矩阵分析试卷3
矩阵分析试卷
2007《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)1. 设函数矩阵⎪⎪⎪⎭⎫⎝⎛=001t e -sint t e cost A(t)t2t 试求 )t A(t d d ; )t A(lim 0t →.2. 设矩阵⎪⎪⎭⎫ ⎝⎛=441-0A 试求 Ae . 3. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛110011-111.4. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-020021。
二、证明题(每题10分,共30分)1. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321183232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.2. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥+=⋂2121V V V V .3. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)1. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?2. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 试给出主要的过程.2007《矩阵分析》试题(B 卷)一、 计算题 (每题10分,共40分)5. 设函数矩阵⎪⎪⎪⎭⎝=003t 02e eA(t)t 2t-试求 t d )t A(1⎰.6. 设矩阵⎪⎪⎭⎫⎝⎛=12-10A 试求 Ae . 7. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛011-1-3241-1.8. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎪⎪⎭⎫⎝⎛1213214321.二、证明题(每题10分,共30分)4. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321113423232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.5. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥⋂=+2121V V V V .6. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)3. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?4. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 给出主要的过程.2008硕士研究生《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)9. 设函数矩阵⎪⎪⎪⎭⎝=001t e -sint A(t)t试求 t )d t A(1⎰; )t A(lim 0t →.10. 设矩阵⎪⎪⎭⎫⎝⎛=441-0A 试求 sinA . 11. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛11002-1-011.12. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-010012。
《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析
第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。
矩阵分析所有习题及标准答案
习题3 习题3-13
#3-13: =A,则存在 则存在U #3-13:若A∈Hn×n,A2=A,则存在U∈Un×n使得 U*AU=diag(Er,0),r=rank(A). 存在U 证:存在U∈Un×n使得 A=Udiag(λ A=Udiag(λ1,…,λn)U*, , (*) 其中λ 的特征值的任意排列 任意排列. 其中λ1,…,λn是A的特征值的任意排列. , ∵ A2=A 和 =Udiag(λ Udiag(λ A2=Udiag(λ1,…,λn)U*Udiag(λ1,…,λn)U* , , =Udiag(λ =Udiag(λ12,…,λn2)U* , {0,1},i=1,…,n,. ∴ λi2=λi,即λi∈{0,1},i=1, ,n,. 取λ1,…,λn的排列使特征值0全排在后面,则(*) , 的排列使特征值0全排在后面, 式即给出所需答案. 式即给出所需答案.
习题3 已知A 是正定Hermite矩阵, Hermite矩阵 习题3-1已知A∈Cn×n是正定Hermite矩阵, β∈C α,β∈Cn.定义内积 (α,β)=αAβ*.①试证它 是内积; 写出相应的C 是内积;②写出相应的C-S不等式
