.__________.侧视图俯视图正视图2211S SA SB SA 30 SAB △8三、解答题1.【2018全国一卷18】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点, 且23BP DQ DA ==,求三棱锥Q ABP -的体积.2.【2018全国二卷19】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上且,求点到平面的距离.3.【2018全国三卷19】如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.P ABC -22AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM ABCD CD M CDC D AMD ⊥BMC AM P MC ∥PBD4.【2018北京卷18】如图,在四棱锥P−ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅱ)求证:平面PAB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .5.【2018天津卷17】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.6.【2018江苏卷15】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .7.【2018江苏卷22(附加题)】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.8.【2018浙江卷19】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.9.【2018上海卷17】已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.参考答案 一、选择题1.B2.B3.C4.C5.A6.B7.C8.C9.D 10.D 二、填空题 1.π8 2.31 3.43三、解答题1.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32. 又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE=13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.2解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =.连结OB .因为AB =BC =,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.由知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC ==2,CM ==,∠ACB =45°.2322AC 12AC222OP OB PB +=12AC 23BC 423所以OM=,CH ==.所以点C 到平面POM 的距离为.3.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP . MC 平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .4.解:(Ⅰ)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥.∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(Ⅱ)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (Ⅲ)如图,取PC 中点G ,连接,FG GD .253sin OC MC ACB OM ⋅⋅∠455455⊂CD ⊂⊄⊂∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥, ∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .5.解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==.所以,异面直线BC 与MD(Ⅲ)解:连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM=又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角. 在Rt △CAD 中,CD. 在Rt △CMD中,sin CM CDM CD ∠==.所以,直线CD 与平面ABD 所成角的正弦值为34.6.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .7.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,222),BP AC ==--,故111||||cos ,|||||5BP AC BP AC BP AC ⋅-===⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.8.解:方法一:(Ⅰ)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==,所以2221111A BAB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(Ⅱ)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB ,由111C D A B ⊥得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D =111sin 13C D C AD AC ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C 因此11111(1,3,2),(1,3,2),(0,23),AB A B AC ==-=-由1110AB A B ⋅=得111AB A B ⊥.由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C . (Ⅱ)设直线1AC 与平面1ABB 所成的角为θ. 由(Ⅰ)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===设平面1ABB 的法向量(,,)x y z =n . 由10,0,ABBB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅n |n n |因此,直线1AC 与平面1ABB 所成的角的正弦值是13. 9.解:(1)依题意可知:圆锥的高度为322422=-=OP , 所以其体积为:πππ338322313122=⨯⨯⨯==h r V 。

专题1.5_立体几何(讲)_2018年高考数学(理)二轮复习讲练测_Word版_含解析

专题1.5_立体几何(讲)_2018年高考数学(理)二轮复习讲练测_Word版_含解析

2018年高三二轮复习讲练测之讲案【新课标版理科数学】专题五 立体几何考向一 三视图与几何体的面积、体积【高考改编☆回顾基础】1.【空间几何体的直观图和面积计算】【2017·全国卷Ⅰ改编】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.【答案】12【解析】该几何体为一个三棱柱和一个三棱锥的组合体,其直观图如图所示,各个面中有两个全等的梯形,其面积之和为2×2+42×2=12.2. 【三视图与空间几何体的体积】【2017·全国卷Ⅱ改编】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为________.【答案】63π【解析】3.【空间几何体的体积】【2017课标3,改编】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 .【答案】3π4【解析】【命题预测☆看准方向】1.空间几何体的三视图成为近几年高考的必考点,单独考查三视图的逐渐减少,主要考查由三视图求原几何体的面积、体积,主要以选择题、填空题的形式考查.2.对柱体、锥体、台体表面积、体积及球与多面体的切接问题中的有关几何体的表面积、体积的考查又是高考的一个热点,难度不大,主要以选择题、填空题的形式考查.3.2018年应注意抓住考查的主要题目类型进行训练,重点有三个:一是三视图中的几何体的形状及面积、体积;二是求柱体、锥体、台体及球的表面积、体积;三是求球与多面体的相切、接问题中的有关几何体的表面积、体积.【典例分析☆提升能力】【例1】17世纪日本数学家们对于数学关于体积方法的问题还不了解,他们将体积公式“V=kD 3”中的常数k 称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D 为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V =kD 3,其中,在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长.假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k 1,k 2,k 3,那么,k 1∶k 2∶k 3=( ) A.4π∶6π∶1 B. 6π∶4π∶2 C. 1∶3∶12π D. 1∶32∶6π【答案】D【解析】球中, 33331144,33266D V R D k D k ππππ⎛⎫====∴= ⎪⎝⎭;等边圆柱中, 23322,244D V D D k D k πππ⎛⎫=⋅==∴= ⎪⎝⎭;正方体中, 3333,1V D k D k ==∴=;所以12336::::11::642k k k πππ==.故选D. 【趁热打铁】将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( ) A.π27 B. 8π27 C. π3 D. 2π9【答案】B【解析】【例2】【2018届河南省郑州市第一次模拟】刍薨(chuhong ),中国古代算术中的一种几何形体,《九章算术》中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为( )A. 24B. 325C. 64D. 326【答案】B【趁热打铁】【2018届湖北省稳派教育高三上第二次联考】已知一个几何体的三视图如图所示,则该几何体的体积为()A. 8163π+B.1683π+ C. 126π+ D. 443π+【答案】A【解析】由三视图可得,该几何体为右侧的一个半圆锥和左侧的一个三棱锥拼接而成。

2018年高考数学(理)二轮复习讲练测专题1.5立体几何(练)含解析

2018年高考数学(理)二轮复习讲练测专题1.5立体几何(练)含解析

2018年高考数学(理)二轮复习讲练测专题五立体几何1.练高考1.【2017山东,理13】由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为.【答案】22π+2.【2017天津,理10】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .【答案】92π【解析】设正方体边长为a,则226183a a=⇒=,外接球直径为344279233,πππ3382R a V R====⨯=.3.【2017课标3,理16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b 都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°.其中正确的是________.(填写所有正确结论的编号)【答案】②③【解析】4. 【2017课标3,理19】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.【答案】(1)证明略;. 【解析】(2)由题设及(1)知,,,OA OB OC 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -.则()()()()1,0,0,3,0,1,0,0,0,0,1A B C D - 由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得1,22E ⎛⎫⎪ ⎪⎝⎭.故5. 【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点.(Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.【答案】(Ⅰ)30CBP ∠=︒.(Ⅱ)60︒.思路二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系. 写出相关点的坐标,求平面AEG 的一个法向量111(,,)m x y z =,平面ACG 的一个法向量222(,,)n x y z =计算1cos ,||||2m n m n m n ⋅<>==⋅即得.(Ⅱ)解法一:取EC 的中点H ,连接EH ,GH ,CH . 因为120EBC ∠=︒, 所以四边形BEHC 为菱形,所以AE GE AC GC =====取AG 中点M ,连接EM ,CM ,EC . 则EM AG ⊥,CM AG ⊥,所以EMC ∠为所求二面角的平面角.又1AM =,所以EM CM ===在BEC ∆中,由于120EBC ∠=︒,由余弦定理得22222222cos12012EC =+-⨯⨯⨯︒=, 所以23EC =EMC ∆为等边三角形, 故所求的角为60︒. 解法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.因此所求的角为60︒.6. 【2017北京,理16】如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,6,AB=4. (I )求证:M 为PB 的中点; (II )求二面角B-PD-A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.【答案】(Ⅰ)详见解析:(Ⅱ)3π;(Ⅲ)【解析】(III)由题意知2(1,2,2M-,(2,4,0)D,2(3,2,2MC=-.设直线MC与平面BDP所成角为α,则||2sin|cos,|9||||MCMCMCα⋅===<>nnn.所以直线MC与平面BDP所成角的正弦值为9.2.练模拟1. 三棱锥P ABC -的四个顶点都在球O 上, PA ⊥平面ABC , 2PA =, 4AB =, 2AC =, BC =则球的表面积是( )A. 16πB. 20πC. 24πD. 28π 【答案】B【解析】由题意, AC BC ⊥, PA ⊥平面ABC ,则直径22225PA AC BC ++=则R =2420S R ππ==,故选B.2.【2018届吉林省辽源市田家炳高级中学等五校高三上期末联考】已知两条直线m n 、,两个平面αβ、,给出下面四个命题:①α∥,,m n m βαβ⊂⊂⇒∥n ; ②m ∥n , m ∥n α⇒∥α; ③m ∥n , m ⊥ n αα⇒⊥; ④α∥,m β∥,n m n αβ⊥⇒⊥。

专题18 立体几何综合-2018年全国1卷理科数学高考题相似模拟题分类汇编解析版

专题18 立体几何综合-2018年全国1卷理科数学高考题相似模拟题分类汇编解析版

专题18 立体几何综合【母题原题1】【2018新课标1,理18】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.【母题原题2】【2017新课标1,理18】如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.【解析】(1)由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)在平面PAD内作PF⊥AD,垂足为F.由(1)可知,AB⊥平面PAD,故AB⊥PF,可得PF⊥平面ABCD.以F为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系F-xyz.由(1)及已知可得A,P,B,C.【母题原题3】【2016新课标1,理18】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(Ⅰ)证明:平面ABEF⊥平面EFDC;(Ⅱ)求二面角E-BC-A的余弦值.【解析】 (Ⅰ)由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又故平面ABEF⊥平面EFDC.(Ⅱ)过D作DG⊥EF,垂足为G,由(Ⅰ)知DG⊥平面ABEF.以G为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系G-xyz.由(Ⅰ)故∠DFE=60°,则|DF|=2,|DG|=,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,).设则所以可取n=(3,0,-).设则同理可取m=(0,,4),则cos<n,m>==-.故二面角E-BC-A的余弦值为-.【命题热点】从近几年的高考试题来看,线线垂直的判定、线面垂直的判定、面面垂直的判定与性质、二面角等是高考的热点,题型既有选择题、填空题又有解答题,难度中等偏高,客观题主要考查线面垂直、面面垂直的判定与性质,考查二面角的概念及求法;而主观题不仅考查以上内容,同时还考查学生的空间想象能力、逻辑推理能力以及分析问题、解决问题的能力.而直线与平面平行的判定,以及平面与平面平行的判定高考大题连续三年都没涉及,而在小题中考查,从高考试题来看,利用空间向量证明平行与垂直,以及求空间角是高考的热点,题型主要为解答题,难度属于中等,主要考查向量的坐标运算,以及向量的平行与垂直的充要条件,如何用向量法解决空间角问题等,同时注重考查学生的空间想象能力、运算能力.高考考查的热点可能以锥体或斜棱柱为几何背景,第一问以线面平行,面面平行为主要考查点,第二问可能是求二面角或探索性命题,突出考查空间想象能力和逻辑推理能力,以及分析问题、解决问题的能力,也有可能求线面角. 【应试经验】1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.可以考虑向量的工具性作用,能用向量解决的尽可能应用向量解决,可使问题简化.3.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.4.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.5.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证直线a ∥b ,只需证明它们的方向向量满足a b λ=(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.6.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同. 【基础知识理顺】 1. 线线平行与垂直的证明证明线线平行的方法:(1)平行公理;(2)线面平行的性质定理;(3)面面平行的性质定理;(4)向量平行.要注意线面、面面平行的性质定理的成立条件. 证明线线垂直的方法:(1)异面直线所成的角为直角;(2)线面垂直的性质定理;(3)面面垂直的性质定理;(4)三垂线定理和逆定理;(5)勾股定理;(6)向量垂直.要注意线面、面面垂直的性质定理的成立条件.解题过程中要特别体会平行关系性质的传递性,垂直关系的多样性.2.线面平行与垂直的证明方法线面平行与垂直位置关系的确定,也是高考考查的热点,在小题中考查关系的确定,在解答题考查证明细节. 线面平行的证明方法:(1)线面平行的定义;(2)线面平行的判断定理;(3)面面平行的性质定理;(4)向量法:证明这条直线的方向向量和这个平面内的一个向量互相平行;证明这个直线的方向向量和这个平面的法向量相互垂直.线面平行的证明思考途径:线线平行⇔线面平行⇔面面平行.线面垂直的证明方法:(1)线面垂直的定义;(2)线面垂直的判断定理;(3)面面垂直的性质定理;(4)向量法:证明这个直线的方向向量和这个平面的法向量相互平行. 线面垂直的证明思考途径:线线垂直⇔线面垂直⇔面面垂直. 3.面面平行与垂直的证明(1)面面平行的证明方法:①反证法:假设两个平面不平行,则它们必相交,在导出矛盾;②面面平行的判断定理;③利用性质:垂直于同一直线的两个平面平行;平行于同一平面的两个平面平行;④向量法:证明两个平面的法向量平行.(2)面面垂直的证明方法:①定义法;②面面垂直的判断定理;③向量法:证明两个平面的法向量垂直. 解题时要由已知相性质,由求证想判定,即分析法和综合法相结合寻找证明思路,关键在于对题目中的条件的思考和分析,掌握做此类题的一般技巧和方法,以及如何巧妙进行垂直之间的转化. 4.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算. 5. 如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径.(2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(4)万能方法,空间向量求解不用找角设AB 是平面α的斜线,BO 是平面α的垂线,AB 与平面α所成的角BAO θ∠=,向量AB 与n 的夹角ABO ψ∠=,则sin cos AB n AB nθψ⋅==⋅.6.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角; (2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等.法二:设1n ,2n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧(同等异补),则二面角l αβ--的平面角α1212arccos||||n n n n =7.如何建立适当的坐标系根据几何体本身的几何性质,恰当建立空间直角坐标系最为关键,如果坐标系引入的恰当,合理,即能够容易确定点的坐标,需要总结一些建系方法.常见建系方法:(1)借助三条两两相交且垂直的棱为坐标轴,如正方体,长方体等规则几何体,一般选择三条线为三个坐标轴,如图1、2;(2)借助面面垂直的性质定理建系,若题目中出现侧面和底面垂线的条件,一般利用此条件添加辅助线,确定z 轴,如图3;(3)借助棱锥的高线建系等.对于正棱锥,利用定点在底面的射影为底面的中心,可确定z轴,然后在底面确定互相垂直的直线分别为x,y轴.如图4.8.如何确定平面的法向量(1)首先观察是否与存在于面垂直的法向量,若有可直接确定,若不存在,转化为待定系数法;(2)待定系数法:由于法向量没有规定长度,仅规定了方向,所以有一个自由度,于是可把法向量的某个坐标设为1,再求另两个坐标.由于平面法向量是垂直于平面的向量,所以取平面的两条相交向量,设(,,),n x y z=由n an b⎧⋅=⎪⎨⋅=⎪⎩解方程组求得.9. 向量为谋求解立体几何的探索性问题空间向量最合适于解决立体几何中探索性问题,它无需进行复杂繁难的作图、论证、推理,只需通过坐标运算进行判断,在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,所以使问题的解集更加简单、有效,应善于运用这一方法解题.1.【山东、湖北部分重点中学2018年高考冲刺模拟试卷(二)】如图,五边形中,四边形为长方形,三角形为边长为2的正三角形,将三角形沿折起,使得点在平面上的射影恰好在上.(Ⅰ)当时,证明:平面平面;(Ⅱ)若,求平面与平面所成二面角的余弦值的绝对值.【解析】试题分析:,又四边形为长方形,.取中点为,得∥,连结,其中,,由以上证明可知互相垂直,不妨以为轴建立空间直角坐标系.,,设是平面的法向量,则有即,令得设是平面的法向量,则有即令得.则所以平面与平面所成二面角的余弦值的绝对值为.2.【山东省肥城市2018届高三适应性训练】如图,在四棱锥中,底面,底面为梯形,,,且,.(1)求二面角的大小;(2)在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由.(2)假设存在点,设,所以,所以,解得,所以存在点,且.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.3.【福建省三明市第一中学2018届高三下学期适应性练习(一)】如图,已知多面体的底面是边长为2的菱形,底面,,且.(1)证明:平面平面;(2)若直线与平面所成的角为,求二面角的余弦值.,,,,.设平面的法向量为,则,即.令,则.所以.设平面的法向量为,则,即.令,则.所以.,设二面角的大小为,由于为钝角,所以,即二面角的余弦值为.点睛:(1)证明面面垂直,转化为线面垂直,证明线面垂直转化为线线垂直,用分析法思考,用综合法书写。

2018届高考数学二轮数学空间向量与立体几何专题专题卷(全国通用)

2018届高考数学二轮数学空间向量与立体几何专题专题卷(全国通用)

