二次根式导学案(人教版全章)
人教版八年级数学下册《二次根式》导学案
二次根式(1)导学案(一)复习回顾:(1)已知a x =2,那么a 是x 的_____;x 是a 的______, 记为____,a 一定是_____数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)自主学习(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____。
称为 。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解:72-x 4a 2-11(三)合作探究例:当x 是怎样的实数时,2-x 在实数范围内有意义?解:由02≥-x ,得2≥x当2≥x 时,2-x 在实数范围内有意义。
练习:1、x 取何值时,下列各二次根式有意义?①43-x ③ 2、(1有意义,则a 的值为___________. (2)若 在实数范围内有意义,则x 为( )。
八年级数学下册 16.2 二次根式整章导学案 新人教版
八年级数学下册 16.2 二次根式整章导学案新人教版16、1 《二次根式(1)》导学案【励志语录】书山有路勤为径,学海无涯苦作舟。
【学习目标】1、了解二次根式的概念,理解(a≥0)是一个非负数。
2、提出问题,根据问题给出概念,应用概念解决实际问题。
3、通过观察一些特殊的情况,获得一般结论,感受归纳的思想方法,体验成功的喜悦。
【学习重点】二次根式的概念以及二次根式的基本性质。
【学习流程】一、知识链接(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________。
问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________。
问题3:在直角三角形ABC中,AC=3,BC=1,那么斜边AB边的长是___________。
二、教材预习内容预习内容预习书本第2页,并完成书本第3页第1-2题2、预习自测(1)、知识:如、、,都是一些正数的算术平方根、像这样一些正数的算术平方根的式子,我们就把它称二次根式、因此,一般地,我们把形如的式子叫做二次根式,“”称为、例如:形如、、是二次根式。
形如、、不是二次根式。
(2)、当x是多少时,在实数范围内有意义?解:由得:。
当时,在实数范围内有意义、三、合作研讨合作研讨一:二次根式有意义的条件1:当x是多少时,+在实数范围内有意义?合作研讨二; 二次根式有意义的条件及两个非负数之和等于0,则每一个加数,成立的条件(1)已知y=++5,求的值、(2)若+=0,求a2004+b2004的值、归纳:注意:1、形如的式子叫做二次根式的概念;2、利用“(a≥0)”可以解决具体问题3、要使二次根式在实数范围内有意义,必须满足。
四、小结提升通过本节课的学习,你有什么收获?你还有什么困惑?五、达标测评A、基础达标1、下列式子中,哪些是二次根式?那些不是二次根式?4页,并完成书本第4页第 1、2两题2、预习自测1、(a≥0)是一个数。
二次根式导学案(人教版全章)(1)
21.2.3 最简二次根式一、学习目标1、理解最简二次根式的概念。
2、把二次根式化成最简二次根式.3、熟练进行二次根式的乘除混合运算。
二、学习重点、难点重点:最简二次根式的运用。
难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算。
三、学习过程 (一)复习回顾1、化简(1)496x = (2=(3= (4= (5= 2、结合上题的计算结果,回顾前两节中利用积、商的算术平方根的性质化简二次根式达到的要求是什么?(二)自主学习观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式. 2、化简:(1)208(三)合作交流 1、计算: 521312321⨯÷ 2、比较下列数的大小(1)8.2与432 (2)7667--与注:1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化。
2、判断是否为最简二次根式的两条标准: (1)被开方数不含分母;(2)被开方数中所有因数或因式的幂的指数都小于2. (四)拓展延伸观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+, 232323)23)(23()23(1231-=--=-+-⨯=+,同理可得:321- =32-,……从计算结果中找出规律,并利用这一规律计算 (++++231121……+200820091+)(12009+)的值.(五)达标测试:1、选择题 (1(y >0)是二次根式,化为最简二次根式是( ). A(y >0) By >0) Cy >0) D .以上都不对(2)化简二次根式22aa a +-的结果是 A 、2--a B 、-2--a C 、2-a D 、-2-a 2、填空:(1.(x ≥0)(2)已知251-=x ,则xx 1-的值等于__________. 3、计算: (1)2147431⨯÷ (2) 21541)74181(2133÷-⨯1、计算:abb a ab b 3)23(235÷-∙(a >0,b >0) 2、若x 、y 为实数,且y=12x +,求y x y x -∙+的值。
人教版九年级数学上册全册导学案
