固体全氟烷基有机超酸的催化应用进展

合集下载

固体酸催化剂在酯化反应中的研究进展

固体酸催化剂在酯化反应中的研究进展

酯化或者酯交换 反应 中为 了使反应充分 ,往往会 加入过量的 醇 ,而过量 的醇 又促进 酸性树 脂 的溶胀 ,促使 大量大分 子的 反应物可以扩散到催化剂 内部 的酸性位点进行反应。 2 沸石分 子筛
物 ,是强酸性大孔 阳离子交换树脂 。这两种有机 酸树脂都 已
沸 石 分 子 筛 在 酯 化 反 应 中具 有 优 良 的反 应 活 性 。 Si一0
结构方面 Nation和 Amberlyst一15材料 本身都具有 较小
国内外学者在该领域 研究 中取得 的进展 。这些 固体 酸催化 的孔容和 比表面积 ,分别 小于 5 am /g和 50 m /g,但是 当浸
剂 主 要 包 括 有 机 酸 树 脂 、沸 石 分 子 筛 、微 孔 硅 、杂 多 酸 、硫 酸 渍 极 性 溶 剂 后 ,材 料 溶 胀 并 且 变 成 大 孔 材 料 。交 联 的 聚 合 物
中 图 分类 号 :TQ314.24 2
文 献 标X(2016)03—0041—02
Research Progress on Esterification Catalyzed by Solid Acids Wang Danjun,Zheng Huaan,Zhang Shengjun,Zhu Minli
经商业化生产并应 用于多种 工业 反应 ,例如 甲基 叔丁基醚合 一 AJ产 生 Brsnsted酸 和 Lewis酸 ,因此 改 变 SWA1比 ,酸 性 能
成 、双酚 A合成 、叔丁 醇脱 水制 备异 丁 烯 、丙 烷水 合二 丙醇 和 催 化 活 性 也 随 之 改 变 。 一 般 情 况 下 ,随 Si/A1比增 多 酸 性
分 子筛 、微 孔 硅 、杂 多 酸 、硫 酸金 属氧 化 物 和 双 金 属 氧 化 物 )的结 构 、酸 性 能 、反 应 活性 关 系 等 。展 望 了 固体 酸 催 化 剂在 酯 化 反 应 在

固体超强酸催化剂总结

固体超强酸催化剂总结

固体超强酸催化剂超强酸是比100%的硫酸还要强的酸,其Hammett函数H0<-11.93(100%硫酸的H0为-11.93),可分为固态和液态。

固体超强酸和液体超强酸相比,有容易与反应物分离,可重复使用,不腐蚀反应器,减少催化剂公害,催化剂有良好的选择性等优点。

在催化反应中,固体超强酸对烯烃双键异构化、醇脱水、烯烃烷基化、酸化、醋化等都显示出较高的活性。

这种催化剂不腐蚀设备,不污染环境,催化反应温度低,制备简便,有广泛的应用前景。

固体超强酸是近年来发展的一种新型催化材料,对许多化学反应有较好的催化活性、选择性及重复使用性能。

固体超强酸是近年来研究与开发的一种新型固体酸催化剂,随着人们对固体超强酸不断深入研究,催化剂的种类也从液体含卤素超强酸发展为无卤素固体超强酸、单组分固体超强酸、多组分复合固体超强酸。

无论是催化剂的制备、理论探索、结构表征,还是工业应用研究都有了新的发现,固体超强酸由于其特有的优点和广阔的工业应用前景,已受到国内外学者广泛关注,成为固体酸催化剂研究中的热点。

1. 催化性能1.1饱和烃的异构化反应饱和烃类分子如正丁烷、戊烷较稳定,不易发生反应。

如用100%硫酸作催化剂,室温下不会发生反应,但用SbF5SiO2-Al2O3固体超强酸却能使丁烷发生反应,主要产物为异丁烷。

nC5H12 SbF5SiO2-Al2O3 异戊烷1.2氧化反应SO42--Fe2O3能在室温下使丁烷异构化。

但在100℃以上用脉冲法进行反应时,只发生氧化反应但是,单用Fe2O3作催化剂,即使反应温度为300℃丁烷也不发生反应。

1.3阴离子聚合反应烷基乙烯基醚的聚合反应是阴离子聚合反应,可用烷基金属化合物或Ziegler型催化剂。

但是SO42--Fe2O3对此反应有极高的反应活性。

如异丁基乙烯基醚用SO42--Fe2O3作催化剂,在0℃能很快发生聚合反应。

甲基乙烯基醚和乙基乙烯基醚在该催化剂存在下以甲苯作稀释剂也能在低温(零度或零度以下)下高速聚合。

全氟烷基化合物的电化学降解

全氟烷基化合物的电化学降解

全氟烷基化合物的电化学降解
全氟烷基化合物是一类具有强大的碳-氟键的化合物,电化学降解是一种潜在的方法来处理这些化合物。

电化学降解是利用电化学方法将化合物分解成较小的分子或原子的过程。

在处理全氟烷基化合物时,电化学降解可以通过在电极上施加电压,引发化合物的氧化或还原反应来实现。

从电化学降解的角度来看,全氟烷基化合物通常具有很强的碳-氟键,这使得它们在常规条件下难以降解。

然而,通过在适当的电极上施加适当的电压,可以在电化学降解过程中实现对这些碳-氟键的断裂,从而将全氟烷基化合物分解成较小的分子或原子。

另一个角度是从环境治理的角度来看,全氟烷基化合物被广泛应用于工业生产中,但它们往往难以降解,因此容易在环境中积累并对生态系统造成潜在的危害。

电化学降解作为一种潜在的处理方法,可以帮助减少这些化合物对环境的影响,从而保护生态系统的健康。

此外,从技术可行性的角度来看,电化学降解可以在较温和的条件下实现对全氟烷基化合物的降解,相对于其他处理方法,电化
学降解可能具有更低的能耗和更高的效率,因此具有一定的技术优势。

总的来说,电化学降解对于全氟烷基化合物的处理具有潜在的重要意义,不仅可以从化学角度实现对这些化合物的降解,还可以在环境治理和技术可行性等方面发挥重要作用。

然而,需要进一步的研究和实践来验证其在实际应用中的效果和可行性。

基于全氟有机超酸的离子液体及其应用

基于全氟有机超酸的离子液体及其应用

中图分类号 T Q 0 7 3  ̄ . 2
室温 离 子液体 因 为其离 子 的高度 不对 称性 而难
哈 米特酸 度 函数表 示 。
以密集堆 积 , 罕有 形成 晶体 , 因此 相对 于其 他盐 类化 合 物熔 点 很低 , 常 温下 为 液体 , 是许 多 有 机物 、 无 机
物 优 良的溶 剂 , 易 分离 、 易 循 环 使用 , 且 由于它 蒸 汽 压低 、 环境友 好 。 因此 受到 广泛 关注 和研 究 。 近 年来 化学 家们 尝试将 全 氟烷基 引入 离子 液体 中以期 获得 独特 的性 能 , 改 变离 子液 体原 有 的熔 点 、
超酸 具有 极强 酸性 、高介 电常数和 良好 的化 学 催 化性 能 , 使 一些 在 有机 ( 或无 机 ) 本 来 难 于进 行 的 反 应能 在温 和条件 下顺 利完 成 .故超 酸在有 机合 成 中得到 广泛 的应用 。 全 氟有 机超 酸包括 全氟 氧超 酸 、 全 氟氮超 酸 和全氟碳 超 酸 3 类 。文献 [ 5 ] 报道 几种 超 酸 的本 征 酸性 强 弱顺 序 为碳 超 酸> 氮 超酸> 氧超 酸> 硫 酸 。如气 相 中几 种 典型 的全氟 有机超 酸 的酸性 顺
甲基 磺酸 的发 现 , 超 酸化 学才 迅速 发展 起来 。乔 治 ・
安德 鲁 ・ 欧 拉 因其 在 碳 正离 子 和 超 酸方 面 的研 究 获
得 1 9 9 4年诺 贝尔 化学 奖 。超 酸体 系都 是无 水 的 ( 任 何 水 溶液 体 系的酸 度都 是有 限 的 ) , 故 其酸性 强 弱用
知 的最强 固体超 强 酸 , 具 有耐热 性 能好 、 化学稳 定性 和机 械强 度高 等特点 。 全氟氮超酸 , 主 要是 指 x I( 全 氟烷 基 磺 酰) 亚 胺 ( ( R f s O 2 ) N H) 型超 酸 , 包 括对 称 及 非 对称 双 ( 全 氟烷 基磺 酰 ) 亚胺。 由于全氟 烷基磺 酰亚 胺 阴离子在 结构 上具 有 2 个 大 体积 的全 氟烷基 .表 现 出现较大 的 空