空间向量与立体几何一、选择题1. 已知A∈α,P∉α,=,平面α的一个法向量n=,则直线PA 与平面α所成的角为( )A. 30°B. 45°C. 60°D. 150°【答案】C【解析】设PA与平面α所成的角为θ,则sinθ=∵θ∈0°,90°,∴θ=60°,故选C.2. (2017·泸州二模)在空间直角坐标系中,点P(m,0,0)到点P1(4,1,2)的距离为,则m的值为( )A. -9或1B. 9或-1C. 5或-5D. 2或3【答案】B【解析】由题意|PP1|=,即,∴(m-4)2=25,解得m=9或m=-1.故选B.点睛:空间向量数量积的三个应用(1)求夹角,设向量,所成的角为,则cos=,进而可求两异面直线所成的角.(2)求长度(距离),运用公式||2=·,可使线段长度的计算问题转化为向量数量积的计算问题.(3)解决垂直问题,利用⊥⇔·=0(≠,≠),可将垂直问题转化为向量数量积的计算问题.3. 在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为( )A. 30°B. 45°C. 60°D. 90°【答案】A【解析】由已知AB2+BC2=AC2,则AB⊥BC.分别以BC,BA,BB1为x,y,z轴建立空间直角坐标系,如图所示,设AA1=2a,则A(0,1,0),C(,0,0),D,E(0,0,a),所以=,平面BB1C1C的一个法向量为n=(0,1,0),cos〈,n〉=,〈,n〉=60°,所以直线DE与平面BB1C1C所成的角为30°.故选A.点睛:(1)求出直线的方向向量与平面的法向量所夹的锐角后(求出是钝角时取其补角),取其余角即为直线与平面所成的角.(2)若求线面角的余弦值,要注意利用平方关系sin2θ+cos2θ=1求出其值.不要误认为直线的方向向量与平面的法向量所成夹角的余弦值即为所求.4. 如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A. AP⊥PB,AP⊥PCB. AP⊥PB,BC⊥PBC. 平面BPC⊥平面APC,BC⊥PCD. AP⊥平面PBC【答案】B【解析】A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BCP⊥平面P AC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.点睛: 垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.5. (2017·东北三校联考(一))在直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角为( )A. 30°B. 45°C. 60°D. 90°【答案】C【解析】试题分析:延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选C.考点:异面直线及其所成的角.6. (2017·丽水一模)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=AD=1,AB=2,点E是AB上一点,当二面角P-EC-D为时,AE=( )A. 1B.C. 2-D. 2-【答案】D【解析】试题分析:以点D为原点建立空间直角坐标系,DA,DC,DP分别为轴,D(0,0,0),E(1,a,0),C(0,2,0),P(0,0,1),,,设平面平面的法向量为,即,那么,解得:,平面的法向量为,那么,解得,所以,故选D.考点:空间向量7. (2017·黄冈质检)如图,在棱长均为2的正四棱锥P-ABCD中,点E为PC的中点,则下列命题正确的是( )A. BE∥平面PAD,且BE到平面PAD的距离为B. BE∥平面PAD,且BE到平面PAD的距离为C. BE与平面PAD不平行,且BE与平面PAD所成的角大于30°D. BE与平面PAD不平行,且BE与平面PAD所成的角小于30°【答案】D【解析】连接AC,BD,交点为O,连接OP,以O为坐标原点,OC,OD,OP所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,由正四棱锥P-ABCD的棱长均为2,点E为PC的中点,知A(-,0,0),B(0,-,0),C(,0,0),D(0,,0),P(0,0,),E,则=,=(-,0,-),=(0,,-),设m=(x,y,z)是平面PAD的法向量,则m⊥,且m⊥,即,令x=1,则z=-1,y=-1,m =(1,-1,-1)是平面PAD的一个法向量,设BE与平面PAD所成的角为θ,则sinθ=,故BE与平面PAD不平行,且BE与平面PAD所成的角小于30°,故选D.点睛:(1)求出直线的方向向量与平面的法向量所夹的锐角后(求出是钝角时取其补角),取其余角即为直线与平面所成的角.(2)若求线面角的余弦值,要注意利用平方关系sin2+cos2=1求出其值.不要误认为直线的方向向量与平面的法向量所成夹角的余弦值即为所求.8. 在正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,则点A1到平面AB1D1的距离是( )A. 1B.C.D. 2【答案】B【解析】设点A1到平面AB1D1的距离为h,因为V A1-AB1D1=V A-A1B1D1,所以S△AB1D1h=S△A1B1D1×AA1,所以h=故选B.点睛:点面距离往往转化为对应棱锥的高,通过等体积法求高得点面距离二、填空题9. 在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1,BB1的中点,则直线DE与平面BB1C1C所成角的正弦值为.【答案】【解析】如图,取AC的中点F,连接DF,BF,则DF∥BE,DF=BE,∴DE∥BF,∴BF与平面BB1C1C 所成角的正弦值为所求.∵AB=1,BC=,AC=2,∴AB⊥BC,又AB⊥BB1,∴AB⊥平面BB1C1C.作GF∥AB交BC于点G,则GF⊥平面BB1C1C,∴∠FBG为直线BF与平面BB1C1C所成的角.由条件知BG=BC=,GF=AB=,∴tan∠FBG==,∴∠FBG=,∴sin∠FBG=sin=,即直线DE与平面BB1C1C所成角的正弦值为.10. 正方体ABCD-A1B1C1D1中,面ABD1与面B1BD1所夹角的大小为.【答案】60°【解析】建立空间直角坐标系D-xyz,如图.设正方体的棱长为1,则A(1,0,0),B(1,1,0),B1(1,1,1),D1(0,0,1).∴=(1,0,-1),=(1,1,-1),=(1,1,0).设平面ABD1的法向量为m=(x1,y1,z1),平面B1BD1的法向量为n=(x2,y2,z2),则由m·=0,m·=0,可得m=(1,0,1),由n·=0,n·=0,得n=(1,-1,0), ∴cos〈m,n〉==.∴所求二平面的大小为60°.学 ...学...学...学 ...11. (2017·山西晋中五校联考)如图,在四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD 为直角梯形,AD∥BC,∠BAD=90°,且AB=4,SA=3,E、F分别为线段BC、SB上的一点(端点除外),满足=λ,则当实数λ的值为时,∠AFE为直角.【答案】【解析】∵SA⊥面ABCD,∠BAD=90°,故可建立如图所示的空间直角坐标系A-xyz.∵AB=4,SA=3,∴B(0,4,0),S(0,0,3).设BC=m,则C(m,4,0),∵=λ,∴=λ,∴∴F.同理,E,∴要使∠AFE=90°,则,又,∴,∴16λ=9,∴λ=.点睛:空间向量数量积的三个应用(1)求夹角,设向量,所成的角为,则cos=,进而可求两异面直线所成的角.(2)求长度(距离),运用公式||2=·,可使线段长度的计算问题转化为向量数量积的计算问题.(3)解决垂直问题,利用⊥⇔·=0(≠,≠),可将垂直问题转化为向量数量积的计算问题.三、解答题12. 如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=AD=2,BC=1,CD=.(1)求证:平面PQB⊥平面PAD;(2)若二面角M-BQ-C为30°,设PM=t·MC,试确定t的值.【答案】(1)见解析(2)3又∵平面P AD⊥平面ABCD 且平面P AD∩平面ABCD=AD,∴BQ⊥平面P AD.∵BQ 平面PQB,∴平面PQB⊥平面P AD.(2)∵P A=PD,Q为AD的中点,∴PQ⊥AD.∵平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,∴PQ⊥平面ABCD.如图,以Q为原点建立空间直角坐标系.则平面BQC的法向量为;,,,.设,则,,∵,∴,∴在平面MBQ中,,,∴平面MBQ法向量为.∵二面角M-BQ-C为30,∴.考点:本题考查了空间中的线面关系点评:高考中常考查空间中平行关系与垂直关系的证明以及几何体体积的计算,这是高考的重点内容.证明的关键是熟练掌握并灵活运用相关的判定定理与性质定理.。

2018年全国各地高考数学模拟试题《空间向量与立体几何》试题汇编(含答案解析)

2018年全国各地高考数学模拟试题《空间向量与立体几何》试题汇编(含答案解析)

