沪教版(上海)八年级上册数学 19.4 线段的垂直平分线 同步练习(含答案)
中考数学总复习《线段垂直平分线的性质》练习题(含答案)
(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.
已知:如图,△ABC中,∠ACB=90°,D是BC延长线上一点,E是AB上一点,且在BD的垂直平分线EG上,DE交AC于F,求证:E在AF的垂直平分线上.
已知:如图, 及两点 、 。求作:点 ,使得 ,且 点到 两边所在的直线的距离相等。
∴ 和 都是等腰直角三角形.
∴ , .
∴ 两村的距离为
方法二:过点 作直线 的平行线交 的延长线于 .易证四边形 是矩形,
∴ .
在 中,由 ,可得 .
∴ 两村的距离为 .
(2) 作图正确,痕迹清晰.
作法:①分别以点 为圆心,以大于 的长为半径作弧,
两弧交于两点 , ,作直线 ;
②直线 交 于点 ,点 即为所求.
线段垂直平分线的性质
一、选择题
如图, , ,则有( )
A. 垂直平分 B. 垂直平分
C. 与 互相垂直平分D. 平分
二、填空题
如图,已知 , 为 的垂直平分线,则 的度数为.
如图, 中, 边的垂直平分线 交 于 ,交 于 , 厘米, 的周长是18厘米,则
如图8-3,已知ΔABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,若DE=2cm,则BC=_____cm.
(1) 求出 , 两村之间的距离;
(2)为方便村民出行,计划在公路边新建一个公共汽车站 ,要求该站到两村的距离相等,请用尺规在图中作出点 的位置(保留清晰的作图痕迹,简明书写作法).
求作线段 的垂直平分线
如图,在△ABC中,D是BC边上一点,且BD=BA.
(1)尺规作图(保留作图痕迹,不写作法):
沪教版八年级上数学 一课一练及单元测试卷和参考答案
数学八年级上一课一练及单元测试卷和参考答案目录第十六章二次根式16.1 二次根式(1) 3 16.2 最简二次根式和同类二次根式(1)7 16.3 二次根式的运算(1)11 数学八年级上第十六章二次根式单元测试卷一15 八年级(上)数学第十六章二次根式单元测试卷二19 第十七章一元二次方程17.1 一元二次方程的概念(1)23 17.2 一元二次方程的解法(1)27 17.3 一元二次方程根的判别式(1)31 17.4 一元二次方程的应用(1)35 数学八年级上第十七章一元二次方程单元测试卷一39 第十八章正比例函数和反比例函数18.1 函数的概念(1)43 18.2 正比例函数(1)47 18.3 反比例函数(1)51 18.4 函数表示法(1)55 八年级上第十八章正比例函数和反比例函数单元测试卷一59 第十九章几何证明19.1 命题与证明(1)64 19.2证明举例(1)6819.3 逆命题和逆定理(1)72 19.4 线段的垂直平分线(1)76 19.5 角平分线(1)81 19.6 轨迹(1)85 19.7 直角三角形全等的判定(1)89 19.8 直角三角形的性质(1)93 19.9 勾股定理(1)97 19.10 两点的距离公式(1)101 八年级上第十八章几何证明单元测试卷一105 参考答案109数学八年级上 第十六章 二次根式16.1 二次根式(1)一、选择题1)0(3≥x x144-,二次根式的个数是 ( )A .2个B .3个C .4个D .5个2.下列语句中,正确的是 ( ) A .二次根式中的被开方数只能是正数 B .代数式x 32-是二次根式 C .5的平方根是5 D .3是3±的平方3.下列式子中,化简正确的是 ( )A .)0(5552≥=a a a B .5354= C .8881= D .a b ab =2 4. 若0<x ,则xx 1-化简后得 ( ) A .x --B .x -C ..x5. 代数式21-x 有意义时,字母x 的取值范围是( )A .0>xB .0≥xC .0>x 且2≠xD .0≥x 且2≠x6.x 有 ( ) A .0个 B .1个 C .2个 D .无数个7. 若32<<a ( )A. 52a -B. 12a -C. 25a -D. 21a -8. 若A == ( )A. 24a + B. 22a + C. ()222a + D. ()224a +9. ( )A. 0B. 42a -C. 24a -D. 24a -或42a -10. 若1)1(123+-=+--x x x x x ,则x 满足的条件是 ( )A.1≥xB.11≤≤-xC.1->xD. 1≤x11.代数式 叫做二次根式,读作 ,其中 是被开方数,它所表示的意义是一个非负数的算术平方根. 12. 面积为a 的正方形的边长为________. 13.当x 是时,x+x 2在实数范围内有意义? 14. 15. 如果x x 35)53(2-=-成立,那么x .16、若a a ---55有意义,则a 的值为 ;若x -有意义,则x 为 数。
部编数学八年级上册专题08线段的垂直平分线性质问题(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题08 线段的垂直平分线性质问题一、选择题1. (2023长春)如图,用直尺和圆规作MAN Ð的角平分线,根据作图痕迹,下列结论不一定正确的是( )A. AD AE= B. AD DF = C. DF EF = D. AF D E^【答案】B 【解析】根据作图可得,AD AE DF EF ==,进而逐项分析判断即可求解.根据作图可得,AD AE DF EF ==,故A ,C 正确;∴,A F 在DE 的垂直平分线上,∴AF D E ^,故D 选项正确,而DF EF =不一定成立,故B 选项错误,故选:B .【点睛】本题考查了作角平分线,垂直平分线的判定,熟练掌握基本作图是解题的关键.2.如图所示,底边BC 为2,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,则△ACE 的周长为( )A .2+2B .2+C .4D .3【答案】A 【解析】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+23.如图,BD是△ABC 的角平分钱,AE⊥BD ,垂足为F. 若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【答案】C【解析】本题考查角平分线的性质,因为BD平分∠ABC,AE⊥BD,所以△ABF≌△EBF,所以BD是线段AE的垂直平分线,所以AD=ED,所以∠BAD=∠BED=180°-35°-50°=95°,所以∠CDE=180°-∠C=95°-50°=45°,故选C.1. (2023湖北荆州)如图,60AOB Ð=°,点C 在OB 上,OC =P 为AOB Ð内一点.根据图中尺规作图痕迹推断,点P 到OA 的距离为___________.【答案】1【解析】首先利用垂直平分线的性质得到12OQ OC ==,利用角平分线,求出BOP Ð,再在POQ △中用勾股定理求出1PQ =,最后利用角平分线的性质求解即可.【详解】如图所示,由尺规作图痕迹可得,PQ 是OC 的垂直平分线,∴12OQ OC ==,∴1302BOP BOA Ð=Ð=°,设PQ x =,则2PO x =,∵222PQ OQ OP +=,∴()2222x x +=,∴1x =,由尺规作图痕迹可得,PO 是AOB Ð的平分线,∴点P 到OA 的距离等于点P 到OB 的距离,即PQ 的长度,∴点P 到OA 的距离为1.故答案为:1 .【点睛】本题考查角平分线和垂直平分线的性质,勾股定理,数形结合思想是关键.2. (2023四川广元)如图,a b ∥,直线l 与直线a ,b 分别交于B ,A 两点,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点E ,F ,作直线EF ,分别交直线a ,b 于点C ,D ,连接AC ,若34CDA Ð=°,则CAB Ð的度数为 _____.【答案】56°##56度【解析】先判断EF 为线段AB 的垂直平分线,即可得CAB CBA Ð=Ð,ACD BCD Ð=Ð,再由a b ∥,可得34CDA BCD Ð=Ð=°,即有34ACD BCD Ð=Ð=°,利用三角形内角和定理可求CAB Ð的度数.【详解】由作图可知EF 为线段AB 的垂直平分线,∴AC BC =,∴CAB CBA Ð=Ð,ACD BCD Ð=Ð,∵a b ∥,∴34CDA BCD Ð=Ð=°,∴34ACD BCD Ð=Ð=°,∵180ACD BCD CAB CBA Ð+Ð+Ð+Ð=°,∴56CAB Ð=°,故答案为:56°.【点睛】本题考查了垂直平分线的作图、垂直平分线的性质、平行线的性质以及三角形内角和定理等知识,判断EF 为线段AB 的垂直平分线是解答本题的关键.3.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)∠ECD的度数为 ;(2)若CE=5,求BC长为 .【答案】(1)∠ECD的度数是36°;(2)BC长是5.【解析】(1)∵DE垂直平分AC∴CE=AE,∴∠ECD=∠A=36°(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.4.如图,在Rt V ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为________.【答案】40°【解析】根据直角三角形的性质求得∠AEB=80°;根据线段垂直平分线的性质得AE=CE,则∠C=∠EAC,再根据三角形的外角的性质即可求解.∵∠B=90°,∠BAE=10°,∴∠BEA=80°.∵ED是AC的垂直平分线,∴AE=EC,EB ∴∠C=∠EAC .∵∠BEA=∠C+∠EAC ,∴∠C=40°.故答案为:40°.【点睛】此题考查了线段垂直平分线性质,涉及到三角形的外角的性质以及等腰三角形的性质的知识,难度适中.三、解答题1.如图,在直角△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于D ,若DE 垂直平分AB ,求∠B 的度数.【答案】30°.【解析】∵DE 垂直平分AB ,∴∠DAE=∠B ,∵在直角△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于D ,∴∠DAE=(90°﹣∠B )/2=∠B ,∴3∠B=90°,∴∠B=30°.2.如图,在ABC D 中,CD 是AB 边上的高,BE 是AC 边上的中线,且BD CE =。
第十九章 几何证明数学八年级上册-单元测试卷-沪教版(含答案)
第十九章几何证明数学八年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、如图,石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()A.5米B.8米C.7米D. 米2、如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.10米B.15米C.25米D.30米3、如图,⊙O的半径为2,点A的坐标为,直线AB为⊙O的切线,B为切点,则B点的坐标为()A. B. C. D.4、如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.5、如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PG∥AD 交BC于F,交AB于G,连接CP.下列结论;①∠ACB=2∠APB;②S△PAC:S△PAB=PA:PB;③PB垂直平分CE;④∠PCF=∠CPF其中正确的是()A.①③B.①②④C.②③④D.①③④6、如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A.1B.C.D.27、如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BD于点E,连接CE,若∠A=60°,∠ACE=24°,则∠ABE的度数为()A.24°B.30°C.32°D.48°8、如图,在菱形纸片ABCD中,,,将菱形纸片翻折,使点A落在CD 的中点E处,折痕为FG,点F、G分别在边AB、AD上,则值为()A. B. C. D.9、如图,在正方形中,是对角线上一点,且满足.连接并延长交于点,连接,过点作于点,延长交于点.在下列结论中:①;②;③;④,其中正确的结论有()个A.1B.2C.3D.410、如图,25和169分别是两个正方形的面积,字母B所代表的正方形的面积是()A.12B.13C.144D.19411、如图,□ABCD的周长为16 cm,AC,BD相交于点O,EO⊥BD交AD于点E,则△ABE的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm12、如图,在菱形中,点的坐标为,对角线相交于点.双曲线经过点,交的延长线于点,则过点的双曲线表达式为()A. B. C. D.13、如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A.1cmB.2cmC.3cmD.4cm14、如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°15、如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A.①②B.②③C.①④D.③④二、填空题(共10题,共计30分)16、如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为________ cm2.17、在中,,,将绕点A按顺时针方向旋转,得到,旋转角为,点B的对应点为点D,点C的对应点为点E,连接,.