人教版九年级数学上册全册导学案第22章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______; 式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?43,16-,34,5-,)0(3≥a a ,12+x2、计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论:,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 :x 取何值时,下列各二次根式有意义?①43-x 223x + ③ 2、(133a a --a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数 B.负数 C.非负数 D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
16章 二次根式全章导学案
16.1二次根式(1)学习目标:1、了解二次根式的概念,能判断一个式子是不是二次根式,掌握二次根式有意义的条件。
2、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a· ·预 习 案(一)复习回顾:(1)已知a x =2,那么a 是x 的_ ____;x 是a 的___ _, 记为_ ___,a 一定是__ __数。
(2)4的算术平方根为2,用式子表示为 =______;正数a 的算术平方根为_____, 0的算术平方根为____;式子)0(0≥≥a a 的意义是 。
思考:16 ,πs,3-b 等式子.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做______。
“”称为 。
1、判断下列各式,哪些是二次根式在后面“√”,哪些不是在后面“×”?为什么?3( ),16-( ),34( ) ),)0(3≥a a ( ),12+x ( ) 2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( = (2) = (3)2)5.0( = (4)2)31(=根据计算结果,你能得出结论:(0≥a ) 4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如(5)2=5或5=(5)2.练习:(1)把下列非负数写成一个数的平方的形式:6= 0.35=合 作 探 究________)(2=a 42)3(例1:当x 是怎样的实数时,2-x 在实数范围内有意义?练习1:x 取何值时,下列各二次根式有意义?①②③ 2例2:在式子xx+-121中,x 的取值范围是什么?练习2:x 取何值时,下列各二次根式有意义?① ② ③训练案1、计算: 2)3(= 2)5.0(= 2= 2= 2、二次根式1-a 中,字母a 的取值范围是( )A 、 a <lB 、a ≤1C 、a ≥1D 、a >1 3、已知03=+x 则x 的值为( )A 、 x >-3B 、x <-3C 、x =-3D 、 x 的值不能确定4有意义,则a 的值为_______.若xx+-121有意义,x 的取值范围是________.5、当x = 时,代数式有最小值,其最小值是 。
(完整word版)新人教版八年级数学二次根式导学案
第十六章 二次根式 16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1(a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:面积为3的正方形的边长为_____ ,面积为S 的正方形的边长为___________..问题2:一个长方形的围栏,长是宽的2 倍,面积为130㎡,则它的宽为_________.问题3; 一个物体从高处自由落下,落到地面所用的时间t (单位:S )与开始下落时离地面的高度h(单位;m)满足关系式h=5t 2..如果用含有h 的式子表示t,那么t 为 . (二)学生学习课本知识(三)、探索新知1、知识:像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫”称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例1.下列式子,哪些是二次根式,x>0)、、(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 在实数范围内有意义? 解:由 得: 。
当 时,在实数范围内有意义.1x1x y+(3)注意:1(a ≥0)的式子叫做二次根式的概念;2(a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展 例3.当x +在实数范围内有意义? 例4(1)已知,求的值.(答案:2) (2),求a 2004+b 2004的值.(答案:) 三、巩固练习 教材练习.四、课堂检测 (1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________. (3)、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2=_______.3.有意义的未知数x 有( )个.A .0B .1C .2D .无数4.已知a 、b =b+4,求a 、b 的值.11x +xy251x16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1(a ≥0)是一个非负数; 2)2=a(a ≥0).学习目标:1(a≥0)2=a(a ≥0),并利用它进行计算和化简.2(a ≥0)是一个非负数,用具)2=a (a ≥0);最后运用结论严谨解题.教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0叫什么?当a<0有意义吗? (二)学生学习课本知识 (三)、探究新知1(a ≥0)是一个 数。