2018年09月08日139****1745的高中数学组卷一.解答题(共40小题)1.(2018•黄州区校级三模)如图,在矩形ABCD中,AD=2AB=4,E为BC的中点,现将△BAE与△DCE折起,使得平面BAE⊥平面ADE,平面DCE⊥平面ADE.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求二面角A﹣BE﹣C的余弦值.2.(2018•大武口区校级三模)将棱长为a的正方体截去一半(如图1所示)得到如图2所示的几何体,点E,F分别是BC,DC的中点.(Ⅰ)证明:AF⊥平面DD1E;(Ⅱ)求点E到平面AFD1的距离.3.(2018•香坊区校级三模)如图,在三棱柱ABC﹣A1B1C1中,,C1在线段AB1上的射影为H,H是正方形AA1B1B的中心,.(1)求证:平面C1AB1⊥平面AA1B1B;(2)求二面角C﹣BC1﹣A1的余弦值.4.(2018•石嘴山一模)如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为BC的中点,侧棱AA1=3,点E在BB1上,点F在CC1上,且BE=1,CF=2.(Ⅰ)证明:CE⊥平面ADF;(Ⅱ)求二面角F﹣AD﹣E的余弦值.5.(2018•肥城市模拟)如图,在四棱锥P﹣ABCD中,PB⊥底面ABCD,底面ABCD 为梯形,AD∥BC,AD⊥AB,且PB=AB=AD=3,BC=1.(Ⅰ)若点F为PD上一点且,证明:CF∥平面PAB;(Ⅱ)求二面角B﹣PD﹣A的大小;(Ⅲ)在线段PD上是否存在一点M,使得CM⊥PA?若存在,求出PM的长;若不存在,说明理由.6.(2018•盐湖区校级模拟)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD和圆O所在的平面互相垂直,已知AB=2,EF=1.(Ⅰ)求证:平面DAF⊥平面CBF;(Ⅱ)当AD的长为何值时,二面角D﹣FE﹣B的大小为60°.7.(2018•安阳一模)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD的顶点A,B,C分别在x轴,y轴,z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.8.(2018•马鞍山三模)如图,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=AC=AA1=2,D,E分别为B1C1,AB中点.(1)证明:平面AA1D⊥平面EB1C1;(2)若AB⊥AC,求点B到平面EB1C1的距离.9.(2018•黄州区校级模拟)在如图所示的几何体中,EA⊥平面ABCD,四边形ABCD为等腰梯形,AD BC,AD=AE=1,∠ABC=60°,EF AC.(Ⅰ)证明:AB⊥CF;(Ⅱ)求二面角B﹣EF﹣D的余弦值.10.(2018•九江三模)如图,在三棱柱ABC﹣A1B1C1中,侧面AA1B1B是边长为1的菱形,∠A1B1B=60°,E为A1C1的中点,AC1=B1C1=1,A1C1=BC1,A1B∩AB1=O.(Ⅰ)证明:平面AB1C1⊥平面AA1B1B;(Ⅱ)求二面角A﹣OE﹣C的余弦值.11.(2018•河南一模)四棱锥P﹣ABCD中,底面ABCD为矩形,AB=2,BC=.PA=PB,侧面PAB⊥底面ABCD.(1)证明:PC⊥BD;(2)设BD与平面PAD所成的角为45°,求二面角B﹣PC﹣D的余弦值.12.(2018•洛阳二模)如图,在三棱锥P﹣ABC中,PA=PB=AB=BC,∠ABC=90°,D为AC的中点.(1)求证:AB⊥PD;(2)若∠PBC=90°,求二面角B﹣PD﹣C的余弦值.13.(2018•衡阳一模)在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PB=PC=PD.(1)证明:PA⊥平面ABCD;(2)若PA=2,求二面角A﹣PD﹣B的余弦值.14.(2018•朝阳一模)在如图所示的几何体ABCDEF中,平面ABCD⊥平面ABEF,四边形ABCD和四边形ABEF都是正方形,且边长为2,Q是AD的中点.(1)求证:直线AE∥平面FQC;(2)求二面角A﹣FC﹣B的大小.15.(2018•厦门二模)已知四棱锥P﹣ABCD的底面ABCD是直角梯形,AD,BC=2AD=2,E为CD的中点,PB⊥AE.(1)证明:平面PBD⊥平面ABCD;(2)若PB=PD,且PC与平面ABCD所成角为,求二面角B﹣PD﹣C的余弦值.16.(2018•贵阳二模)已知如图1所示,在边长为12的正方形AA′A1A1,中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分别交BB1,CC1于点P,Q,将该正方形沿BB1,CC1,折叠,使得A′A1与AA1重合,构成如图2所示的三棱柱ABC﹣A1B1C1,在该三棱柱底边AC上有一点M,满足AM=kMC(0<k<1);请在图2中解决下列问题:(I)求证:当k=时,BM∥平面APQ;(Ⅱ)若直线BM与平面APQ所成角的正弦值为,求k的值17.(2018•烟台二模)如图,在三棱锥P﹣ABC中,D为AC中点,P在平面ABC 内的射影O在AC上,BC=AB=2AP,AB⊥BC,∠PAC=45°.(1)求证:AP⊥平面PBD;(2)求二面角A﹣PC﹣B的余弦值.18.(2018•广西三模)如图,三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,AB=2,AC=CB=2,M,N分别是AB、A1C的中点.(1)求证:MN∥平面BB1C1C;(2)若平面CMN⊥平面B1MN,求直线AB与平面B1MN所成角的正弦值.19.(2018•聊城一模)如图,四棱锥P﹣ABCD中,△PAD为等边三角形,且平面PAD⊥平面ABCD,AD=2BC=2,AB⊥AD,AB⊥BC.(Ⅰ)证明:PC⊥BC;(Ⅱ)若直线PC与平面ABCD所成角为60°,求二面角B﹣PC﹣D的余弦值.20.(2018•三明二模)在四棱锥P﹣ABCD中,AB∥CD,CD=2AB,AC与BD相交于点M,点N在线段AP上,AN=λAP(λ>0),且MN∥平面PCD.(1)求实数λ的值;(2)若,∠BAD=60°,求点N到平面PCD的距离.21.(2018•淄博一模)直角三角形ABC中,∠C=90°,AC=4,BC=2,E是AC的中点,F是线段AB上一个动点,且,如图所示,沿BE将△CEB翻折至△DEB,使得平面DEB⊥平面ABE.(1)当时,证明:BD⊥平面DEF;(2)是否存在λ,使得DF与平面ADE所成的角的正弦值是?若存在,求出λ的值;若不存在,请说明理由.22.(2018•全国二模)如图,五边形ABSCD中,四边形ABCD为长方形,三角形SBC为边长为2的正三角形,将三角形SBC沿BC折起,使得点S在平面ABCD 上的射影恰好在AD上.(Ⅰ)当时,证明:平面SAB⊥平面SCD;(Ⅱ)若AB=1,求平面SCD与平面SBC所成二面角的余弦值的绝对值.23.(2018•河南一模)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,且平面PAD⊥平面ABCD,PA⊥AB.(1)求证:四边形ABCD是矩形;(2)若PA=PD=AD=DC,求二面角A﹣PB﹣C的余弦值.24.(2018•芜湖模拟)如图,在三棱柱ABC﹣A1B1C1中,∠AA1B1=45°,AC=BC,平面BB1C1C⊥平面AA1B1B,E为CC1中点.(1)求证:BB1⊥AC;(2)若AA1=2,AB=,直线A1C1与平面ABB1A1所成角为45°,求平面A1B1E 与平面ABC所成锐二面角的余弦值.25.(2018•静海区校级模拟)如图,等腰直角三角形AEF的斜边EF的中点为D,四边形ABCD为矩形,平面ABCD⊥平面AEF,点G为DF的中点,AD=2AB=2.(1)证明:BF∥平面ACG;(2)求二面角D﹣BC﹣F的正弦值;(3)点H为直线CE上的点,且=﹣5,求直线AH和平面BCF所成角的正弦值.26.(2018•泰安二模)如图,在三棱柱ABC﹣A1B1C1中,四边形AA1B1B为菱形,且∠BAA1=60°,AB=AC=BC=2,F是AA1的中点.平面ABC⊥平面AA1B1B.(I)求证:AB1⊥CF;(Ⅱ)求二面角A1﹣BC﹣B1的余弦值.27.(2018•济宁一模)如图,在以A,B,C,D,E为顶点的多面体中,∠ACB=90°,面ACDE为直角梯形,DE∥AC,∠ACD=90°,AC=2DE=3,BC=2,DC=1,二面角B﹣AC﹣E的大小为60°.(1)求证:BD⊥平面ACDE;(2)求平面ABE与平面BCD所成二面角(锐角)的大小;28.(2018•南宁二模)如图,四棱锥P﹣ABCD中,,AD=CD=2,PA=PC,,AB⊥AD,平面PAD⊥平面ABCD.(1)求证:PD⊥平面ABCD;(2)若PD=3,求直线CD与平面PAB所成角的正弦值.29.(2018•门头沟区一模)在四棱锥P﹣ABCD中,AB∥CD,AB=2CD=2BC=2AD=4,∠DAB=60°,AE=BE△PAD为正三角形,且平面PAD⊥平面ABCD,平面PEC∩平面PAD=l.(1)求证:l∥EC;(2)求二面角P﹣EC﹣D的余弦值;(3)是否存在线段PC(端点P,C除外)上一点M,使得DE⊥AM,若存在,指出点M的位置,若不存在,请明理由.30.(2018•凉山州模拟)如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2,,E为CD的中点,点F在线段PB上.(Ⅰ)求证:AD⊥PC;(Ⅱ)试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.31.(2018•梅河口市校级二模)如图,三棱锥B﹣ACD的三条侧棱两两垂直,BC=BD=2,,E,F,G分别是棱CD,AD,AB的中点.(1)证明:平面ABE⊥平面ACD;(2)求二面角A﹣EG﹣F的余弦值.32.(2018•南关区校级四模)如图1,在正方形ABCD中,E是AB的中点,点F 在线段BC上,且.若将△AED,△CFD分别沿ED,FD折起,使A,C两点重合于点M,如图2.(1)求证:EF⊥平面MED;(2)求直线EM与平面MFD所成角的正弦值33.(2018•黑龙江模拟)如图,三棱柱ABC﹣A1B1C1的侧面AA1B1B为正方形,侧面侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(I)求证:平面AA1B1B⊥平面BB1C1C;(II)若三棱柱ABC﹣A1B1C1的体积为2,求点A到平面A1B1C1的距离.34.(2018•中山市一模)如图,四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,AD ∥BC,AD⊥DC,AD=DC=3,BC=2,,点F在棱PC上,且FC=2FP,点E在棱AD上,且PA∥平面BEF.(1)求证:PE⊥平面ABCD;(2)求二面角P﹣EB﹣F的余弦值.35.(2018•海淀区校级模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,PA=PD=AD=2,点M在线段PC上.(Ⅰ)求证:AD⊥平面PQB;(Ⅱ)若平面PAD⊥平面ABCD,PA∥平面MQB,求二面角M﹣BQ﹣C的大小.36.(2018•全国三模)已知等腰直角△S′AB,S′A=AB=4,S′A⊥AB,C,D分别为S′B,S′A的中点,将△S′C D沿CD折到△SCD的位置,SA=2,取线段SB的中点为E.(I)求证:CE∥平面SAD;(Ⅱ)求二面角A﹣EC﹣B的余弦值.37.(2018•河南一模)如图,高为1的等腰梯形ABCD中,AM=CD=AB=1,M 为AB的三等分点,现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB、AC.(Ⅰ)在AB边上是否存在点P,使AD∥平面MPC?(Ⅱ)当点P为AB边中点时,求点B到平面MPC的距离.38.(2018•南充模拟)如图,正方形ABCD与等边三角形ABE所在的平面互相垂直,M,N分别是DE,AB的中点.(1)证明:MN∥平面BCE;(2)求锐二面角M﹣AB﹣E的余弦值.39.(2018•福州一模)在直三棱柱ABC﹣A1B1C1中,△ABC为正三角形,AB=AA1,点D在棱BC上,且CD=3BD,点E,F分别为棱AB,BB1的中点.(1)证明:DE⊥平面BCC1B1;(2)若AB=4,求点C1与平面DEF的距离.40.(2018•广东二模)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD为菱形,且∠A1AB=∠A1AD.(1)证明:四边形BB1D1D为矩形;(2)若AB=A1A,∠BAD=60°,A1A与平面ABCD所成的角为30°,求二面角A1﹣BB1﹣D的余弦值.2018年09月08日139****1745的高中数学组卷参考答案与试题解析一.解答题(共40小题)1.【分析】(Ⅰ)过点B作BM⊥AE于M,过点C作CN⊥ED于N,连接MN,证明BC∥MN即可;(Ⅱ)以E为原点,ED为x轴,EA为y轴,建立空间直角坐标系E﹣xyz,求出平面CEB的法向量,平面AEB的法向量,计算cos<,>即可.【解答】解:(Ⅰ)证明:过点B作BM⊥AE,垂足为M,过点C作CN⊥ED于N,连接MN,如图所示;∵平面BAE⊥平面ADE,平面DCE⊥平面ADE,∴BM⊥平面ADE,CN⊥ADE,∴BM∥CN;由题意知Rt△ABE≌Rt△DCE,∴BM=CN,∴四边形BCNM是平行四边形,∴BC∥MN;又BC⊄平面ADE,MN⊂平面ADE,∴BC∥平面ADE;(Ⅱ)由已知,AE、DE互相垂直,以E为原点,ED为x轴,EA为y轴,建立空间直角坐标系E﹣xyz,如图所示;则E(0,0,0),B(0,,),C(,0,),=(0,,),=(,0,),设平面CEB的法向量为=(x,y,z),则,即,令y=﹣1,则z=1,x=1,∴=(﹣1,﹣1,1);设平面AEB的法向量为=(x,y,z),则,易求得=(1,0,0);又cos<,>===﹣,∴当二面角A﹣BE﹣C的平面角为锐角时,余弦值为,当二面角A﹣BE﹣C的平面角为钝角时,余弦值为﹣.【点评】本题考查了空间几何体以及空间向量的应用问题,是中档题.2.【分析】(Ⅰ)推导出D1D⊥AF,△ADF≌△DCE,AF⊥DE,由此能证明AF⊥平面D1DE.(Ⅱ)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出点E到平面AFD1的距离.【解答】证明:(Ⅰ)∵D1D⊥平面ABCD,AF⊂平面ABCD,∴D1D⊥AF,∵点E,F分别是BC,D1C的中点,∴DF=CE,又∵AD=DC,∠ADF=∠DCE=90°,∴△ADF≌△DCE,∴∠AFD=∠DEC,又∵∠CDE+∠DEC=90°,∴∠CDE+∠AFD=90°,∴∠DOF=180°﹣(∠CDE+∠AFD)=90°,∴AF⊥DE,又∵D1D∩DE=D,∴AF⊥平面D1DE.解:(Ⅱ)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,E(,a,0),A(a,0,0),F(0,,0),D1(0,0,a),=(﹣,a,0),=(﹣a,,0),=(﹣a,0,a),设平面AFD1的法向量=(x,y,z),则,取x=1,得=(1,2,1),∴点E到平面AFD1的距离d===.【点评】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.3.【分析】(1)取A1B1的中点D,连结HD、C1D推导出HD⊥A1B1,A1B1⊥C1H,C1H ⊥AB1,从而C1H⊥平面AA1B1B,由此能证明平面C1AB1⊥平面AA1B1B.(2)建立空间直角坐标系,利用向量法能求出二面角C﹣BC1﹣A1的余弦值.【解答】证明:(1)取A1B1的中点D,连结HD、C1D∵CA=CB,∴C1D⊥A1B1,∵四边形AA1B1D是正方形,∴HD⊥A1B1,又HD∩C1D=D,∴A1B1⊥平面C1HD,∴A1B1⊥C1H,∵C1在线段AB1上的射影为H,∴C1H⊥AB1,∵AB1∩A1B1=B1,∴C1H⊥平面AA1B1B,∴平面C1AB1⊥平面AA1B1B.解:(2)如图建系:由AA1=2,得A1H=B1H=2,∴A1(2,0,0),A(0,﹣2,0),B1(0,2,0),B(﹣2,0,0),C1(0,0,),设C(x,y,z),则=(x,y,z﹣),=(﹣2,﹣2,0),由=,得x=﹣2,y=﹣2,z=,∴C(﹣2,﹣2,),平面BC1A1的法向量=(0,1,0),=(2,0,),=(0,﹣2,),平面BC1C的法向量=(x,y,z),则,取x=,得=(,﹣,﹣2),设二面角C﹣BC1﹣A1的平面角为θ,由图形得θ为钝角,∴cosθ=﹣=﹣,∴二面角C﹣BC1﹣A1的余弦值为﹣.【点评】本题考查面面垂直的证明,考查二面角的余弦值的求法,考查线面垂直的性质与判定,面面垂直的判定定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.4.【分析】(Ⅰ)以C为原点,在平面ABC中过C作BC的垂线为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能证明CE⊥平面ADF.(Ⅱ)求出平面ADF的法向量和平面ADE的法向量,利用向量法能求出二面角F ﹣AD﹣E的余弦值.【解答】证明:(Ⅰ)以C为原点,在平面ABC中过C作BC的垂线为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,C(0,0,0),E(0,2,1),A(,0),D(0,1,0),F(0,0,2),=(0,2,1),=(),=(0,1,﹣2),∴=0,=0,∴CE⊥FA,CE⊥FD,又FA∩FD=F,∴CE⊥平面ADF.解:(Ⅱ)=(﹣,0,0),=(﹣,1,1),设平面ADF的法向量=(x,y,z),则,取z=1,得=(0,2,1),设平面ADE的法向量=(x,y,z),则,取y=1,得=(0,1,﹣1),设二面角F﹣AD﹣E的平面角为θ,则cosθ===.∴二面角F﹣AD﹣E的余弦值为.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.5.【分析】(Ⅰ)过点F作FH∥AD,交PA于H,连接BH,证明HF∥BC,CF∥BH,然后证明CF∥平面PAD.(Ⅱ)说明BC⊥AB.PB⊥AB,PB⊥BC,以B为原点,BC,BA,BP所在直线为x,y,z轴建立空间直角坐标系,求出平面BPD的一个法向量,平面APD的一个法向量,通过向量的数量积求解二面角B﹣PD﹣A的大小.(Ⅲ)假设存在点M,设,利用向量的数量积求解即可.【解答】解:(Ⅰ)证明:过点F作FH∥AD,交PA于H,连接BH,因为,所以.….(1分)又FH∥AD,AD∥BC,所以HF∥BC.….(2分)所以BCFH为平行四边形,所以CF∥BH.….(3分)又BH⊂平面PAB,CF⊄平面PAB,….(4分)(一个都没写的,则这(1分)不给)所以CF∥平面PAB.….(5分)(Ⅱ)因为梯形ABCD中,AD∥BC,AD⊥AB,所以BC⊥AB.因为PB⊥平面ABCD,所以PB⊥AB,PB⊥BC,如图,以B为原点,BC,BA,BP所在直线为x,y,z轴建立空间直角坐标系,….(6分)所以C(1,0,0),D(3,3,0),A(0,3,0),P(0,0,3).设平面BPD的一个法向量为,平面APD的一个法向量为,因为,所以,即,….(7分)取x=1得到,….(8分)同理可得,….(9分)所以,….(10分)因为二面角B﹣PD﹣A为锐角,所以二面角B﹣PD﹣A为.….(11分)(Ⅲ)假设存在点M,设,所以,….(12分)所以,解得,….(13分)所以存在点M,且.….(14分)【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,向量的数量积的应用,考查空间想象能力以及计算能力.6.【分析】(I)利用面面垂直的性质,可得CB⊥平面ABEF,再利用线面垂直的判定,证明AF⊥平面CBF,从而利用面面垂直的判定可得平面DAF⊥平面CBF;(II)建立空间直角坐标系,求出平面DCF的法向量和平面CBF的一个法向量,利用向量的夹角公式,即可求得AD的长.