如图,当时,延长交于点F.①是等边三角形;②;③;④.其中所有正确的序号是________.18、直角三角形两边长分别为3和4,这个三角形内切圆的半径为________.19、如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=6,则CD的长为________.20、如图,△ABC中,∠ACB=90°,点M,N分别是AB,BC的中点,若CN=2,CM=,则△ABC的周长________.21、如图,⊙C过原点,且与两坐标轴分别交于点A和点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠BMO=120°,则⊙C的半径长为________.22、已知直角三角形的两条直角边长为6,8,那么斜边上的中线长是________.23、已知:等腰梯形的两底分别为和,一腰长为,则它的对角线的长为________ .24、如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD=________.25、如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.28、如图,学习了勾股定理后,数学活动兴趣小组的小娟和小燕对离教室不远的一个直角三角形花台斜边上的高进行了探究:两人在直角边AB上距直角顶点B10米远的点D处同时开始测量,点C为终点.小娟沿D→B→C的路径测得所经过的路程是15米,小燕沿D→A→C的路径测得所经过的路程也是15米,这时小娟说我能求出这个直角三角形的花台斜边上的高了,小燕说我也知道怎么求出这个直角三角形的花台斜边上的高了.亲爱的同学们你能求出这个直角三角形的花台斜边上的高吗?若能,请你求出来:若不能,请说明理由?29、如图.在△ABC中,AD是角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E、F. 求证:EB=FC.30、在如图所示的方格图中,每个小方格的边长均为1,则△ABC的周长为多少?参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、C5、D6、C7、C8、C9、C10、C11、C12、D13、D14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
沪教版 八年级数学 暑假同步讲义 第20讲 线段垂直平分线及角平分线(解析版) 培优
线段的垂直平分线和角平分线内容分析线段的垂直平分线和角平分线是八年级数学上学期第十九章第四节内容,主要对线段的垂直平分线和角平分线进行讲解,重点是线段的垂直平分线和角平分线定理的理解,难点是线段的垂直平分线和角平分线定理的运用.通过这节课的学习一方面为我们后期学习直角三角形提供依据,另一方面也为后面学习勾股定理奠定基础.知识结构模块一:线段的垂直平分线知识精讲一、线段的垂直平分线的性质及逆定理1、线段的垂直平分线上的任意一点到这条线段的两个端点的距离相等;注意:垂直平分线中的垂直是相互的,而平分则要看清楚到底是谁被平分.2、和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2 / 15【例1】 已知:如图,在ABC ∆中,90C ∠=°,30A ∠=︒,DE 垂直平分AB 于点D ,交AC于点E .求证:DE CE =.【解析】连接BE∵DE 垂直平分AB 于点D , ∴EB AE =, ∴︒=∠=∠30ABE A∵︒=∠+∠90ABC A ,30A ∠=︒, ∴︒=∠60ABC ,∴︒=∠30EBC .可证BCE BDE ≌△△()S A A ..,则CE DE =.【总结】本题主要考查直角三角形的性质以及线段垂直平分线的性质.【例2】 已知:如图,在ABC ∆中,90ACB ∠=°,D 为BC 延长线上一点,E 是AB 上一点,EM 垂直平分BD M ,为垂足,DE 交AC 于点F .求证:E 在AF 的垂直平分线上.【解析】∵EM 垂直平分BD ,∴ED EB =,∴D B ∠=∠∵90ACB ∠=°,∴︒=∠+∠90B A ,︒=∠+∠90DFC D ∴DFC A ∠=∠ ∵AFE DFC ∠=∠, ∴AFE A ∠=∠,∴EF AE = ∴E 在AF 的垂直平分线上.【总结】本题主要考查线段垂直平分线性质定理以及逆定理的运用.【例3】 如图,ABC ∆中,AD 是BAC ∠的平分线,点E 在BC 延长线上,且例题解析DEABCABACONNMGFEDC BABAE ACE ∠=∠.求证:点E 在AD 的垂直平分线上.【解析】∵AD 是BAC ∠的平分线,∴DAC BAD ∠=∠∵BAD DAE BAE ∠+∠=∠,DAC ADE ACE ∠+∠=∠,又BAE ACE ∠=∠ ∴DAE ADE ∠=∠ ∴ED EA =∴点E 在AD 的垂直平分线上.【总结】本题一方面考查三角形的外角性质,另一方面考查线段垂直平分线逆定理的运用.【例4】 已知:在ABC ∆中,90ACB ∠=,30A ∠=°,BD 平分B ∠交AC 于点D .求证:点D 在AB 的垂直平分线上.【解析】∵︒=∠+∠90ABC A ,30A ∠=︒,∴︒=∠60ABC ,∵BD 平分B ∠,∴︒=∠30DBA ∴ABD A ∠=∠,∴BD AD = ∴点D 在AB 的垂直平分线上.【总结】本题一方面考查直角三角形的性质,另一方面考查线段垂直平分线逆定理的运用.【例5】 已知:在ABC 中,ON 是AB 的垂直平分线, OA OC =.求证:点O 在线段BC 的垂直平分线.【解析】∵ON 是AB 的垂直平分线, ∴OB OA =∵OA OC =,∴OC OB = ∴点O 在线段BC 的垂直平分线.【总结】本题主要考查线段垂直平分线性质定理以及逆定理的运用.【例6】 如图,在△ABC 中,∠A =30°,DE 垂直平分AB ,FM 垂直平分AD ,GN 垂直平分BD .求证:AF = FG = BG . 【答案】见解析【解析】∵DE 垂直平分AB ,4 / 15GF ECBAEDCBA∴︒=∠=∠30DAB A ∵FM 垂直平分AD , ∴DF AF =, ∴FDA A ∠=∠,∴︒=∠+∠=∠60ADF A DFE 同理可得:︒=∠60DGB , ∴DFG △是等边三角形, ∴BG FG DF ==又∵DF AF =,BG DG =, ∴AF = FG = BG .【总结】本题主要考查等腰三角形的性质以及线段垂直平分线的性质.【例7】 如图,在△ABC 中,∠B =22.5°,边AB 的垂直平分线交BC 于点D ,DF ⊥AC ,并与BC 边上的高AE 交于点G . 求证:EG = EC . 【答案】见解析【解析】∵边AB 的垂直平分线交BC 于点D ,∴DA DB =,∴︒=∠=∠5.22B BAD ∴︒=∠+∠=∠45BAD B ADC , ∴ADE △为等腰直角三角形, ∴AE DE =证得:()A S A ACE DGE ..≌△△, ∴EG = EC .【总结】本题主要考查等腰直角三角形的性质以及线段垂直平分线的性质.【例8】 如图,已知:△ABC 中,AB = CB ,点D 在线段AC 上,且AB = AD ,∠ABC =108°,过点A 作AE ∥BC ,交∠ABD 的平分线于E ,联结CE . 求证:BD 垂直平分EC .【解析】连接ED∵AB = CB ,∠ABC =108°,∴︒=∠=∠36BCA BAC ∵AB = AD ,∴︒=∠=∠72ADB ABD , ∴︒=︒-︒=∠3672108DBC∵BE 平分ABD ∠,∴︒=∠=∠36EBD ABE ∵AE ∥BC ,∴︒=︒-︒=∠72108180BAE , ∴BEA BAE ∠=∠,∴BE BA =又∵AB = CB ,∴BC BE =证得:()S A S BCD BED ..≌△△,∴CD DE =∵BE BA =,CD DE =,∴ BD 垂直平分EC .【总结】本题主要考查等腰三角形的性质以及线段垂直平分线的性质.二、 角平分线的性质定理和角平分线的性质定理的逆定理1、 角的平分线上的点到这个角两边的距离相等.2、 在一个角的内部(包括顶点)到这个角两边距离相等的点,在这个角的平分线上注意:角的平分线可以看作是在这个角的内部(包括顶点)到这个角两边距离相等的点的集合.【例9】 如图,//AD BC AC ,平分BAD ∠,BE 平分ABC ∠,交CD 于点E ,交AC 于点F .求证:点F 到EA EC 、的距离相等. 【答案】见解析【解析】∵AC 平分BAD ∠,∴DAC BAC ∠=∠∵BC AD ∥,∴DAC ACB ∠=∠ ∴BAC ACB ∠=∠,∴BC AB =证得:()S A S CBE BAE ..≌△△,∴CEB AEB ∠=∠ ∴点F 到EA EC 、的距离相等.【总结】本题主要考查角平分线的意义和逆定理的运用.例题解析知识精讲模块二:角平分线AFBDEC6 / 15FG EBPON CDM A 【例10】 如图,90B C ∠=∠=°,M 是BC 的中点,DM 平分ADC ∠.求证:AM 平分DAB ∠. 【答案】见解析【解析】过M 作MN ⊥AD ,垂足为N∵DM 平分ADC ∠,∴CM MN =∵M 是BC 的中点,∴MB CM =,∴MB MN = ∴AM 平分DAB ∠.【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例11】已知:如图,//AD OB OC ,平分AOB P ∠,是OC 上一点,过点P 作直线MN ,分别交AD OB 、于点M 和N ,且MP NP =. 求证:点P 到AO 和AD 的距离相等. 【答案】见解析【解析】过P 作PE ⊥OB 于点E ,PF ⊥OA 于点F ,PG ⊥AD 于点G .∵OC 平分AOB ∠,∴PF PE =可证得:()S A A PGM PEN ..≌△△,则PG PE =,∴PG PF = ∴点P 到AO 和AD 的距离相等.【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例12】如图,AD 为ABC ∆的角平分线,//DE AC ,交AB 于E ,过E 作AD 的垂线交BC 延长线于F . 求证:B FAC ∠=∠.【解析】∵AD 为ABC ∆的角平分线,∴DAC BAD ∠=∠∵//DE AC ,∴DAC EDA ∠=∠ ∴EDA BAD ∠=∠,∴AE DE = ∵AD EF ⊥,∴EF 垂直平分AD , ∴FD FA =,∴FDA FAD ∠=∠∵DAC FAC FAD ∠+∠=∠,BAD B FDA ∠+∠=∠ ∴B FAC ∠=∠.【总结】本题主要考查线段垂直平分性质定理及平行线+角平分线可以得到等腰三角形这个基本模型的运用.CMA DBABC DEF【例13】 已知:如图,在等腰直角三角形ABC 中,90ACB ∠=°,D 为BC 的中点,且DE AB ⊥,垂足为点E ,过点B 作//BF AC 交DE 的延长线于点F ,联结CF .(1)求证:AD CF ⊥;(2)联结AF ,试判断ACF ∆的形状,并说明理由.【解析】(1)∵ABC △为等腰直角三角形,∴︒=∠=∠45CBA CAB ∵//BF AC ,∴︒=∠45ABF证得:FBE DBE ≌△△,则可得DB BF = ∵D 为BC 的中点,∴DB CD =,∴BF CD = 证得:()S A S BCF CAD ..≌△△,∴BCF CAD ∠=∠∵︒=∠+∠90ACF BCF ,∴︒=∠+∠90ACF CAD ,∴AD CF ⊥; (2)等腰三角形.由(1)可得:AF AD =,CF AD =,∴CF AF = ∴ACF △是等腰三角形.【总结】本题主要考查等腰直角三角形的性质,本题(1)中的全等是一个基本模型,要注意理解,在后期证明中也会经常用到.【例14】如图,AP BP 、分别平分MAB ∠和NBA ∠,PC PD 、分别垂直于AM BN 、,如果123AC cm CP cm BD cm ===,,,那么PD =_______,AB = _________.【答案】2cm ,4cm .【解析】过P 作PE ⊥AB 于E .∵AP BP 、分别平分MAB ∠和NBA ∠ ∴2===PD PE PC可证:()S A A PEA PCA ..≌△△,()S A A PDB PEB ..≌△△ 则CE AC =,BE BD = ∴431=+=+=EB AE AB【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例15】如图,ABC ∆中,90C ∠=°,点O 为ABC ∆的三条角平分线的交点,OD BC ⊥,OE AC ⊥,OF AB ⊥,点D E F 、、分别为垂足,且1086AB BC CA ===,,,则点OPBCAM NDAEFABCDEF8 / 15GFEDCBA GFDA到三边AB AC 、和BC 的距离分别为_______. 【答案】2. 【解析】∵24862121=⨯⨯=⋅⋅=BC AC S ABC △ ∴ABC ABO OBC AOC S S S S =++△△△△111108624222OF OD OE =⨯⨯+⨯⨯+⨯⨯=∵点O 为ABC ∆的三条角平分线的交点, ∴OF OE OD == ∴2=OD【总结】本题一方面考查角平分线的性质定理,另一方面考查等积法的运用.【例16】如图,在ABC ∆中,90ACB ∠=°,AC BC =,AD 是BC 边上的中线,过C 作CF AD ⊥,E 为垂足,延长CE 交AB 于F .求证:ADC BDF ∠=∠. 【答案】见解析【解析】过B 作BG ∥AC 交CF 的延长线于G .证得:()A S A BCG CAD ..≌△△, ∴BG CD =,G ADC ∠=∠ ∵D 为BC 的中点, ∴DB CD =,∴BG BD =证得:()S A S GBF DBF ..