超强酸及其在化工有机合成中的运用研究

超强酸及其在化工有机合成中的运用研究

超强酸及其在化工有机合成中的运用研究摘要:无机酸较超强酸相比,更早地投入到了实验中,并且应用范围也相当广泛,但对于相对复杂甚至难以进行的一些有机反应,超强酸就发挥了不可小觑的催化作用。

主要介绍超强酸的定义、性质以及超强酸在化工有机合成反应中的应用。

关键词:超强酸;化工有机合成;催化剂引言:超强酸是一种酸性比高氯酸还强的酸(注:有些人认为王水可以溶金,所以误认为王水酸性非常强,事实上王水的酸性并非很强,甚至不及浓硫酸。

而高氯酸是无机含氧酸中的最强酸)。

一般分类如下:布朗斯特超酸,路易斯超酸,共轭布朗斯特-路易斯超酸,固体超强酸。

超酸作为一个良好的催化剂,使一些本来难以进行的反应能在较温和的条件下进行,故在有机合成中得到广泛应用。

超强酸是一类酸性比浓硫酸还强的酸。

世界上已开发和研制了比硫酸、盐酸、硝酸酸性强几百万倍,甚至几十亿倍的超强酸。

以HSO3F-SbF5(魔酸)为例,比100%硫酸强1019倍。

实验中,我们经常用到无机酸最为反应的催化物质,比如盐酸、硫酸等,但无机酸许多巨有较强的腐蚀性,容易损坏机器、破坏环境,且在实验操作中,具有一定的危险性,并且无机酸对一些有机反应的催化效果,并不理想。

所以,为了解决这些问题,便有了对超强酸的进一步研究。

1、什么是超强酸超强酸,指的是比 100%硫酸的酸性更强的酸。

它的酸度不用 p H 值来表示,而是采用 HOMM ETT 酸性函数HO,作为酸性量度。

HO越小,则超强酸的酸性越强。

在室温下,硫酸的 HO为 -11.93,所以,凡是 HO小于11.93的均为超强酸。

这里介绍几种比较常见的超强酸:1)布朗斯特超酸,如HSO3Cl;2)路易斯超酸,如 Sb F5;3)固体超酸,如 Zr O2·H2SO4;4)共轭布朗斯特 - 路易斯超酸,如HSO3F·Sb F5。