【解答】(Ⅰ)∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF,∵AF⊂平面ABEF∴AF⊥CB,又∵AB为圆O的直径,∴AF⊥BF,∴AF⊥平面CBF,∵AF⊂平面ADF,∴平面DAF⊥平面CBF.(Ⅱ)设EF中点为G,以O为坐标原点,OA,OG,AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设AD=t,则点D的坐标为(1,0,t),则C(﹣1,0,t),又A(1,0,0),B(﹣1,0,0),F(,,0),∴,,设平面DCF的法向量为=(x,y,z),则,即,可取.由(1)可知AF⊥平面CFB,取平面CFB的一个法向量为,|cos|=cos60°,即=,解得t=,因此,当AD的长为时,平面DFC与平面FCB所成的锐二面角的大小为60°.【点评】本题考查面面垂直,考查面面角,考查向量知识的运用,考查学生分析解决问题的能力,求出平面的法向量是关键.7.【分析】(Ⅰ)由AB=BC=CA,可得OA=OB=OC.设OA=a,则,求得A,B,C的坐标,设D点的坐标为(x,y,z),则由,求得x=y=z=a,得到.结合平面OAB的一个法向量为,利用,可得CD∥平面OAB;(Ⅱ)设F为AB的中点,连接CF,DF,可得∠CFD为二面角C﹣AB﹣D的平面角.然后利用余弦定理求解二面角C﹣AB﹣D的余弦值.【解答】(Ⅰ)证明:由AB=BC=CA,可得OA=OB=OC.设OA=a,则,A(a,0,0),B(0,a,0),C(0,0,a),设D点的坐标为(x,y,z),则由,可得(x﹣a)2+y2+z2=x2+(y﹣a)2+z2=x2+y2+(z﹣a)2=2a2,解得x=y=z=a,∴.又平面OAB的一个法向量为,∴,∴CD∥平面OAB;(Ⅱ)解:设F为AB的中点,连接CF,DF,则CF⊥AB,DF⊥AB,∠CFD为二面角C﹣AB﹣D的平面角.由(Ⅰ)知,在△CFD中,,,则由余弦定理知,即二面角C﹣AB﹣D的余弦值为.【点评】本题考查利用空间向量证明直线与平面平行,考查二面角的平面角的求法,是中档题.8.【分析】(1)推导出B1C1⊥AD,B1C1⊥AA1,从而B1C1⊥平面AA1D,由此能证明平面AA1D⊥平面EB1C1.(2)连接EC,设点B到平面EB1C1的距离为h,由,能求出点B到平面EB1C1的距离.【解答】证明:(1)由已知可得,B1C1⊥AD,B1C1⊥AA1,∴B1C1⊥平面AA1D,∵B1C1⊂平面EB1C1,∴平面AA1D⊥平面EB1C1.…………………………5分(2)连接EC,由已知,在Rt△AEC中,,∴在Rt△ECC1中,得EC1=3,由题可得,在Rt△EBB1中,,在Rt△A1B1C1中,,∴在△EB1C1中,根据余弦定理可得:,∴,∴………………………………9分∵C1A1⊥A1B1,C1A1⊥AA1,∴C1A1⊥平面BB1E,∵,∴,设点B到平面EB1C1的距离为h由得,解得:即点B到平面EB1C1的距离为.………………………………12分【点评】本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查函数与方程思想,是中档题.9.【分析】(Ⅰ)证明BA⊥AE.过点A作AH⊥BC于H,AB⊥AC,推出AB⊥平面ACFE.即可证明AB⊥CF.(Ⅱ)解:以A为坐标原点,AB,AC,AE分别为x,y,z轴,建立空间直角坐标系,求出平面BEF的一个法向量,平面DEF的一个法向量,通过向量的数量积求解二面角的余弦函数值即可.【解答】(Ⅰ)证明:由题知EA⊥平面ABCD,BA⊥平面ABCD,∴BA⊥AE.过点A作AH⊥BC于H,在RT△ABH中,,∴AB=1,在△ABC中,AC2=AB2+BC2﹣2AB•BCcos60°=3,∴AB2+AC2=BC2,∴AB⊥AC,且AC∩EA=A,∴AB⊥平面ACFE.又∵CF⊂平面ACFE,∴AB⊥CF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)解:以A为坐标原点,AB,AC,AE分别为x,y,z轴,建立空间直角坐标系,则,∴设为平面BEF的一个法向量,则令x=1,得,同理可求平面DEF的一个法向量,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查直线与平面垂直的判断定理的应用.二面角的平面角的求法,考查空间想象能力以及计算能力.10.【分析】(Ⅰ)连结OC1,推导出OC1⊥A1B,OC1⊥AB1,从而OC1⊥平面AA1B1B,由此能证明平面AB1C1⊥平面AA1B1B.(Ⅱ)以O为原点,OA为x轴,OA1为y轴,OC1为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣OE﹣C的余弦值.【解答】证明:(Ⅰ)连结OC1,∵A1C1=BC1,O为A1B的中点,∴OC1⊥A1B,同理得OC1⊥AB1,又A1B∩AB1=O,A1B,AB1⊂平面AA1B1B,∴OC1⊥平面AA1B1B,又OC1⊂平面AB1C1,∴平面AB1C1⊥平面AA1B1B.解:(Ⅱ)∵OC1⊥平面AA1B1B,A1B⊥AB1,∴以O为原点,OA为x轴,OA1为y轴,OC1为z轴,建立空间直角坐标系,在菱形AA1B1B中,∵∠A1B1B=60°,A1B1=1,∴OB1=,又B1C1=1,∴OC1=,则A(,0,0),B(﹣,0),B1(﹣,0,0),C1(0,0,),E(0,),设=(x,y,z)为平面COE的法向量,==(),则,取x=2,得=(2,),设=(x,y,z)为平面AOE的法向量,则,取y=1,得=(0,1,﹣1),∴cos<>==,∴二面角A﹣OE﹣C的余弦值为.【点评】本题考查面面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查分析问题和解决问题的能力,属于中档题.11.【分析】(1)证法一:设AB中点为O,连接PO,由已知PA=PB,所以PO⊥AB,而平面PAB⊥平面ABCD,交线为AB,以O为原点、OP为z轴,OB为y轴,如图建立空间直角坐标系,并设PO=h,求出相关的坐标,利用向量的数量积求解,推出PC⊥BD.证法二:设AB中点为O,连接PO,由已知PA=PB,所以PO⊥AB,而平面PAB ⊥平面ABCD,交线为AB,证明BD⊥PO,连接CO,设CO与BD交于M,通过计算∠BCM+∠CBM=∠CDB+∠CBM=90°,推出BD⊥CO,然后证明PC⊥BD(2)由AD⊥AB,平面PAB⊥平面ABCD,交线为AB,可得AD⊥平面PAB,平面PAB⊥平面PAD,交线为PA过B作BH⊥PA,垂足为H,则BH⊥平面PAD,BD 与平面PAD所成的角即为∠BDH,通过求解三角形即可得到结果.(也可用向量法求出PO:)设P(0,0,h),求出平面PAD的一个法向量,通过cos<,BD >=sin45°可解得h=,求出平面BPC的一个法向量,平面DPC的一个法向量,利用空间向量的数量积求解即可.【解答】(1)证法一:设AB中点为O,连接PO,由已知PA=PB,所以PO⊥AB,而平面PAB⊥平面ABCD,交线为AB,故PO⊥平面ABCD,以O为原点、OP为z轴,OB为y轴,如图建立空间直角坐标系,并设PO=h,则P(0,0,h),B(0,1,0),C(,1,0),D(,﹣1,0)所以=(,1,﹣h),=(,﹣2,0),所以PC⊥BD…(6分)证法二:设AB中点为O,连接PO,由已知PA=PB,所以PO⊥AB,而平面PAB⊥平面ABCD,交线为AB,故PO⊥平面ABCD,从而BD⊥PO…①在矩形ABCD中,连接CO,设CO与BD交于M,则由CD:BC=BC:MO知△BCD∽△OBC,所以∠BCO=∠CDB,所以∠BCM+∠CBM=∠CDB+∠CBM=90°,故BD⊥CO…②由①②知BD⊥平面PCO,所以PC⊥BD.(2)解:由AD⊥AB,平面PAB⊥平面ABCD,交线为AB,可得AD⊥平面PAB,所以平面PAB⊥平面PAD,交线为PA,过B作BH⊥PA,垂足为H,则BH⊥平面PAD,BD与平面PAD所成的角即为角BDH,所以BH=BD=,从而三角形PAB为等边三角形,PO=.…(8分)(也可用向量法求出PO:)设P(0,0,h),则A(0,﹣1,0),B(0,1,0),D(,﹣1,0),可求得平面PAD的一个法向量为=(0,h,﹣1),而,由cos<,BD>=sin45°可解得h=,设平面BPC的一个法向量为,则,,可取=(0,,1),设平面DPC的一个法向量为,则,,可取=(,0,﹣)于是cos<>=﹣,…(11分)故二面角B﹣PC﹣D的余弦值为﹣…(12分)【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.12.【分析】(1)根据已知条件,取AB的中点O,连结OD,OP,得到AB⊥OP,再利用线面垂直判定定理可得AB⊥平面POD,从而得到AB⊥PD;(2)由已知可得BC⊥平面PBA,又OD⊥平面PBA,得到OD⊥OP,由此建立空间直角坐标系,利用向量法能求出二面角B﹣PD﹣C的余弦值.【解答】(1)证明:取AB的中点为O,连接OD,OP,∵PA=PB,∴AB⊥OP,∵OD∥BC,∠ABC=90°,∴AB⊥OD,又OD∩OP=O,∴AB⊥平面POD,从而AB⊥PD;(2)解:∵∠PBC=90°,即PB⊥BC,∴BC⊥平面PBA,∴OD⊥平面PBA,∴OD⊥OP,以O为坐标原点,OB,OD,OP所在的直线为x,y,z轴建立空间直角坐标系,设OB=1,则,∴,设是平面PDB的一个法向量,则,即,不妨设z=1,则,∴,同理可求得平面PDC的一个法向量为,∴,∵二面角B﹣PD﹣C是锐二面角,∴其余弦值为.【点评】本题考查空间中直线与直线的位置关系,考查了空间想象能力和思维能力,考查了用空间向量法求二面角的余弦值,是中档题.13.【分析】(1)连接AC,取BC中点E,连接AE,PE,推导出BC⊥AE,BC⊥PE,从而BC⊥PA.同理CD⊥PA,由此能证明PA⊥平面ABCD.(2)以A为原点,建立空间直角坐标系A﹣xyz,利用向量法能求出二面角A﹣PD﹣B的余弦值.【解答】证明:(1)连接AC,则△ABC和△ACD都是正三角形.取BC中点E,连接AE,PE,因为E为BC的中点,所以在△ABC中,BC⊥AE,因为PB=PC,所以BC⊥PE,又因为PE∩AE=E,所以BC⊥平面PAE,又PA⊂平面PAE,所以BC⊥PA.同理CD⊥PA,又因为BC∩CD=C,所以PA⊥平面ABCD. (6)解:(2)如图,以A为原点,建立空间直角坐标系A﹣xyz,则B(,﹣1,0),D(0,2,0),P(0,0,2),=(0,2,﹣2),=(﹣,3,0),设平面PBD的法向量为=(x,y,z),则,取x=,得=(),取平面PAD的法向量=(1,0,0),则cos<>==,所以二面角A﹣PD﹣B的余弦值是.…(12分)【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.14.【分析】(1)由已知证明几何体ADF﹣BCE是三棱柱.进一步证得为直三棱柱.再根据四边形ABCD和四边形ABEF都是正方形,可得四边形DCEF为矩形.然后结合P是DE中点,Q是AD的中点,可得PQ∥DE,由线面平行的判定可得直线AE∥平面FQC;(2)解:由于平面ABCD⊥平面ABEF,AB⊥BC,可得BC⊥平面ABEF,则BC⊥BE.于是AB,BC,BE两两垂直.以BA,BC,BE所在直线分别为x,y,z轴建立空间直角坐标系,分别求出平面BFC与平面AFC的一个法向量,由两法向量所成角的余弦值可得二面角A﹣FC﹣B的大小.【解答】(1)证明:∵AF∥BE,AD∥BC,AF与AD交于点A,BE与BC交于点B,∴平面ADF∥平面BCE,∴几何体ADF﹣BCE是三棱柱.又平面ABCD⊥平面ABEF,AB⊥BC,∴AB⊥平面BCE,故几何体ADF﹣BCE是直三棱柱.又四边形ABCD和四边形ABEF都是正方形,∴EF∥AB∥DC且EF=AB=DC,故四边形DCEF为矩形.于是,连结DE交FC于P,连结PQ,P是DE中点,又Q是AD的中点,故PQ是边△AED的中位线,∴PQ∥AE,又AE⊄平面FQC,PQ⊂平面FQC,∴直线AE∥平面FQC;(2)解:由于平面ABCD⊥平面ABEF,AB⊥BC,∴BC⊥平面ABEF,∴BC⊥BE.于是AB,BC,BE两两垂直.以BA,BC,BE所在直线分别为x,y,z轴建立空间直角坐标系,∵正方形边长为2,且Q为AD中点,∴Q(2,1,0),F(2,0,2),C(0,2,0),B(0,0,0),于是,,设平面BFC的法向量为,则,取x=1,得,同理可得平面AFC的法向量,∴cos<>=.记二面角B﹣FC﹣A的大小为θ,依题意知,θ为锐角,由cos,得.即求二面角B﹣FC﹣A的大小为.【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解二面角的平面角,是中档题.15.【分析】(1)由已知可得BD⊥AE,又PB⊥AE,可得AE⊥平面PBD.平面PBD ⊥平面ABCD;(2)作PO⊥BD于点O,连接OC.可得∠PCO为PC与平面ABCD所成角,.作OH⊥PD于点H,连接CH,可得∠CHO为二面角B﹣PD﹣C的平面角,即可求解二面角B﹣PD﹣C的余弦值.【解答】(1)证明:由ABCD是直角梯形,AB=,BC=2AD=2,可得DC=2,.从而△BCD是等边三角形,.∵E为CD中点,DA=DE=1,∴BD⊥AE,又∵PB⊥AE,PB∩BD=B,∴AE⊥平面PBD.∵AE⊂平面ABCD,∴平面PBD⊥平面ABCD;(2)解:作PO⊥BD于点O,连接OC.∵平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,∴PO⊥平面ABCD.∴∠PCO为PC与平面ABCD所成角,.∵PB=PD,∴O为BD中点,OC⊥BD,OP=OC=,作OH⊥PD于点H,连接CH,则PD⊥平面CHO,PD⊥HC.∴∠CHO为二面角B﹣PD﹣C的平面角,∵,∴,CH=,∴∴二面角B﹣PD﹣C的余弦值为.【点评】本题考查了面面垂直的判定与性质定理、二面角的作法与求法等是解题的关键.属于中档题.16.【分析】(I)过M作MN∥CQ,交AQ于N,连接PN则MN∥PB,从而MNPQ 共面且平面MNPQ交平面APQ于PN,四边形MNPB为平行四边形,从而BM∥PN,由此能证明BM∥平面APQ.(II)以BA,BC,BB1为x,y,z轴,建立空间直角坐标系,由此能求出k的值.【解答】证明:(I)在图(2)中,过M作MN∥CQ,交AQ于N,连接PN,则MN∥PB∴MNPQ共面且平面MNPQ交平面APQ于PN,∵k=,AM=kMC,∴=,又CQ=7,∴MN=PB=AB=3,∴四边形MNPB为平行四边形,∴BM∥PN,PN⊂平面APQ,BM⊄平面APQ,∴BM∥平面APQ.解:(II)∵AB=3,BC=4,∴AC=5,∴AC2=AB2+BC2,∴AB⊥BC.由图1知,PB=AB=3,QC=7,分別以BA,BC,BB1为x,y,z轴,建立空间直角坐标系,则A(3,0,0),C(0,4,0),P(0,0,3),Q(0,4,7),=(0,4,0),=(﹣3,0,3),=(﹣3,4,7),设平面APQ的法向量为=(a,b,c),则,令a=1,得=(1,﹣1,1),由AM=kMC,得M(),∵直线BM与平面APQ所成角的正弦值为,∴==,解得k=或k=.【点评】本题考查线面平行的证明,考查实数值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.17.【分析】(1)推导出PO⊥平面ABC,平面PAC⊥平面ABC.从而BD⊥AC,再求出BD⊥AP,AP⊥PD,由此能证明AP⊥平面PBD.(2)以D为原点,向量的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系D﹣xyz,由此能求出二面角A﹣PC﹣B的余弦值.【解答】证明:(1)因为P在平面ABC内的射影O在AC上,所以PO⊥平面ABC.因为PO⊂平面PAC,所以平面PAC⊥平面ABC.又平面PAC∩平面ABC=AC,BD⊂平面ABC,BD⊥AC,所以BD⊥平面PAC.因为AP⊂平面PAC,所以BD⊥AP.…………(2分)由已知得,又AB=2AP,所以AD=,在三角形△APD中,由余弦定理得,所以PD=AP,于是AD2=PD2+AP2,且AP⊥PD,•……………(4分)又PD∩BD=D,BD⊂平面PBD,DP⊂平面PBD,所以AP⊥平面PBD.…………………………(5分)解:(2)在平面PAC内过D作DE∥OP,则DE⊥平面ABC.以D为原点,向量的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系D﹣xyz,设DA=2,则D(0,0,0),B(0,2,0),C(﹣2,0,0),P(1,0,1)•所以=(1,﹣2,1),=(﹣2,﹣2,0).…………………………………(8分)=(0,2,0)是平面PAC的一个法向量.………………………………(9分)设=(x,y,z)是平面PBC的法向量,则,令x=1,得=(1,﹣1,﹣3).………………………………(11分)设二面角A﹣l﹣B的大小为θ(θ为锐角).所以cosθ==.所以二面角A﹣PC﹣B的余弦值为.………………………………(12分)【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的益关系等基础知识,考查函数与方程思想,考查函数与方程思想,是中档题.18.【分析】(1)连结AC1、BC1,则MN∥BC1,由此能证明MN∥平面BB1C1C.(2)由A1A⊥平面ABC,得AC⊥CC1,BC⊥CC1,推导出AC⊥CB,以C为原点,分别以CB、CC1、CA所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面B1MN所成角的正弦值.【解答】证明:(1)连结AC1、BC1,则N∈AC1,且N为AC1的中点,∵M为AB的中点,∴MN∥BC1,又BC1⊂平面BB1C1C,MN⊄平面BB1C1C,∴MN∥平面BB1C1C.解:(2)由A1A⊥平面ABC,得AC⊥CC1,BC⊥CC1,∵AB=2,AC=CB=2,∴AC⊥CB,以C为原点,分别以CB、CC1、CA所在直线为x轴,y轴,z轴,建立空间直角坐标系,设CC1=2λ,(λ>0),则M(1,0,1),N(0,λ,1),B1(2,2λ,0),=(1,0,1),=(﹣1,λ,0),=(2,λ,﹣1),取平面CMN的一个法向量=(x,y,z),由=0,=0,得,令y=1,得=(λ,1,﹣λ),同理得平面B1MN的法向量=(λ,1,3λ),∵平面CMN⊥平面B1MN所成角为θ,则sinθ=|cos<>|==,∴直线AB与平面B1MN所成角的正弦值为.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.【分析】(Ⅰ)取AD的中点为O,连接PO,CO,说明PO⊥AD.证明CO⊥AD,然后证明AD⊥平面POC,推出AD⊥PC.(Ⅱ)证明PO⊥平面ABCD,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系O﹣xyz,求出平面PBC的法向量,平面PDC的法向量,利用空间向量的数量积求解二面角A﹣SB﹣C的余弦值.【解答】解:(Ⅰ)取AD的中点为O,连接PO,CO,∵△PAD为等边三角形,∴PO⊥AD.底面ABCD中,可得四边形ABCO为矩形,∴CO⊥AD,…(1分)∵PO∩CO=O,∴AD⊥平面POC,…(2分)PC⊂平面POC,AD⊥PC.…(3分)又AD∥BC,所以BC⊥PC.…(4分)(Ⅱ)由面PAD⊥面ABCD,PO⊥AD知,∴PO⊥平面ABCD,…(5分)OP,OD,OC两两垂直,直线PC与平面PAD所成角为30°,即∠CPO=30°由AD=2,知,得CO=1.…(6分)分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系O﹣xyz,则,,,…(7分)设平面PBC的法向量为.∴.则,…(8分)设平面PDC的法向量为=(x,y,z).∴.则,…(9分)=,…(11分)∴由图可知二面角B﹣PC﹣D的余弦值.…(12分)【点评】本题直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.20.。