≌△△,则可得G BDF ∠=∠ ∴ADC BDF ∠=∠【总结】本题一方面考查直角三角形的性质,另一方面考查全等的基本模型.【例17】如图,已知正方形ABCD 中,F 是CD 的中点,E 是BC 边上的一点,且AE DC CE =+.求证:AF 平分DAE ∠.EQ PDCBA 【答案】见解析【解析】连接EF 交AD 的延长线于G .可证得:()A S A ECF GDF ..≌△△,则DG CE =,FG EF = ∵BC AD =,AE DC CE =+ ∴AE AG =可证得:()S S S AGF AEF ..≌△△, ∴GAF EAF ∠=∠ 即AF 平分DAE ∠.【总结】本题主要考查利用中线倍长构造全等,总而证明角平分线的成立.【例18】已知:如图,正方形ABCD 的边长为1,AB AD 、上各有一点P Q 、,若APQ∆的周长为2.求PCQ ∠的度数. 【答案】45°.【解析】∵APQ ∆的周长为2,∴2=++PQ AP AQ .∵正方形ABCD 的边长为1,∴2=+++PB AP AD AQ ∴BP DQ PQ +=. 延长PB 至E ,使得BE =DQ可证:()S A S CBE CDQ ..≌△△,则CE CQ =,BCE DCQ ∠=∠ ∵BP DQ PQ +=,DQ BE =,∴EP PQ = 可证:()S S S CPE CPQ ..≌△△,∴PCE QCP ∠=∠ ∵︒=∠+∠90BCQ DCQ ,BCE DCQ ∠=∠, ∴︒=∠+∠90BCQ BCE ,即︒=∠90QCE 又∵︒=∠+∠90PCE QCP ,PCE QCP ∠=∠ ∴︒=∠45PCQ【总结】本题综合性较强,主要考查了全等的运用,以及截长补短辅助线的添加,最终目的是构造全等,在解题时要注意认真分析.【习题1】ABC ∆的边长AC BC 、的中垂线交AB 于一点O ,且OC BC =,则A∠随堂检测10 / 15EODCBA=________. 【答案】30°【解析】∵ABC ∆的边长AC BC 、的中垂线交AB 于一点O ,∴OC OB OA ==∴OCB B ∠=∠,ACO A ∠=∠ ∵︒=∠+∠+∠+∠180ACO A OCB B ∴︒=∠+∠90OCB ACO ,即︒=∠90ACB ∵OC BC =∴OBC △为等边三角形,∴︒=∠60B ∵︒=∠+∠90A B ,∴︒=∠30A .【总结】本题主要考查线段垂直平分线性质以及等边三角形的性质.【习题2】 △ABC 中,AB = AC ,AC 的中垂线交AB 于E ,△EBC 的周长为20cm ,AB = 2BC ,则腰长为___________.【答案】cm 340.【解析】∵AC 的中垂线交AB 于E ,∴EC AE =∵△EBC 的周长为20cm ,∴20=+=++BC AB EC BC EB∵AB = 2BC ,∴340=AB【总结】本题主要考查线段垂直平分线性质以及等腰三角形的性质.【习题3】 如图所示,AB //CD ,O 为∠A 、∠C 的平分线的交点,OE ⊥AC 于E ,且OE =2, 则AB 与CD 之间的距离等于___________. 【答案】4【解析】过O 作OF ⊥AB 于F ,OG ⊥CD 于G∵O 为∠A 、∠C 的平分线的交点,∴2===OG OF OE , ∵AB //CD , ∴F 、O 、G 三点共线,∴4=FG . 【总结】本题主要考查角平分线性质以及平行线的性质. 【习题4】ABC ∆中,AD 平分BAC ∠,DE DF 、分别垂直于AB AC 、,垂足分别为E F 、,如果48ABC S ∆=,79AC AB ==,,则DF =______________. 【答案】6【解析】∵AD 平分BAC ∠,∴DF DE =∵487219212121=⨯⨯+⨯⨯=⋅⋅+⋅⋅=+=DF DE DF AC DE AB S S S ADC ABD ABC △△△MNABC ∴6=DF【总结】本题主要考查角平分线性质以及等积法的运用.【习题5】 已知:点A 和点D 都是线段BC 外一点,且AB = AC ,DB = DC ,E 是AD 上一点.求证:BE = CE .【答案】见解析【解析】∵AB = AC ,∴A 在线段BC 的垂直平分线上,∵DB = DC ,∴D 在BC 的垂直平分线上, ∴AD 是BC 的垂直平分线 ∵E 是AD 上一点 ∴BE = CE【总结】本题主要考查线段垂直平分线性质定理及其逆定理的运用.【习题6】 已知:如图,在ABC ∆中,90C ∠=°,30A ∠=°,MN 是AB 的垂直平分线.求证:12CM AM =.【答案】见解析. 【解析】∵MN 是AB 的垂直平分线,∴︒=∠=∠30MBA A∵90C ∠=°,30A ∠=°,∴︒=∠60CBA ,∴︒=︒-︒=∠303060CBM , ∴NBM CBM ∠=∠,∴MN CM =. 在直角△AMN 中,︒=∠30A ,则AM MN 21=,∴AM CM 21=. 【总结】本题主要考查线段垂直平分线性质以及直角三角形的性质.【习题7】 已知:如图,ABC ∆中,90A ∠=°,AB AC BD ==,ED BC ⊥.求证:AE DE DC ==. 【答案】见解析 【解析】连接BE可证:()L H BDE BAE .≌△△,∴DE AE = ∵90A ∠=°,AB AC =, ∴︒=∠45C ∵ED BC ⊥∴△DEC 为等腰直角三角形, ∴DC DE =BEACD12 / 15ABCDOEF∴AE DE DC ==【总结】本题一方面考查了直角三角形全等的判定方法,另一方面考查了等腰直角三角形的性质,由于部分学生还未学过(H .L )的判定定理,因此可选择性的讲解.【习题8】 如图,在ABC ∆中,BD 平分ABC ∠,EF 垂直平分BD 交CA 延长线于E .求证:EAB EBC ∠=∠. 【答案】见解析【解析】∵EF 垂直平分BD∴ED EB = ∴EDB EBD ∠=∠ ∵BD 平分ABC ∠, ∴ABD DBC ∠=∠∵ABD EDB EAB ∠+∠=∠,DBC EBD EBC +∠=∠ ∴EAB EBC ∠=∠【总结】本题一方面考查线段垂直平分线的性质定理,另一方面考查三角形外角性质的运用.【习题9】 已知:如图,在凹四边形ABCD 中,EO 垂直平分BC ,FO 垂直平分AD ,EO与FO 相交于点O ,且AB CD =. 求证:ABO DCO ∠=∠. 【答案】见解析 【解析】连接OD 、OA∵EO 垂直平分BC ∴OC OB = ∵FO 垂直平分AD ∴OD OA =可证:()S S S DOC AOB ..≌△△ ∴ABO DCO ∠=∠.【总结】本题主要考查线段垂直平分线以及角平分线性质定理的综合的运用.课后作业ABCDEF【作业1】 如图,Rt ABC ∆中,90C ∠=°,AD 平分BAC ∠,DE AB ⊥于E ,如果14DC cm AB cm ==,,那么ABD S ∆=___________.【答案】2【解析】∵AD 平分BAC ∠,DE AB ⊥,90C ∠=°, ∴1==DE CD∴2142121=⨯⨯=⋅⋅=DE AB S ABD △.【总结】本题主要考查角平分线性质定理的运用.【作业2】 如图,已知ABC ∆中,DE 是AC 的垂直平分线,5AC =,ABD ∆的周长为13,求ABC ∆的周长. 【答案】18【解析】∵DE 是AC 的垂直平分线,∴DC AD =∵ABD ∆的周长为13, ∴13=++AD BD AB ∴ABC ∆的周长为:AB AC BC AB AC BD DC AB AC BD AD ++=+++=+++13518=+=.【总结】本题主要考查线段垂直平分线性质定理的运用.【作业3】 如图,在ABC ∆中,已知点D 在BC 上,且DB AD BC +=.求证:点D 在AC的垂直平分线上. 【答案】见解析【解析】∵DB AD BC +=,BC DC DB =+∴DC AD =∴点D 在AC 的垂直平分线上.【总结】本题主要考查线段垂直平分线性质定理逆定理的运用,证明点在线段垂直平分线上. 【作业4】 如图,在ABC ∆中,AB AC =,120BAC ∠=°,AC 的垂直平分线DE 交BC 于D E ,为垂足,且18BC cm =,求DE 的长.【答案】3cm【解析】∵AB AC =,120BAC ∠=°,∴︒=∠=∠30C B∵AC 的垂直平分线DE 交BC 于D ∴DC AD =,︒=∠=∠30CAD C ,ABCEDAB C DD BACEADBEC14 / 15ED CBA ∴︒=︒-︒=∠9030120BAD在直角△BAD 中,︒=∠30B ,则BD AD 21= ∴182=+=+=DC DC DC BD BC ∴6=DC在直角△CED 中,︒=∠30C ,则321==DC DE .【总结】本题主要考查线段垂直平分线性质定理及其直角三角形性质的运用.【作业5】 如图,正方形ABCD 的边长为1,AE 是CAB ∠的平分线,交BC 于点E ,则点E 到AC 的距离为___________. 【答案】12-.【解析】过E 作EF ⊥AC ,垂足为F可得:△CEF 为等腰直角三角形, 则由勾股定理可得:EF CE 2=∵AE 是CAB ∠的平分线,EF ⊥AC ,90B ∠= ∴BE EF = 又∵1=+EB CE ∴12=+EF EF ∴12-=EF【总结】本题综合性较强,主要考查了角平分线的性质以及正方形的性质,还运用勾股定理计算线段长.【作业6】 如图,已知ABC ∆中,点E 是AB 延长线上的一点,AE AC AD =,平分BAC ∠,BD = BE .求证:2ABC C ∠=∠. 【答案】见解析【解析】由题意,易得:()S A S ACD AED ..≌△△则:C E ∠=∠∵BD = BE ,∴BDE E ∠=∠ ∴C E DBE E ABC ∠=∠=∠+∠=∠22ABCDE【总结】本题主要考查等边对等角以及三角形外角性质的运用,解题时注意分析,当看到证明一个角是另一个角的两倍时,通常都考虑采用外角性质证明.【作业7】 如图,在ABC ∆中,AD BC ⊥于D ,AC CD BD +=.求证:2C B ∠=∠. 【答案】见解析【解析】在BD 上截取一点E ,使得DE =DC∵DC DE =,AC CD BD += ∴AC BE =可证:AED ACD ≌△△,则AE AC =,AED C ∠=∠ ∴AE BE =,∴BAE B ∠=∠ ∴C B BAE B AED ∠=∠=∠+∠=∠22 ∴2C B ∠=∠【总结】本题一方面考查了截长补短辅助线的添加,主要是看到两条线段和等于第三条线段的模型,另一方面考查了证明一个角是另一个角的两倍的基本模型,通常都考虑采用外角性质证明.ABCD。
上海初中数学目录(沪教版)
第一节几何证明
19.1命题和证明
19.2证明举例
第二节线段的垂直平分线与角的平分线
19.3逆命题和逆定理
19.4线的垂直平分线
19.5角的平分线
19.6轨迹
第三节直角三角形
19.7直角三角形全等的判定
19.8直角三角形的性质
19.9勾股定理
19.10两点的距离公式
八年级第二学期
第二十章一次函数
17。1一元二次方程的概念
第二节一元二次方程的解法
17.2一元二次方程的解法
17.3一元二次方程的判别式
第三节一元二次方程的应用
17.4一元二次方程的应用
第十八章正比例函数和反比例函数
第一节正比例函数
18.1函数的概念
18.2正比例函数
第二节反比例函数
18。3反比例函数
第三节函数的表示法
18。4函数的表示法
上海初中数学目录
六年级第一学期
第一章数的整除
第一节整数和整除
1.1整数和整除的意义
1.2因数和倍数
1.3能被2,5整除的数
第二节分解质因数
1。4素数,合数与分解质因数
1.5公因数与最大公因数
1.6公倍数与最小公倍数
第二章 分数
第一节分数的意义和性质
2。1分数与除数
2.2分数的基本性质
2.3分数的大小比较
第二节 分数的运算
2.4分数的加减法
2.5分数的乘法
2。6分数的除法
2.7分数与小数的互化
2。8分数 ,小数的四则混合运算
2.9分数运算的应用
第三章 比和比例
第一节比和比例
3.1比的意义
3。2比的基本性质
八年级数学上册线段的垂直平分线的性质训练题(含答案)