[初三数学]人教版九年级数学上册全册导学案
第22章 二次根式导学案22.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 2、计算 :(1) 2)4( (2) 2)3(4(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论:,其中0≥a , )0()(2≥=a a a的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义?①43-x ③ 2、(1)若有意义,则a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
(完整版)16章 二次根式全章导学案
16。
1二次根式(1)学习目标:1、了解二次根式的概念,能判断一个式子是不是二次根式,掌握二次根式有意义的条件.2、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a· ·预 习 案(一)复习回顾:(1)已知a x =2,那么a 是x 的_ ____;x 是a 的___ _, 记为_ ___,a 一定是__ __数。
(2)4的算术平方根为2,用式子表示为=______;正数a 的算术平方根为_____, 0的算术平方根为____;式子)0(0≥≥a a 的意义是 。
思考:16 ,πs,3-b 等式子。
说一说他们的共同特征。
定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做______。
“”称为 。
1、判断下列各式,哪些是二次根式在后面“√”,哪些不是在后面“×"?为什么?3( ),16-( ),34( ) ),)0(3≥a a ( ),12+x ( ) 2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根.所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( = (2)= (3)2)5.0( = (4)2)31(= 根据计算结果,你能得出结论: (0≥a )4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如(5)2=5或5=(5)2.练习:(1)把下列非负数写成一个数的平方的形式:6= 0.35=合 作 探 究例1:当x 是怎样的实数时,2-x 在实数范围内有意义?________)(2=a 42)3(练习1:x 取何值时,下列各二次根式有意义?①② ③ 2例2:在式子xx+-121中,x 的取值范围是什么?练习2:x 取何值时,下列各二次根式有意义?① ② ③训练案1、计算: 2)3(=2)5.0(= 2= 2= 2、二次根式1-a 中,字母a 的取值范围是( )A 、 a <lB 、a ≤1C 、a ≥1D 、a >1 3、已知03=+x 则x 的值为( )A 、 x >-3B 、x <-3C 、x =—3D 、 x 的值不能确定4有意义,则a 的值为_______.若xx+-121有意义,x 的取值范围是________。
2015新人教版八年级数学下册第十六章_二次根式导学案(全章)
第十六章 二次根式 二次根式(1) 导学案(总1课时)一、根据课题预示学习目标1、我想知道 。
2、掌握二次根式有意义 。
3、会(1)判定一式子 ,(2)会运用)0(0≥≥a a 和)0()(2≥=a a a 求二次根式中字母的值或取值范围。
二、学前准备:(1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(3)16的平方根是 ;(4)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ;(5)圆的面积为S ,则圆的半径是 ;(6)正方形的面积为3-b ,则边长为 。
三.新知的发现与归纳 思考:上面这四个式16,5h,πs ,3-b 都表示一定的实际意义.说一说他们的共同特征.(1)都示一个非负数的 。
(2)它们的根指数都是 。
定义: 一般地我们把形如a (0≥a )的式子叫做二次根式,a 叫做_____________。
叫 。
四.新知运用1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有4(2)字母a 的取值 不同,3()计算的 不同。
(1)表示的 注意a 2与(a )2表示的意义不同点非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
四.新知运用:1。
把下列非负数写成一个数的平方的形式:(1).6= (2)0.35= (3)3x= (x 》0) (4)a-b=2 2.在实数范围内因式分解(1)72-x = (2) 4a 2-11= (3)9X 2 -4=3.写出下列各式中的字母的取值范围1()3x-2 2()9+x 2 (3)4-x 2x-2五.达标测试 (一)填空题:1、=⎪⎪⎭⎫⎝⎛253 。
最新人教版八年级数学下册第十六章二次根式导学案(全章)(2021年整理)
最新人教版八年级数学下册第十六章二次根式导学案(全章)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最新人教版八年级数学下册第十六章二次根式导学案(全章)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最新人教版八年级数学下册第十六章二次根式导学案(全章)(word版可编辑修改)的全部内容。