2018届高考数学课标版理科二轮专题复习:专题能力训练

2018届高考数学课标版理科二轮专题复习:专题能力训练

专题能力训练13空间向量与立体几何(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=,M是CC1的中点,则异面直线AB1与A1M所成的角为()A.60°B.45°C.30°D.90°2.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是()A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)3.在正方体ABCD-A1B1C1D1中,E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为()A B C D4.(2017浙江金华联盟联考)已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则直线BD1与平面ABCD所成的角的正切值为()A B C D5.在棱长为1的正方体ABCD-A1B1C1D1中,M是BC的中点,P,Q是正方体内部或面上的两个动点,则的最大值是()A B.1 C D6.在直三棱柱A1B1C1-ABC中,∠BAC=,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为()A BC D7.如图,在四棱锥P-ABCD中,侧面P AD为正三角形,底面ABCD为正方形,侧面P AD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()8.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别是线段CC1,BD上的点,R是直线AD 上的点,满足PQ∥平面ABC1D1,PQ⊥RQ,且P,Q不是正方体的顶点,则|PR|的最小值是()A B C D二、填空题(本大题共6小题,每小题5分,共30分)9.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是.10.(2017浙江杭州模拟)在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为.11.过正方形ABCD的顶点A作线段P A⊥平面ABCD,若AB=P A,则平面ABP与平面CDP所成的二面角为.12.如图,正方体ABCD-A1B1C1D1的棱长为3,在面对角线A1D上取点M,在面对角线CD1上取点N,使得MN∥平面AA1C1C,当线段MN长度取到最小值时,三棱锥A1-MND1的体积为.13.已知点E,F分别是正方体ABCD-A1B1C1D1的棱AB,AA1的中点,点M,N分别是线段D1E与C1F上的点,则与平面ABCD垂直的直线MN有条.A.0B.1C.2D.无数个14.如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别是A1B1和BB1的中点,那么直线AM与CN所成角的余弦值为.三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)在边长为3的正三角形ABC中,E,F,P分别是AB,AC,BC边上的点,满足AE∶EB=CF∶F A=CP∶PB=1∶2(如图(1)),将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连接A1B,A1P(如图(2)).(1)求证:A1E⊥平面BEP;(2)求二面角B-A1P-E的余弦值.16.(本小题满分15分)如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF ∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.参考答案专题能力训练13空间向量与立体几何1.D2.A解析逐一验证法,对于选项A,∵=(1,4,1),∴·n=6-12+6=0,∴⊥n,∴点P在平面α内,同理可验证其他三个点不在平面α内.3.B解析以A为原点建立如图所示的空间直角坐标系A-xyz,设棱长为1,则A1(0,0,1),E,D(0,1,0),∴=(0,1,-1),.设平面A1ED的一个法向量为n1=(1,y,z),∴有解得∴n1=(1,2,2).∵平面ABCD的一个法向量为n2=(0,0,1),∴cos<n1,n2>=,即所成的锐二面角的余弦值为.4.C解析取AD的中点O,连接OA1,易证A1O⊥平面ABCD.建立如图所示的空间直角坐标系,得B(2,-1,0),D1(0,2,),=(-2,3,),平面ABCD的一个法向量为n=(0,0,1),设BD1与平面ABCD所成的角为θ,∴sin θ=,∴tan θ=.5.C解析以A为坐标原点,分别以AD,AB,AA1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则A(0,0,0),M,所以.设=(x,y,z),由题意可知因为·x+1·y+0·z=x+y,又-1≤x≤1,-1≤y≤1,所以-x≤.所以-x+y≤.故的最大值为.6.A解析建立如图所示的空间直角坐标系,则A(0,0,0),E,G,F(x,0,0),D(0,y,0).由于GD⊥EF,所以x+2y-1=0,DF=.当y=时,线段DF长度的最小值是.当y=1时,线段DF长度的最大值是1.因不包括端点,故y=1不能取,应选A.7.A解析以D为原点,DA,DC分别为x轴、y轴建立坐标系如图:设M(x,y,0),正方形边长为a,则P,C(0,a,0),则|MC|=,|MP|=.由|MP|=|MC|得x=2y,所以点M在正方形ABCD内的轨迹为一条直线y=x.故选A.8.B解析如图,分别以AB,AD,AA1所在直线为x轴、y轴、z轴,建立空间直角坐标系,则B(1,0,0),D(0,1,0),B1(1,0,1),C(1,1,0).设P(1,1,m)(0≤m≤1),=λ(0≤λ≤1),Q(x0,y0,0),则(x0-1,y0,0)=λ(-1,1,0),∴∴Q(1-λ,λ,0),∴=(-λ,λ-1,-m).连接B1C,∵正方体ABCD-A1B1C1D1中,BCC1B1是正方形,AB⊥平面BCC1B1,∴B1C⊥AB,B1C⊥BC1.又AB∩BC1=B,∴B1C⊥平面ABC1D1,∵PQ∥平面ABC1D1,∴B1C⊥PQ.又=(0,1,-1),∴=λ-1+m=0,∴λ=1-m,∴Q(m,1-m,0),=(m-1,-m,-m).设R(0,n,0),则=(m,1-m-n,0),∵PQ⊥RQ,∴=m(m-1)-m(1-m-n)=0,即n=2-2m,∴R(0,2-2m,0),=(-1,1-2m,-m),||=,∴当m=时,|PR|的最小值是.9.MN∥平面BB1C1C解析以C1为坐标原点建立如图所示的坐标系.∵A1M=AN=,则M,N,∴.又C1(0,0,0),D1(0,a,0),∴=(0,a,0),∴=0,∴.又∵是平面BB1C1C的法向量,且MN⊄平面BB1C1C,∴MN∥平面BB1C1C.10.解析以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设n=(x,y,z)为平面A1BC1的法向量,则n·=0,n·=0,即令z=2,则y=1,x=2,于是n=(2,1,2),=(0,2,0).设所求线面角为α,则sin α=|cos<n,>|=.11.45°解析如图,建立空间直角坐标系,设AB=P A=1,则A(0,0,0),D(0,1,0),P(0,0,1),由题意,AD⊥平面P AB,设E为PD的中点,连接AE,则AE⊥PD,又CD⊥平面P AD,∴CD⊥AE,从而AE⊥平面PCD.∴=(0,1,0),分别是平面P AB,平面PCD的法向量,且<>=45°.故平面P AB与平面PCD所成的二面角为45°.12.1解析如图,建立空间直角坐标系,则可设M(t,0,t),N(0,s,3-s),∴=(t,-s,t+s-3),易知平面AA1C1C的法向量n=(1,1,0),由MN∥平面AA1C1C可知,·n=0, ∴(t,-s,t+s-3)·(1,1,0)=0,得t=s.∴||2=2t2+(2t-3)2=6t2-12t+9,故当t=1时,MN长度取到最小值,此时M(1,0,1),N(0,1,2), ∴·y N=·3·2·1=1.13.1解析不妨设正方体ABCD-A1B1C1D1的棱长为2,建立如图所示的空间直角坐标系,则D1(2,0,2),E(1,2,0),=(-1,2,-2),C1(0,0,2),F(2,2,1),=(2,2,-1).设=λ=t,则M(2-λ,2λ,2-2λ),N(2t,2t,2-t),=(2t-2+λ,2t-2λ,2λ-t).由于MN与平面ABCD垂直,所以λ=t=,由于此解唯一,故满足条件的MN只有一条.14.解析以D为坐标原点,为x轴,为y轴,为z轴,建立空间直角坐标系,如图所示.则A(1,0,0),M,C(0,1,0),N,∴.设直线AM与CN所成的角为θ,则cos θ=|cos<>|==.15.(1)证明在图(1)中,取BE的中点D,连接DF,∵AE∶EB=CF∶F A=1∶2,∴AF=AD=2,而∠A=60°,∴△ADF为正三角形.又AE=DE=1,∴EF⊥AD.在图(2)中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的一个平面角.由题设条件知此二面角为直二面角,∴A1E⊥平面BEP.(2)解分别以EB,EF,EA1所在直线为x轴、y轴、z轴建立空间直角坐标系,则E(0,0,0),B(2,0,0),P(1,,0),A1(0,0,1),=(0,0,1),=(1,,0),=(-2,0,1),=(-1,,0).设面EA1P的法向量为m=(x,y,z),则取y=-1,得m=(,-1,0);设面BA1P的法向量为n=(x,y,z),则取y=1,得n=(,1,2).∴cos<m,n>=.∴二面角B-A1P-E的余弦值为.16.解(1)因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.又因为平面AEF⊥平面EFCB,AO⊂平面AEF,所以AO⊥平面EFCB,所以AO⊥BE.(2)取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB,又OG⊂平面EFCB,所以OA⊥OG.如图建立空间直角坐标系O-xyz,则E(a,0,0),A(0,0,a),B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则令z=1,则x=,y=-1.于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos <n,p>==-.由题知二面角F-AE-B为钝角,所以它的余弦值为-.(3)因为BE⊥平面AOC,所以BE⊥OC,即=0.因为=(a-2,(a-2),0),=(-2,(2-a),0),所以=-2(a-2)-3(a-2)2.由=0及0<a<2,解得a=.。

2018年高考数学(理)二轮复习讲练测专题1.5立体几何(测)含解析

2018年高考数学(理)二轮复习讲练测专题1.5立体几何(测)含解析

2018年高考数学(理)二轮复习讲练测专题五立体几何总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______一、选择题(12*5=60分)1.如图,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则()A. MN∥PDB. MN∥PAC. MN∥ADD. 以上均有可能【答案】B【解析】因为MN∥平面PAD,平面PAC∩平面PAD=PA,MN 平面PAC,所以MN∥PA.故选B.2.【2018届四川省成都市龙泉中学高三12月月考】一个棱锥的三视图如图所示,其中侧视图为边长为1的正三角形,则四棱锥侧面中最大侧面的面积是()27 【答案】D【解析】3.设,αβ是两个不同的平面, l 是一条直线,以下命题正确的是( ) A. 若,l ααβ⊥⊥,则l β⊂ B. 若,//l ααβ⊥,则l β⊥ C. 若//,//l ααβ,则l β⊂ D. 若//,l ααβ⊥,则l β⊥ 【答案】B【解析】若l ⊥α,α⊥β,则l ⊂β或l ∥β,故A 错误;若l ⊥α,α∥β,由平面平行的性质,我们可得l ⊥β,故B 正确; 若l ∥α,α∥β,则l ⊂β或l ∥β,故C 错误; 若l ∥α,α⊥β,则l ⊥β或l ∥β,故D 错误; 故选:C.4.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,则点A 1到平面AB 1D 1的距离是( )A. 1B. 43C. 169D. 2 【答案】B【解析】设点A 1到平面AB 1D 1的距离为h ,因为V A1-AB1D1=V A -A1B1D1,所以13S △AB1D1h =13S △A1B1D1×AA 1,所以h =()11111122212244213224222A B D AB D SAA S⨯⨯⨯⨯==⨯⨯+-故选B. 点睛:点面距离往往转化为对应棱锥的高,通过等体积法求高得点面距离.5.【2018届吉林省实验中学高三上学期第五次月考(一模)】四棱锥P­ABCD 的三视图如图所示,四棱锥P­ABCD 的五个顶点都在一个球面上, E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为2 ,则该球的表面积为( )A. 12πB. 24πC. 36πD. 48π 【答案】A点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,PA a PB b PC c ===,一般把有关元素“补形”成为一个球内接长方体,利用22224R a b c =++求解.6.祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为( )A. 165B.325C. 3D. 6【答案】B【解析】由祖暅原理可知,该不规则几何体的体积与已知三视图几何体体积相等,图示几何体是一个三棱锥,其直观图如下图:其底面是底和高分别为5,125的三角形,221216455-=(),则该三棱锥的体积为V=11121632532555⨯⨯⨯⨯=.从而该不规则几何体的体积为325.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 7.已知△ABC的三个顶点在以O为球心的球面上,且AB=2,AC=4,BC=2,三棱锥O-ABC的体积为,则球O 的表面积为( )A. 22πB.C. 24πD. 36π【答案】D8.已知在四棱锥P-ABCD中,ABCD是矩形,PA⊥平面ABCD,则在四棱锥P-ABCD的任意两个顶点的连线中,互相垂直的异面直线共有( )A. 3对B. 4对C. 5对D. 6对【答案】C【解析】因为ABCD是矩形,PA⊥平面ABCD,所以PA⊥BC,PA⊥CD,AB⊥PD,BD⊥PA,AD⊥PB.共5对.9.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论中错误的是()EFGH平面ABCDA. 平面//B. 直线BE,CF相交于一点C. EF//平面BGDPA平面BGDD. //【答案】C【解析】把图形还原为一个四棱锥,如图所示,EH AB GH BC,根据三角形中位线的性质,可得//,//EFGH平面ABCD,A正确;平面//在△PAD中,根据三角形的中位线定理可得EF∥AD,又∵AD∥BC,∴EF∥BC,因此四边形EFBC是梯形,故直线BE与直线CF相交于一点,所以B是正确的;连接AC,设AC中点为M,则M也是BD的中点,因为MG∥PA,且直线MG在平面BDG上,所以有PA∥平面BDG,所以D是正确的;∵EF∥BC,∵EF⊄平面PBC,BC⊂平面PBC,∴直线EF∥平面PBC,再结合图形可得:直线EF与平面BDG不平行,因此C是错误的.故选C10.在四棱锥P-ABCD中,四条侧棱长均为2,底面ABCD为正方形,E为PC的中点.若异面直线PA与BE所成的角为45°,则该四棱锥的体积是( )A. 4B. 23C. 4323【答案】D【解析】连接AC和BD相交于点O,连接OE,则OE∥PA,则∠OEB=45°,又∠EOB=90°,则BO=OE=1,底面正方体的边长为,四棱锥的高为,则体积为×()2×=,故选D.11.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有( ) A. ①② B. ②③C. ①③D. ①②③【答案】C【解析】直线AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC-A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BCC1B1,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案 C.12.如图,在△ABC中,AB=BC6,∠ABC=90°,点D为AC的中点,将△ABD沿BD折起到△PBD的位置,使PC =PD,连接PC,得到三棱锥P-BCD,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是( )A. 7πB. 5πC. 3πD. π【答案】A二、填空题(4*5=20分)13. 【2018届西藏拉萨市高三第一次模拟考试(期末)】中国古代数学瑰宝《九章算术》中有这样一道题:“今有堑堵(底面为直角三角形的直棱柱)下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”其意思为:“今有底面为直角三角形的直棱柱,底面的直角边长宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”已知1丈为10尺,则题中的堑堵的外接球的表面积为__________平方尺.【答案】35621π【解析】根据题意可将此堑堵补成一个长方体,且长、宽、高分别为186尺,20尺,25尺,则外接球的直径为35621 =235621435621ππ=⎝⎭.14.如图,三棱柱ABC-A1B1C12,且顶点A1在底面ABC上的射影O为△ABC的中心,则三棱锥A1-ABC的体积为________.【答案】1 3【解析】如图, 由题意可知,底面三角形ABC 为正三角形,由O 为ABC 的中心,可知O 为ABC 的外心, 则O 为底面高的23, 2,()222662223OA ⎛⎫-∴= ⎪ ⎪⎝⎭= 在1Rt A AO 中,由1623A A OA =,=,得1233OA = ∴三棱锥1A ABC - 的体积为116231232233⨯=. 故答案为1315.已知m ,n 是两条不同的直线,α,β是两个不同的平面.给出下列命题: (1)若m ⊂α,m ⊥β,则α⊥β;(2)若m ⊂α,α∩β=n ,α⊥β,则m ⊥n ;(3)若m ∥α,m ⊂β,α∩β=n ,则m ∥n. 其中真命题是________(填序号). 【答案】(1)(3)【解析】(2)中,m ∥n ,m 与n 相交都有可能.16.将正方形ABCD 沿对角线BD 折成直二面角A BD C --, AC BD O ⋂=有如下四个结论:①AC BD ⊥;②ACD 是等边三角形;③AB 与CD 所成的角为90︒,④取BC 中点E ,则AEO ∠为二面角A BC D --的平面角.其中正确结论是__________.(写出所有正确结论的序号) 【答案】①②④在Rt AEC 中, 22AE CE ==, 1AC =, ∴12NE =. 则MEN 是正三角形,故60EMN ∠=︒,③错误;如上图所示,由题意可得: AB AC =,则AE BC ⊥, 由,,BE EC BO OD BC CD ==⊥可得OE BC ⊥, 据此可知: AEO ∠为二面角A BC D --的平面角, 说法④正确. 故答案为:①②④.三、解答题(共6道小题,共70分)17. 如图,正方体ABCD -A 1B 1C 1D 1中,点E 是A 1D 1的中点,点F 是CE 的中点. (Ⅰ)求证:平面ACE⊥平面BDD 1B 1; (Ⅱ)求证:AE∥平面BDF.【答案】(1)见解析(2)见解析【解析】试题分析:(Ⅰ)通过证明AC ⊥平面BDD 1B 1,即可证明平面ACE ⊥平面BDD 1B 1; (Ⅱ)通过证明OF ∥AE ,即可证明AE ∥平面BDF . 试题解析:(Ⅰ)在正方体中,ABCD 是正方形,BB 1⊥平面ABCD , ∴AC⊥BD ,AC⊥BB 1, ∵BD∩BB 1=B ,BD , BB 1⊂平面BDD 1B 1, ∴AC⊥平面BDD 1B 1,∵AC ⊂平面ACE ,∴平面ACE ⊥平面BDD 1B 1.6分 (Ⅱ)连AC 交BD 于G ,连FG , ∵ABCD 是正方形,∴G 是AC 中点, ∵F 是CE 是中点,∴AE∥FG, ∵AE ⊄平面BDF ,FG ⊂平面BDF , ∴AE∥平面BDF.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.18.如图所示,平面ABCD ⊥平面BCE ,四边形ABCD 为矩形, BC CE =,点F 为CE 的中点.(1)证明: //AE 平面BDF .(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM BE ⊥?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由. 【答案】(1)见解析;(2)中点 【解析】试题分析:(1)连接AB 交BD 于O ,连接OF ,利用ABCD 是矩形得到//OF AE ,再由线面平行的判定定理可证; (2)当P 为AE 中点时,有PM BE ⊥;取BE 中点H ,连接,,DP PH CH ,结合三角形的中位线性质以及面面平行的性质进行推理得到BE ⊥平面DPHC 即可. 试题解析:(1)证明 连接AC 交BD 于O ,连接OF ,如图①.∵四边形ABCD 是矩形,∴O 为AC 的中点,又F 为EC 的中点, ∴OF 为△ACE 的中位线,:∴OF∥AE,又OF ⊂平面BDF , AE ⊄平面BDF ,∴AE∥平面BDF. (2)当P 为AE 中点时,有PM⊥BE, 证明如下:取BE 中点H ,连接DP ,PH ,CH ,如图∵P 为AE 的中点,H 为BE 的中点, ∴PH∥AB,又AB∥CD,∴PH∥CD, ∴P,H ,C ,D 四点共面. ∵平面ABCD ∥平面BCE ,CD⊥BC ∴CD ⊥平面BCE ,又BE ⊂平面BCE , ∴CD⊥BE∵BC=CE,H 为BE 的中点, ∴CH⊥BE,∴BE⊥平面DPHC ,又PM ⊂平面DPHC , ∴BE⊥PM 即PM⊥BE .19.用空间向量解决下列问题:如图,在斜三棱柱111ABC A B C -中, ()1,e ξ∈是AC 的中点, 1A O ⊥平面ABC ,90BCA ∠=︒, 1AA AC BC ==.(1)求证: 11A B AC ⊥;(2)求二面角1A BB C --的余弦值.【答案】(1)证明见解析;(227.试题解析:取AB 的中点D ,连结OD ,1A O ⊥平面, OD , OC ⊂平面,∴ 1A O OC ⊥, 1A O OD ⊥,O 、D 分别是AC 、AB 的中点, //OD BC ∴,又, OD OC ⊥,所以,可以以O 为原点,直线OD 、OC 、1OA 分别为x 、y 、z 轴建立空间直角坐标系,设12AA AC BC ===,于是()0,1,0A -, ()2,1,0B , ()0,1,0C ,(1A , (10,3C ,(1)(12,1,3A B =-, (13AC =,()112013330330A B AC ∴⋅=⨯+⨯+-⨯=+-=11A B AC ∴⊥,即.(2)由(1)知()2,0AB =,(13AA =,()2,0,0CB =, (13CC =,设()111,,m x y z =是平面11ABB A 的一个法向量,由1111122000m AB x y z x y ⊥⇒++=⇒+=,11111103030m AA x y z y z ⊥⇒+=⇒=,取11z =,得13y =- 13x = ()3,m ∴=,设()222,,n x y z =是平面11CBB C 的一个法向量,由22200n CB x x ⊥⇒=⇒=,12222203030n CC x y z y z ⊥⇒+=⇒=,取21z =,得23y =-()0,3,1n ∴=-, 27cos ,|27m n m n m n ⋅===⋅ 又因为二面角为锐二面角,所以,二面角27. 20.【2018届西藏拉萨市高三第一次模拟考试(期末)】如图,四棱锥P ABCD -底面为等腰梯形, //AD BC 且24BC AD ==,点E 为PC 中点.(1)证明: //DE 平面PAB ;(2)若PA ⊥平面ABCD , 60ABC ∠=︒,直线PB 与平面ABCD 所成角的正切值为32,求四棱锥P ABCD -的体积V .【答案】(1)见解析;(2).【解析】试题分析:(1)证明线面平行可利用线面平行的判定定理,利用三角形的中位线定理可以得出线线平行,进而得出线面平行;(2)根据底面ABCD 为等腰梯形,作AG 垂直BC ,垂足为G ,求出BG 和AG ,得出AB ,便可求出底面的面积,根据PA 与平面ABCD 垂直,则PBA ∠为直线直线PB 与平面ABCD 所成角,利用其正切值求出PA ,再根据锥体体积公式求出体积 .又DE ⊂平面DEF ,所以//DE 平面PAB . 解:(2)作AG BC ⊥于点G ,则1BG =.在ABG ∆中, 60ABG ∠=︒, 1BG =,则3AG =, 2AB =. 由PA ⊥平面ABCD 知,直线PB 与平面ABCD 所成角为PBA ∠,故3tan 2PBA ∠=, 即在PAB ∆中,有32PA AB =,则3PA =. 所以,四棱锥P ABCD -的体积13ABCD V S PA =⋅梯形 ()243133332+=⨯=. 21.【2018届四省名校(南宁二中等)高三上第一次大联考】直角三角形ABC 中, 90C ∠=︒, 4AC =, 2BC =,E 是AC 的中点,F 是线段AB 上一个动点,且()01AF AB λλ=<<,如图所示,沿BE 将CEB ∆翻折至DEB ∆,使得平面DEB ⊥平面ABE . (1)当13λ=时,证明: BD ⊥平面DEF ;(2)是否存在λ,使得DF 与平面ADE ?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)证明见解析;(2) 存在12λ=,使得DF 与平面ADE 2【解析】试题分析:(1)由题意可得BD DE ⊥,取BF 的中点N ,连接CN 交BE 于M ,当13λ=时,由几何关系可证得EF ⊥平面DBE .则EF BD ⊥.利用线面垂直的判断定理可得BD ⊥平面DEF .(2)建立空间直角坐标系,结合直线的方向向量与平面的法向量计算可得存在12λ=,使得DF 与平面ADE 所成的角试题解析:(1)在ABC ∆中, 90C ∠=︒,即AC BC ⊥, 则BD DE ⊥,取BF 的中点N ,连接CN 交BE 于M , 当13λ=时, F 是AN 的中点,而E 是AC 的中点, ∴EF 是ANC ∆的中位线,∴EF CN .在BEF ∆中, N 是BF 的中点, ∴M 是BE 的中点.在Rt BCE ∆中, 2EC BC ==, ∴CM BE ⊥,则EF BE ⊥.又平面DBE ⊥平面ABC ,平面DBE ⋂平面ABC BE =, ∴EF ⊥平面DBE .又BD ⊂平面BDE ,∴EF BD ⊥. 而EF DE E ⋂=,∴BD ⊥平面DEF .∴DM ⊥平面ABC ,则(D .假设存在满足题意的λ,则由AF AB λ=. 可得()44,2,0F λλ-, 则(34,21,2DF λλ=---.设平面ADE 的一个法向量为(),,n x y z =, 则0,{0,n AE n AD ⋅=⋅=即20,{320,x x y z -=-+=令2y =,可得0x =, 1z =-,即()0,2,1n =-.∴DF 与平面ADE 所成的角的正弦值sin cos ,DF n DF n DF nθ⋅==()22122λ-+==. 解得12λ=(3λ=舍去). 综上,存在12λ=,使得DF 与平面ADE 所成的角的正弦值为23.22.如图:设一正方形纸片ABCD 边长为2分米,切去阴影部分所示的四个全等的等腰三角形,剩余为一个正方形和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.(Ⅰ)若正四棱锥的棱长都相等,求这个正四棱锥的体积V;(Ⅱ)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积S 表示为x 的函数,并求S 的范围.【答案】(124340-立方分米(2)02S <<平方分米 【解析】试题分析: (I )若正四棱锥的棱长都相等,则在正方形ABCD 中,三角形APQ 为等边三角形,由此先计算出此正四棱锥的棱长,再利用正棱锥的性质计算其体积即可;(II )先利用等腰三角形APQ 的底角为x 的特点,将侧棱长和底边长分别表示为x 的函数,再利用棱锥的体积计算公式将棱锥体积表示为关于x 的函数,最后可利用均值定理求函数的值域 试题解析:(Ⅰ)设正四棱锥底面边长为y 分米,由条件知△APQ 为等边三角形, 又AH PQ ⊥,∴3AH y =. ∵12OH y =,∴222232222y OA AH OH y y ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭. 由2AH y AC +=32y +=2231y =+ ∴(()()3233322112216332631331V y OA y =⋅=⋅=⋅= 24340-=. 24340-立方分米(或者分子、分母同时除以t ,利用“对勾函数”进行说明) ∴02S <<平方分米即为所求侧面积的范围.。