八年级数学上册线段的垂直平分线的性质训练题(含答案)一.选择题(共10小题)1.如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE的周长为()A.6 B.14 C.18 D.242.如图,在Rt△ABC中,∠C=90°,直线DE是斜边AB的垂直平分线交AC于D.若AC=8,BC=6,则△DBC的周长为()A.12 B.14 C.16 D.无法计算(1题图)(2题图)(3题图)3.如图,在Rt△ABC中,∠C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB﹨AC于N﹨M两点,则△BCM的周长为()A.18 B.16 C.17 D.无法确定4.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°5.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE =5,AC=12,则BE的长是()A.13 B.10 C.12 D.56.如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,连接AD.若△ABC的周长是17cm,AE=2cm,则△ABD的周长是()A.13cm B.15cm C.17cm D.19cm7.等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC的周长为17,则底BC为()A.5 B.7C.10 D.9(4题图)(5题图)(6题图)8.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE =5,AC=12,则BE的长是()A.5 B.10 C.12 D.139.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm ,则BC的长为()A.1cm B.2cm C.3cm D.4cm10.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB﹨BC于点D﹨E,则∠BAE=()A.80°B.60°C.50°D.40°(8题图)(9题图)(10题图)二.填空题(共10小题)11.如图,在△ABC中,AB=6cm,AC=4cm,BC的垂直平分线分别角AB﹨BC于D﹨E,则△ACD的周长为cm.(11题图)(12题图)(13题图)(14题图)12.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm ,则AC= cm.13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F=3 0°,DE=1,则EF的长是.14.如图所示,在△ABC中,DM﹨EN分别垂直平分AB和AC,交BC于D﹨E,若∠DAE=50°,则∠BAC= 度,若△ADE的周长为19cm,则BC=cm.15.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC = °.(15题图)(16题图)(17题图)(18题图)(19题图)16.等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE ,则∠EBC的度数为.17.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△AB C与△EBC的周长分别是40cm,24cm,则AB= cm.18.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC= 度.19.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.20.如图,在△ABC中,AB=AC,∠A=20°,边AC的垂直平分线交AC于点D,交AB于点E,则∠BCE等于°.三.解答题(共4小题)21.在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.22.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C﹨D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.(1)求∠BDC的度数;(2)求BD的长.24.如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.人教版八年级数学上册第13章13.1.2线段的垂直平分线的性质训练题参考答案一.选择题(共10小题)1.B 2.B 3.C 4.C 5.A 6.A 7.B 8.D 9.C 10.D二.填空题(共10小题)11.10 12.6 13.2 14.115°19 15.15 16.36°17.1618.30 19.220.60三.解答题(共4小题)21.证明:AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F ,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC.(21题图)(24题图)22.解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.23.解:(1)∵DE垂直平分AB,∴DA=DB,∴∠DBE=∠A=30°,∴∠BDC=60°;(2)在Rt△BDC中,∵∠BDC=60°,∴∠DBC=30°,∴BD=2CD=4.24.证明:连接AF,∵EF为AB的垂直平分线,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.。
(典型题)沪教版八年级上册数学第十九章 几何证明含答案
沪教版八年级上册数学第十九章几何证明含答案一、单选题(共15题,共计45分)1、已知三角形的三边长分别为a,b,c,且a+b=10,ab=18,c=8,则该三角形的形状是()A.等腰三角形B.直角三角形C.钝角三角形D.等腰直角三角形2、下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=3,b=4,c=5B.a=7,b=24,c=25C.a=4,b=5,c=6 D.a=6,b=8,c=103、如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC 于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A.①②B.①④⑤C.①②④⑤D.①②③④⑤4、已知△ 和△ 都是等腰直角三角形,,,,是的中点.若将△ 绕点旋转一周,则线段长度的取值范围是()A. B. C. D.5、如图△ABC 的∠ABC 的外角平分线 BD 与∠ACB 的外角平分线 CE 交于 P,过 P 作MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,则 MN=()A.2B.3C.4D.56、如图,在平行四边形中,对角线与相交于点,则的长为()A.8B.4C.3D.57、在下列由线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=4,b=5,c=6B.a=12,b=5,c=13C.a=6,b=8,c=10D.a=7,b=24,c=258、绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4mB.5mC.6mD.8m9、有一块三角形的草坪△ABC,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在 ( )A.△ABC三条角平分线的交点B.△ABC三边的垂直平分线的交点 C.△ABC三条中线的交点 D.△ABC三条高所在直线的交点10、下列各组数中,不是勾股数的是()A.3,4,5B.5,12,13C.6,8,10D.7,13,1811、如图,将长方形ABCD沿直线EF折叠,使顶点C恰好落在顶点A处,已知AB=4cm,AD=8cm,则折痕EF的长为( )A.5cmB. cmC. cmD. cm12、如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cmB.8cmC.10cmD.12cm13、如图,长方形ABCD中,点E是边CD的中点,将△ADE沿AE折叠得到△AFE,且点F在长方形ABCD内.将AF延长交边BC于点G.若BG=3CG,则=()A. B.1 C. D.14、如图,在中,,,点D,E分别是AB, BC的中点,连接DE,CD,如果,那么的周长()A.28B.28.5C.32D.3615、下列长度的三条线段能组成锐角三角形的是()A.2,3,3B.2,3,4C.2,3,5D.3,4,5二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为________17、如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为________ cm2.18、如图,是⊙O的直径,C是⊙O上一点,的平分线交⊙O于D,且,则的长为________.19、在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为________ cm.20、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.21、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=15°,AB=4cm,则⊙O半径为________cm.22、如图,在每个小正方形边长为1的网格中,点A,点C均落在格点上,点B 为中点.(Ⅰ)计算AB的长等于________;(Ⅱ)若点P,Q分别为线段BC,AC上的动点,且BP=CQ,请在如图所示的网格中,用无刻度的直尺,画出当PQ最短时,点P,Q的位置,并简要说明画图方法(不要求证明)________.23、如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为________.24、已知矩形OABC中,O为坐标原点,点A在x轴上,点C在y轴上,B的坐标为(10,5),点P在边BC上,点A关于OP的对称点为A',若点A'到直线BC 的距离为4,则点A'的坐标可能为________.25、如图,矩形ABCD中,AB=5,BC=7,E为BC上的动点,将矩形沿直线AE翻折,使点B的对应点B'落在∠ADC的平分线上,过点B'作B'F⊥BC于点F,求△B'EF的周长________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE 交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.28、如图,已知∠AOB=30°,P是∠AOB角平分线上一点,CP∥OA,交OB于点C,PD⊥OA,垂足为点D,且PC=4,求PD的长.29、去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(≈1.732)30、由于大风,山坡上的一颗树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一颗树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、A5、B6、B7、A8、D9、A10、D11、B12、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
19-5角的平分线(第2课时)-2022-2023学年八年级数学上册同步练习(沪教版)
19.5角的平分线(第2课时)(原卷版)【夯实基础】一、单选题1.(2019·上海民办永昌学校八年级阶段练习)如图,三条相互交叉的公路交于A 、B 、C 三点,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址是△ABC 的( )A .三边高的交点B .三边中垂线交点C .三边中线交点D .三内角平分线交点二、填空题2.(2019·上海民办永昌学校八年级阶段练习)△ABC 的三边AB 、BC 、CA 的长分别是20、30、40,其三条角平分线相交于O 点,将三角形ABC 分为三个三角形,则::ABO BCO CAO S S S ∆∆∆=_______. 三、解答题3.(2022·上海·八年级期末)如图,AD 是△ADC 中∠A 的平分线,DE ⊥AB 于E,DF ⊥AC 于F,联结EF .求证:AD ⊥EF4.(2020·上海市松江区民办茸一中学八年级阶段练习)如图,已知∠AOB 及点E 、F ,在∠AOB 的内部求作点P ,使点P 到OA 、OB 的距离相等,且PE =PF .(请尺规作图,保留作图痕迹,并写结论)5.(2020·上海·同济大学附属实验中学八年级阶段练习)已知∠AOB,点M、N,在∠AOB 的内部求作一点P,使点P到∠AOB的两边距离相等,且PM=PN6.(2019·上海民办永昌学校八年级阶段练习)如图,已知∠MON及线段a,点G是射线ON上的点,求作:点P,使点P到OM、ON的距离相等,且PG=a。
7.(2018·上海普陀·八年级期末)如图所示,已知在△ABC中,∠C=90°,AC=6,AB=10.点D在边AC上,且点D到边AB和边BC的距离相等.(1)用直尺圆规作出点D(不写作法,保留作图痕迹,在图上标注清楚点D);(2)求点D到边AB的距离.8.(2019·上海外国语大学附属大境初级中学八年级阶段练习)尺规作图:如图,在直线MN 上求作一点P,使点P到∠AOB两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)9.(2022·上海·八年级单元测试)尺规作图.如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)【能力提升】一、单选题1.(2018·上海长宁·八年级阶段练习)如图,△ABC中,AD是∠BAC的平分线,AB=4,AC=3,那么△ABD和△ADC的面积比是()A .1:1B .3:4C .4:3D .不能确定 2.(2022·上海·八年级单元测试)如图,在ABC 中,,100=∠=︒AB AC A ,点D 在边AB 的延长线上,根据图中尺规作图的痕迹,可知DBE ∠的度数为( )A .60︒B .65︒C .70︒D .75︒二、填空题3.(2019·上海市云岭实验中学八年级阶段练习)如图,I 为ΔABC 的∠ABC 、∠ACB 的内角平分线交点,点O 为ΔABC 的边AB 、BC 的垂直平分线的交点,∠O=140,则∠I=________4.(2018·上海长宁·八年级阶段练习)已知,△ABC 的周长为16,∠A ,∠B 的角平分线交点到AB 的距离为2,则△ABC 的面积为________5.(2019·上海长宁·八年级期末)如图,△ABC 中,AD 是角平分线,AC =4㎝.DE ⊥AB ,E 为垂足.DE =3cm .则△ADC 的面积是_______cm 2.6.(2022·上海·八年级期末)随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有_______处.三、解答题7.(2019·上海师大附中附属龙华中学八年级阶段练习)作图,如图,平面内二点A 、B 、O ,画出点C ,使点C 在AOB ∠内部且到AOB ∠两边的距离相等。