①: ( β , α ) = β Aα * = (α Aβ * )T = (α Aβ * )* = α Aβ * = (α , β ) ; (kα , β ) = kα Aβ * = k (α , β );
−1 0 3 5 −1 3 6 1 1 0 = 0 − 1 − 10 W A1 W1* 1 0 0 −1 0
习题3 习题83-3(1) 0 3
6 −1 3 6 −1 3 8 3 0 3 8 = 0 , A1 = − 2 − 5 A1 0 − 2 − 5 0
矩阵分析期末试题及答案
矩阵分析期末试题及答案矩阵分析是一门重要的数学课程,在科学、工程和经济等领域都有广泛的应用。
期末试题的设置既考查学生对于矩阵分析理论的理解,也测试其应用能力和解决问题的能力。
本文将为您提供一套矩阵分析的期末试题,并附有答案解析。
1. 简答题(每小题2分,共20分)(1) 请简述矩阵的定义和基本术语。
答案:矩阵是由数个数排成m行n列的一个数表。
行数和列数分别称作矩阵的行数和列数。
矩阵的元素用a[i, j]表示,其中i表示所在的行数,j表示所在的列数。
(2) 请解释什么是方阵和对角矩阵。
答案:方阵是行数和列数相等的矩阵。
对角矩阵是除了主对角线上的元素外,其他元素都为零的矩阵。
(3) 请解释矩阵的转置和逆矩阵。
答案:矩阵的转置是指将矩阵的行和列进行互换得到的新矩阵。
逆矩阵是满足A * A^(-1) = I的矩阵A的逆矩阵,其中I是单位矩阵。
(4) 请简述特征值和特征向量的定义。
答案:特征值是方阵A满足方程A * X = λ * X的标量λ,其中X是非零的列向量。
特征向量是对应特征值的零空间上的非零向量。
(5) 请解释矩阵的秩和行列式。
答案:矩阵的秩是指矩阵中线性无关的行或列的最大个数。
行列式是将矩阵的元素按照一定规则相乘并相加得到的一个标量。
(6) 请解释正交矩阵和幂等矩阵。
答案:正交矩阵是满足A * A^T = I的矩阵A。
幂等矩阵是满足A *A = A的矩阵A。
(7) 请解释矩阵的特征分解和奇异值分解。
答案:矩阵的特征分解是将一个矩阵表示为特征向量矩阵、特征值矩阵和其逆的乘积。
奇异值分解是将一个矩阵表示为三个矩阵相乘的形式,其中一个是正交矩阵,一个是对角矩阵。
(8) 请解释矩阵的迹和范数。
答案:矩阵的迹是指矩阵对角线上元素的和。
范数是用来衡量矩阵与向量的差异程度的指标。
(9) 请解释矩阵的稀疏性和块状矩阵。
答案:矩阵的稀疏性是指矩阵中大部分元素为零的特性。
块状矩阵是由多个子矩阵组成的一个矩阵。
(10) 请解释矩阵的正定性和对称性。
级硕士矩阵分析试卷
1 3 A4 1 2
下的坐标.
燕 山 大 学 研 究 生 课 程 考 试 试 卷
学号
姓名
专业
学院
密 封 线
第1页共6页
二.(10 分)设 AC mn ,证明 A 的伪逆矩阵是惟一的.
三.(10 分)求实二次型 X T AX 对 X 的导数,其中 A AT 为 n n 实常数矩阵,
X Fn.
第2页共6页
求下列矩阵范数: A , A , A , A , A
m1
m2
m
1
八. (10 分)设 A 、 B 均为埃尔米特矩阵,且 A 正定. 证明 AB 的特征值都为实数
第6页共6页
四.(15 分)若 ( X , Y ) 为酉空间V n (C,U ) 上的内积, X 为 X 的模,证明:
(X,Y) X Y
X ,Y V n (C,U )
密 封 线
燕 山 大 学 研 究 生 课 程 考 试 试 卷
密 封 线
第3页共6页
五.(15 分)求下列矩阵的 Smith 标准型、若尔当(Jordan)标准形、初等因子、 不变因子和各阶行列式因子,设:
座位号
燕山大学 2016 年秋季学期研究生课程考试试卷
课程名称: 矩阵分析
考试时间: 2016 年 11 月 26 日
题号 一 二 三 四 五 六 七 八 总分
得分
一.(10 分)在线性空间 R 22 中,求向量
密 封
线 在基
A
1 1
2 0பைடு நூலகம்
2 1
0
A1 0 1 , A2 2
1 2
,
A3
2
1
1 2,
3 0 8
矩阵分析所有习题及标准答案
注:令T=-iC,则T*=iC*=i(-C)=T,即THnn.由此推 出:A可唯一地写为A=B+iT,其中B,THnn.
习题3*1试证:向量长度的齐次性
#3*1:试证 k k , k C, Cn
证:令=(a1,…,an)T ,则 k=(源自1,…,an)T.1
1 1
(1 , 1 , 1 , 1)T ; 2222
2
2 2
(1 , 1 , 1 , 1)T ; 22 2 2
3
3 3
( 1 , 1 , 1 , 1)T 22 22
1,2,3就是所要求的标正基.
习题3*5(i)用归纳法证明 1+3+5+…+(2n-1)2=n2
证:对k用归纳法证明.k=1时结论显然成立. 若n-1时结论成立
U=(A+E)(A-E)-1Unn.
习n.题试3证-2:6A设*AA的为特正征规值矩为阵|特1征|2值,…为,|1,n…|2,.
证:因为A是正规矩阵,所以存在UUnn 使得 A=Udiag(1,…,n)U*,
其中1,…, n是A的特征值.于是, A*A=Udiag(|1|2,…,|n|2)U*.