2018届高考数学二轮温习专题五立体几何课时作业十三空间向量与立体几何理

2018届高考数学二轮温习专题五立体几何课时作业十三空间向量与立体几何理
课时作业(十三)空间向量与立体几何
1.
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2a,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)判定平面BCE与平面CDE的位置关系,并证明你的结论.
解析:
成立如下图的空间直角坐标系A-xyz,那么A(0,0,0),C(2a,0,0),B(0,0,a),D(a, a,0),E(a, a,2a).
取z1=2,可得平面AEG的一个法向量m=(3,- ,2).
设n=(x2,y2,z2)是平面ACG的一个法向量.
由 可得
取z2=-2,可得平面ACG的一个法向量n=(3,- ,-2).
因此cos〈m,n〉= = .
故所求的角为60°.
5.(2017·天津卷)如图,在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N别离为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(1)证明: =(0,2,0), =(2,0,-2).
设n=(x,y,z)为平面BDE的法向量,
则 即
不妨设z=1,可得n=(1,0,1).
又 =(1,2,-1),可得 ·n=0.
因为MN⊄平面BDE,因此MN∥平面BDE.
(2)易知n1=(1,0,0)为平面CEM的一个法向量.设n2=(x1,y1,z1)为平面EMN的一个法向量,那么
又MF⊂平面BME,PA⊄平面BME,∴PA∥平面BME.
(2)连接PE,那么由题意知PE⊥平面ABCD.
故以E为坐标原点成立如下图空间直角坐标系E-xyz,那么
E(0,0,0),P(0,0, ),
B( ,0,0),C( ,-1,0).

专题12 立体几何问题-2018年全国1卷理科数学高考题相似模拟题分类汇编解析版

专题12 立体几何问题-2018年全国1卷理科数学高考题相似模拟题分类汇编解析版

专题12 立体几何问题【母题来源一】【2018高考新课标1理数12】【母题原题】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.B. C. D. 【答案】A所以其面积为26S ==⎝⎭A. 点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果. 【母题来源二】【2017高考新课标1理数16】【母题原题】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为______.【答案】点睛:对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.【母题来源三】【2016高考新课标1理数11】【母题原题】平面α过正方体ABCD-A1B1C1D1的顶点A,α//平面CB1D1,αI平面ABCD=m,αI平面ABB1A1=n,则m,n所成角的正弦值为(A(B(C(D)1 3【答案】A 【解析】【考点】平面的截面问题,面面平行的性质定理,异面直线所成的角【名师点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补.【命题意图】1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.4.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.【命题规律】立体几何小题常考的题型包括:(1)球体;(2)多面体的三视图、体积、表面积或角度,包括线线角、线面角以及面面角,要重视常见几何体的三视图、三视图还原几何体的常用方法、面积和体积的计算式以及点线面的位置关系等,也要注意提高空间想象能力与数学计算能力.立体几何解答题第1问主要集中考查空间中直线、平面的位置关系的判断,注重对公理、定理的考查,而第2问多考查空间向量在空间立体几何中的应用,在证明与计算中一般要用到初中平面几何的重要定理,空间思维要求较高,运算量较大,对学生的空间想象能力、转化能力、计算能力要求较高.在考查考生运算求解能力的同时侧重考查考生的空间想象能力和推理论证能力,给考生提供了从不同角度去分析问题和解决问题的可能,体现了立体几何教学中课程标准对考生的知识要求和能力要求,提升了对考生的数学能力和数学素养的考查.本试题能准确把握相关几何元素之间的关系,把推理论证能力、空间想象能力等能力和向量运算、二面角作图、建立空间直角坐标系等知识较好地融入试题中,使考生的空间想象能力、推理论证能力和运算求解能力得到了有效考查.1.【河北省唐山市迁安市第三中学2018届高三上学期期中】在三棱锥A-BCD中,AC=BD=3,AD=BC=4,AB=CD=m,则m的取值范围是()A.(1,5)B.(1,7)C.(,7)D.(,5)【答案】D【解析】【分析】由为锐角可知:,解得:,所以:.故选D.【点睛】本题考查棱锥的结构特证,需要根据棱锥的棱长性质及角度限制m的范围,考察了空间想象能力,运用了数学中的转化思想.2.【浙江省余姚中学2018届高三选考科目模拟卷(二)】点是棱长为的正方体的棱切球上的一点,点是的外接圆上的一点,则线段的取值范围是(_____)A.B.C.D.【答案】D【解析】【分析】【点睛】本题考查空间距离计算,考查学生分析解决问题的能力,转化为M点要棱切球上动,点N在外接球上某个小圆上动是本题的关键。