将一些强的路易斯酸,尤其是金属的高价化合物,如 Sb F5、Ta F5、Nb F5和As F6等加入FSO3H 或HF 等质子酸中,能使酸的 HO急剧下降。

超酸催化反应

超酸催化反应

超酸催化反应
超酸催化反应是指在极酸性条件下进行的化学反应,常见的超酸催化剂包括三氟甲磺酸、五氟化磷等。

这种反应具有高效、高选择性和高反应活性等特点,在有机合成中得到广泛应用。

超酸催化反应的应用范围涵盖了酯化、烷基化、芳基化、氧化等多个方面,其中最为重要的应用是在烃类分子转化中,包括烯烃异构化、烷基化、芳基化、脱水等。

此外,超酸催化反应也在石油化工、医药、材料科学等领域得到了广泛应用。

随着催化反应技术的不断发展,超酸催化反应在未来的应用前景将会更加广阔。

- 1 -。

g-C3N4

g-C3N4

第42卷第10期2023年10月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.10October,2023g-C 3N 4/Ag 基二元复合光催化剂降解环境污染物的研究进展柏林洋1,蔡照胜2(1.江苏旅游职业学院,扬州㊀225000;2.盐城工学院化学化工学院,盐城㊀224051)摘要:光催化技术在太阳能资源利用方面呈现出良好的应用前景,已受到世界各国的广泛关注㊂g-C 3N 4是一种二维结构的非金属聚合物型半导体材料,具有合成简单㊁成本低㊁化学性质稳定㊁无毒等特点,在环境修复和能量转化方面应用潜力较大㊂但g-C 3N 4存在对可见光吸收能力差㊁比表面积小和光生载流子复合速率高等缺点,限制了其实际应用㊂构筑异质结光催化剂是提高光催化效率的有效途径之一㊂基于Ag 基材料的特点,前人对g-C 3N 4/Ag 基二元复合光催化剂进行了大量研究,并取得显著成果㊂本文总结了近年来AgX(X =Cl,Br,I)/g-C 3N 4㊁Ag 3PO 4/g-C 3N 4㊁Ag 2CO 3/g-C 3N 4㊁Ag 3VO 4/g-C 3N 4㊁Ag 2CrO 4/g-C 3N 4㊁Ag 2O /g-C 3N 4和Ag 2MoO 4/g-C 3N 4复合光催化剂降解环境污染物的研究进展,并评述了g-C 3N 4/Ag 基二元复合光催化剂目前面临的主要挑战,展望了其未来发展趋势㊂关键词:g-C 3N 4;Ag 基材料;二元复合光催化剂;光催化性能;环境污染物中图分类号:TQ426㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)10-3755-09Research Progress on g-C 3N 4/Ag-Based Binary Composite Photocatalysts for Degradation of Environmental PollutantsBAI Linyang 1,CAI Zhaosheng 2(1.Jiangsu Institute of Tourism,Yangzhou 225000,China;2.School of Chemistry and Chemical Engineering,Yancheng Institute of Technology,Yancheng 224051,China)Abstract :Photocatalysis technology shows a good application prospect in the utilization of solar energy resource and has attracted worldwide attention.g-C 3N 4is a two-dimensional polymeric metal-free semiconductor material with the characteristics of facile synthesis,low cost,high chemical stability and non-toxicity,which has great potential in environmental remediation and energy conversion.However,g-C 3N 4has the drawbacks of poor visible light absorption capacity,low specific surface area and high recombination rate of photogenerated charge carriers,which limits its practical application.Constructing heterojunction photocatalyst has become one of effective pathways for boosting photocatalytic efficiency.Based on the inherent merits of Ag-based materials,a lot of researches have been carried out on g-C 3N 4/Ag-based binary photocatalysts and prominent results have been achieved.Recent advances on AgX (X =Cl,Br,I)/g-C 3N 4,Ag 3PO 4/g-C 3N 4,Ag 2CO 3/g-C 3N 4,Ag 3VO 4/g-C 3N 4,Ag 2CrO 4/g-C 3N 4,Ag 2O /g-C 3N 4and Ag 2MoO 4/g-C 3N 4composite photocatalysts for the degradation of environmental pollutants were summarized.The major challenges of g-C 3N 4/Ag-based binary composite photocatalysts were reviewed and the future development trends were also forecast.Key words :g-C 3N 4;Ag-based material;binary composite photocatalyst;photocatalytic performance;environmental pollutant㊀收稿日期:2023-05-15;修订日期:2023-06-12基金项目:江苏省高等学校自然科学研究面上项目(19KJD530002)作者简介:柏林洋(1967 ),男,博士,副教授㊂主要从事光催化材料方面的研究㊂E-mail:linybai@通信作者:蔡照胜,博士,教授㊂E-mail:jsyc_czs@0㊀引㊀言随着全球经济的快速增长和工业化进程的加快,皮革㊁印染㊁制药和化工等行业排放的环境污染物总量3756㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷也不断增长㊂这些环境污染物存在成分复杂㊁毒性大㊁难以降解等特点,对人们的身体健康和生态环境产生严重威胁,已成为制约经济和社会发展的突出问题㊂如何实现环境污染物的高效降解是目前亟待解决的重要问题㊂效率低㊁能耗高及存在二次污染是利用传统处理方法处置环境污染物的主要缺陷[1]㊂光催化技术作为一种新型的绿色技术,具有环境友好㊁成本低㊁反应效率高和无二次污染等优点,在解决环境污染问题方面具有很大的发展潜力,深受人们的关注[2-4]㊂g-C3N4属于一种非金属聚合物型半导体材料,具有二维分子结构,即C原子和N原子通过sp2杂化形成的共轭石墨烯平面结构,具有适宜的禁带宽度(2.7eV)和对460nm以下可见光良好的响应能力㊂g-C3N4具有合成原料成本低㊁制备工艺简单㊁耐酸耐碱和稳定性好等特点,在催化[5]㊁生物[6]和材料[7]等领域应用广泛㊂然而,g-C3N4较小的比表面积㊁较弱的可见光吸收能力和较快的光生载流子复合率等不足导致其光量子利用率不高,给实际应用带来较大困难[8]㊂为了克服上述问题,前人提出了对g-C3N4进行形貌调控[9]㊁元素掺杂[10-11]和与其他半导体耦合[12-13]等方法㊂其中,将g-C3N4与其他半导体耦合形成异质结光催化剂最为常见㊂Ag基半导体材料因具有成本合理㊁光电性能好和光催化活性高等特点而深受青睐,但仍存在光生载流子快速复合和光腐蚀等缺陷㊂近年来,人们将Ag基材料与g-C3N4进行复合,整体提高了复合光催化剂的催化性能,并由此取得了大量极有价值的科研成果㊂本文综述了近年来g-C3N4/Ag银基二元复合光催化剂的制备方法㊁性能和应用等方面的研究现状,同时展望了未来的发展趋势,期望能为该领域的研究人员提供新的思路㊂1㊀g-C3N4/Ag基二元复合光催化剂近年来,基于Ag基半导体材料能与g-C3N4能带结构匹配的特点,构筑g-C3N4/Ag基异质结型复合光催化体系已成为国内外的研究热点㊂这类催化剂通常采用沉淀法在g-C3N4表面负载Ag基半导体材料㊂其中,Ag基体的成核和生长是关键问题㊂通过对Ag基材料成核和生长工艺的控制,实现了Ag基材料在g-C3N4上的均匀分布㊂此外,通过对g-C3N4微观结构进行调控,使其具有较大的比表面积和较高的结晶度,从而进一步提高复合光催化剂的催化性能㊂相对于纯g-C3N4和Ag基光催化剂,g-C3N4/Ag基二元复合光催化剂通过两组分的协同效应和界面作用,不仅能提高对可见光的吸收利用率,而且能有效抑制g-C3N4和Ag基材料中光生e-/h+对的重组,从而提高复合光催化剂的活性和稳定性㊂在g-C3N4/Ag基二元复合光催化材料中,以AgX(X=Cl,Br,I)/g-C3N4㊁Ag3PO4/g-C3N4㊁Ag2CO3/g-C3N4㊁Ag3VO4/g-C3N4㊁Ag2CrO4/g-C3N4㊁Ag2O/g-C3N4和Ag2MoO4/g-C3N4为典型代表㊂1.1㊀AgX(X=Cl,Br,I)/g-C3N4二元复合光催化剂AgX(X=Cl,Br,I)在杀菌㊁有机污染物降解和光催化水解产氢等方面展现出优异的性能㊂但AgX (X=Cl,Br,I)是一种光敏材料,在可见光下容易发生分解,形成Ag0,从而影响其催化活性及稳定性㊂将AgX(X=Cl,Br,I)与g-C3N4复合是提升AgX(X=Cl,Br,I)使用寿命㊁改善光催化性能最有效的方法之一㊂Li等[14]采用硬模板法制备出一种具有空心和多孔结构的高比表面积g-C3N4纳米球,并以其为载体,通过沉积-沉淀法得到AgBr/g-C3N4光催化材料㊂XRD分析显示AgBr的加入并没有改变g-C3N4的晶体结构,瞬态光电流试验表明AgBr/g-C3N4光电流密度高于g-C3N4,橙黄G(OG)染料经10min可见光照射后的降解率达到97%㊂Shi等[15]报道了利用沉淀回流法制备AgCl/g-C3N4光催化剂,研究了AgCl的量对催化剂结构及光催化降解草酸性能的影响,确定了最佳修饰量,分析了催化剂用量㊁草酸起始浓度㊁酸度和其他有机成分对光催化活性影响,通过自由基捕获试验揭示了光降解反应中起主要作用的活性物质为光生电子(e-)㊁羟基自由基(㊃OH)㊁超氧自由基(㊃O-2)和空穴(h+)㊂彭慧等[16]采用化学沉淀法制备具有不同含量AgI的AgI/g-C3N4光催化剂,SEM测试表明AgI纳米颗粒分布在层状结构g-C3N4薄片的表面,为催化反应提供了更多的活性位㊂该系列催化剂应用于光催化氧化降解孔雀石绿(melachite