因对角矩阵diag(|1|2,…,|n|2)酉相似于A*A, 故A*A的特征值为 |1|2,…,|n|2
习题3-27
#3-27(1):A*A,AA*都是半正定Hermite矩阵. (2):若ACmn,则A*A,AA*的非零特征值相同
(它们的谱可能不一样)
证:(1): (A*A)*=A*A,(AA*)*=AA*.
xCn,x*(A*A)x =(Ax)*Ax=(Ax,Ax)0.
矩阵分析 考前例题和作业题
于是有
AP = A ⎡ ⎣ X1 , X 2 , X 3 ⎤ ⎦=⎡ ⎣ AX1 , AX 2 , AX 3 ⎤ ⎦ ⎡ −1 0 0 ⎤ ⎢ ⎥ = PJ = ⎡ ⎣ X1 , X 2 , X 3 ⎤ ⎦ ⎢ 0 −1 1 ⎥ ⎢ ⎣ 0 0 −1⎥ ⎦ =⎡ ⎣− X1 , − X 2 , X 2 − X 3 ⎤ ⎦
E + U ≠ 0, 否则-1就是 U 的特征根,与已知矛盾。 矩阵 E + U 满秩。 ( E + U )( E − U ) H H −1 H W = −i( E + U ) ( E − U ) = ( E − U )( E + U ) H −1 −1 H = −i( E + U ) U U ( E − U )
再由第三个方程解出一个特解 再由第 个方程解出 个特解 为 那么所求相似变换矩阵为
T
X 3 = [1, 1 0 0, 0]
T
⎡0 4 1⎤ P = [ X 1 , X 2 , X 3 ] = ⎢1 3 0⎥ ⎢ ⎥ ⎢ ⎣ 0 −2 0 ⎥ ⎦
3 5(2) 3-5(2)
A 是正规矩阵,求酉矩阵 是正规矩阵 求酉矩阵U 使得 U AU 为对角矩阵.
⎡a 1 ⎤ ⎥ ⎢ a ⎥ 与 B=⎢ 1⎥ ⎢ ⎥ ⎢ a⎦ ⎣ε
ε ≠0
⎤ ⎥ ⎥ 1⎥ ⎥ a⎦
n Dn−1 (λ ) = 1, Dn (λ ) = (λ − a ) n Dn−1 (λ ) = 1, Dn (λ ) ≠ (λ − a )
2 7(4) 求方阵 2-7(4)
⎡3 0 8⎤ A = ⎢ 3 −1 6 ⎥ ⎢ ⎥ ⎢ ⎣ −2 0 −5⎥ ⎦
故 A 的初等因子为
λ + 1,( ( λ + 1) )
矩阵分析参考答案
矩阵分析参考答案矩阵分析参考答案矩阵分析是线性代数中的一个重要分支,它研究的是矩阵的性质和运算。
在实际应用中,矩阵分析被广泛应用于各个领域,如物理学、工程学、计算机科学等。
本文将从矩阵分析的基本概念、性质和运算等方面,为读者提供一份参考答案。
首先,我们来介绍一些矩阵分析的基本概念。
矩阵是由数个数构成的矩形阵列,通常用大写字母表示。
矩阵的行数和列数分别称为矩阵的阶数。
例如,一个3行2列的矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中,a11、a12等表示矩阵中的元素。
矩阵的元素可以是实数、复数或其他数值类型。
矩阵的性质包括可逆性、对称性、正定性等。
一个矩阵如果存在逆矩阵,即乘以其逆矩阵后得到单位矩阵,那么该矩阵就是可逆的。
对称矩阵是指矩阵的转置等于其本身,即A = A^T。
正定矩阵是指矩阵的所有特征值都大于零。
接下来,我们来介绍一些矩阵的运算。
矩阵的加法和减法是按照对应元素相加和相减的规则进行的。
例如,对于两个相同阶数的矩阵A和B,它们的加法可以表示为C = A + B,其中C的元素为A和B对应元素的和。
矩阵的乘法是按照矩阵乘法的规则进行的。
例如,对于一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘法可以表示为C = AB,其中C为一个m行p列的矩阵,C的元素为A的行向量与B的列向量的内积。
除了基本的矩阵运算外,矩阵还有一些特殊的运算。
矩阵的转置是指将矩阵的行和列互换,即A的转置为A^T。
矩阵的迹是指矩阵主对角线上的元素之和,用Tr(A)表示。
矩阵的行列式是一个标量,用det(A)表示,它可以用来判断一个矩阵是否可逆。
矩阵的特征值和特征向量是矩阵分析中的重要概念。
对于一个n阶矩阵A,如果存在一个非零向量x和一个标量λ,使得Ax = λx,那么λ就是A的特征值,x就是对应于特征值λ的特征向量。
特征值和特征向量可以用来描述矩阵的性质和变换。
最后,我们来讨论一些矩阵分析的应用。
矩阵分析第3章习题答案
第三章1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量1212(,,,),(,,,)n n x x x y y y αβ== 定义内积为(,)H A αβαβ=(1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。
2、 已知2111311101A --⎡⎤=⎢⎥-⎣⎦,求()N A 的标准正交基。
提示:即求方程0AX =的基础解系再正交化单位化。
3、 已知308126(1)316,(2)103205114A A --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦试求酉矩阵U ,使得HU AU 是上三角矩阵。