第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a .三、学习过程(一)复习回顾:(1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 .(二)自主学习(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ;(3)圆的面积为S ,则圆的半径是 ;(4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征. 定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
人教版八年级下册:二次根式导学案
16.2二次根式的乘除法二次根式的乘法一、温故互查1、计算:(1)4×9=______94⨯=______ (2)16×25 =_______2516⨯=_______(3)100×36 =_______36100⨯=_______二、学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。
2、熟练进行二次根式的乘法运算及化简。
三、设问导读1、根据上题计算结果,用“>”、“<”或“=”填空:(1)4×9_____94⨯(2)16×25____2516⨯(3) 100×36____36100⨯由此可得二次根式的乘法法则是2、自学例13、把b ab=反过来,就得到______________.利用它可以进行二次根式的化简.4、自学例2、例3化简二次根式达到的要求:(1)被开方数进行因数或因式分解。
(2)分解后把能开尽方的开出来。
四、自学检测1、下列各等式成立的是().A.45×25=85B.53×42=205C.43×32=75D.53×42=2062、二次根式6)2(2⨯-的计算结果是()A.26 B.-26C.6 D.123、下列各式的计算中,不正确的是()=(-2)×(-4)=8 A.2222442)(244aaaa=⨯=⨯=C.5251694322==+=+D.)1213)(1213(121322-+=-12512131213⨯=-⨯+=5=五、巩固训练1、计算:(1)9×27(2)25×32(4)5·a3·b312、化简:②2212ba(a>0,b>0)六、拓展延伸1、判断下列各式是否正确并说明理由。
=68)2(6⨯-⨯=4812- 七、归纳总结1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。
人教版八年级下册数学16.1二次根式导学案
【自助学习·我尝试自学】
1.平方根、算术平方根用符号怎么表示?
2.说出下列各式的意义,并计算:
,,,,,,.
得出新知:形如式子,,等叫做
讨论:式子只有在条件a 0时才叫二次根式,是二次根式吗?
归纳:二次根式有意义的条件是
【互助探究·我参与互研】
例1.当a为实数时,下列各式中哪些是二次根式?
例2.x 是怎样的实数时,式子
在实数范围有意义?
例3. 当 x 是怎样的实数时,2x 在实数范围内有意义?3x 呢?
【求助交流·我愿意分享】
1.判断下列各式是不是二次根式
2.a 是怎样的实数时,下列各式在实数范围内有意义?
【补助练兵·我能用新知】
1、当x 取________时,二次根式4x -有意义.
2、若则 .
3、使在实数范围内有意义的x 应满足的条件是 .
4、使1x -有意义的x 的取值范围是 .
5、当字母取何值时,下列各式为二次根式:
()2
2340a b c -+-+-=,=+-c b a 11
x -
(1)
(2) (3)
【共助反馈·我能够达标】已知:3x 22x y --+-=,求:4y x )
(+的值。
第16章二次根式全章导学案
第16章二次根式全章导学案学习目标:了解二次根式的概念,明白得二次根式有意义的条件,并会求二次根式中所含字母的取值范畴。
明白得二次根式的非负性学习重难点:二次根式有意义的条件和非负性的明白得和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判定下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是如何样实数时,下列各式在实数范畴内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范畴是 。
3.已知122+-+-=x x y ,则=yx 4.函数x y +=2中,自变量x 的取值范畴是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四 6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范畴是 8.已知01442=-+++-y x y y ,求xy 的值展:小组展现成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评判。
新人教版九年级数学第21章二次根式导学案(全章)
学习重点 二次根式的性质及运用。
学习难点 运用二次根式的性质进行二次根式的化简。
学习过程
一、自主学习 感受新知
⑴形如
的式子叫做二次根式;
⑵ a (a≥0)是一个 数;
备注
⑶( a )2=
.
二、自主交流 探究新知 【探究】
⑴计算: 42
0.22
学习难点 二次根式的判断与字母取值范围的确定。
学习过程
备注
一、自主学习 感受新知
【思考】用带根号的式子填空,看看写出的结果有什
么特点?
7cm
⑴如图,要做一个两条直角边的长分别是 7cm 和 4cm
的三角尺,斜边的长应为 cm;
⑵面积为 S 的正方形的边长为 ;
⑶要修建一个面积为 6.28m2 的圆形喷水池,它的半径
【注意】二次根式的乘法与除法公式中 b 的取值范围不同,你知道为什么吗?
三、自主应用 巩固新知
【例 1】计算:
(1) 1 2 3
解:
(2) 3 1 28
(3) 1 1 4 16
(4) 6 4 8
【例 2】化简:
(1) 3 64
解:(
(2)
64b2 9a 2
(3)
9x 64 y2
(4)
5x 169 y2
授课时间:7 月 5 日
课题:21.1 二次根式(2)
课型:新课
课时数:1
学习 目标
1、理解二次根式的性质,能运用二次根式的性质进行二次根式的运算和化简;
2、经历探索( a )2=a(a≥0)的过程,培养分类的数学思想。
学习重点 二次根式的性质及运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式(1)导学案(一)复习回顾:(1)已知a x =2,那么a 是x 的_____;x 是a 的______, 记为____,a 一定是_____数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)自主学习(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____。
称为 。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解:72-x 4a 2-11(三)合作探究例:当x 是怎样的实数时,2-x 在实数范围内有意义?解:由02≥-x ,得2≥x当2≥x 时,2-x 在实数范围内有意义。
练习:1、x 取何值时,下列各二次根式有意义?①43-x ③ 2、(1a 的值为___________. (2)若 在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数3、(1)在式子xx+-121中,x 的取值范围__________.(2)已知42-x +y x +2=0,则=-y x _____________. (3)已知233--+-=x x y ,则x y = _____________。
(四)达标测试1、=⎪⎪⎭⎫ ⎝⎛253 2、若0112=-+-y x ,那么x = ,y = 。
3、当x = 时,代数式有最小值,其最小值是 。
4、在实数范围内因式分解:(1)-=-229x x ( )2=(x + )(y - )(2)-=-223x x ( )2=(x + )(y - )5、一个数的算术平方根是a ,比这个数大3的数为6、二次根式1-a 中,字母a 的取值范围是________)(2=a x--2142)3(二次根式(2)(一)复习回顾:(1)什么是二次根式,它有哪些性质?(2)二次根式52-x 有意义,则x 。
(3)在实数范围内因式分解:-=-226x x ( )2=(x + )(y - ) (二)自主学习 1、计算:24= =220观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时2、计算:-2)4(=观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 3、计算:=20 当==2,0a a 时(三)合作探究 1、归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩⎪⎨⎧<->==00002a a a a a a2、化简下列各式:(1)、=23.0 (2)、=-2)5.0( (3)、=-2)6( (4)、()22a = (0<a )3、请大家思考、讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系。
(四)巩固练习 1、化简下列各式(1))0(42≥x x (2) 4x2、化简下列各式(1))3()3(2≥-a a (2)()232+x (x <-2)注:利用a a =2可将二次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是准确确定“a ”的取值。
(五)达标测试:A 组1、填空:(1)、2)12(-x -2)32(-x )2(≥x =_________.(2)、2)4(-π=(3)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________.2、已知2<x <3,化简:3)2(2-+-x xB 组3 已知0<x <1,化简:4)1(2+-xx -4)1(2-+xx 4 边长为a 的正方形桌面,正中间有一个边长为3a的正方形方孔.若沿图中虚线锯开,可以拼成一个新的正方形桌面.你会拼吗?试求出新的正方形边长.5、把()212--x x 的根号外的()x -2适当变形后移入根号内,得( ) A 、x -2 B 、2-x C 、x --2 D 、2--x6、x -4│-│7-x │。
二次根式的乘除法 二次根式的乘法一、学习目标a ≥0,b ≥0)a ≥0,b ≥0),并利用它们进行计算和化简 二、学习重点、难点重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。
难点: 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。
三、学习过程(一)复习引入 1.填空:(1;(2;(3.(二)、探索新知1、 学生交流活动总结规律.2、一般地,对二次根式的乘法规定为反过来:例1、计算(1(2(3)(4例2、化简(1(2(3 (4 (5 巩固练习(1)计算: ①×②55×215③312a ·231ay(2)化简:(三)、学生小组交流解疑,教师点拨、拓展判断下列各式是否正确,不正确的请予以改正:(1=(2=4(四)展示反馈展示学习成果后,请大家讨论:对于9×27的运算中不必把它变成243后再进行计算,你有什么好办法?注:1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。
2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解。
(2)分解后把能开尽方的开出来。
(五)达标测试:A 组1、选择题(1)等式1112-=-∙+x x x 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-1(2)下列各等式成立的是( ).A .45×25=85B .53×42=205C .43×32=75D .53×42=206(3)二次根式6)2(2⨯-的计算结果是( )A .26B .-26C .6D .12 2、化简:(1)360; (2)432x ;3、计算:(1)3018⨯; (2)7523⨯;B 组1、选择题(1)若04144222=+-++++-c c b b a ,则c a b ∙∙2=( ) A .4 B .2 C .-2 D .1 (2)下列各式的计算中,不正确的是( ) A .64)6()4(-⨯-=-⨯-=(-2)×(-4)=8B .2222442)(244a a a a =⨯=⨯=C .5251694322==+=+D .12512131213)1213)(1213(121322⨯=-⨯+=-+=-2、计算:(1)68×(-26); (23、不改变式子的值,把根号外的非负因式适当变形后移入根号内。
(1) -332 (2) aa 212- 二次根式的除法一、学习目标1、掌握二次根式的除法法则和商的算术平方根的性质。
2、能熟练进行二次根式的除法运算及化简。
二、学习重点、难点重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质。
难点: 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。
三、学习过程 (一)复习回顾1、写出二次根式的乘法法则和积的算术平方根的性质2、计算: (1)38×(-46) (2)3612ab ab ⨯3、填空: (1; 规律:(2;(3;(4.一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.(二)、巩固练习 1、计算:(1(2(3(42、化简:(1 (2 (3 (4注:1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。
2、化简二次根式达到的要求: (1)被开方数不含分母; (2)分母中不含有二次根式。
(三)拓展延伸 阅读下列运算过程:====数学上将这种把分母的根号去掉的过程称作“分母有理化”。
利用上述方法化简:(1)3=_____ ___ (4=______(四)达标测试:A组1、选择题(1的结果是().A.27.27C.7(2的结果是()A.-3B..-3.2、计算:(1)482(2)xx823(3)16141÷(4B组用两种方法计算:(1(2)346最简二次根式一、学习目标1、理解最简二次根式的概念。
2、把二次根式化成最简二次根式.3、熟练进行二次根式的乘除混合运算。
二、学习重点、难点重点:最简二次根式的运用。
难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算。
三、学习过程(一)复习回顾1、化简(1)496x= (2=(3= (4= (5=2、结合上题的计算结果,回顾前两节中利用积、商的算术平方根的性质化简二次根式达到的要求是什么?(二)自主学习观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2、化简:(1)208(三)合作交流1、计算:521312321⨯÷2、比较下列数的大小(1)8.2与432(2)7667--与注:1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化。
2、判断是否为最简二次根式的两条标准: (1)被开方数不含分母;(2)被开方数中所有因数或因式的幂的指数都小于2. (四)拓展延伸观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+,232323)23)(23()23(1231-=--=-+-⨯=+,同理可得:321- =32-,……从计算结果中找出规律,并利用这一规律计算 (++++231121……+200820091+)(12009+)的值.(五)达标测试: 1、选择题 (1(y >0)是二次根式,化为最简二次根式是( ). A(y >0) By >0) Cy >0) D .以上都不对(2)化简二次根式22a a a +-的结果是 A 、2--a B 、-2--a C 、2-a D 、-2-a 2、填空:(1.(x ≥0)(2)已知251-=x ,则xx 1-的值等于__________. 3、计算: (1)2147431⨯÷ (2) 21541)74181(2133÷-⨯1、计算: abb a ab b 3)23(235÷-∙(a >0,b >0)2、若x 、y 为实数,且y=12x +,求y x y x -∙+的值。