green,MG)的结果显示,AgI/g-C3N4(20%,质量分数,下同)的光催化性能最好,MG经2h可见光辐照后去除率达到99.8%㊂部分AgX(X=Cl,Br,I)/g-C3N4二元复合光催化剂的研究现状如表1所示㊂第10期柏林洋等:g-C 3N 4/Ag 基二元复合光催化剂降解环境污染物的研究进展3757㊀表1㊀AgX (X =Cl ,Br ,I )/g-C 3N 4二元复合光催化剂光降解环境污染物的研究现状Table 1㊀Research status of AgX (X =Cl ,Br ,I )/g-C 3N 4binary composite photocatalysts forphotodegradation of enviromental pollutantsPhotocatalytst Synthesis method TypePotential application Photocatalytic activity Reference AgBr /g-C 3N 4Sonication-assisted deposition-precipitation II-schemeDegradation of RhB,MB and MO 100%degradation for RhB,95%degradation for MB and 90%degradation for MO in 10min [17]AgCl /g-C 3N 4Precipitation Z-schemeDegradation of RhB and TC 96.1%degradation for RhB and 77.8%degradation for TC in 120min [18]AgCl /g-C 3N 4Solvothermal +in situ ultrasonic precipitation Z-scheme Degradation of RhB 92.2%degradation in 80min [19]AgBr /g-C 3N 4Deposition-precipitation II-schemeDegradation of MO 90%degradation in 30min [20]AgI /g-C 3N 4In-situ growth II-scheme Degradation of RhB 100%degradation in 60min [21]㊀㊀Note:MO-methyl orange,RhB-rhodamine B,TC-tetracycline hydrochloride,MB-methyl blue.1.2㊀Ag 3PO 4/g-C 3N 4二元复合光催化剂纳米Ag 3PO 4禁带宽度为2.5eV 左右,对可见光有很好的吸收作用,且光激发后具有很强的氧化性,在污染物降解和光解水制氢等领域有良好的应用前景[22]㊂但是,纳米Ag 3PO 4易团聚,光生载流子的快速重组使光催化活性大大降低,此外,Ag 3PO 4还易受光生e -的腐蚀,从而影响稳定性㊂Ag 3PO 4与g-C 3N 4复合可显著降低e -/h +对的重组,有效提高光催化性能㊂Wang 等[23]采用原位沉淀法获得Z-型异质结构g-C 3N 4/Ag 3PO 4复合光催化剂,并有效地提高了e -/h +对的分离效率㊂TEM 结果显示,Ag 3PO 4粒子被g-C 3N 4纳米片所覆盖,UV-DRS 结果表明,Ag 3PO 4的添加使g-C 3N 4吸收边发生红移,且吸收光强度显著增强,光降解实验结果显示,30%g-C 3N 4/Ag 3PO 4光催化剂在40min 内能去除约90%的RhB㊂胡俊俊等[24]利用了原位沉淀法合成了一系列Ag 3PO 4/g-C 3N 4复合光催化剂,研究了Ag 3PO 4和g-C 3N 4的物质的量比对催化剂在可见光下催化降解MB 性能的影响,发现在最优组分下,MB 经可见光辐照30min 后可以被完全降解㊂Mei 等[25]采用焙烧-沉淀法制备了一系列Ag 3PO 4/g-C 3N 4复合光催化剂,并用于可见光条件下降解双酚A(bisphenol A,BPA),发现Ag 3PO 4质量分数为25%时,光催化降解BPA 的性能最好,3h 能降解92.8%的BPA㊂潘良峰等[26]采用化学沉淀法制备出一种具有空心管状的Ag 3PO 4/g-C 3N 4光催化剂,SEM 结果表明,Ag 3PO 4颗粒均匀分布于空心管状结构g-C 3N 4的表面,两者形成一个较强异质结构,将其用于盐酸四环素(tetracycline hydrochloride,TC)光催化降解,80min 能降解98%的TC㊂Deonikar 等[27]研究了采用原位湿化学法合成催化剂过程中使用不同溶剂(去离子水㊁四氢呋喃和乙二醇)对Ag 3PO 4/g-C 3N 4的结构和光降解MB㊁RhB 及4-硝基苯酚性能的影响,发现不同溶剂对复合光催化剂的形貌有着重要影响,从而影响光催化性能,其中以四氢呋喃合成的复合光催化剂的催化降解性能最佳,这是由于g-C 3N 4纳米片均匀包裹在Ag 3PO 4的表面,从而促使两者界面形成较为密切的相互作用,有利于e -/h +对的分离㊂部分Ag 3PO 4/g-C 3N 4二元复合光催化剂的研究进展见表2㊂表2㊀Ag 3PO 4/g-C 3N 4二元复合光催化剂光降解环境污染物的研究现状Table 2㊀Research status of Ag 3PO 4/g-C 3N 4binary composite photocatalysts for photodegradation of environmental pollutantsPhotocatalyst Synthesis method Type Potential application Photocatalytic activity Reference g-C 3N 4/Ag 3PO 4In situ precipitation Z-scheme Degradation of BPA 100%degradation in 180min [28]g-C 3N 4/Ag 3PO 4Hydrothermal Z-schemeDecolorization of MB Almost 93.2%degradation in 25min [29]g-C 3N 4/Ag 3PO 4In situ prepcipitation II-scheme Reduction of Cr(VI)94.1%Cr(VI)removal efficiency in 120min [30]g-C 3N 4/Ag 3PO 4Chemical precipitation Z-scheme Degradation of RhB 90%degradation in 40min [31]g-C 3N 4/Ag 3PO 4In situ precipitation Z-scheme Degradation of levofloxacin 90.3%degradation in 30min [32]Ag 3PO 4/g-C 3N 4Chemical precipitation Z-schemeDegradation of gaseous toluene 87.52%removal in 100min [33]Ag 3PO 4/g-C 3N 4Calcination +precipitation Z-scheme Degradation of diclofenac (DCF)100%degradation in 12min [34]Ag 3PO 4/g-C 3N 4In situ deposition Z-scheme Degradation of RhB and phenol 99.4%degradation in 9min for RhB;97.3%degradation in 30min for phenol [35]3758㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷续表Photocatalyst Synthesis method Type Potential application Photocatalytic activity Reference Ag3PO4/g-C3N4In situ hydrothermal II-scheme Degradation of sulfapyridine(SP)94.1%degradation in120min[36] Ag3PO4/g-C3N4In situ growth Z-scheme Degradation of berberine100%degradation in15min[37] g-C3N4/Ag3PO4In situ deposition Z-scheme Degradation of ofloxacin71.9%degradation in10min[38] Ag3PO4/g-C3N4Co-precipitation Z-scheme Degradation of MO98%degradation in10min[39]g-C3N4/Ag3PO4Calcination+precipitation Z-scheme Degradation of MO,RhB and TC95%degradation for MO in30min;[40]96%degradation for RhB in15min;80%degradation for TC in30min1.3㊀Ag2CO3/g-C3N4二元复合光催化剂Ag4d轨道和O2p轨道杂化,形成Ag2CO3的价带(valence band,VB);Ag5s轨道和Ag4d轨道进行杂化,形成Ag2CO3导带(conduction band,CB),而CB中原子轨道杂化会降低Ag2CO3带隙能,从而提高光催化活性[41]㊂纳米Ag2CO3带隙能约为2.5eV,可见光响应性好,在可见光作用下表现出良好的光催化降解有机污染物特性[42-43]㊂然而,经长时间光照后,Ag2CO3晶粒中Ag+会被光生e-还原成Ag0,导致其光腐蚀,引起光催化性能下降[44]㊂Ag2CO3与g-C3N4耦合,能够有效地抑制光腐蚀,促进e-/h+对的分离,进而改善光催化性能㊂An等[45]通过构筑Z型核壳结构的Ag2CO3@g-C3N4材料来增强Ag2CO3和g-C3N4界面间的相互作用,从而有效防止光腐蚀发生,加速光生e-/h+对的分离,实现了催化剂在可见光辐照下高效降解MO㊂Yin等[46]通过水热法制备Ag2CO3/g-C3N4光催化剂,探讨了g-C3N4的含量㊁合成温度对催化剂结构和光降解草酸(oxalic