提示:参见教材上的例子4、 试证:在nC 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。
5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使HU AU 为对角矩阵,已知131(1)612A ⎡⎢⎢⎢=⎢⎢⎢⎥⎢⎥⎣⎦01(2)10000i A i -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,434621(3)44326962260ii i A i i i i i +--⎡⎤⎢⎥=----⎢⎥⎢⎥+--⎣⎦11(4)11A -⎡⎤=⎢⎥⎣⎦6、 试求正交矩阵Q ,使TQ AQ 为对角矩阵,已知220(1)212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,11011110(2)01111011A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,222(2)254245A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。
反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。
东北大学2016-2017矩阵分析 试题
1 1
5 3
2 0
的最小多项式。
2. (8 分)给定 C nn 上的矩阵范数
, S 为 n 阶可逆矩阵,对任意的矩阵 A C nn ,定
m
义 A S 1AS 。证明 A 是空间 C nn 里的矩阵范数。 m
1 2 6 4、(8 分)求矩阵 A 1 0 3 的约当标准型
一、本题共 20 分
1、(5
分)设矩阵
A
sin
t
2t
t2 t
,求
dA dt
二
1.(8 分)给定矩阵 C
cij
,对任意的矩阵 A
nn
aij
定义变换 T 如下:TA CA AC ,
nn
证明 1) T 是线性变换, 2)对任意的 A, B ,有T ( AB) T ( A) B AT (B)
0 1
0 1
,
F (t)
e2t
e
2t
。
1 ) 求 矩 阵 函 数 e At
2)求方程
1 1 3
0
dx Ax F (t), dt
t
x(0) (1,1,0)T 的解。(提示:方程的解为 x(t) e At x(0) e A(t ) F ( )d ) 0
2.(8 分)给定 C n 上的列向量组 1 (0, 0, 2)T ,2 (3, 4,1)T ,3 (1, 2, 2)T 1)用施密特正 交化的方法求一组标准正交基。2)设矩阵 A (1,2 ,3 ) ,求矩阵 A 的 QR 分解。
t
4、(8 分)1)设 A 为 n 阶可逆矩阵,证明: eA d A1eAt A1 , 0
研究生课程-《矩阵分析》试题及答案
第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。
由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。
故1x ,2x ,3x 是线性无关的。
(2)用反证法。
假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。
所以,1x +2x +3x 不是σ的特征向量。
二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。
四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。
上海交通大学《矩阵分析》试卷及答案
上海交通大学《矩阵分析》试卷(A)一、单项选择题(每题3分,共15分)AAABC1. 设F 是数域,(,)m nHom F F σ∈,则A.dim(Im )dim(ker )m σσ+=B.dim(Im )dim(ker )n σσ+=C.dim(Im )dim(ker )m σσ⊥⊥+=D.dim(Im )dim(ker )n σσ⊥+=2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散3. 设2222221212134400033t t t tt t Attt tte e e te e e ee e e e ⎛⎫-+-+ ⎪= ⎪ ⎪-+⎝⎭,则A =A.214020031⎛⎫⎪ ⎪ ⎪⎝⎭B. 114010061⎛⎫ ⎪⎪ ⎪⎝⎭C. 224020031⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061⎛⎫⎪ ⎪ ⎪⎝⎭4. 