八年级数学上册《第二章 线段的垂直平分线》同步练习题及答案(青岛版)
八年级数学上册《第二章线段的垂直平分线》同步练习题及答案(青岛版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )A.BC>PC+APB.BC<PC+APC.BC=PC+APD.BC≥PC+AP2.如图,AC=AD,BC=BD,则有( )A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB3.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )4.如图所示,在△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和点E,则△BCD的周长是( )A.6B.8C.10D.无法确定5.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对6.在锐角△ABC内的一点P满足PA=PB=PC,则点P是△ABC( ).A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点7.如图,∠BAC=110°若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( ).A.20°B.40°C.50°D.60°8.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连结AD,交BC延长线于点H.下列叙述正确的是( )A.BH垂直平分线段ADB.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题9.小军做了一个如图所示的风筝,其中EH=FH,ED=FD,小军说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是 .10.如图,△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.若AB=10cm,△ABC的周长为27cm,则△BCE的周长为.11.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.12.如图,△ABC的边AB,AC的垂直平分线相交于点P,连接PB,PC,若∠A=70°,则∠PBC 的度数是______度.13.如图,△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为.三、解答题14.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB、BC分别相交于点D、E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.15.如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.16.如图,已知P是线段CD的垂直平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.求证:(1)OC=OD;(2)OP平分∠AOB.17.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.18.已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E. 求证:CD⊥BE.19.如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.(1)利用尺规作图作出点D,不写作法但保留作图痕迹.(2)若△ABC的底边长5,周长为21,求△BCD的周长.20.如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧),且DB=DC,过点D作DE∥AC,交射线AB于E,连接AE交BC于F.(1)求证:AD垂直BC;(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;(3)如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE的数量关系.答案1.C.2.A3.D.4.C5.D.6.A.7.B8.A9.答案为:与线段两个端点距离相等的点在这条线段的垂直平分线线上.10.答案为:17.11.答案为:8cm.12.答案为:2013.答案为:100°14.解:(1)如解图,DE是边AB的垂直平分线;作法提示:①分别以点A、B为圆心,大于12AB长为半径画弧,在线段AB两侧交于点M、N;②作直线MN,分别交AB、BC于点D、E. DE即为边AB的垂直平分线;(2)如解图,连接AE∵DE是AB的垂直平分线∴AE=BE∴∠BAE=∠B=50°.∵∠AEC是△ABE的外角∴∠AEC=∠BAE +∠B=100°.15.解:∵AD平分∠BAC∴∠BAD=∠DAE∵∠BAD=29°∴∠DAE=29°∴∠BAC=58°∵DE垂直平分AC∴AD=DC∴∠DAE=∠DCA=29°∵∠BAC+∠DCA+∠B=180°∴∠B=93°.16.证明:(1)∵P在CD的垂直平分线上∴PC=PD.又∵OP=OP∴Rt△OPC≌Rt△OPD(HL).∴OC=OD.(2)由(1)Rt△OPC≌△OPD知∠AOP=∠BOP.17.证明:∵DE⊥AB∴∠AED=90°=∠ACB又∵AD平分∠BAC∴∠DAE=∠DAC∵AD=AD∴△AED≌△ACD∴AE=AC∵AD平分∠BAC∴AD⊥CE即直线AD是线段CE的垂直平分线.18.证明:∵DE⊥AB∴∠BDE=90°∵∠ACB=90°∴在Rt△DEB中与Rt△CEB中BD=BC,BE=BE∴Rt△DEB≌Rt△CEB(HL)∴DE=EC又∵BD=BC∴E、B在CD的垂直平分线上即BE⊥CD.19.解:(1)点D如图所示;(2)∵DE垂直平分线线段AC∴AD=DC∴△CDB的周长=BC+BD+CD=BC+BD+AD=BC+AB ∵AB+AC+BC=21,BC=5∴AB=AC=8∴△CDB的周长为13.20.证明:(1)∵AB=AC,DB=DC∴直线AD是BC的垂直平分线∴AD垂直BC;(2)证明:在△ABD和△ACD中∴△ABD≌△ACD∴∠BAD=∠CAD∵DE∥AC∴∠EDA=∠CAD∴∠BAD=∠EDA∴DE=AE;(3)DE=AC+BE.由(2)得,∠BAD=∠CAD ∵DE∥AC∴∠EDA=∠CAD∴∠BAD=∠EDA∴DE=AE∵AB=AC∴DE=AB+BE=AC+BE.。
沪教版(上海)八年级第一学期数学期末试卷
上海市八年级(上)期末数学试卷(附答案与解析)一、选择题(本大题共6题,每题2分,满分12分)1.(2分)下列二次根式中,最简二次根式是()A.B.C.D.2.(2分)已知函数中,在每个象限内,y随x的增大而增大,那么它和函数y =kx(k≠0)在同一直角坐标平面内的大致图象是()A.B.C.D.3.(2分)方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=04.(2分)已知反比例函数y=的图象经过点(3,﹣2),则k的值是()A.﹣6B.6C.D.﹣5.(2分)如图,一棵直立的大树在一次强台风中被折断,折断处离地面2米,倒下部分与地面成30°角,这棵树在折断前的高度为()A.米B.米C.4米D.6米6.(2分)已知下列命题中:①有两条边分别相等的两个直角三角形全等;②有一条腰相等的两个等腰直角三角形全等;③有一条边与一个锐角分别相等的两个直角三角形全等;④顶角与底边分别对应相等的两个等腰三角形全等.其中真命题的个数是()A.1B.2C.3D.4二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=.8.(3分)函数的定义域是.9.(3分)在实数范围内分解因式:x2﹣x﹣3=.10.(3分)如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是.11.(3分)已知某种近视眼镜的度数y(度)与镜片焦距x(米)之间的函数解析式为,如果测得该近视眼镜镜片的焦距为0.25米,那么该近视眼镜的度数为度.12.(3分)已知直角坐标平面内点A(1,2)和点B(2,4),则线段AB=.13.(3分)命题“直角三角形两锐角互余”的逆命题是:.14.(3分)以线段MN为底边的等腰三角形的顶角顶点的轨迹是.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC,AD平分∠CAB,如果CD=1,那么BD=.16.(3分)如图,在四边形ABCD中,∠ABC=90°,∠ADC=90°,AC=26,BD=24,联结AC、BD,取AC和BD的中点M、N,联结MN,则MN的长度为.17.(3分)在平面直角坐标系中,已知反比例函数,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立了一个“凡尔赛阶梯”,那么A2的坐标为.18.(3分)如图,已知Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,D是边AB上的一点,将△BCD沿直线CD翻折,使点B落在点B1的位置,若B1D⊥BC,则BD的长度为.三、计算题(本大题共2题,满分10分)19.(5分)计算:.20.(5分)解方程:2x(x﹣2)=x2﹣3.四、解答题(本大题共5题,21-24每题6分,25题8分,满分32分)21.(6分)已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.22.(6分)为了让我们的小朋友们有更好的学习环境,我校2020年投资110万元改造硬件设施,计划以后每年以相同的增长率进行投资,到2022年投资额将达到185.9万元.(1)求我校改造硬件设施投资额的年平均增长率;(2)从2020年到2022年,这三年我校将总共投资多少万元?23.(6分)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.24.(6分)如图,在△ABC中,AB=AC,∠B=30°.(1)在BC边上求作一点N,使得AN=BN;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,求证:CN=2BN.25.(8分)如图,已知一次函数和反比例函数的图象交点是A(4,m).(1)求反比例函数解析式;(2)在x轴的正半轴上存在一点P,使得△AOP是等腰三角形,请求出点P的坐标.五、综合题:(本大题只有1题,满分10分)26.(10分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,点D、E在线段AB上.(1)如图1,若CD=CE,求证:AD=BE;(2)如图2,若∠DCE=45°,求证:DE2=AD2+BE2;(3)如图3,若点P是△ABC内任意一点,∠BPC=135°,设AP=a、BP=b、CP=c,请直接写出a,b,c之间的数量关系.八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题2分,满分12分)1.(2分)下列二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的概念判断即可.【解答】解:A、=,被开方数含分母,不是最简二次根式,不符合题意;B、=2,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;C|,是最简二次根式,符合题意;D、=|y|,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意;故选:C.2.(2分)已知函数中,在每个象限内,y随x的增大而增大,那么它和函数y =kx(k≠0)在同一直角坐标平面内的大致图象是()A.B.C.D.【分析】首先根据反比例函数图象的性质判断出k的范围,在确定其所在象限,进而确定正比例函数图象所在象限,即可得到答案.【解答】解:∵函数中,在每个象限内,y随x的增大而增大,∴k<0,∴双曲线在第二、四象限,∴函数y=kx的图象经过第二、四象限,故选:B.3.(2分)方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=0【分析】本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.【解答】解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,∴x=0或x=4.故选:C.4.(2分)已知反比例函数y=的图象经过点(3,﹣2),则k的值是()A.﹣6B.6C.D.﹣【分析】把(3,﹣2)代入解析式,就可以得到k的值.【解答】解:根据题意,得k=xy=﹣2×3=﹣6.故选:A.5.(2分)如图,一棵直立的大树在一次强台风中被折断,折断处离地面2米,倒下部分与地面成30°角,这棵树在折断前的高度为()A.米B.米C.4米D.6米【分析】根据直角三角形中30°角所对的直角边等于斜边的一半,求出折断部分的长度,再加上离地面的距离就是折断前树的高度.【解答】解:如图,根据题意BC=2米,∵∠BAC=30°,∴AB=2BC=2×2=4米,∴2+4=6米.故选:D.6.(2分)已知下列命题中:①有两条边分别相等的两个直角三角形全等;②有一条腰相等的两个等腰直角三角形全等;③有一条边与一个锐角分别相等的两个直角三角形全等;④顶角与底边分别对应相等的两个等腰三角形全等.其中真命题的个数是()A.1B.2C.3D.4【分析】根据全等三角形的判定、等腰三角形和直角三角形的性质分别对每一项进行分析即可.【解答】解:①有两条边分别相等的两个直角三角形不一定全等,原命题是假命题;②有一条腰相等的两个等腰直角三角形全等,是真命题;③有一条边与一个锐角分别相等的两个直角三角形不一定全等,原命题是假命题;④顶角与底边分别对应相等的两个等腰三角形全等,是真命题.其中真命题的个数是2个;故选:B.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=4.【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴=4,故答案为4.8.(3分)函数的定义域是x≥﹣2.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:3x+6≥0,解得x≥﹣2.故答案为:x≥﹣2.9.(3分)在实数范围内分解因式:x2﹣x﹣3=.【分析】首先解一元二次方程x2﹣x﹣3=0,即可直接写出分解的结果.【解答】解:解方程x2﹣x﹣3=0,得x=,则:x2﹣x﹣3=.故答案是:.10.(3分)如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是k <2.【分析】根据正比例函数的性质(正比例函数y=kx(k≠0),当k<0时,该函数的图象经过第二、四象限)解答.【解答】解:∵正比例函数y=(k﹣2)x的的图象经过第二、四象限,∴k﹣2<0,解得,k<2.故答案是:k<2.11.(3分)已知某种近视眼镜的度数y(度)与镜片焦距x(米)之间的函数解析式为,如果测得该近视眼镜镜片的焦距为0.25米,那么该近视眼镜的度数为400度.【分析】把近视眼镜镜片的焦距为0.25米代入函数解析式就可解决问题.【解答】解:把x=0.25代入,解得y=400,所以他的眼睛近视400度.故答案为:400.12.(3分)已知直角坐标平面内点A(1,2)和点B(2,4),则线段AB=.【分析】利用勾股定理列式计算即可得解.【解答】解:∵点A(1,2),B(2,4),∴AB==.故答案为:.13.(3分)命题“直角三角形两锐角互余”的逆命题是:如果三角形有两个锐角互余,那么这个三角形是直角三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可得到原命题的逆命题.【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是:“如果三角形有两个锐角互余,那么这个三角形是直角三角形”.故答案为:如果三角形有两个锐角互余,那么这个三角形是直角三角形.14.(3分)以线段MN为底边的等腰三角形的顶角顶点的轨迹是线段MN的垂直平分线(线段MN的中点除外).【分析】满足△MNC以线段MN为底边且CM=CN,根据线段的垂直平分线判定得到点C在线段AB的垂直平分线上,除去与MN的交点(交点不满足三角形的条件).【解答】解:∵△MNC以线段MN为底边,CM=CN,∴点C在线段MN的垂直平分线上,除去与MN的交点(交点不满足三角形的条件),∴以线段MN为底边的等腰三角形的顶点C的轨迹是:线段MN的垂直平分线(线段MN的中点除外).故答案为:线段MN的垂直平分线(线段MN的中点除外).15.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC,AD平分∠CAB,如果CD=1,那么BD=.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE =CD,再求出△BDE是等腰直角三角形,然后根据等腰直角三角形斜边等于直角边的倍解答.【解答】解:如图,过点D作DE⊥AB于E,∵AD平分∠CAB,∠C=90°,∴DE=CD=1,∵AC=BC,∠C=90°,∴∠B=45°,∴△BDE是等腰直角三角形,∴BD=DE=.故答案为:.16.(3分)如图,在四边形ABCD中,∠ABC=90°,∠ADC=90°,AC=26,BD=24,联结AC、BD,取AC和BD的中点M、N,联结MN,则MN的长度为5.【分析】连接MB、MD,利用直角三角形斜边上中线的性质得出△MBD为等腰三角形,再利等腰三角形“三线合一”得出MN⊥BD,BN=ND=BD=12,最后利用勾股定理即可求出MN的长度.【解答】解:如图,连接MB、MD,∵∠ABC=90°,∠ADC=90°,M是AC的中点,∴MB=AC,MD=AC,∵AC=26,∴MB=MD=×26=13,∵N是BD的中点,BD=24,∴MN⊥BD,BN=DN=BD=×24=12,∴MN===5,故答案为:5.17.(3分)在平面直角坐标系中,已知反比例函数,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立了一个“凡尔赛阶梯”,那么A2的坐标为(,).【分析】根据题意求得A3(1,1),设A2所在的正方形的边长为m,则A2(m,m+1),由图象上点的坐标特征得到k=m(m+1)=1,解得m=,即可求得A2的坐标为(,).【解答】解:∵反比例函数的解析式为,∴A3所在的正方形的边长为1,∴A3(1,1),设A2所在的正方形的边长为m,则A2(m,m+1),∴m(m+1)=1,解得m=(负数舍去),∴A2的坐标为(,),故答案为:(,).18.(3分)如图,已知Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,D是边AB上的一点,将△BCD沿直线CD翻折,使点B落在点B1的位置,若B1D⊥BC,则BD的长度为.【分析】延长B1D交BC于E,由B1D⊥BC,可得DE=BD,BE=BD,设BD=x,在Rt△B1CE中可得(x+x)2+(3﹣x)2=32,即可解得答案.【解答】解:延长B1D交BC于E,如图:∵B1D⊥BC,∴∠BED=∠B1EC=90°,∵∠B=30°,∴DE=BD,BE=BD,设BD=x,∵将△BCD沿直线CD翻折,使点B落在点B1的位置,∴B1D=x,∵BC=3,∴CE=3﹣x,B1C=BC=3,在Rt△B1CE中,B1E2+CE2=B1C2,∴(x+x)2+(3﹣x)2=32,解得x=0(舍去)或x=,∴BD=,故答案为:.三、计算题(本大题共2题,满分10分)19.(5分)计算:.【分析】先进行分母有理化、化简二次根式,再去括号,计算加减即可.【解答】解:原式=﹣(﹣1)+2=﹣2﹣+1+2=2﹣1.20.(5分)解方程:2x(x﹣2)=x2﹣3.【分析】先把方程变形为一般式,再把方程左边进行因式分解(x﹣1)(x﹣3)=0,方程就可化为两个一元一次方程x﹣1=0或x﹣3=0,解两个一元一次方程即可.【解答】解:方程变形为:x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=3.四、解答题(本大题共5题,21-24每题6分,25题8分,满分32分)21.(6分)已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可.【解答】解:∵关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,∴b2﹣4ac=(2m)2﹣4(m﹣1)(m+3)=4m2﹣(4m2+8m﹣12)=4m2﹣4m2﹣8m+12=﹣8m+12≥0,m﹣1≠0,解得:m≤且m≠1,则m的最大整数值为0.22.(6分)为了让我们的小朋友们有更好的学习环境,我校2020年投资110万元改造硬件设施,计划以后每年以相同的增长率进行投资,到2022年投资额将达到185.9万元.(1)求我校改造硬件设施投资额的年平均增长率;(2)从2020年到2022年,这三年我校将总共投资多少万元?【分析】(1)设我校改造硬件设施投资额的年平均增长率为x,利用2022年投资额=2020年投资额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用这三年我校总共投资的金额=2020年投资额+2020年投资额×(1+年平均增长率)+2022年投资额,即可求出结论.【解答】解:(1)设我校改造硬件设施投资额的年平均增长率为x,依题意得:110(1+x)2=185.9,解得:x1=0.3=30%,x2=﹣2.3(不合题意,舍去).答:我校改造硬件设施投资额的年平均增长率为30%.(2)110+110×(1+30%)+185.9=110+143+185.9=438.9(万元).答:从2020年到2022年,这三年我校将总共投资438.9万元23.(6分)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.【分析】求出∠A=∠DEC,∠B=∠C=90°,根据AAS证△ABE≌△ECD,推出AB=CE,求出AB+BC=2AB+BE=11,把BE=3代入求出AB即可.【解答】解:∵AB⊥BC,DC⊥BC,垂足分别是点B、C,∴∠B=∠C=90°.∴∠A+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∵∠AEB+∠AED+∠DEC=180°,∴∠AEB+∠DEC=90°,∴∠A=∠DEC,∵在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AB=CE,∵BC=BE+CE=BE+AB,∴AB+BC=2AB+BE=11,∵BE=3,∴AB=4.24.(6分)如图,在△ABC中,AB=AC,∠B=30°.(1)在BC边上求作一点N,使得AN=BN;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,求证:CN=2BN.【分析】(1)作线段AB的垂直平分线上;(2)根据等腰三角形的性质计算出∠C的度数,再计算出∠CAN的度数,然后根据三角形的性质可得CN=2AN,进而得到CN=2BN.【解答】(1)解:作图正确;(2)证明:连接AN.∵AB=AC,∴∠B=∠C=30°.∴∠BAC=180°﹣2∠B=120°.∵AN=BN,∴∠NAC=∠BAC﹣∠NAB=120°﹣30°=90°.∵∠C=30°,∴CN=2AN.∴CN=2BN.25.(8分)如图,已知一次函数和反比例函数的图象交点是A(4,m).(1)求反比例函数解析式;(2)在x轴的正半轴上存在一点P,使得△AOP是等腰三角形,请求出点P的坐标.【分析】(1)根据一次函数解析式求出A点坐标,再用待定系数法求出反比例函数解析式即可;(2)若使△AOP是等腰三角形,分OA=OP,OA=AP,OP=AP三种情况讨论分别求出P点的坐标即可.【解答】解:(1)∵A点是一次函数和反比例函数图象的交点,∴m=×4,解得m=2,即A(4,2),把A点坐标代入反比例函数得,2=,解得k=8,∴反比例函数的解析式为y=;(2)设P点的坐标为(n,0),若使△AOP是等腰三角形,分以下三种情况:①当OA=OP时,由(1)知,A(4,2),∴n==2,即P(2,0);②当OA=AP时,作AH⊥OP于H,∵A(4,2),∴OH=4,∵OA=AP,∴OP=2OH=2×4=8,即P(8,0);③当OP=AP时,∵A(4,2),∴n=,即n2=(4﹣n)2+22,解得n=,即P(,0),综上,符合条件的P点坐标为(2,0)或(8,0)或(,0).五、综合题:(本大题只有1题,满分10分)26.(10分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,点D、E在线段AB上.(1)如图1,若CD=CE,求证:AD=BE;(2)如图2,若∠DCE=45°,求证:DE2=AD2+BE2;(3)如图3,若点P是△ABC内任意一点,∠BPC=135°,设AP=a、BP=b、CP=c,请直接写出a,b,c之间的数量关系.【分析】(1)由CA=CB得∠A=∠B,由CD=CE得∠CEA=∠CDB,则△ACE≌△BCD,得AE=BD,即可转化为AD=BE;(2)将△ACD绕点C沿逆时针方向旋转90°得到△BCF,联结EF,则BF=AD,证明△FCE≌△DCE,得FE=DE,再证明∠EBF=90°,则FE2=BF2+BE2,即可证得DE2=AD2+BE2;(3)将△CAP绕点C沿逆时针方向旋转90°得到△CBG,联结PG,则BG=AP,GC =PC,∠PCG=90°,所以PG2=PC2+GC2=2PC2,再证明∠BPG=90°,则BG2=BP2+PG2,可证得AP2=BP2+2PC2,即a2=b2+2c2.【解答】(1)证明:如图1,∵CA=CB,∴∠A=∠B,∵CD=CE,∴∠CEA=∠CDB,∴△ACE≌△BCD(AAS),∴AE=BD,∴AE﹣DE=BD﹣DE,∴AD=BE.(2)证明:如图2,将△ACD绕点C沿逆时针方向旋转90°得到△BCF,联结EF,∵∠ACB=90°,CA=CB,∴∠CBA=∠A=45°,由旋转得CF=CD,∠BCF=∠ACD,∵∠DCE=45°,∴∠FCE=∠BCF+∠BCE=∠ACD+∠BCE=90°﹣45°=45°,∴∠FCE=∠DCE,∵CE=CE,∴△FCE≌△DCE(SAS),∴FE=DE,∵∠CBF=∠A=∠CBA=45°,∴∠EBF=90°,∴FE2=BF2+BE2,∵BF=AD,∴DE2=AD2+BE2.(3)a2=b2+2c2,理由如下:如图3,将△CAP绕点C沿逆时针方向旋转90°得到△CBG,联结PG,由旋转得GC=PC,∠PCG=90°,∴∠CPG=∠CGP=45°,PG2=PC2+GC2=2PC2,∵∠BPC=135°,∴∠BPG=135°﹣45°=90°,∴BG2=BP2+PG2,∵BG=AP,∴AP2=BP2+2PC2,∴a2=b2+2c2.。
沪教版(上海)初中数学八年级第一学期1线段的垂直平分线课件(共25张)
实际问题1
计划在张杨路 附近建立一个大 型的图书馆.试 问,该图书馆应 建于何处,才能 使得它到“建平 中学”和“建平 实验”两个学校 的距离相等?
19.4 线段的垂直平分线
作线段AB的垂直平分线MN,垂足为C
在MN上任取一点P,联结PA、PB;
PA、PB有什么数量关系?
M
P PA=PB P1A=P1B CA=CB ……
判断题
1、如下图直线MN垂直平分线段AB,则AD=AE.
M
D
A
CB
E
N
定理:线段垂直平分线上的点和这条线段两个端点的距离
相等. 逆定理:和一条线段两个端点距离相等的点,在这条线段
的垂直平分线上.
2、如图线段MN被直线AB垂直平分,则ME=NE.
M
B
E
A
N
定理:线段垂直平分线上的点和这条线段两个端点的距离 相等. 逆定理:和一条线段两个端点距离相等的点,在这条线段 的垂直平分线上.
∟
在这条线段的垂直平分线上) A
C
B
定理:线段垂直平分线上的点和这条线段两
个端点的距离相等.
逆定理:和一条线段两个端点距离相等的点,
在这条线段的垂直平分线上.
M
P
线段的垂直平分线的集合定义:
线段的垂直平分线可以看作是
A
C
B
和线段两个端点距离相等 的所有点的集合.
N
定理:线段垂直平分线上的点和这条线段两个端点的距离 相等. 逆定理:和一条线段两个端点距离相等的点,在这条线段 的垂直平分线上.
观望台B
营地A
河
P饮马地点
4、若MA=MB,NA=NB,则MN垂直平分AB.
线段的垂直平分线课件(上海)数学八年级上册
例2 已知:如图,AB=AC=8cm ,DE是AB 边的中垂线交AC于点E,BC=6cm,求 △BEC的周长
证明: ∵ DE是AB边的中垂线 (已知),
A
∴AE=BE(线段垂直平分线上的点
和这条线段两个端点的距离相等).
∵AC=8cm(已知),
D
∴AE+EC=BE+EC=8cm
E
(等式性质).
又∵ BC=6cm(已知)
19.4 线段的垂直平分线
教学目标
1.要求学生掌握线段垂直平分线的性质定理及判定定理,能够利用这两 个定 理解决问题; 2.能够证明线段垂直平分线的性质定理及判定定理; 3.通过探索、猜测、证明的过程,进一步拓展学生的推理证明意识和能 力.
教学难点
1、线段垂直平分线性质定理和判定定理 2、线段垂直平分线的性质定理和逆定理的的应用
对应点,叫做 对称点 .
探究新知
如何作出线段的垂直平分线? 由两点确定一条直线和线段垂直平分线的性质可知, 只要作出到线段两端点距离相等的两点并连接即可.
作线段的垂直平分线.
C
已知:线段AB.
求作:线段AB的垂直平分线.
A
B
作法:(1)分别以点A,B为圆心,
以大于 1 AB的长为半径作弧,
D
2
两弧交于C,D两点.
求证: PA PB
定理:线段垂直平分线上的点到这 条线段两个端点的距离相等。
点P在线
线段垂直平分线上的点
M
段AB的垂
和这条线段两个端点的 距离相等
直平分线
PA=PB
P
上
A
B
N
求证:到一条线段两个端点距离相等的点, 在这条线段的垂直平分线上。
沪教版 八年级数学上册 第19章 几何证明 期末复习 易错点专项训练 (含解析)
第19章几何证明期末复习易错点专项训练一.选择题(共11小题)1.下列各命题中,假命题是A.有两边及其中一边上的中线对应相等的两个三角形全等B.有两边及第三边上高对应相等的两个三角形全等C.有两角及其中一角的平分线对应相等的两三角形全等D.有两边及第三边上的中线对应相等的两三角形全等2.下列命题是真命题的是A.两个锐角的和还是锐角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等腰三角形既是轴对称图形,又是中心对称图形3.下列语句中,不是命题的是A.如果,那么、互为相反数B.同旁内角互补C.作等腰三角形底边上的高D.在同一平面内,若,,则4.下列命题是真命题的是A.相等的两个角是对顶角B.好好学习,天天向上C.周长和面积相等的两个三角形全等D.两点之间线段最短5.下列所叙述的图形中,全等的两个三角形是A.含有角的两个直角三角形B.腰相等的两个等腰三角形C.边长相等的两个等边三角形D.一个钝角对应相等的两个等腰三角形6.下列各组数据是线段长,其中不能作为直角三角形的三边长的是A.1,1,B.1,C.1,,2D.7.在下列以线段、、的长为边,能构成直角三角形的是A.,,B.,,C.,,D.,,8.已知内一点,如果点到两边、的距离相等,那么点A.在边的高上B.在边的中线上C.在的平分线上D.在边的垂直平分线上9.如图字母所代表的正方形的面积是A.12B.13C.144D.19410.如图,在中,点在边上,垂直平分边,垂足为点,若,且,则的度数是A.B.C.D.11.如图,在中,的垂直平分线交于点,交于点,若,,则的度数为A.B.C.D.二.填空题(共15小题)12.如果点的坐标为,点的坐标为,则.13.如图,在中,,,垂直平分交于,若,则.14.在中,,,,以的边为一边的等腰三角形,它的第三个顶点在的斜边上,则这个等腰三角形的腰长为.15.如图,在中,,平分,,,那么的长是.16.如图,中,平分,,,且的面积为2,则的面积为.17.一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形,,,的面积分别为2,5,1,2,则最大的正方形的面积是.18.如图,在中,已知点是边、垂直平分线的交点,点是、角平分线的交点,若,则度.19.如图,中,,,交于点,,则.20.如图,已知直线,含角的三角板的直角顶点在上,角的顶点在上,如果边与的交点是的中点,那么度.21.把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点,,在同一直线上.若,则.22.如图,三角形三边的长分别为,,,其中、都是正整数.以、、为边分别向外画正方形,面积分别为、、,那么、、之间的数量关系为.23.将一副三角尺如图所示叠放在一起,如果,那么.24.如图,将一根长为的吸管,置于底面直径为,高为的圆柱形水杯中,设吸管露在杯子外面的长度是为,则的取值范围是.25.如图所示,一根长为的吸管放在一个圆柱形杯中,测得杯的内部底面直径为,高为,则吸管露出在杯外面的最短长度为.26.如图,一棵大树在离地面、两处折成三段,中间一段恰好与地面平行,大树顶部落在离大树底部处,则大树折断前的高度是.三.解答题(共4小题)27.已知中,,于点,平分,交于点,于点,说明.28.已知:如图,中,,,,平分交于.求的长.29.如图,在中,,是斜边上的中线,过点作于点,交于点,且.(1)求的度数:(2)求证:.30.已知:如下图,和中,,为的中点,连接、.若,在上取一点,使得,连接交于.(1)求证:.(2)若,,求的长.参考答案一.选择题(共11小题)1.下列各命题中,假命题是A.有两边及其中一边上的中线对应相等的两个三角形全等B.有两边及第三边上高对应相等的两个三角形全等C.有两角及其中一角的平分线对应相等的两三角形全等D.有两边及第三边上的中线对应相等的两三角形全等解:、有两边及其中一边上的中线对应相等的两个三角形全等,可利用证两步全等的方法求得,是真命题;、高有可能在内部,也有可能在外部,是不确定的,不符合全等的条件,原命题是假命题;、有两角及其中一角的平分线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;、有两边及第三边上的中线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;故选:.2.下列命题是真命题的是A.两个锐角的和还是锐角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等腰三角形既是轴对称图形,又是中心对称图形解:、两个锐角的和还是锐角,是假命题,例如;、全等三角形的对应边相等,是真命题;、同旁内角合并,两直线平行,本选项说法是假命题;、等腰三角形是轴对称图形,但不是中心对称图形,本选项说法是假命题;故选:.3.下列语句中,不是命题的是A.如果,那么、互为相反数B.同旁内角互补C.作等腰三角形底边上的高D.在同一平面内,若,,则解:如果,那么、互为相反数;同旁内角互补;在同一平面内,若,,则,它们都是命题,而作等腰三角形底边上的高为描述性的语言,它不是命题.故选:.4.下列命题是真命题的是A.相等的两个角是对顶角B.好好学习,天天向上C.周长和面积相等的两个三角形全等D.两点之间线段最短解:、相等的两个角不一定是对顶角,原命题是假命题;、好好学习,天天向上,不是命题;、周长和面积相等的两个三角形不一定全等,原命题是假命题;、两点之间线段最短,是真命题;故选:.5.下列所叙述的图形中,全等的两个三角形是A.含有角的两个直角三角形B.腰相等的两个等腰三角形C.边长相等的两个等边三角形D.一个钝角对应相等的两个等腰三角形解:、含有角的两个直角三角形,没有指明边相等,所以不一定全等,选项不符合题意;、腰相等的两个等腰三角形,没有指明角相等,所以不一定全等,选项不符合题意;、边长相等的两个等边三角形,利用可得一定全等,选项符合题意;、一个钝角对应相等的两个等腰三角形,没有指明边相等,所以不一定全等,选项不符合题意;故选:.6.下列各组数据是线段长,其中不能作为直角三角形的三边长的是A.1,1,B.1,C.1,,2D.解:、,符合勾股定理的逆定理,故能作为直角三角形的三边长;、,符合勾股定理的逆定理,故能作为直角三角形的三边长;、,符合勾股定理的逆定理,故能作为直角三角形的三边长;、,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选:.7.在下列以线段、、的长为边,能构成直角三角形的是A.,,B.,,C.,,D.,,解:、,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;、,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;、,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;、,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选:.8.已知内一点,如果点到两边、的距离相等,那么点A.在边的高上B.在边的中线上C.在的平分线上D.在边的垂直平分线上解:,,,在的角平分线上,故选:.9.如图字母所代表的正方形的面积是A.12B.13C.144D.194解:由题可知,在直角三角形中,斜边的平方,一直角边的平方,根据勾股定理知,另一直角边平方,即字母所代表的正方形的面积是144.故选:.10.如图,在中,点在边上,垂直平分边,垂足为点,若,且,则的度数是A.B.C.D.解:连接,垂直平分边,,,,,,,,故选:.11.如图,在中,的垂直平分线交于点,交于点,若,,则的度数为A.B.C.D.解:的垂直平分线交于点,,,,设,,,,,,故选:.二.填空题(共15小题)12.如果点的坐标为,点的坐标为,则5.解:由两点间的距离公式可得.故答案为:5.13.如图,在中,,,垂直平分交于,若,则.解:垂直平分,,,,,.故答案为.14.在中,,,,以的边为一边的等腰三角形,它的第三个顶点在的斜边上,则这个等腰三角形的腰长为或2.解:如图,在中,,,,,,当时,作,,,,等腰三角形的腰长为2,当时,等腰三角形的腰长为,故答案为或2.15.如图,在中,,平分,,,那么的长是.解:作于,由勾股定理得,,在和中,,,,,在中,,即,解得,,故答案为:.16.如图,中,平分,,,且的面积为2,则的面积为3.解:过作于,于,,,解得,平分,,,,故答案为3.17.一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形,,,的面积分别为2,5,1,2,则最大的正方形的面积是10.解:根据勾股定理的几何意义,可得、的面积和为,、的面积和为,,于是,即.故答案是:10.18.如图,在中,已知点是边、垂直平分线的交点,点是、角平分线的交点,若,则36度.解:如图,连接.点是,的垂直平分线的交点,,,,,点是、角平分线的交点,,,,,故答案为36.19.如图,中,,,交于点,,则12.解:中,,,,交于点,,,,.故答案为:12.20.如图,已知直线,含角的三角板的直角顶点在上,角的顶点在上,如果边与的交点是的中点,那么120度.解:是斜边的中点,,,,,,.故答案为120.21.把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点,,在同一直线上.若,则.解:如图,过点作于,在中,,,,两个同样大小的含角的三角尺,,在中,根据勾股定理得,,,故答案为:.22.如图,三角形三边的长分别为,,,其中、都是正整数.以、、为边分别向外画正方形,面积分别为、、,那么、、之间的数量关系为.解:,,,,是直角三角形,设的三边分别为、、,,,,是直角三角形,,即.故答案为:.23.将一副三角尺如图所示叠放在一起,如果,那么.解:在中,,,,,,,由勾股定理得,,故答案为:.24.如图,将一根长为的吸管,置于底面直径为,高为的圆柱形水杯中,设吸管露在杯子外面的长度是为,则的取值范围是.解:如图,当筷子、底面直径、杯子的高恰好构成直角三角形时,最短,此时,故;当筷子竖直插入水杯时,最大,此时.故答案为:.25.如图所示,一根长为的吸管放在一个圆柱形杯中,测得杯的内部底面直径为,高为,则吸管露出在杯外面的最短长度为2.解:设在杯里部分长为,则有:,解得:,所以露在外面最短的长度为,故吸管露出杯口外的最短长度是,故答案为:2.26.如图,一棵大树在离地面、两处折成三段,中间一段恰好与地面平行,大树顶部落在离大树底部处,则大树折断前的高度是.解:如图,作于点,由题意得:,,,,由勾股定理得:,大树的高度为,故答案为:.三.解答题(共4小题)27.已知中,,于点,平分,交于点,于点,说明.解:,平分,,,,,,,,,,,,.28.已知:如图,中,,,,平分交于.求的长.解:过作于点.中,,,,,,,平分,,,,,,设,则,在中,,解得.故的长是5.29.如图,在中,,是斜边上的中线,过点作于点,交于点,且.(1)求的度数:(2)求证:.解:(1),,,,,,是斜边上的中线,,,,,;(2),,,.30.已知:如下图,和中,,为的中点,连接、.若,在上取一点,使得,连接交于.(1)求证:.(2)若,,求的长.解:(1)和中,,为的中点,,,,,,,;(2),,,,,在中,,,.。
八年级上册数学人教版课时练《 线段的垂直平分线的性质》 试题试卷 含答案解析(1)
《13.1.2线段的垂直平分线的性质》课时练1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=5,则线段PB的长度为()A.6B.5C.4D.32.在锐角△ABC内一点P满足PA=PB=PC,则点P是△ABC()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点3.如图所示,已知AO=OC,AC⊥BD,AD=10cm,BC=4cm,则四边形ABCD的周长为()A.30cm B.16cm C.28cm D.以上都不对4.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7B.14C.17D.205.如图,直线PO与AB交于O点,PA=PB,则下列结论中正确的是()A.AO=BOB.PO⊥ABC.PO是AB的垂直平分线D.P点在AB的垂直平分线上6.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.7.如图,在R t△ABC中,∠ACB=90°,DE为AB的垂直平分线.若△ACD的周长为50cm,则线段AC 与BC的长度和为.8.在△ABC中,AB的垂直平分线与AC边所在直线相交所得锐角为50°,则∠A的度数为.9.如图,两条公路OA、OB相交于点O,在∠AOB的内部有两个村庄C、D,若要修一个加油站P,使P 到两个村庄的距离相等,且到两条公路OA、OB的距离也相等,用尺规作出加油站P点的位置.(不写作法,保留作图痕迹)10.△ABC中,边AB、AC的垂直平分线交于点P.求证:点P在BC的垂直平分线上.11.如图,直线AD是线段BC的垂直平分线,求证:∠ABD=∠ACD.12.如图,已知,AB=AD,CB=CD,那么直线AC是线段BD的,你能写出证明过程吗?13.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,若AB=3cm,BD=2cm,求BE的长.14.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:AD垂直平分EF.15.如图,已知△ABC中,BC边的垂直平分线DE与∠BAC的平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC交AC于点G.求证:(1)BF=CG;(2)AF=12(AB+AC).参考答案1—5.BDCCD6.87.50cm8.40°或140°9.略10.证明:边AB、AC的垂直平分线交于点P.∴PA=PB,PA=PC,∴PB=PC.∴点P在BC的垂直平分线上.11.证明:∵AD是BC的垂直平分线,∴AB=AC,DB=DC,∵AD=AD,∴△ABD≌△ACD,∴∠ABD=∠ACD.12.垂直平分线∵AB=AD,∴点A在BD的垂直平分线上,∵CB=CD,∴点C在BD的垂直平分线上.∵两点确定一条直线,∴AC是BD的垂直平分线.13.∵AD⊥BC,BD=CD,∴AD是BC的垂直平分线,∴AB=AC,∵点C在AE的垂直平分线上,∴CA=CE,∴CE=AB=3cm,∴BE=2BD+CE=7cm.14.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∴D在线段EF的垂直平分线上.∵在R t△ADE和R t△ADF中,AD=AD,DE=DF,∴R t△ADE≌R t△ADF,∴AE=AF,∴A点在EF的垂直平分线上.∵两点确定一条直线,∴AD垂直平分EF.15.(1)连接BE,CE.∵DE是BC的垂直平分线,∴BE=CE,∵AE平分∠BAC,又EF⊥AB,EG⊥AC,∴EF=EG,在R t△EBF和R t△ECG中,BE=CE,EF=EG,∴R t△EBF≌R t△ECG(HL),∴BF=CG.(2)易证:R t△AEF≌R t△AEG,∴AF=AG,∵AB=AF-BF,AC=AG+CG,BF=CG,∴AB+AC=AF+AG=2AF,∴AF=12(AB+AC).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.4 线段的垂直平分线 同步练习
一.选择题
1.如图,在Rt△ABC 中,∠B=90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE=10°,则∠C 的度数为( )
A .30° B.40° C.50° D.60°
2.如图,△ABC 中,DE 是AB 的垂直平分线,交BC 于点D ,交AB 于点E ,已知AE=1cm , △ACD 的周长为12cm ,则△ABC 的周长是( )
A .13cm
B .14cm
C .15cm
D .16cm
3.如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )
A .65°
B .60°
C .55°
D .45°
4.如图,已知直角三角形ABC 中,∠ACB=90°,E 为AB 上一点,且CE=EB ,ED⊥CB 于D ,则下列结论中不一定成立的是( )
A .AE=BE
B .CE=21AB
C .∠CEB=2∠A D.AC=2
1AB
5.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )
A .在AC ,BC 两边高线的交点处
B .在A
C ,BC 两边中线的交点处
C .在AC ,BC 两边垂直平分线的交点处
D .在∠A,∠B 两内角平分线的交点处
6.如图,在三角形ABC中,AB=AC,∠A=36°,AB的垂直平分线MN交AB于点M,交AC于点N,下面结论:①BN平分∠ABC;②△BCN是等腰三角形;③△BMN≌△BCN;④△BCN的周长等于AB+BC,其中正确的结论是()
A.①②③ B.①②④ C.②③④ D.①③④
二.填空题
7.ΔABC中,若AB-AC=2cm,BC的垂直平分线交AB于D点,且ΔACD的周长为14cm,则AB=_____,AC_____.
8.如图,ΔABC中,AB=AC,AB的垂直平分线交AC于P点.
(1)若∠A=35°,则∠BPC=_____;
(2)若AB=5 cm,BC=3 cm,则ΔPBC的周长=_____.
9.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC 的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为.
10.如图,在△ABC中,AB=BC,的中垂线,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= 度.
11.如图,在△ABC中,AB=AC,∠A=20°,边AC的垂直平分线交AC于点D,交AB于点E,则∠BCE等于°.
12.如图,在△ABC中,AC=16cm,AB的垂直平分线交AC于D,如果BC=10 cm,那么△BCD的周长是 cm.
三.解答题:
13.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.
14.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.
15.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A、B、C不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P的位置.要求:写出已知、求作;不写作法,保留作图痕迹.
答案与解析
一.选择题
1.答案 B;
解析∵∠B=90°,∠BAE=10°∴∠AEB=80°,由垂直平分线的性质,AE=CE,∠EAC=∠C, ∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°
2.答案 B;
解析∵DE是AB的垂直平分线,∴AD=BD,AB=2AE=2又∵△ACD的周长=AC+AD+CD=AC+BD+CD=AC+BC=12,∴△ABC的周长是12+2=14cm
3.答案 A;
解析由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,
∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.
4.答案 D;
解析根据线段垂直平分线的性质和等腰三角形的性质及三角形的内角和即可推得.5.答案 C;
【解析】三角形垂直平分线的交点到三个顶点的距离相等.
6.答案 B;
解:∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
∵MN是AB的垂直平分线,
∴NB=NA,∴∠NBA=∠A=36°,
∴∠NBC=∠ABC﹣∠NBC=36°,
∴BN平分∠ABC,①正确;
∠BNC=∠A+∠NBC=72°,
∴∠BNC=∠ACB,
∴△BCN是等腰三角形,②正确;
△BMN是直角三角形,△BCN是锐角三角形,
∴△BMN≌△BCN不正确,③错误;
△BCN的周长等于BN+CN+BC=AN+CN+BC=AC+BC=AB+BC,④正确,
故选:B.
二.填空题
7.答案 8, 6;
解析由题意,BD=CD,AB-AC=2,AB+AC=14,解得AB=8;AC=6.
8.答案 70, 8;
解析由垂直平分线的性质,AP=BP,∠A=∠ABP=35°,∠BPA=110°,
∠BPC=70°.ΔPBC的周长=BP+PC+BC= AP+PC+BC=5+3=8cm.
9.答案 6;
解析∵ED+DC+EC=24,①(AB+AC+BC)-(AE+ED+DC+AC)=12即BE+BD-DE=12.②∵BE=CE,BD=DC,∴①-②得,DE=6.
10.答案 35;
解析∵△ABC中,AB=BC,∠ABC=110°∴∠A=∠C=35°,
∵AB的垂直平分线DE交AC于点D∴AD=BD, ∠ABD=∠A=35°.
11.答案 60;
解:∵AB=AC,∠A=20°,
∴∠ACB=(180°﹣20°)÷2=80°,
∵DE是AC的垂直平分线,
∴AE=CE,
∴∠ACE=∠A=20°,
∴∠ECB=80°﹣20°=60°,
故答案为:60.
12.答案 26;
解析△BCD的周长=BD+DC+BC= AD+DC+BC=16+10=26cm.
三.解答题
13.解析
解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,
∴DE=CE,OE=OE,
∴Rt△ODE≌Rt△OCE,
∴OD=OC,
∴△DOC是等腰三角形,
∵OE是∠AOB的平分线,
∴OE是CD的垂直平分线;
(2)∵OE是∠AOB的平分线,∠AOB=60°,
∴∠AOE=∠BOE=30°,
∵EC⊥OB,ED⊥OA,
∴OE=2DE,∠ODF=∠OED=60°,
∴∠EDF=30°,
∴DE=2EF,
∴O E=4EF.
14.解析
证明:(1)∵AD∥BC(已知),
∴∠ADC=∠ECF(两直线平行,内错角相等),
∵E是CD的中点(已知),
∴DE=EC(中点的定义).
∵在△ADE 与△FCE 中,
ADC ECF,DE EC,
AED FEC,∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ADE≌△FCE(A .S .A ),
∴FC=AD(全等三角形的性质).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF (全等三角形的对应边相等),
∵BE⊥AE 且F是BC 与AE 延长线的交点
∴BE 是线段AF 的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF(已证),
∴AB=BC+AD(等量代换).
15.解析
解:已知、B 村、C 村,
求作新建一个医疗点P ,使P 到该镇所属A 村、B 村、C 村的村委会所在地的距离都相等.。