acid,OA)性能的影响,获得最优条件下合成的催化剂能在45min光照时间内使OA去除率达到99.99%㊂Pan等[41]采用煅烧和化学沉淀两步法,制备了一系列Ag2CO3/g-C3N4光催化剂,TEM结果显示,Ag2CO3纳米粒子均匀分布在g-C3N4纳米片表面,且形貌规整㊁粒径均一,光催化性能测试结果表明,60% Ag2CO3/g-C3N4光催化活性最高,MO和MB分别经120和240min可见光光照后,其降解率分别为93.5%和62.8%㊂Xiu等[47]使用原位水热法构筑了Ag2CO3/g-C3N4光催化剂,光降解试验结果表明,MO经可见光辐照1h的去除率为87%㊂1.4㊀Ag3VO4/g-C3N4二元复合光催化剂纳米Ag3VO4带隙能约为2.2eV,可用于催化可见光降解环境污染物,是一种具有应用前景的新型半导体材料㊂然而,如何提高Ag3VO4光催化性能,仍然是学者研究的重点㊂构建Ag3VO4/g-C3N4异质结催化剂是提高Ag3VO4的催化性能的一种有效方法㊂该方法能够降低Ag3VO4光生载流子的复合率,拓宽可见光的吸收范围㊂Hind等[48]通过溶胶凝胶法制备出一种具有介孔结构的Ag3VO4/g-C3N4复合光催化剂,该复合催化剂经60min可见光照射能将Hg(II)全部还原,其光催化活性分别是Ag3VO4和g-C3N4的4.3倍和5.4倍,主要是由于异质结界面处各组分间紧密结合以及催化剂具有较高的比表面积和体积比,从而促进光生载流子的分离㊂蒋善庆等[49]利用化学沉淀法制备了系列Ag3VO4/g-C3N4催化剂,催化性能研究结果表明,Ag3VO4负载量为20%(质量分数)时,其光催化降解微囊藻毒素的效果最好,可见光辐照100min后降解率为85.43%,而g-C3N4在相同条件下的降解率仅为18.76%㊂1.5㊀Ag2CrO4/g-C3N4二元复合光催化剂纳米Ag2CrO4具有特殊的晶格和能带结构,其带隙能为1.8eV,可见光响应良好,是一种非常理想的可见光区半导体材料㊂然而,Ag2CrO4存在自身的电子结构和晶体的缺陷,导致其光催化效率性能较差,严重影响了实际应用[50-52]㊂将Ag2CrO4与g-C3N4复合形成异质结光催化剂是提高其光催化效率和稳定性的一种有效途径,因为Ag2CrO4在光照下产生的光生e-快速地迁移到g-C3N4表面,可避免光生e-在Ag2CrO4表面聚集而引起光腐蚀㊂Ren等[53]利用SiO2为硬模板,以氰胺为原料,合成出具有中空介孔结构的g-C3N4,再通过化学沉淀法制备了系列g-C3N4/Ag2CrO4光催化剂,并将其用于RhB和TC的可见光降解,研究发现g-C3N4/Ag2CrO4催化剂具有较高比表面积和丰富的孔道结构,在可见光辐射下表现出较高的光催化活性㊂Rajalakshmi等[54]利用水热方法合成了一系列Ag2CrO4/g-C3N4光催化剂,并将其用于对硝基苯酚的光催化降解,结果表明,Ag2CrO4质量分数为10%时,其降解率达到97%,高于单组分g-C3N4或Ag2CrO4,原因是与第10期柏林洋等:g-C 3N 4/Ag 基二元复合光催化剂降解环境污染物的研究进展3759㊀Ag 2CrO 4和g-C 3N 4界面间形成了S-型异质结,能提高e -/h +对的分离效率㊂1.6㊀Ag 2O /g-C 3N 4二元复合光催化剂纳米Ag 2O 是一种理想的可见光半导体材料,在受到光辐照后,其电子发生跃迁,CB 上光生e -能够将Ag 2O 晶粒中Ag +还原成Ag 0,而VB 上h +能够使Ag 2O 的晶格氧氧化为O 2,导致其结构不稳定㊂然而,纳米Ag 2O 在有机物污染物降解方面表现出良好的稳定性[55],这是因为Ag 2O 的表面会随着光化学反应的进行被一定数量的Ag 0纳米粒子所覆盖,而Ag 0纳米粒子作为光生e -陷阱,能够降低e -在Ag 2O 表面的富集,同时,由于光生h +具有较强的氧化性能力,既能实现对有机污染物的直接氧化,又能避免其对晶格氧的氧化,从而提高了纳米Ag 2O 光催化活性和稳定性㊂Liang 等[56]在常温下采用简易化学沉淀法制备了p-n 结Ag 2O /g-C 3N 4复合光催化剂,研究发现,起分散作用的g-C 3N 4为Ag 2O 纳米颗粒的生长提供了大量成核位点并限制了Ag 2O 纳米颗粒聚集,p-n 结的形成以及在光化学反应过程中生成的Ag 纳米粒子,加速了光生载流子的分离和迁移,拓宽了光的吸收范围,在可见光和红外光照下降解RhB 溶液过程中表现出良好的催化活性,其在可见光和红外光照下反应速率分别是g-C 3N 4的26倍和343倍㊂Jiang 等[57]通过液相法制备了一系列介孔结构的g-C 3N 4/Ag 2O 光催化剂,试验结果表明,Ag 2O 的添加显著提高了g-C 3N 4/Ag 2O 光催化剂的吸光性能和比表面积,因此对光催化性能的提升有促进作用,当Ag 2O 含量为50%时,光催化分解MB 的效果最好,经120min 可见光光照后,MB 的脱除率达到90.8%,高于g-C 3N 4和Ag 2O㊂Kadi 等[58]以Pluronic 31R 1表面活性剂为软模板,以MCM-41为硬模板,合成出具有多孔结构的Ag 2O /g-C 3N 4光催化剂,TEM 结果显示,球形Ag 2O 的纳米颗粒均匀地分布于g-C 3N 4的表面,催化性能评价表明0.9%Ag 2O /g-C 3N 4复合光催化剂光催化效果最佳,60min 能完全氧化降解环丙沙星,其降解效率分别是Ag 2O 和g-C 3N 4的4倍和10倍㊂1.7㊀Ag 2MoO 4/g-C 3N 4二元复合光催化剂Ag 2MoO 4具有良好的导电性㊁抗菌性㊁环保性,以及优良的光催化活性,在荧光材料㊁导电玻璃㊁杀菌剂和催化剂等方面有着广阔的应用前景[59]㊂但Ag 2MoO 4带隙大(3.1eV),仅能对紫外波段光进行响应,限制了其对太阳光的利用㊂当Ag 2MoO 4与g-C 3N 4进行耦合时,可以将其对太阳光的吸收范围由紫外拓展到可见光区,从而提高太阳光的利用率㊂Pandiri 等[60]通过水热合成的方法,制备出β-Ag 2MoO 4/g-C 3N 4异质结光催化剂,SEM 结果显示该催化剂中β-Ag 2MoO 4纳米颗粒均匀地分布在g-C 3N 4纳米片的表面,光催化性能测试结果表明在3h 的可见光照射下,其降解能力是β-Ag 2MoO 4和g-C 3N 4机械混合物的2.6倍,主要原因在于β-Ag 2MoO 4和g-C 3N 4两者界面间形成更为紧密的异质结,使得e -/h +对被快速分离㊂Wu 等[61]采用简单的原位沉淀方法成功构建了Ag 2MoO 4/g-C 3N 4光催化剂,并将其应用于MO㊁BPA 和阿昔洛韦的降解,结果表明该催化剂显示出良好的太阳光催化活性,这主要是因为Ag 2MoO 4和g-C 3N 4界面间存在着一定的协同效应,可有效地提高对太阳光的利用率,降低载流子的复合概率㊂2㊀g-C 3N 4/Ag 基二元复合光催化剂电荷转移机理模型研究g-C 3N 4/Ag 基二元复合光催化剂在可见光的辐照下,价带电子发生跃迁,产生e -/h +对㊂e -被催化剂表面吸附的O 2捕获产生㊃O -2,并进一步与水反应生成㊃OH,形成的三种活性自由基(h +㊁㊃O -2和㊃OH),实现水中有机污染物的高效降解(见图1)㊂而光催化反应机理与载流子的迁移机制密切相关㊂目前,g-C 3N 4/Ag 基二元复合光催化剂体系中主要存在三种不同的光生载流子的转移机制,分别为I 型㊁II 型和Z 型㊂图1㊀g-C 3N 4/Ag 基二元复合光催化剂降解有机污染物的光催化反应机理Fig.1㊀Photocatalytic reaction mechanism of g-C 3N 4/Ag-based binary composite photocatalyst for degradation of organic pollutants3760㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷2.1㊀I 型异质结载流子转移机理模型图2(a)为I 型异质结构中的光生e -/h +对转移示意图㊂半导体A 和半导体B 均对可见光有响应,其中,半导体A 的带隙较宽,半导体B 的带隙较窄,并且半导体B 的VB 和CB 均位于半导体A 之间,在可见光的照射下,e -发生跃迁,从CB 到VB,半导体A 的CB 上的e -和VB 上的h +分别向半导体B 的CB 和VB 转移,从而实现了e -/h +对的分离㊂以Ag 2O /g-C 3N 4复合催化剂为例[58],当Ag 2O 和g-C 3N 4相耦合时,因为g-C 3N 4的VB 具有更正的电势,h +被转移到Ag 2O 的VB 上,同时,光激发e -在g-C 3N 4的CB 上,其电势较负,e -便传输到Ag 2O 的CB 上,CB 上e -与O 2结合形成㊃O -2,并进一步与H +结合生成了㊃OH,而有机物污染物被Ag 2O 的价带上h +氧化分解生成CO 2和H 2O㊂2.2㊀II 型异质结载流子转移机理模型II 型异质结是一种能级交错带隙型结构,如图2(b)所示,其中半导体A 的CB 电位较负,在可见光照射下,e -从CB 上转移到半导体B 的CB 上,h +从半导体B 的VB 转移到半导体A 的VB 上,从而使e -/h +对得以分离㊂以Ag 3PO 4@g-C 3N 4为例[62],由于g-C 3N 4的CB 的电势较Ag 3PO 4低,光生e -从g-C 3N 4迁移到Ag 3PO 4的CB 上,而Ag 3PO 4的CB 电势较g-C 3N 4高,h +从Ag 3PO 4的VB 迁移到g-C 3N 4的VB 上,从而实现e -/h +对的分离,g-C 3N 4表面的h +可直接氧化降解MB,而Ag 3PO 4表面积聚的电子又会被氧捕获,产生H 2O 2,并进一步分解成㊃OH,从而加快MB 的降解㊂上述I 型和II 型结构CB 的氧化能力和VB 还原能力低于单一组分,造成复合半导体的氧化还原能力降低[63]㊂2.3㊀Z 型异质结载流子转移机理模型构建Z 型异质结光光催化剂使得e -和h +沿着特有的方向迁移,有效解决复合催化剂氧化还原能力降低问题[64]㊂Z 型异质结催化剂e -/h +对的迁移方向如图2(c)所示,e -从半导体B 的电势较高的CB 转移到半导体A 的电势较低的VB 进行复合,从而实现半导体A 的e -和半导体B 的h +发生分离㊂h +在半导体B 表面氧化性能更强,在半导体A 上e -具有较高还原特性,两者共同作用使环境污染物得以顺利降解㊂为了更好地解释Z 型异质结h +和e -迁移机理,以Ag 3VO 4/g-C 3N 4复合光催化剂为例[48],复合光催化剂经可见光激发后,Ag 3VO 4和g-C 3N 4都发生了e -跃迁,在Ag 3VO 4的CB 上e -与g-C 3N 4的VB 上h +进行复合时,e -对Ag 3VO 4的腐蚀作用被削弱,同时,也实现了g-C 3N 4的CB 上e -和Ag 3PO 4的价带上h +发生分离,g-C 3N 4的CB 上e -具有较强的还原性,将Hg 2+还原成Hg 0,而Ag 3PO 4的VB 上h +具有较强的氧化性,可将HOOH氧化生成CO 2和H 