2018大二轮高考总复习理数文档:解答题4 立体几何与空间向量 Word版含解析

2018大二轮高考总复习理数文档:解答题4 立体几何与空间向量 Word版含解析

第一单元高考中档大题突破解答题04:立体几何与空间向量基本考点——利用空间向量证明空间位置关系设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为u =(a 2,b 2,c 2),v =(a 3,b 3,c 3).(1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 2=ka 3,b 2=kb 3,c 2=kc 3. (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.1.(2017·深圳模拟)已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明:以A 为原点,AB ,AC ,AA 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2), F (2,2,0),B 1(4,0,4),D (2,0,2),A 1(0,0,4).(1)DE →=(-2,4,0),平面ABC 的一个法向量为AA 1→=(0,0,4), ∵DE →·AA →1=0,DE ⊄平面ABC , ∴DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2), B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, ∴B 1F →⊥EF →,∴B 1F ⊥EF .B 1F →·AF →=(-2)×2+2×2+(-4)×0=0,∴B 1F →⊥AF →,∴B 1F ⊥AF .∵AF ∩EF =F ,AF ,EF ⊂平面AEF , ∴B 1F ⊥平面AEF .2.(2017·济南模拟)在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D 、F 、G 分别为CC 1、C 1B 1、C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4),设BA =a ,则A (a,0,0),所以BA →=(a,0,0),BD →=(0,2,2),B 1D →=(0,2,-2),B 1D →·BA →=0, B 1D →·BD →=0+4-4=0, 即B 1D ⊥BA ,B 1D ⊥BD ,又BA ∩BD =B ,BA ,BD ⊂平面ABD , 因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G (a2, 1, 4),F (0,1,4),则EG →=(a 2, 1, 1),EF →=(0,1,1),B 1D →·EG →=0+2-2=0,B 1D →·EF →=0+2-2=0, 即B 1D ⊥EG ,B 1D ⊥EF ,又EG ∩EF =E ,EG ,EF ⊂平面EGF ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD .常考热点——空间角与探索性问题考向01:空间角的求法1.向量法求异面直线所成的角若异面直线a,b的方向向量分别为a,b,异面直线所成的角为θ,则cos θ=|cos〈a,b〉|=|a·b| |a||b|.2.向量法求线面所成的角求出平面的法向量n,直线的方向向量a,设线面所成的角为θ,则sin θ=|cos〈n,a〉|=|n·a||n||a|.3.向量法求二面角求出二面角α-l-β的两个半平面α与β的法向量n1,n2,若二面角α-l-β所成的角θ为锐角,则cos θ=|cos〈n1,n2〉|=|n1·n2||n1||n2|;若二面角α-l-β所成的角θ为钝角,则cos θ=-|cos〈n1,n2〉|=-|n1·n2| |n1||n2|.注意:注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论错误.(2017·郑州二模)如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C是边长为2的菱形,平面ABC⊥平面AA1C1C,∠A1AC=60°,∠BCA=90°.阿凡题1083962(1)求证:A1B⊥AC1;(2)已知点E是AB的中点,BC=AC,求直线EC1与平面ABB1A1所成的角的正弦值.(1)【证明】取AC的中点O,连接A1O,因为四边形AA1C1C是菱形,且∠A1AC=60°,所以△A1AC为等边三角形,所以A1O⊥AC,又平面ABC⊥平面AA1C1C,所以A 1O ⊥平面ABC , 所以A 1O ⊥BC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C , 所以AC 1⊥BC .在菱形AA 1C 1C 中,AC 1⊥A 1C , 所以AC 1⊥平面A 1BC , 所以A 1B ⊥AC 1.(2)【解】 以点O 为坐标原点,建立如图所示的空间直角坐标系O -xyz ,则A (0,-1,0),B (2,1,0),C (0,1,0),C 1(0,2,3),AB →=(2,2,0),BB 1→=CC 1→(0,1,3),设m =(x ,y ,z )是平面ABB 1A 1的法向量,则⎩⎪⎨⎪⎧m ·AB →=0,m ·BB 1→=0,即⎩⎨⎧2x +2y =0,y +3z =0,取z =-1,可得m =(-3,3,-1). 又E (1,0,0),所以EC 1→=(-1,2,3), 设直线EC 1与平面ABB 1A 1所成的角为θ, 则sin θ=|cos 〈EC 1→,m 〉|=|EC 1→·m ||EC 1|→·|m |=1510.(2017·全国卷Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP=90°.阿凡题1083963(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A -PB -C 的余弦值. (1)【证明】 由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 因为AB ∥CD ,所以AB ⊥PD . 又AP ∩DP =P ,所以AB ⊥平面P AD .因为AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)【解】 在平面P AD 内作PF ⊥AD ,垂足为点F .由(1)可知,AB ⊥平面P AD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以F 为坐标原点,F A →的方向为x 轴正方向,|AB →|为单位长度建立如图所示的空间直角坐标系F -xyz .由(1)及已知可得A22,0,0,P 0,0,22,B 22,1,0,C -22,1,0, 所以PC →=-22,1,-22,CB →=(2,0,0),P A →=22,0,-22,AB →=(0,1,0).设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则 ⎩⎪⎨⎪⎧n ·PC →=0,n ·CB →=0,即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2).设m =(x 2,y 2,z 2)是平面P AB 的一个法向量,则 ⎩⎪⎨⎪⎧ m ·P A →=0,m ·AB →=0,即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1),则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33.所以二面角A -PB -C 的余弦值为-33.向量法求线面角、二面角的4个突破口(1)破“建系关”,构建恰当的空间直角坐标系; (2)破“求坐标关”,准确求解相关点的坐标; (3)破“求法向量关”,求出平面的法向量; (4)破“应用公式关”.考向02:立体几何中的探索性问题以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.求解此类问题一般是用向量方法来处理,通过待定系数法求解其存在性问题,思路简单、解法固定、操作方便.(2017·兰州一模)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC =4,点M 为PC 的中点,点E 为BC 边上的动点,且BEEC=λ.阿凡题1083964(1)求证:平面ADM ⊥平面PBC ;(2)是否存在实数λ,使得二面角P -DE -B 的余弦值为22.若存在,试求出实数λ的值;若不存在,说明理由.(1)【证明】 取PB 的中点N ,连接MN ,AN , ∵M 是PC 的中点, ∴MN ∥BC ,MN =12BC =2,又BC ∥AD ,∴MN ∥AD ,MN =AD , ∴四边形ADMN 为平行四边形, ∵AP ⊥AD ,AB ⊥AD ,AP ∩AB =A , ∴AD ⊥平面P AB , ∴AD ⊥AN ,∴AN ⊥MN , ∵AP =AB ,∴AN ⊥PB ,∵MN ∩PB =N ,∴AN ⊥平面PBC .∵AN ⊂平面ADM ,∴平面ADM ⊥平面PBC .(2)【解】 存在符合条件的λ.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz .设BE =t ,则E (2,t,0),P (0,0,2),D (0,2,0),B (2,0,0), 从而PD →=(0,2,-2),DE →=(2,t -2,0), 设平面PDE 的法向量为n 1=(x ,y ,z ),即⎩⎪⎨⎪⎧2y -2z =0,2x +(t -2)y =0,令y =z =2,解得x =2-t , ∴n 1=(2-t,2,2),又平面DEB 即为平面xAy ,故其一个法向量为n 2=(0,0,1), 则|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2(2-t )2+4+4=22,解得t =2,可知λ=1.解决此类问题时,把要成立的结论当作条件, 据此列方程或方程组, 把“是否存在”问题转化为“点的坐标(或参数)是否有解”来解决,但要注意检验此解是否在规定范围内.1.(2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.(1)证明:取P A 的中点F ,连接EF ,BF . 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°得BC ∥AD , 又BC =12AD ,所以EF 綊BC ,四边形BCEF 是平行四边形,CE ∥BF .又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)解:由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3). 因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的法向量, 所以|cos 〈BM →,n 〉|=sin 45°,|z |(x -1)2+y 2+z2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则 x =λ,y =1,z =3-3λ.②由①②解得⎩⎨⎧x =1+22,y =1,z =-62(舍去),或⎩⎨⎧x =1-22,y =1,z =62,所以M 1-22,1,62,从而AM →=1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2). 于是cos 〈m ,n 〉=m ·n |m ||n |=105.因此二面角M -AB -D 的余弦值为105.2.(2017·临沂模拟)如图,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AB =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,点O 、M 分别为CE 、AB 的中点.(1)求证:OD ∥平面ABC ;(2)求直线CD 和平面ODM 所成角的正弦值;(3)能否在EM 上找到一点N ,使得ON ⊥平面ABDE .若能,请指出点N 的位置并加以证明;若不能,请说明理由.(1)证明:以B 为原点,BC 为x 轴,BA 为y 轴,BD 为z 轴,建立空间直角坐标系,则C (4,0,0),A (0,4,0),D (0,0,2),E (0,4,4),O (2,2,2),M (0,2,0).平面ABC 的法向量n 1=(0,0,1),DO →=(2,2,0),DO →·n 1=0,∴OD ∥平面ABC . (2)解:设平面ODM 的法向量为n 2,直线CD 与平面ODM 所成角为θ, ∵DO →=(2,2,0),DM →=(0,2,-2), ∴n 2=(-1,1,1),CD →=(-4,0,2), ∴sin θ=CD →·n 2|CD →||n 2|=155.(3)解:设EM 上一点N 满足BN →=λBM →+(1-λ)BE →=(0,4-2λ,4-4λ),平面ABDE 的法向量n 3=(1,0,0),ON →=BN →-BO →=(-2,2-2λ,2-4λ),不存在λ使n 3∥ON →,∴不存在满足题意的点N .1.(2017·梅州二模)如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中∠BAE =∠GAD =45°,AB =2AD =2,∠BAD =60°.(1)求证:BD ⊥平面ADG ;(2)求平面AEFG 与平面ABCD 所成锐二面角的余弦值. (1)证明:在△BAD 中,∵AB =2AD =2,∠BAD =60°. 由余弦定理得BD =3,满足AB 2=AD 2+DB 2, ∴AD ⊥DB直平行六面体中GD ⊥面ABCD ,DB ⊂面ABCD , ∴GD ⊥DB ,且AD ∩GD =D ∴BD ⊥平面ADG .(2)解:如图以D 为原点建立空间直角坐标系D -xyz ,∵∠BAE =∠GAD =45°,AB =2AD =2,∴A (1,0,0),B (0,3,0),E (0,3,2),C (-1,3,0),G (0,0,1).AE →=(-1,3,2),AG →=(-1,0,1), 设平面AEFG 的法向量n =(x ,y ,z ), ⎩⎪⎨⎪⎧n ·AE →=-x +3y +2z =0n ·AG →=-x +z =0,令x =1,得y =-33,z =1 ∴n =⎝⎛⎭⎫1,-33,1,而平面ABCD 的法向量为DG →=(0,0,1), ∴cos 〈DG →,n 〉=|DG →·n ||DG →||n |=217.∴平面AEFG 与平面ABCD 所成锐二面角的余弦值为217.2.(2017·晋江二模)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 所成角的正弦值.(1)证明:以H 为原点,HA ,HB ,HP 分别为x ,y ,z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A (1,0,0),B (0,1,0),设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0.可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解:由已知条件可得m =-33,n =1, 故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0,P (0,0,1), 设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧ n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0,因此可以取n =(1,3,0),又P A →=(1,0,-1),所以|cos 〈P A →,n 〉|=24,所以直线P A 与平面PEH 所成角的正弦值为24.3. (2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.(1)证明:由题设可得△ABD ≌△CBD ,从而AD =CD . 又△ACD 是直角三角形, 所以∠ADC =90°.取AC 的中点O ,连接DO ,BO , 则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 所以平面ACD ⊥平面ABC .(2)解:由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E 0,32,12, 故AD →=(-1,0,1),AC →=(-2,0,0),AE →=-1,32,12.设n =(x ,y ,z )是平面DAE 的法向量,则⎩⎪⎨⎪⎧ n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0, 可取n =1,33,1. 设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,同理可取m =(0,-1,3), 则cos 〈n ,m 〉=n ·m |n ||m |=77.所以二面角D -AE -C 的余弦值为77. 4.(2017·江门一模)如图,多面体EF -ABCD 中,ABCD 是正方形,AC ,BD 相交于O ,EF ∥AC ,点E 在AC 上的射影恰好是线段AO 的中点.(1)求证:BD ⊥平面ACF ;(2)若直线AE 与平面ABCD 所成的角为60°,求平面DEF 与平面ABCD 所成角的正弦值.(1)证明:取AO 的中点H ,连接EH ,则EH ⊥平面ABCD , ∵BD 在平面ABCD 内,∴EH ⊥BD , 又正方形ABCD 中,AC ⊥BD ,∵EH ∩AC =H ,EH ,AC 在平面EACF 内, ∴BD ⊥平面EACF ,即BD ⊥平面ACF .(2)解:由(1)知EH ⊥平面ABCD ,作HG ∥OB 交AB 于点G .如图,以H 为原点,HA →,HG →,HE →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系H -xyz ,∵EH ⊥平面ABCD ,∴∠EAH 为AE 与平面ABCD 所成的角,即∠EAH =60°,设正方形ABCD 的边长为4a ,则AC =42a ,AH =2a ,EA =22a ,EH =6a ,各点坐标分别为H (0,0,0),A (2a,0,0),B (-2a ,22a ,0),C (-32a,0,0),D (-2a ,-22a,0),E (0,0,6a ).易知HE →为平面ABCD 的一个法向量,记n 1=HE →=(0,0,6a ),AC →=(-42a,0,0),DE →=(2a,22a ,6a ),∵EF ∥AC ,∴EF →=λAC →=(-42aλ,0,0),设平面DEF 的一个法向量为n 2=(x ,y ,z ),则n 2⊥DE →,n 2⊥EF →, 即n 2·DE →=2ax +22ay +6az =0,n 2·EF →=-42aλx =0,令z =-2,则x =0,y =3, ∴n 2=(0,3,-2),且n 2=7,n 1·n 2=-26a , ∴n 1与n 2的夹角θ的余弦值为 cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=27, 即平面DEF 与平面ABCD 所成角α的正弦值为 sin α=1-cos 2θ=217. 5. (2017·北京卷)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4.(1) 求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值. (1)证明:设AC ,BD 交于点E ,连接ME ,因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME , 所以PD ∥ME .因为四边形ABCD 是正方形, 所以E 为BD 的中点, 所以M 为PB 的中点.图①(2)解:如图②,取AD 的中点O ,连接OP ,OE . 因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为四边形ABCD 是正方形,所以OE ⊥AD .如图②,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).图②设平面BDP 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z =2. 于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=12. 由题意知二面角B -PD -A 为锐角,所以它的大小为π3.(3)解:由题意知M -1,2,22,C (2,4,0),MC →=3,2,-22. 设直线MC 与平面BDP 所成角为α,则 sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269,所以直线MC 与平面BDP 所成角的正弦值为269.6.(2017·吉林实验中学)如图①所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成二面角A -DC -B ,如图②所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论.解:(1)如图:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .(2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧DE →·n =0,DF →·n =0,即⎩⎨⎧3y +z =0,x +3y =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,∴二面角E -DF -C 的余弦值为217. (3)设P (x ,y,0),则AP →·DE →=3y -2=0,∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0),∵BP →∥PC →,∴(x -2)(23-y )=-xy ,∴3x +y =23. 把y =233代入上式得x =43,∴BP →=13BC →,∴在线段BC 上存在点P 43,233,0,使AP ⊥DE .。

【高三数学试题精选】2018届高考数学第二轮立体几何综合复习检测题(含参考答案)

【高三数学试题精选】2018届高考数学第二轮立体几何综合复习检测题(含参考答案)

2018届高考数学第二轮立体几何综合复习检测题(含参考
答案)
5 c 2018年高考数学二轮复习综合检测
专题五立体几何
时间120分钟满分150分
一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出四个选项中,只有一项是符合题目要求的)
1.设有四个命题①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中假命题的序号是( )
A.① B.②③
c.①②③ D.③④
[答案] c
[解析] 底面是矩形的平行六面体的侧棱不一定与底面垂直,故①错;棱长相等的直四棱柱中若底面是菱形则不是正方体,故②错;如果两条平行的侧棱都垂直于底面一边显然不是直平行六面体,③错.故选c
2.已知A、B为球面上的两点,为球心,且AB=3,∠AB=120°,则球的体积为( )
A9π2 B.43π
c.36π D.323π
[答案] B
[解析] 设球的半径为R,由AB2=R2+R2-2R2cs120°=3R2=9,得R2=3,因此该球的体积是
4π3R3=4π3×(3)3=43π,故选B
3.(2018 北京市海淀区二模)在正四面体A-BcD中,棱长为4,是Bc的中点,点P在线段A上运动(P不与A,重合),过点P作直线。

2018年高考数学二轮复习 专题1.5 立体几何(讲)理

2018年高考数学二轮复习 专题1.5 立体几何(讲)理

专题1.5 立体几何考向一 三视图与几何体的面积、体积【高考改编☆回顾基础】1图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.【答案】12【解析】该几何体为一个三棱柱和一个三棱锥的组合体,其直观图如图所示,各个面中有两个全等的梯形,其面积之和为2×2+42×2=12.1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为________.2【答案】63π【解析】3. 【空间几何体的体积】【2017课标3,改编】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 . 【答案】3π4【解析】3【命题预测☆看准方向】1.空间几何体的三视图成为近几年高考的必考点,单独考查三视图的逐渐减少,主要考查由三视图求原几何体的面积、体积,主要以选择题、填空题的形式考查.2.对柱体、锥体、台体表面积、体积及球与多面体的切接问题中的有关几何体的表面积、体积的考查又是高考的一个热点,难度不大,主要以选择题、填空题的形式考查.3.2018年应注意抓住考查的主要题目类型进行训练,重点有三个:一是三视图中的几何体的形状及面积、体积;二是求柱体、锥体、台体及球的表面积、体积;三是求球与多面体的相切、接问题中的有关几何体的表面积、体积.【典例分析☆提升能力】【例1】17世纪日本数学家们对于数学关于体积方法的问题还不了解,他们将体积公式“V=kD 3”中的常数k 称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D 为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V =kD 3,其中,在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长.假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k 1,k 2,k 3,那么,k 1∶k 2∶k 3=( )C.【答案】D【解析】球中,等边圆柱中,正方体中, 3333,1V D k D k ==∴=;故选D. 【趁热打铁】将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )【答案】B【解析】【例2】【2018届河南省郑州市第一次模拟】刍薨(chuhong),中国古代算术中的一种几何形体,《九章算术》中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为()4【答案】B【趁热打铁】【2018届湖北省稳派教育高三上第二次联考】已知一个几何体的三视图如图所示,则该几何体的体积为()π+ D.C. 126【答案】A【解析】由三视图可得,该几何体为右侧的一个半圆锥和左侧的一个三棱锥拼接而成。

2007-2018全国卷高考真题——立体几何解答题(理科)解析

2007-2018全国卷高考真题——立体几何解答题(理科)解析

专题 立体几何 空间向量与立体几何答案部分1.(2018全国卷Ⅰ)【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF u u u r的方向为y 轴正方向,||BF uuu r 为单位长,建立如图所示的空间直角坐标系-H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE又PF =1,EF =2,故PE ⊥PF .可得=PH ,32=EH . 则(0,0,0)H,P ,3(1,,0)2--D,3(1,2=u u u r DP , (0,0,)2HP =u u u r 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin ||4||||HP DP HP DP θ⋅===⋅u u u r u u u ru u u r u u u r .所以DP 与平面ABFD. 2.(2018全国卷Ⅱ)【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB.因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥.由⊥OP OB ,⊥OP AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz -.A由已知得(0,0,0)O ,(2,0,0)B ,(0,2,0)-A ,(0,2,0)C,(0,0,P ,=AP u u u r,取平面PAC 的法向量(2,0,0)OB =u u u r . 设(,2,0)(02)-<≤M a a a ,则(,4,0)AM a a =-u u u r.设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=uu u r uuu r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn.由已知得|cos ,|OB =uu u r n .2.解得4a =-(舍去),43a =.所以4()3=-n.又(0,2,PC =-u u u r,所以cos ,PC =uu u r n . 所以PC 与平面PAM所成角的正弦值为4. 3.(2018全国卷Ⅲ)【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又BC I CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.当三棱锥M ABC -体积最大时,M 为»CD的中点. 由题设得(0,0,0)D ,(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(0,1,1)M ,(2,1,1)AM =-u u u u r ,(0,2,0)AB =u u u r ,(2,0,0)DA =u u u r设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u ur n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA u u u r是平面MCD 的法向量,因此cos ,5||||DA DA DA ⋅==u u u ru u u r u u u r n n n ,sin ,5DA =u u u r n ,所以面MAB 与面MCD所成二面角的正弦值是5. 4.(2017新课标Ⅰ)【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内做PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2A,(0,0,2P,,1,0)2B,(2C -.所以(,1,)22PC =--u u u r,CB =u u u r,)22PA =-u u u r , (0,1,0)AB =u u u r.设(,,)x y z =n 是平面PCB 的法向量,则00PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n,即0220x y z ⎧-+-=⎪=,可取(0,1,=-n .设(,,)x y z =m 是平面PAB 的法向量,则00PA AB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m,即0220x z y -=⎪⎨⎪=⎩, 可取(1,0,1)=n .则cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为 5.(2017新课标Ⅱ)【解析】(1)取PA 的中点F ,连结EF ,BF .因为E 是PD 的中点,所以EF AD ∥,12EF AD =.由90BAD ABC ∠=∠=o 得BC AD ∥,又12BC AD =,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥,又BF ⊂平面PAB ,CE ⊄平面PAB ,故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C,P,(1,0,PC =u u u r ,(1,0,0)AB =u u u r.x设(,,)M x y z (01)x <<,则(1,,)BM x y z =-u u u u r,(,1,PM x y z =-u u u u r.因为BM 与底面ABCD 所成的角为45o,而(0,0,1)=n 是底面ABCD 的法向量,所以|cos ,|sin 45BM <>=ou u u u r n2=, 即222(1)0x y z -+-=. ①又M 在棱PC 上,设PM PC λ=u u u u r u u u r,则x λ=,1y =,z =. ②由①,②解得121x y z ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(舍去),121x y z ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩所以(12M -,从而(12AM =-u u u u r . 设000(,,)x y z =m 是平面ABM 的法向量,则0=0AM AB ⎧⋅=⎪⎨⋅⎪⎩u u u u ru u ur m m,即0000(2200x y x ⎧+=⎪⎨=⎪⎩,所以可取(0,2)=m,于是cos ,||||⋅<>==m n m n m n因此二面角M AB D --的余弦值为5. 6.(2017新课标Ⅲ)【解析】(1)由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =. 又由于ABC ∆是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=o . 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA u u u r的方向为x 轴正方向,OA u u u r为单位长,建立如图所示的空间直角坐标系O xyz -,则(1,0,0)A,B ,(1,0,0)C -,(0,0,1)D .由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得1(0,)22E .故(1,0,1)AD =-u u u r ,(2,0,0)AC =-u u u r,1(1,)22AE =-u u u r设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩u u u r g u u u r g 0,0,n n即x z x y z -+=⎧⎪⎨-++=⎪⎩01022可取=n 设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩u u u r g u u u rg m m同理可得(0,=-m则cos ,==g 7n m n m n m 所以二面角D AE C --的余弦值为77.(2016全国I )【解析】(Ⅰ)由已知可得AF DF ⊥,AF FE ⊥,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(Ⅱ)过D 作DG EF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ABEF .以G 为坐标原点,GF u u u r 的方向为x 轴正方向,||GF uuu r为单位长度,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=o,则2DF =,DG =,可得(1,4,0)A ,(3,4,0)B -,(3,0,0)E -,D .由已知,AB EF ∥,所以AB ∥平面EFDC .又平面ABCD I 平面EFDC DC =,故AB CD ∥,CD EF ∥.由BE AF ∥,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角,60CEF ∠=o.从而可得(C -.所以EC =u u u r ,(0,4,0)EB =u u u r,(3,AC =--u u u r ,(4,0,0)AB =-u u u r.设(),,n x y z =r是平面BCE 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩u u u r r u u u r r,即040x y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,n =r.设m r 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩u u u r r u u u rr ,同理可取()4m =r.则cos ,19n m n m n m ⋅==-r r r r r r .故二面角C E-B -A的余弦值为19-.8.(2016全国II )【解析】(I )证明:∵54AE CF ==, ∴AE CFAD CD=,∴EF AC ∥. ∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AEOH OD AO=⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥. 又∵OH EF H =I ,∴'D H ⊥面ABCD .(Ⅱ)建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩u u r u u u r u u r u u u u r得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量()2301n =u u r,,, ∴12129575cos 5210n n n n θ⋅+==⋅u r u u ru r u u r ,∴295sin θ. 9.(2016全国III )【解析】(Ⅰ)由已知得232==AD AM , 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥, 且5)2(2222=-=-=BC AB BE AB AE . 以A 为坐标原点,AE u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-u u u u r ,)2,1,25(-=PN ,)2,1,25(=AN . 设(,,)x y z =r n 为平面PMN 的法向量,则00PM PN ⎧⋅=⎪⎨⋅=⎪⎩r u u u u r r u u u rn n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =r,于是||85|cos ,|||||n AN n AN n AN ⋅<>==r u u u rr u u u r r u u u r .10.(2015新课标Ⅰ)【解析】(Ⅰ)连接BD ,设BD AC G =I ,连接,,EG FG EF .在菱形ABCD 中,不妨设1GB =,由120∠=oABC ,可得3AG GC =由⊥BE 平面ABCD ,AB BC =可知,AE EC =, 又∵⊥AE EC ,∴3EG =,⊥EG AC ,在Rt EBG ∆中,可得2BE 22DF =.在Rt FDG ∆中,可得62FG =.在直角梯形BDFE 中,由2BD =,BE =2DF =,可得2EF =, ∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG =G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,0),E(1,0,),F (-1,0,C (00), ∴AE u u u r =(1),CF uuu r =(-12).故cos ,3||||<>==-u u u r u u u ru u u r u u u r g u u u r u u u r AE CF AE CF AE CF .所以直线AE 与CF所成的角的余弦值为3. 11.(2015新课标II )【答案】(Ⅰ)详见解析;. 【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是6MH ==,所以10AH =.以D为坐标原点,DA u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =u u u r ,(0,6,8)HE =-u u u r.设(,,)n x y z =r 是平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =r .又(10,4,8)AF =-u u u r,故cos ,n AF n AF n AF⋅<>==⋅r u u u r r u u u r r u u u r .所以直线AF 与平面α所成角的正弦值为4515. 【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.A 1AB 1BD 1DC 1CF E H GM12.(2014新课标1)【解析】(Ⅰ)连接1BC ,交1B C O 于点,连接AO ,因为侧面11BB C C 为菱形,所以1111,B C BC O B C BC ⊥且为及的中点. 又11,.AB B C B C ABO ⊥⊥所以平面1AO ABO B C AO ⊂⊥由于平面,故又11,=.B O CO AC AB =故(Ⅱ)因为11,.AC AB O B C AO CO ⊥=且为的中点,所以 又因为,AB BC BOA BOC =∆≅∆所以,1,,,OA OB OA OB OB ⊥故从而两两相互垂直,以O OB x OB 为坐标原点,的方向为轴正方向,为单位长, O xyz =建立如图所示的空间直角坐标系.zyO因为1160,.CBB CBB AB BC∠=︒∆=所以为等边三角形又,则111111(00(100),(0,(0,,(1,0,(1,,0),3333A B B CAB A B AB B C BC=-==-==--u u u r u u u u r u u u r u u u u r u u u r,,11111(,,)=00,330,0.x y z AA By zABA Bx z=-⎧⋅=⎪⎪⎨⎨⋅=⎪⎪⎩=⎪⎩=u u u ru u u u r设是平面的法向量,则,即所以可取nnnn11111110,0,(1,A BA B CB Cm⎧⋅=⎪⎨⋅=⎪⎩=u u u u ru u u u r设是平面的法向量,则同理可取mmm则1cos,.7⋅==n mn mn m1111.7A AB C--所以二面角的余弦值为13.(2014新课标2)【解析】(Ⅰ)连接BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(Ⅱ)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,ABu u u r的方向为x轴的正方向,APu u u r为单位长,建立空间直角坐标系A xyz-,则D1(0,),22E1(0,)22AE=u u u r.设(,0,0)(0)Bm m>,则(C m(AC m=u u u r.设1(,,)x y z=n为平面AEC的法向量,则110,0,ACAE⎧⋅=⎪⎨⋅=⎪⎩uu u ru u u rnn即0,10,22mxy z⎧+=+=⎪⎩,可取1=-n.又2(1,0,0)=n为平面DAE的法向量,由题设121cos,2=n n12=,解得32m=.因为E为PD的中点,所以三棱锥EACD-的高为12.三棱锥E ACD-的体积11313222V=⨯⨯=.14.(2013新课标Ⅰ)【解析】(Ⅰ)取AB中点E,连结CE,1A B,1A E,∵AB=1AA,1BAA∠=060,∴1BAA∆是正三角形,∴1A E⊥AB,∵CA=CB,∴CE⊥AB,∵1CE A E⋂=E,∴AB⊥面1CEA,∴AB⊥1A C;(Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,又∵面ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA ,∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,EA u u u r 的方向为x 轴正方向,|EA u u u r|为单位长度,建立如图所示空间直角坐标系O xyz -,有题设知A (1,0,0),1A 3,0),C 3B (-1,0,0),则BC uuu r=(1,03,1BB u u u r =1AA u u u r =(-31AC u u u r=(0,33), 设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧•=⎪⎨•=⎪⎩u u u ru u u r n n ,即3030x z x ⎧=⎪⎨=⎪⎩,可取n =3,1,-1), ∴1cos ,AC u u u r n =11|AC AC •u u u ru u u r n |n ||105, ∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为105. 15.(2013新课标Ⅱ)【解析】(Ⅰ)连结1AC ,交1A C 于点O ,连结DO ,则O 为1AC 的中点,因为D 为AB 的中点,所以OD ∥1BC ,又因为OD ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1BC //平面1A CD ;(Ⅱ)由1AA =AC=CB=22AB 可设:AB=2a ,则1AA 2a ,所以AC⊥BC,又因为直棱柱,所以以点C为坐标原点,分别以直线CA、CB、1CC为x轴、y轴、z轴,建立空间直角坐标系如图,1则(0,0,0)C、1)A、D、E,1)CA=u u u r,,,0)22CD=u u u r,,)2CE=u u u r,1(,)2A E=-u u u r,设平面1A CD的法向量为(,,)n x y z=r,则0n CD⋅=r u u u r且1n CA⋅=r u u u r,可解得y x z=-=,令1x=,得平面1A CD的一个法向量为(1,1,1)n=--r,同理可得平面1A CE的一个法向量为(2,1,2)m=-ur,则cos,n m<>=r u r3,所以sin,3n m<>=r u r,所以二面角D-1A C-E的正弦值为316.(2012新课标)【解析】(Ⅰ)在Rt DAC∆中,AD AC=,得:45ADC︒∠=同理:1114590A DC CDC︒︒∠=⇒∠=得:111,DC DC DC BD DC⊥⊥⇒⊥面1BCD DC BC⇒⊥(Ⅱ)11,DC BC CC BC BC⊥⊥⇒⊥面11ACC A BC AC⇒⊥取11A B的中点O,过点O作OH BD⊥于点H,连接11,C O C H1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则122aC O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒17.(2011新课标)【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD . 故 P A ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A ,()03,0B ,,()3,0C -,()0,0,1P .(3,0),3,1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为(,,)x y z =n ,则0AB PB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu r n n ,即 3030x z ⎧-+=⎪⎨-=⎪⎩因此可取n =3,1,3)设平面PBC的法向量为m,则PBBC⎧⋅=⎪⎨⋅=⎪⎩uu ruu u rmm可取m=(0,-1,3-)27cos,27==-m n故二面角A-PB-C的余弦值为277-.18.(2010新课标)【解析】:以H为原点,,,HA HB HP分别为,,x y z轴,线段HA的长为单位长,建立空间直角坐标系如图,则(1,0,0),(0,1,0)A B(Ⅰ)设(,0,0),(0,0,)(0,0)C m P n m n<>,则1(0,,0),(,,0).22mD m E可得1(,,),(,1,0).22mPE n BC m=-=-因为0022m mPE BC⋅=-+=,所以PE BC⊥(Ⅱ)由已知条件可得331,33m n C=-=-故(313(0,(,(0,0,1)326D E P--设(,,)n x y x=为平面PEH的法向量则0,0,HEHP⎧⋅=⎪⎨⋅=⎪⎩nn即132x yz⎧-=⎪⎨⎪=⎩因此可以取3,0)=n,由(1,0,1)PA=-u u u r,可得2cos,4PA=u u u rn,.所以直线PA与平面PEH所成角的正弦值为4。

—2018年新课标全国卷1理科数学分类汇编——9.立体几何

—2018年新课标全国卷1理科数学分类汇编——9.立体几何

2011年—2018年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)9.立体几何【2018,7】 某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .2【2018,12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C D 【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为( )(A )23(B )22 (C )33 (D )31 【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) (A )π17 (B )π18 (C )π20 (D )π28【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )8【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm 3 B .866π3cm 3C .1372π3cm 3D .2048π3cm 3【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A B C D 【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2017,16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【2011,15】已知矩形A B C D 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为 。

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

令 y= 3,则 x=-1,
z=-
3 3 → a 3 ,即 n=-1, 3,- .又BD=- , a,0,设直线 BD 与 n 所成的角 3 3 2 2
为 θ ,则 cosθ =
n·BD
→ =
→ |n||BD|
2 39 , 13
2 39 故直线 BD 与平面 AMC 所成角的正弦值为 . 13
1
(2017·广西南宁、梧州摸底联考)如图,已知四棱锥 P-ABCD,底面 ABCD 为菱形,且 ∠DAB=60°,△PAB 是边长为 a 的正三角形,且平面 PAB⊥平面 ABCD,已知点 M 是 PD 的中 点. (1)证明:PB∥平面 AMC; (2)求直线 BD 与平面 AMC 所成角的正弦值.
(2) 方法一: 如图,取 EC 的中点 H,连接 EH,GH,CH. 因为∠EBC=120°, 所以四边形 BEHC 为菱形, 所以 AE=GE=AC=GC= 3 +2 = 13. 取 AG 的中点 M,连接 EM,CM,EC, 则 EM⊥AG,CM⊥AG,
4
2 2
所以∠EMC 为所求二面角的平面角. 又 AM=1,所以 EM=CM= 13-1=2 3. 在△BEC 中,由于∠EBC=120°, 由余弦定理得 EC =2 +2 -2×2×2×cos 120°=12, 所以 EC=2 3,所以△EMC 为等边三角形, 故所求的角为 60°.
解析:(1)证明:连接 BD 交 AC 于点 O,连接 OM,因为四边形 ABCD 为菱形,OB=OD,又
M 为 PD 的中点,所以 OM∥PB.
由 PB⊄平面 AMC,OM⊂ 平面 AMC,所以 PB∥平面 ACM.
(2)取 AB 的中点 N,连接 PN,ND,则∠AND=90°, 分别以 NB,ND,NP 为 x 轴、y 轴、z 轴建立空间直角坐标系 N-xyz, 3 a 则 B ,0,0,Ca, a,0, 2 2 3 3 3 3 a A- ,0,0,D0, a,0,P0,0, a,M0, a, a, 2Fra bibliotek
2


2

4
4
→ 3 3 3 3 → a 则AC= a, a,0,AM= , a, a. 2 4 2 2 4 设平面 AMC 的法向量为 n=(x,y,z), 3 3 2ax+ 2 ay=0, 则 a 3 3 2x+ 4 ay+ 4 az=0,
3
y=0, 则2 2 2 8 x+ y+ z=0, 3 3 3
1 取 m= 2,0,- . 2
→ → 2 2 2 8 设平面 PAN 的法向量 n=(x,y,z),AP=(0,0,4),AN= , , , 3 3 3 4z=0, 则2 2 2 8 x+ y+ z=0, 3 3 3
空间向量与立体几何专题
1.
如图,已知 AB⊥平面 ACD,DE⊥平面 ACD,△ACD 为等边三角形,AD=DE=2AB=2a,F 为 CD 的中点. (1)求证:AF∥平面 BCE; (2)判断平面 BCE 与平面 CDE 的位置关系,并证明你的结论. 解析:
建立如图所示的空间直角坐标系 A-xyz,则 A(0,0,0),C(2a,0,0),B(0,0,a),D(a, 3a,0),E(a, 3a,2a). 因为 F 为 CD 的中点, 3 3 所以 F a, a,0. 2 2 → 3 → 3 → (1)证明:AF= a, a,0,BE=(a, 3a,a),BC=(2a,0,-a). 2 2 → 1 → → 因为AF= (BE+BC),AF⊄平面 BCE,所以 AF∥平面 BCE. 2 (2)平面 BCE⊥平面 CDE.证明如下: → 3 → → → → → 3 → 因为AF= a, a,0, CD=(-a, 3a,0), ED=(0,0, -2a), 所以AF·CD=0, A F ·ED 2 2 → → → → =0,所以AF⊥CD,AF⊥ED. 所以 AF⊥平面 CDE, 又 AF∥平面 BCE,所以平面 BCE⊥平面 CDE. 2.
2
3.(2017·河北石家庄模拟)如图,在四棱锥 P-ABCD 中,PA⊥底面 ABCD,底面 ABCD 为梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M 为 AD 的中点,N 为 PC 上一点,且
PC=3PN.
(1)求证:MN∥平面 PAB; (2)求二面角 P­AN­M 的余弦值. 解析:
分别以 AE, AD, AP 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系 A-xyz, 则 P(0,0,4),
M(0,1,0),C(2 2,2,0),N
2 2 2 8 , , . 3 3 3
→ → 2 2 2 8 设平面 AMN 的法向量 m=(x,y,z),AM=(0,1,0),AN= , , , 3 3 3
取 n=(1,- 2,0),
m·n 2 6 则 cos〈m,n〉= = . |m||n| 9
2 6 故二面角 P­AN­M 的余弦值为 . 9
4.(2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形 ABCD(及其内部)以 AB 边所在直线为旋转轴旋转 120°得到的,G 是 DF 的中点. (1)设 P 是 CE 上的一点,且 AP⊥BE,求∠CBP 的大小; (2)当 AB=3,AD=2 时,求二面角 E­AG­C 的大小. 解析:(1)因为 AP⊥BE,AB⊥BE,AB,AP⊂ 平面 ABP,AB∩AP=A,所以 BE⊥平面 ABP. 又 BP⊂ 平面 ABP,所以 BE⊥BP. 又∠EBC=120°,所以∠CBP=30°.
(1)证明:在平面 PBC 内作 NH∥BC 交 PB 于点 H,连接 AH, 1 1 在△PBC 中,NH∥BC,且 NH= BC=1,AM= AD=1. 3 2 ∵AD∥BC, ∴NH∥AM,且 NH=AM, ∴四边形 AMNH 为平行四边形,∴MN∥AH. ∵AH⊂ 平面 PAB,MN⊄平面 PAB,∴MN∥平面 PAB. (2)解:在平面 ABCD 内作 AE∥CD 交 BC 于 E,则 AE⊥AD.
相关文档
最新文档