设1()(1)kkk A f A k ∞==-∑收敛,则A 可以取为 A. 0091⎛⎫⎪--⎝⎭ B.0091⎛⎫ ⎪-⎝⎭ C. 1011⎛⎫ ⎪-⎝⎭ D. 1021⎛⎫⎪⎝⎭5. 设3阶矩阵A 满足242(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件2(1)(2)(3)1,m m m a a =+为某实数,则A 可以相似于A. 200130002M ⎛⎫ ⎪= ⎪ ⎪-⎝⎭B. 20012092M ⎛⎫⎪= ⎪ ⎪⎝⎭C. 2001202M ⎛⎫-⎪=- ⎪ ⎪-⎝⎭D. 200030013M -⎛⎫ ⎪= ⎪ ⎪⎝⎭二、填空题(每题3分,共15分)6. 设5阶复数矩阵A 的最小多项式为22()(1)(2)f λλλλ=-+,则*dim ()N A =[ 1 ];dim ()R A ⊥= [ 1 ].(其中*A 表示共轭转置)7. 设220A A -=,则cos2A = [ E +2(cos1-1)A ]。
矩阵分析习题附答案
一、空题(每小题5分,共30分)1、若矩阵A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的满秩分解为A =BC ,则 B =⎡⎢⎢⎢⎢⎣⎤⎥⎥⎥⎥⎦,C =⎡⎢⎢⎢⎣⎤⎥⎥⎥⎦。
解:由初等行变换A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦→01101011300112200011010000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦→1310100222133001022200011010000000⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦, 知:B =110021221352⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,C =13101002221330010222110001⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦。
2、矩阵A =101010403-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦的最小多项式为()ϕλ= 。
解:由于[]()()()21011011000100100140300314001I A λλλλλλλλλλ⎡⎤+---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--++⎣⎦-⎣⎦⎢⎥⎣⎦ 知A 的初等因子为(λ—1),(λ—1)2,故A 的最小多项式为()ϕλ=(λ—1)2。
3、设1010221202A ⎡⎤=⎢⎥⎣⎦,则N (A )的一个标准正交基为。
解:由于1213531235452101020222212020x x x x x Ax x x x x x x x ⎡⎤⎢⎥⎢⎥++⎡⎤⎡⎤⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦等价于 135252020x x x x x ++⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,而其解空间的一个基为 α1=(-1,0,1,0,0)T ,α2=(0,0,0,1,0)T ,α3=(-2,2,0,0,1)T对其作标准正交化即得其一个标准正交基为(0,0,0)T ,(0,0,0,1,0)T ,(0,T 4、设12121121,;,2013e e e e ⎡⎤⎡⎤⎡⎤⎡⎤''====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦为2R 的两个基,T 为2R 的线性变换,且1213(),()21T e T e ⎡⎤⎡⎤''==⎢⎥⎢⎥⎣⎦⎣⎦, 则T 在基12,e e 下的矩阵为A =⎡⎤⎢⎥⎣⎦。
研究生《矩阵分析》试题答案及评分标准
A (1 , 2 , 3 )1 (T1 ,T 2 ,T 3 ) 0 1 1 1 1 2 1 1 1 1 0 1
0 1 10 1 1 0 1 1 1 2 1 1 1 2 1 3 2. 1 3 11 0 1 2 4 4
2 1, 1, 3, 7T ,求W1 W2 与W1 W2 的维数,并求W1 W 2 。(10 分)
解: W1 W2 L1, 2 L1 2 L1, 2 , 1, 2
1 1 2 1
1 -1 2 1
A1,2,1,2 12
设 W1 W2, x11 x22 x33 x44,化为齐次线性方程组
1 1 2 1
(1,2 ,1,2 )X 41
0
,即
2 1
1 1
1 0
1 3
X
0
。
0 1 1 7
x1 k, x2 4k, x3 3k, x4 k, k1 4k2 k5,2,3,4T ,即 解得 W1 W2 k5,2,3,4T .