2O㊂图2㊀电子-空穴对转移机理示意图Fig.2㊀Schematic diagrams of electron-hole pairs transfer mechanism 3㊀结语和展望g-C 3N 4/Ag 基二元复合光催化剂因其较强的可见光响应和优异的光催化性能,在环境污染物的降解方面具有广阔的发展空间㊂近年来,国内外研究人员在理论研究㊁制备方法和光催化性能等多个领域取得了重要进展,为光催化理论的发展奠定了坚实的基础㊂然而,g-C 3N 4/Ag 基二元复合光催化剂在实际应用中还面临诸多问题,如制备工艺复杂㊁光腐蚀㊁光催化剂回收利用困难㊁光催化降解污染物的反应机理尚不明确等,第10期柏林洋等:g-C3N4/Ag基二元复合光催化剂降解环境污染物的研究进展3761㊀现有的光催化降解模型仍有较大的分歧,亟待深入研究㊂为了获得性能优良的g-C3N4/Ag基复合光催化剂,实现产业化应用,应进行以下几方面的研究:1)在g-C3N4/Ag基二元光催化剂的基础上,构建多元复合光催化剂,是进一步提升光生载流子分离效率的有效㊁可靠手段,也是当今和今后光催化剂的研究重点㊂2)对g-C3N4/Ag基二元光催化剂体系中e-/h+对的转移㊁分离和复合等过程进行系统研究,并阐明其光催化反应机制㊂3)针对当前合成的g-C3N4材料多为体相,存在着颗粒大㊁比表面积小㊁活性位少等缺陷,应通过对g-C3N4材料的形状㊁形貌及尺寸的调控,来实现Ag 基材料在g-C3N4材料表面的均匀分布,降低e-/h+对的重组概率,从而大幅度提高复合光催化剂的性能㊂4)Ag基材料的光腐蚀是导致光催化活性和稳定性下降的重要因素,探索一种更为有效的光腐蚀抑制机制,是将其推广应用的关键㊂5)当前合成的g-C3N4/Ag基二元复合光催化剂多为粉末状,存在着易团聚㊁难回收等问题,从而限制了其循环利用㊂因此,需要开展g-C3N4/Ag基二元复合光催化剂回收和再利用的研究,这将有利于社会效益和经济效益的提高㊂参考文献[1]㊀LIN Z S,DONG C C,MU W,et al.Degradation of Rhodamine B in the photocatalytic reactor containing TiO2nanotube arrays coupled withnanobubbles[J].Advanced Sensor and Energy Materials,2023,2(2):100054.[2]㊀DIAO Z H,JIN J C,ZOU M Y,et al.Simultaneous degradation of amoxicillin and norfloxacin by TiO2@nZVI composites coupling withpersulfate:synergistic effect,products and mechanism[J].Separation and Purification Technology,2021,278:119620.[3]㊀ZHAO S Y,CHEN C X,DING J,et al.One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solarlight-driven degradation of Rhodamine B[J].Frontiers of Environmental Science&Engineering,2021,16(3):1-16.[4]㊀JUABRUM S,CHANKHANITTHA T,NANAN S.Hydrothermally grown SDS-capped ZnO photocatalyst for degradation of RR141azo dye[J].Materials Letters,2019,245:1-5.[5]㊀SUN Z X,WANG H Q,WU Z B,et al.g-C3N4based composite photocatalysts for photocatalytic CO2reduction[J].Catalysis Today,2018,300:160-172.[6]㊀LIN L,SU Z Y,LI Y,et parative performance and mechanism of bacterial inactivation induced by metal-free modified g-C3N4undervisible light:Escherichia coli versus Staphylococcus aureus[J].Chemosphere,2021,265:129060.[7]㊀DANG X M,WU S,ZHANG H G,et al.Simultaneous heteroatom doping and microstructure construction by solid thermal melting method forenhancing photoelectrochemical property of g-C3N4electrodes[J].Separation and Purification Technology,2022,282:120005. [8]㊀VAN KHIEN N,HUU H T,THI V N N,et al.Facile construction of S-scheme SnO2/g-C3N4photocatalyst for improved photoactivity[J].Chemosphere,2022,289:133120.[9]㊀LINH P H,DO CHUNG P,VAN KHIEN N,et al.A simple approach for controlling the morphology of g-C3N4nanosheets with enhancedphotocatalytic properties[J].Diamond and Related Materials,2021,111:108214.[10]㊀XIE M,TANG J C,KONG L S,et al.Cobalt doped g-C3N4activation of peroxymonosulfate for monochlorophenols degradation[J].ChemicalEngineering Journal,2019,360:1213-1222.[11]㊀ZHEN X L,FAN C Z,TANG L,et al.Advancing charge carriers separation and transformation by nitrogen self-doped hollow nanotubes g-C3N4for enhancing photocatalytic degradation of organic pollutants[J].Chemosphere,2023,312:137145.[12]㊀AL-HAJJI L A,ISMAIL A A,FAYCAL A M,et al.Construction of mesoporous g-C3N4/TiO2nanocrystals with enhanced photonic efficiency[J].Ceramics International,2019,45(1):1265-1272.[13]㊀CUI P P,HU Y,ZHENG M M,et al.Enhancement of visible-light photocatalytic activities of BiVO4coupled with g-C3N4prepared usingdifferent precursors[J].Environmental Science and Pollution Research,2018,25(32):32466-32477.[14]㊀LI X W,CHEN D Y,LI N J,et al.AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for waterremediation[J].Applied Catalysis B:Environmental,2018,229:155-162.[15]㊀SHI H L,HE R,SUN L,et al.Band gap tuning of g-C3N4via decoration with AgCl to expedite the photocatalytic degradation and mineralizationof oxalic acid[J].Journal of Environmental Sciences,2019,84:1-12.[16]㊀彭㊀慧,刘成琪,汪楚乔,等.AgI/g-C3N4复合材料制备及其降解孔雀石绿染料性能[J].环境工程,2019,37(4):93-97.PENG H,LIU C Q,WANG C Q,et al.Preparation of AgI/g-C3N4composites and their degradation performance of malachite green dyes[J].Environmental Engineering,2019,37(4):93-97(in Chinese).[17]㊀LIANG W,TANG G,ZHANG H,et al.Core-shell structured AgBr incorporated g-C3N4nanocomposites with enhanced photocatalytic activityand stability[J].Materials Technology,2017,32(11):675-685.[18]㊀LI Y B,HU Y R,LIU Z,et al.Construction of self-activating Z-scheme g-C3N4/AgCl heterojunctions for enhanced photocatalytic property[J].Journal of Physics and Chemistry of Solids,2023,172:111055.3762㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷[19]㊀XIE J S,WU C Y,XU Z Z,et al.Novel AgCl/g-C3N4heterostructure nanotube:ultrasonic synthesis,characterization,and photocatalyticactivity[J].Materials Letters,2019,234:179-182.[20]㊀YANG J,ZHANG X,LONG J,et al.Synthesis and photocatalytic mechanism of visible-light-driven AgBr/g-C3N4composite[J].Journal ofMaterials Science:Materials in Electronics,2021,32:6158-6167.[21]㊀HUANG H,LI Y X,WANG H L,et al.In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance forphotodegrading rhodamine B solution[J].Applied Surface Science,2021,538:148132.[22]㊀GUO C S,CHEN M,WU L L,et al.Nanocomposites of Ag3PO4and phosphorus-doped graphitic carbon nitride for ketamine removal[J].ACSApplied Nano Materials,2019,2(5):2817-2829.[23]㊀WANG H R,LEI Z,LI L,et al.Holey g-C3N4nanosheet wrapped Ag3PO4photocatalyst and its visible-light photocatalytic performance[J].Solar Energy,2019,191:70-77.[24]㊀胡俊俊,丁同悦,陈奕桦,等.Ag3PO4/g-C3N4复合材料的制备及其光催化性能[J].精细化工,2021,38(3):483-488.HU J J,DING T Y,CHEN Y H,et al.Preparation and photocatalytic application of Ag3PO4/g-C3N4composites[J].Fine Chemicals,2021,38(3):483-488(in Chinese).[25]㊀MEI J,ZHANG D P,LI N,et al.The synthesis of Ag3PO4/g-C3N4nanocomposites and the application in the photocatalytic degradation ofbisphenol A under visible light irradiation[J].Journal of Alloys and Compounds,2018,749:715-723.[26]㊀潘良峰,阎㊀鑫,王超莉,等.中空管状g-C3N4/Ag3PO4复合催化剂的制备及其可见光催化性能[J].无机化学学报,2022,38(4):695-704.PAN L F,YAN X,WANG C L,et al.Preparation and visible light photocatalytic activity of hollow tubular g-C3N4/Ag3PO4composite catalyst[J].Chinese Journal of Inorganic Chemistry,2022,38(4):695-704(in Chinese).[27]㊀DEONIKAR V G,KOTESHWARA R K,CHUNG W J,et al.Facile synthesis of Ag3PO4/g-C3N4composites in various solvent systems withtuned morphologies and their efficient photocatalytic activity for multi-dye degradation[J].Journal of Photochemistry and Photobiology A: Chemistry,2019,368:168-181.[28]㊀DU J G,XU Z,LI H,et al.Ag3PO4/g-C3N4Z-scheme composites with enhanced visible-light-driven disinfection and organic pollutantsdegradation:uncovering the mechanism[J].Applied Surface Science,2021,541:148487.[29]㊀NAGAJYOTHI P C,SREEKANTH T V M,RAMARAGHAVULU R,et al.Photocatalytic dye degradation and hydrogen production activity ofAg3PO4/g-C3N4nanocatalyst[J].Journal of Materials Science:Materials in Electronics,2019,30(16):14890-14901.[30]㊀AN D S,ZENG H Y,XIAO G F,et al.Cr(VI)reduction over Ag3PO4/g-C3N4composite with p-n heterostructure under visible-light irradiation[J].Journal of the Taiwan Institute of Chemical Engineers,2020,117:133-143.[31]㊀YAN X,WANG Y Y,KANG B B,et al.Preparation and characterization of tubelike g-C3N4/Ag3PO4heterojunction with enhanced visible-lightphotocatalytic activity[J].Crystals,2021,11(11):1373.[32]㊀高闯闯,刘海成,孟无霜,等.Ag3PO4/g-C3N4复合光催化剂的制备及其可见光催化性能[J].环境科学,2021,42(5):2343-2352.GAO C C,LIU H C,MENG W S,et al.Preparation of Ag3PO4/g-C3N4composite photocatalysts and their visible light photocatalytic performance[J].Environmental Science,2021,42(5):2343-2352(in Chinese).[33]㊀CHENG R,WEN J Y,XIA J C,et al.Photo-catalytic oxidation of gaseous toluene by Z-scheme Ag3PO4-g-C3N4composites under visible light:removal performance and mechanisms[J].Catalysis Today,2022,388/389:26-35.[34]㊀ZHANG W,ZHOU L,SHI J,et al.Synthesis of Ag3PO4/g-C3N4composite with enhanced photocatalytic performance for the photodegradation ofdiclofenac under visible light irradiation[J].Catalysts,2018,8(2):45.[35]㊀ZHANG M X,DU H X,JI J,et al.Highly efficient Ag3PO4/g-C3N4Z-scheme photocatalyst for its enhanced photocatalytic performance indegradation of rhodamine B and phenol[J].Molecules,2021,26(7):2062.[36]㊀LI K,CHEN M M,CHEN L,et al.In-situ hydrothermal synthesis of Ag3PO4/g-C3N4nanocomposites and their photocatalytic decomposition ofsulfapyridine under visible light[J].Processes,2023,11(2):375.[37]㊀汲㊀畅,王国胜.Ag3PO4/g-C3N4异质结催化剂可见光降解黄连素[J].无机盐工业,2022,54(4):175-180.JI C,WANG G S.Degradation of berberine by visible light over Ag3PO4/g-C3N4heterojunction catalyst[J].Inorganic Chemicals Industry, 2022,54(4):175-180(in Chinese).[38]㊀CHEN R H,DING S Y,FU N,et al.Preparation of a g-C3N4/Ag3PO4composite Z-type photocatalyst and photocatalytic degradation ofOfloxacin:degradation performance,reaction mechanism,degradation pathway and toxicity evaluation[J].Journal of Environmental Chemical Engineering,2023,11(2):109440.[39]㊀HAYATI M,ABDUL H A,ZUL A M H,et al.In-depth investigation on the photostability and charge separation mechanism of Ag3PO4/g-C3N4photocatalyst towards very low visible light intensity[J].Journal of Molecular Liquids,2023,376:121494.[40]㊀DING M,ZHOU J J,YANG H C,et al.Synthesis of Z-scheme g-C3N4nanosheets/Ag3PO4photocatalysts with enhanced visible-lightphotocatalytic performance for the degradation of tetracycline and dye[J].Chinese Chemical Letters,2020,31(1):71-76.[41]㊀PAN S G,JIA B Q,FU Y S.Ag2CO3nanoparticles decorated g-C3N4as a high-efficiency catalyst for photocatalytic degradation of organiccontaminants[J].Journal of Materials Science:Materials in Electronics,2021,32(11):14464-14476.。

固体酸催化剂在Friedel-Crafts反应中的应用

固体酸催化剂在Friedel-Crafts反应中的应用
点 。随着 对环 境 保 护 及 资源 利 用 要 求 的提 高 , 对 F i e C at 反应 寻找 清 洁无 污 染 、 于分 离 及 r d l rfs e — 易
杂 环化 合物 的分 子 筛 催 化 酰基 化 报 道 较少 , 究 研 范 围仅 限于 单 异原 子 五 元 环 , 呋喃 、 并 呋 喃 、 如 苯
脂 肪酸 酐 的碳 链 长 短 对 产 物 收 率 有 显 著 影 响, 长碳 链 酸酐 的酰 基化 反 应较 易体 杂 多 酸及 其 盐 、 分 子 酸 性 催 高 化剂 、 土等 几类 固体 酸催 化 剂 在 F id l rf 黏 r e C at e — s






SPECI ALI TY PETROCH EM I CALS
第2 8卷 第 4期 2 1 年 7月 01
固体 酸 催 化 剂 在 F id l r f 反 应 中 的 应 用 re e— at C s
刘 玉 芝 王 桂 荣 赵 新 强 王延 吉
( 北 工 业 大学 化 工 学 院 , 津 30 3 ) 河 天 0 1 0
中 图分 类 号 : TQ 2 . I 4 6 9
F i e C at 烷 基 化 反 应 固体 酸 r d l rf e — s
催 化 剂
文献标识码 : A
F i e C at 反 应 一般 是 指在 L wi 酸 ( r d l rf e — s e s 如 三 氯化铝 、 氟化 硼等 ) 三 或质 子酸 ( 如硫 酸 ) 的催化 下, 采用 烷基 化试 剂 ( 卤代 烃 、 烃 和醇 ) 如 烯 或酰基
F id l rfs 基 化 反 应 方 面 , 异 原 子 、 元 r e C at 酰 e — 对 六
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* 马忠华 , 杨秋红, 马敬中
( 华中农业大学理学院化学系, 湖北
武汉 430070 )
摘要:全氟烷基超酸 ( 磺酸 R f SO3 H, 磺酰亚胺 ( R f SO2 ) 2 NH 和磺酰基甲烷 ( R f SO2 ) 3 CH ) 比普通强酸 ( RSO3 H 等) 表现出更强的酸性和更优秀的催化活性 , 固载化能提供高效的绿色催化途径 。尤其无机载体 SiO2 负载固 体酸, 同时具备有机材料和无机材料的优点 , 比表面大、 热稳定性好、 酸位点有效、 结构 / 织构可调可控。 本文 综述了上述三类超酸的固载化研究及催化应用 , 并讨论了固体酸更广阔的研究和应用领域 。 关键词:全氟烷基磺酸; 双全氟烷基磺酰亚胺; 三全氟烷基磺酰基甲烷 ; 非均相催化 中图分类号:O621. 2 文献标识码:A
图2 Fig. 2
共聚法合成介孔硅固载全氟烷基磺酸
[19 ]
Cocondensation synthesis of mesoporous fluorinated sulfonic acids[19]
810
化学研究与应用
第 23 卷
[20 ] 2006 年, 赵成学等人 使用含全氟烷基磺酰 水 氟的有机硅烷高分子预聚体与无机硅源共聚、 获得杂化固载全氟烷基磺酸材料。 催化丙酮 解, 与吲哚 的 缩 合 反 应, 获 得 71% 的 产 率, 与 Nafion 13 催化获得产率相近, NR50 SAC远高于 Nafion 的 19% 和 Amberlyst 的 5% 的产率。 2007 年, Subramaniam 等 人[14] 研 究 了 Nafion 13 催化剂的失活现象, NR50 SAC认为失活是由 而酸位点并未流失。 在醋 于底物传质效应受阻, 研究对比 酸甘油酯与甲醇的酯交换反应过程中, Nafion NR50 SAC13 和 H2 SO4 催化的动力学特 [16 ] 征 , 发现两类催化体系具有相近的活化能 ( 分 别为 48. 5 和 46. 1 kJ / mol ) 和相似的动力学特征, 这表明了固相催化替代均相催化的可能性 。 2007 年, Fujiwara 小组[21] 在溶胶凝胶过程中 ( SDA ) , 制备了 Na使用了阳离子型结构导向试剂 fion / MCM41 酸 性 复 合 物, Nafion 被 化 合 进 入 MCM41 孔壁。 催化 2甲基苯乙烯 ( AMS ) 的二聚 产物选择性明显不同于 Nafion NR50 SAC反应, 13 。 2007 年, Harmer 等人[22]报道了小分子超强酸 1, 1, 2, 2四氟乙磺酸的合成与固载, 固载后在非极 , 。 性溶剂中不流失 在空气中不吸潮 有意思的是, 1小分子酸本身催化烷基化、 十二烯的异构化和低 产率低于 10% , 而负载后催化产率分别提 聚反应, 99% 和 90% 。 高到 82% 、 2008 年, BlancoBrieva 等 人[23] 报 道, 全氟烷 基磺酸内酯嫁接到 SiO2 载体上, 获得固载全氟烷 基磺酸杂化材料, 在催化乙酸与甲醇 ( 1 ∶1 ) 的酯化 , 50% 转化率, 远好于 Nafion 树脂的催 反应 能获得 化效果( 30% ) 。 2009 年, Kim 等 人[24] 使 用 Nafion NR50 SAC13 为 催 化 剂, 有效活化六甲基二硅胺烷 ( HMDS) , 对各种结构的醇和酚实现 O硅烷基化 反应数分钟内即可获得 95% 以 的羟基保护反应, 上的高产率, 无需任何反应溶剂, 反应条件温和,
21氟羟基三氟甲基乙磺酸β内酯嫁接到介孔 SiO2 载体上, 水解得到固载全氟烷基磺酸, 热稳定 MCM41 为载体的 MFS3 性达 350℃ 以上。 其中, ( C C ) , TOF 催化长链脂肪酸 8 和 12 与醇的酯化反应 13 一个数量级, 6 小时 值几乎高出 Nafion SAC重复使用 6 次后, 活性仅降 可获得 95% 的转化率, MCM41 负载的普通 低约 15% 。 而同等条件下, 烷基磺酸催化, 转化率仅 70% 。 由于全氟烷基的 MFS3表 强吸电子作用增强了磺酸基团的酸性 , 现出更优的催化活性。 2005 年, Macquarrie 等人[19] 使用图 2 所示中 间体 1 为有机硅源, 与 2 ( TEOS ) 共聚水解一步得 如果在合成中加入约 10 mol% 的 4 对共 到材料 3 , 聚材料进行修饰, 则得到双官能团化杂化材料 5 。 5 的孔径分布更均一, 亲水疏水平衡性得到改善, 对改善催化效果有利。在催化 2甲基呋喃与丙酮 5 在 6 小时获得 86% 的产率 ( TON 的缩合反应时, 值 292 ) , 高于 3 在 24 小时内获得的 73% 的产率 ( TON 值 241 ) 。两者的 TON 值均较酸性较弱的普 41( CH2 ) 3 SO3 H 的 TON 值 通 无 氟 磺 酸 MCM( 47% ) 高, 表现出更优越的催化活性。
[36 ] 。含氟超酸( R f SO3 H, ( R f SO2 ) 2 NH 和 ArSO3 H) ( R SO ) CH , R ) 和 f 2 3 f 为全氟烷基 对许多有机反应 [7 , 8 ] , 表现出优异的催化性能 近年来引起关注。 本 文主要就近年来固体含氟超酸的研究工作, 及其 在有机反应中的催化应用进行综述 。
第7 期
马忠华等: 固体全氟烷基有机超酸的催化应用进展
809
溶剂中溶胀。许多研究者致力于对 Nafion 树脂进 期望提高其催化效率。 行改性, [911 ] 2005 年, 林正欢等人 报道了一类含氟的 新型阳离子交换树脂 FPS 及 FPSS ( 图 1 ) , 其酸官 能团结构与 Nafion 相似。末端含氟磺酰基的全氟 酰基过氧化物 ( SFAP ) 从富电子苯环上夺取一个 电子形成阴离子自由基, 并迅速崩解形成全氟酰
氧基自 由 基 ( R f COO·) 和 全 氟 羧 酸 阴 离 子 ( R f COO - ) , 同时, 苯环失去电子变成阳离子自由基; R f COO · R f· 迅速脱羧后形成 R f· 自由基, 进攻苯环 阳离子自由基完成全氟烷基化。 这种 SFAP 与苯 提供了一 环之间的双分子单电子转移( SET) 历程, 可以实现载体 种全氟烷基磺酸固载化的新方法, 扩大酸性树脂的应用范围。 及酸官能团的多样性,
Progress in catalysis applications of supported perfluoalkyl organic super acid
MA Zhonghua * , YANG Qiuhong, MA Jingzhong
( Department of Chemistry, College of Basic Sciences, Huazhong Agricultural University, Wuhan 430070 , China) Abstract: A series of superior green catalyst could be obtained by supporting perfluoalkyl organic super acid ( R f SO3 H, ( Rf SO2 ) 2 NH and ( R f SO2 ) 3 CH,R f = perfluorinated alkyl ) due to their stronger acidity and higher catalytic activity than RSO3 H. Especially, the immobilization of organic acids to SiO2 could be accomplished with some merits of design: excellent thermostability, accessible acid sites, and avenues to recovery, possibly recyclability. In this review, we described the preparation and catalysis applications of the three kinds of supported perfluoalkyl organic acid, and the facing opportunities in the field were discussed. Key words: perfluorosulfonic acid; bis[ ( perfluoroalkyl) sulfonyl] imide; tri[ ( perfluoroalkyl) sulfonyl] methane; heterogeneous catalysis
第 23 卷第 7 期 2011 年 7 月
化 学 研 究 与 应 用 Chemical Research 化学 研 究 and 与 Application 应用
Vol. 23 , No. 7 23 卷 July, 2011 第
1656 ( 2011 ) 07080806 文章编号:1004-
固体全氟烷基有机超酸的催化应用进展
HCl 等 ) 廉价易得, 传统酸催化剂 ( H2 SO4 、 催 , , 化效果好 但 腐 蚀 设 备 产 生 大 量 废 酸 液 污 染 环 境。绿色化学要求合成、 生产及化学品使用的全 过程都应该尽可能避免对环境产生不良影响。 固 体酸应用于催化过程, 可循环使用, 易分离, 不腐 可用于连续式流体系统反应, 完全符合绿 蚀设备, [1 ] 色化学的宗旨 。 无机固体超 强 酸 ( 天 然 粘 土, 复合金属氧化 物, 金属盐, 沸石分子筛, 杂多酸等 ) 的合成与应用 [2 ] 研究已经相当广泛 , 有机固体超( 强) 酸( 阳离子 交换树脂等 ) 的报道, 多集中于固体磺酸 ( RSO3 H
1
氟代烷基氧超酸的固载与催化
Nafion 为代表的凝胶型全氟磺酸树脂( ( CF2 ) n
相关文档
最新文档