注:计算W1 W2 维数 4 分,计算W1 W2 的维数 2 分,求集合W1 W 2 4 分。
3. 设 R3 中 , 线 性 变 换 T 为 : Ti i , i 1, 2, 3, 其 中 1 (1, 0, 1)T , 2 (2,1,1)T , 3 (1,1,1)T 与
2
1
1 0
1 1
12
注:矩阵 B, C, 各 3 分, A BC 计算 2 分。
1 0 0 -1
矩阵分析模拟试题及答案
矩阵分析模拟试题及答案一.填空题(每空3分,共15分)1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24.2. 设向量组T )4,3,2,1(1=α,T)5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则),,,(4321ααααR =2.3. 已知⎪⎪⎪⎭⎫ ⎝⎛---=11332223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()322123222132122,,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值范围是22<<-a .二.单项选择题(每小题3分,共15分)1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵,记⎪⎪⎪⎭⎫ ⎝⎛=1000110011P ,⎪⎪⎪⎭⎫⎝⎛=010*******P ,在则=A ( D )21)(P P A 211)(P P B - 12)(P P C 112)(-P P D2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例)(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1)2(-B 的特征值为(B ))(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 234. 设B A ,均为)2(≥n n 阶方阵,则必有( C ) )(A ||||||B A B A +=+ )(B BA AB =)(C ||||BA AB = )(D 111)(---+=+A B B A5. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的充要条件为(D ))(A 向量组m ααα,,,21 可由向量组m βββ,,,21 线性表 )(B 向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示 )(C 向量组m ααα,,,21 与向量组m βββ,,,21 等价)(D 矩阵=A (m ααα,,,21 )与矩阵=B (m βββ,,,21 )等价三. (每小题6分,共12分)(1)计算行列式1110110110110111=D 的值(2)计算矩阵乘积⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134解:(1)3211111121011011110111011101010110001111110110110110111-=-=-=--=--==D (2)()49635127075321134=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-四.(12分)已知⎪⎪⎪⎭⎫ ⎝⎛=202030102A ,⎪⎪⎪⎭⎫⎝⎛-=000010001B ,若X 满足X BA B AX 22+=+,求X .解:)2()2(2020020101002)2()2(221E A B E A X E A E A E A B X E A X BA B AX --=∴-∴≠-==--=-⇒+=+-可逆又⎪⎪⎪⎪⎭⎫⎝⎛=-⎪⎪⎪⎭⎫ ⎝⎛=--0010102100)2(,00201010021E A E A⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎭⎫⎝⎛=--=-0020101000000100010010102100)2()2(1E A B E A X ⎪⎪⎪⎭⎫ ⎝⎛-=100010000 五. (本题14分)当a 取何值时,线性方程组⎪⎩⎪⎨⎧=+++=-=+--0)1(3331432132321x a x x x ax x x x 无解,有唯一解,有无穷多解?并在有无穷多解时求其通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三套试题
一 、已知 1(1,2,1,0)T α=,2(1,1,1,1)T α=-,1(2,1,0,1)T β=-,2(1,1,3,7)T β=- 求12{,}span αα与12{,}span ββ的和与交的基和维数。
(10分)
二、证明:Jordan 块 10()0100a J a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
相似于矩阵 0000a a a εε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
,这里0ε≠为任意实数。
(10分) 三、求矩阵101120403A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭
的
(1)Jordan 标准型; (2)变换矩阵P ; (3)计算100A 。
(10分)
四、验证矩阵0
11
0000i A i -⎛⎫ ⎪= ⎪ ⎪⎝⎭
是正规矩阵,并求酉矩阵U ,使H U A U 为对角矩阵。
(10分)
五、已知A 是Hermit 矩阵,且0(k A k =为自然数),试证:0A =。
(10分)
六、验证矩阵 024*********A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭
为单纯矩阵,并求A 的谱分解。
(10分) 七、讨论下列矩阵幂级数的敛散。
(10分)
八、设12(,,,)n ααα 与12(,,,)n βββ 是实数域R 上的线性空间V 的两组基,且
()()()22111100170.20.5111;2;3011.030.10.5001k
k k k k k k k ∞∞∞===⎛⎫⎛⎫⎛⎫ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪-⎝⎭∑∑∑
1212(,,,)(,,,)n n P βββααα= ,又对任意的x V ∈有
证明:(1)2x α=是V 中的向量范数;
(2)当P 是正交矩阵时,有22αβ=。
(10分)
九、已知矩阵
计算A 。
(10分)
十、以下三题任选一道。
(10分)
1、设V 是数域K 上的2维线性空间,V 的一组基为21,αα,V 的两个子空间为
{}{}0,,
)(21212211202101=+∈+=∈+=k k K k k k k W K k k W 且αααα 证明:V =W 1⊕W 2.
2、试证: 在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。
3、试证:正规矩阵属于不同特征值的特征子空间是互相正交的。
()()1111222212,,,.n n n n n x y x y x y x y x x y x y αααβββαβ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 12n ,,,;,100121,002A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭。