直线与圆的位置关系一对一讲义
第2章 2.3.3 直线与圆的位置关系-【新教材】人教B版(2019)高中数学选择性必修一讲义
2.3.3直线与圆的位置关系学习目标核心素养1.理解直线与圆的三种位置关系.(重点) 2.会用代数法和几何法判断直线与圆的位置关系.(重点)3.能解决直线与圆位置关系的综合问题.(难点)1.通过直线与圆的位置关系的学习,培养直观想象逻辑推理的数学核心素养.2.通过解决直线与圆位置关系的综合问题,培养数学运算的核心素养.早晨的日出非常美丽,如果我们把海平面看成一条直线,而把太阳抽象成一个运动着的圆,观察太阳缓缓升起的这样一个过程.你能想象到什么几何知识呢?没错,日出升起的过程可以体现直线与圆的三种特殊位置关系.你发现了吗?直线与圆的位置关系的判定(直线Ax+By+C=0,AB≠0,圆(x-a)2+(y-b)2=r2,r>0)位置关系相交相切相离公共点个数2个1个0个判定方法几何法:设圆心到直线的距离d=|Aa+Bb+C|A2+B2d<r d=r d>r判定方法代数法:由⎩⎨⎧Ax+By+C=0(x-a)2+(y-b)2=r2消元得到一元二次方程的判别式ΔΔ>0Δ=0Δ<0图形1.思考辨析(正确的打“√”,错误的打“×”)(1)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( ) (2)若直线与圆只有一个公共点,则直线与圆一定相切. ( )[答案] (1)√ (2)√2.(教材P 110练习A ①改编)直线3x +4y -5=0与圆x 2+y 2=1的位置关系是( ) A .相交 B .相切 C .相离D .无法判断B [圆心(0,0)到直线3x +4y -5=0的距离d =|-5|32+42=1,又圆x 2+y 2=1的半径为1,∴d =r ,故直线与圆相切.]3.直线x +y =1与圆x 2+y 2-2ay =0(a >0)没有公共点,则a 的取值范围是 . 0<a <2-1 [由题意得圆心(0,a )到直线x +y -1=0的距离大于半径a ,即|a -1|2>a ,解得-2-1<a <2-1,又a >0,∴0<a <2-1.]4.直线3x +y -23=0,截圆x 2+y 2=4所得的弦长是 . 2 [圆心到直线3x +y -23=0的距离d =|-23|3+1=3.所以弦长l =2R 2-d 2=24-3=2.]直线与圆位置关系的判定【例1】 只有一个公共点?没有公共点?[思路探究] 可联立方程组,由方程组解的个数判断,也可通过圆心到直线的距离与半径的大小关系进行判断.[解] 法一:由⎩⎨⎧x 2+y 2=2 ①y =x +b ②得2x 2+2bx +b 2-2=0,③方程③的根的判别式Δ=(2b )2-4×2(b 2-2)=-4(b +2)(b -2). (1)当-2<b <2时,Δ>0,直线与圆有两个公共点. (2)当b =2或b =-2时,Δ=0,直线与圆只有一个公共点.(3)当b <-2或b >2时,Δ<0方程组没有实数解,直线与圆没有公共点.法二:圆的半径r =2,圆心O (0,0)到直线y =x +b 的距离为d =|b |2. 当d <r ,即-2<b <2时,圆与直线相交,有两个公共点.当d =r ,|b |=2,即b =2或b =-2时,圆与直线相切,直线与圆只有一个公共点. 当d >r ,|b |>2,即b <-2或b >2时,圆与直线相离,圆与直线无公共点.直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线方程与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系.[跟进训练]1.已知圆的方程x 2+(y -1)2=2,直线y =x -b ,当b 为何值时,圆与直线有两个公共点,只有一个公共点,无公共点?[解] 法一:由⎩⎨⎧y =x -b ,x 2+(y -1)2=2得2x 2-2(1+b )x +b 2+2b -1=0,① 其判别式Δ=4(1+b )2-8(b 2+2b -1)=-4(b +3)(b -1),当-3<b <1时,Δ>0,方程①有两个不等实根,直线与圆有两个公共点; 当b =-3或1时,Δ=0,方程①有两个相等实根,直线与圆有一个公共点; 当b <-3或b >1时,Δ<0,方程①无实数根,直线与圆无公共点. 法二:圆心(0,1)到直线y =x -b 距离d =|1+b |2,圆半径r =2. 当d <r ,即-3<b <1时,直线与圆相交,有两个公共点; 当d =r ,即b =-3或1时,直线与圆相切,有一个公共点; 当d >r ,即b <-3或b >1时,直线与圆相离,无公共点.直线与圆相切的有关问题【例2】 [思路探究] 利用圆心到切线的距离等于圆的半径求出切线斜率,进而求出切线方程. [解] 因为(4-3)2+(-3-1)2=17>1, 所以点A 在圆外.(1)若所求切线的斜率存在,设切线斜率为k , 则切线方程为y +3=k (x -4).因为圆心C (3,1)到切线的距离等于半径,半径为1, 所以|3k -1-3-4k |k 2+1=1,即|k +4|=k 2+1,所以k 2+8k +16=k 2+1,解得k =-158. 所以切线方程为y +3=-158(x -4), 即15x +8y -36=0. (2)若直线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4. 综上,所求切线方程为15x +8y -36=0或x =4.过一点的圆的切线方程的求法(1)点在圆上时求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心连线的斜率k ,再由垂直关系得切线的斜率为-1k ,由点斜式可得切线方程.如果斜率为零或不存在,则由图形可直接得切线方程x =x 0或y =y 0.(2)点在圆外时①几何法:设切线方程为y -y 0=k (x -x 0).由圆心到直线的距离等于半径,可求得k ,也就得切线方程.②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程联立,消去y 后得到关于x 的一元二次方程,由Δ=0求出k ,可得切线方程.提醒:切线的斜率不存在的情况,不要漏解.[跟进训练]2.过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,求该直线的方程. [解] 圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0),设过原点的直线方程为y =kx ,即kx -y =0.∵直线与圆相切,∴圆心到直线的距离等于半径. 即|-2k |k 2+1=1,∴3k 2=1, k 2=13,解得k =±33. ∵切点在第三象限,∴k >0, ∴所求直线方程为y =33x .直线截圆所得弦长问题[探究问题]1.已知直线l 与圆相交,如何利用通过求交点坐标的方法求弦长?[提示] 将直线方程与圆的方程联立解出交点坐标,再利用|AB |=(x 2-x 1)2+(y 2-y 1)2求弦长.2.若直线与圆相交、圆的半径为r 、圆心到直线的距离为d ,如何求弦长?[提示] 通过半弦长、弦心距、半径构成的直角三角形,如图所示,求得弦长l =2r 2-d 2.【例3】 直线l 经过点P (5,5)并且与圆C :x 2+y 2=25相交截得的弦长为45,求l 的方程.[思路探究] 设出点斜式方程,利用交点坐标法或利用r 、弦心距及弦长的一半构成直角三角形可求.[解] 据题意知直线l 的斜率存在,设直线l 的方程为y -5=k (x -5),与圆C 相交于A (x 1,y 1),B (x 2,y 2),法一:联立方程组⎩⎨⎧y -5=k (x -5),x 2+y 2=25.消去y ,得(k 2+1)x 2+10k (1-k )x +25k (k -2)=0. 由Δ=[10k (1-k )]2-4(k 2+1)·25k (k -2)>0, 解得k >0.又x 1+x 2=-10k (1-k )k 2+1,x 1x 2=25k (k -2)k 2+1,由斜率公式,得y 1-y 2=k (x 1-x 2).∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+k 2)(x 1-x 2)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤100k 2(1-k )2(k 2+1)2-4·25k (k -2)k 2+1 =45.两边平方,整理得2k 2-5k +2=0,解得k =12或k =2符合题意. 故直线l 的方程为x -2y +5=0或2x -y -5=0.法二:如图所示,|OH |是圆心到直线l 的距离,|OA |是圆的半径,|AH |是弦长|AB |的一半.在Rt △AHO 中,|OA |=5, |AH |=12|AB |=12×45=25, 则|OH |=|OA |2-|AH |2=5. ∴|5(1-k )|k 2+1=5, 解得k =12或k =2.∴直线l 的方程为x -2y +5=0或2x -y -5=0.(变条件)直线l 经过点P (2,-1)且被圆C :x 2+y 2-6x -2y -15=0所截得的弦长最短,求此时直线l 方程.[解] 圆的方程为(x -3)2+(y -1)2=25,圆心C (3,1).因为|CP |=(3-2)2+(1+1)2=5<5,所以点P 在圆内.当CP ⊥l 时,弦长最短.又k CP =1+13-2=2.所以k l =-12,所以直线l 的方程为y +1=-12(x -2),即x +2y =0.直线与圆相交时弦长的两种求法(1)几何法:如图1,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有⎝ ⎛⎭⎪⎫|AB |22+d 2=r 2,则|AB |=2r 2-d 2.图1 图2(2)代数法:如图2所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|(直线l 的斜率k 存在且不为0).1.如何正确选择判断直线与圆的位置关系的方法(1)若两方程已知或圆心到直线的距离易表达,则用几何法;(2)若方程中含有参数,或圆心到直线的距离的表达式较繁琐,则用代数法. 提醒:能用几何法,尽量不用代数法.(3)已知直线与圆相交求有关参数值时,根据弦心距、半弦长、半径的关系或者这三条线段形成的三角形的性质求解,而弦心距可利用点到直线的距离公式列式,进而求解即可.2.利用代数法判断直线与圆的位置关系时的注意点(1)代入消元过程中消x 还是消y 取决于直线方程的特点,尽量减少分类讨论,如若直线方程为x -ay +1=0,则应将其化为x =ay -1,然后代入消x .(2)利用判别式判断方程是否有根时,应注意二次项系数是否为零,若二次项系数为零,则判别式无意义.1.直线y =x +1与圆x 2+y 2=1的位置关系是( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离 B [圆心到直线的距离d =112+(-1)2=22<1. 又∵直线y =x +1不过圆心(0,0).∴直线与圆相交但不过圆心.]2.设直线l 过点P (-2,0),且与圆x 2+y 2=1相切,则l 的斜率是( ) A .±1 B .±12 C .±33 D .±3 C [设l :y =k (x +2), 即kx -y +2k =0. 又l 与圆相切,∴|2k |1+k2=1.∴k =±33.] 3.直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为 .4 [圆的标准方程(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离d =|1+2×2-5+5|12+22=1,所以弦长为25-1=4.]4.若直线x +y -m =0与圆x 2+y 2=2相离,则m 的取值范围是 . m <-2或m >2 [因为直线x +y -m =0与圆x 2+y 2=2相离,所以|-m |12+12>2,解得m <-2或m >2.]5.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,求直线l 的方程.[解] 由题意,直线与圆要相交,斜率必须存在,设为k .设直线l 的方程为y +2=k (x +1).又圆的方程为(x -1)2+(y -1)2=1,圆心为(1,1),半径为1,所以圆心到直线的距离 d =|2k -1-2|1+k 2=12-⎝ ⎛⎭⎪⎫222=22.解得k =1或k =177.所以直线l 的方程为y +2=x +1或y +2=177(x +1),即x -y -1=0或17x -7y +3=0.。
直线与圆的位置关系(复习讲义)01(教师版)
直线与圆的位置关系(复习讲义)01 重点突破知识点一直线与圆的位置关系设的半径为,圆心到直线的距离为,则直线和圆的位置关系如下表:直线与相离直线与相切直线与相交性质定理:圆的切线垂直于过切点的半径.判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.知识点三三角形内切圆概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心和外心的区别:外接圆圆心:三角形三边垂直平分线的交点。
作法:做三角形三边垂直平分线,取交点即为外接圆圆心。
性质:外接圆圆心到三角形三个顶点距离相等。
内切圆圆心:三角形三个内角平分线的交点。
作法:做三角形三角的角平分线,取交点即为内接圆圆心。
性质:内接圆圆心到三角形三边距离相离。
直角三角形三边和内切圆半径之间的关系:【考查题型】考查题型一判断直线与圆的位置关系【典例1】已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定变式1-1.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相离C.与x轴相离,与y轴相切D.与x轴相离,与y轴相离变式1-2.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切B.相交C.相离D.无法确定变式1-3在△ABC中,AB=13cm,AC=12cm,BC=5cm,以点B为圆心,5cm为半径作⊙B,则边AC所在的直线和⊙B的位置关系()A.相切B.相交C.相离D.都有可能考查题型二已知直线和圆的位置关系求半径的取值【典例2】直线l与半径为r的⊙O相交,且点O到直线l的距离为3,则r的取值范围是( )rA.r<3 B.r=3 C.r>3 D.3变式2-1.若点B(a ,0)在以A(1,0)为圆心,2为半径的圆内,则a 的取值范围为( )A .a<-1B .a >3C .-1 <a < 3D .a ≥-1且0a ≠考查题型三 已知直线和圆的位置关系求圆心到直线的距离【典例3】已知⊙O 的半径是5,直线l 是⊙O 的切线,那么点O 到直线l 的距离是( )A .2.5B .3C .5D .10变式3-1.圆O 的半径为5,若直线与该圆相离,则圆心O 到该直线的距离可能是( )A .2.5BC .5D .6变式3-2.设⊙O 的直径为m,直线L 与⊙O 相离,点O 到直线L 的距离为d,则d 与m 的关系是( )A .d=mB .d>mC .d>2mD .d<2m 变式3-3.O 的圆心到直线a 的距离为3cm ,O 的半径为1cm ,将直线a 向垂直于a 的方向平移,使a 与O相切,则平移的距离是( ) A .1cmB .2cmC .4cmD .2cm 或4cm 考查题型四 切线定理【典例4】如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°变式4-1.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( )A .4B .C .3D .2.5变式4-2.如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为5,CD=8,则弦AC 的长为( )A .10B .8C .D .变式4-3.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°变式4-4.如图,BM 与O 相切于点B ,若140MBA ∠=,则ACB ∠的度数为( )A .40B .50C .60D .70考查题型五 证明某条直线是圆的切线【典例5】如图,⊙O 的直径为AB ,点C 在圆周上(异于点A ,B),AD ⊥CD .(1)若BC =3,AB =5,求AC 的长;(2)若AC 是∠DAB 的平分线,求证:直线CD 是⊙O 的切线.变式5-1.如图,AD 是⊙O 的弦,AB 经过圆心O 交⊙O 于点C ,∠A =∠B =30°,连接BD .求证:BD 是⊙O 的切线.变式5-2.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,∠CAD=∠ABC .判断直线AD 与⊙O 的位置关系,并说明理由.考查题型六 应用切线长定理求解【典例6】如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A .PA =PB B .∠BPD =∠APDC .AB ⊥PD D .AB 平分PD变式6-1.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A .8B .6C .12D .10 变式6-2.如图,O 为ABC 的内切圆,10AC =,8AB =,9BC =,点D ,E 分别为BC ,AC 上的点,且DE 为O 的切线,则CDE 的周长为( )A .9B .7C .11D .8变式6-3.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,若∠A=25°,,若使DC 切⊙O 于点C ,则∠D 等于( )A .20°B .30°C .40°D .50°考查题型七 应用切线长定理求证【典例7】如图,△ABC 中,⊙O 是△ABC 的内切圆,切点分别为D 、E 、F .(1)已知∠C =90°.①若BD =6,AD =4,则⊙O 的半径r 为 ,△ABC 的面积为 ;②若BD =m ,AD =n ,请用含m 、n 的代数式表示△ABC 的面积;(2)若2AC BC BD AD ⋅=⋅,试判断△ABC 的形状,并说明理由。
直线与圆、圆与圆的位置关系讲义
直线与圆、圆与圆的位置关系讲义课前双击巩固1.直线与圆的位置关系设圆O 的半径为r (r>0),圆心到直线l 的距离为d ,则直线与圆的位置关系可用下表表示:位置关系 相离 相切 相交图形量化 方程观点 Δ 0 Δ 0 Δ 0 几何观点d r d r d r2.两圆的位置关系设两圆的半径分别为R ,r (R>r ),两圆圆心间的距离为d ,则两圆的位置关系可用下表表示:位置关系 相离 外切 相交 内切 内含图形量的关系常用结论1.求圆的切线方程,常用两种方法(1)代数法:将直线方程代入圆的方程中,消去一个未知数(x 或y),令一元二次方程的判别式等于0,求出相关参数.(2)几何法:将圆的切线方程设为一般式,根据圆心到直线的距离等于半径,求出相关参数.2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d 、半径r 和弦长的一半构成的直角三角形,计算弦长|AB|=2√r 2-d 2.(2)代数法:设直线y=kx+m 与圆x 2+y 2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x 的一元二次方程,求出x M +x N 和x M ·x N ,则|MN|=√1+k 2·√(x M +x N )2-4x M ·x N.题组一常识题1.[教材改编]直线y=kx+1与圆x2+y2-2x-3=0的位置关系是.2.[教材改编]以点(2,-1)为圆心且与直线x+y=6相切的圆的方程是.3.[教材改编]圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为.4.[教材改编]直线x-y-5=0被圆x2+y2-4x+4y+6=0所截得的弦的长为.题组二常错题◆索引:忽视分两圆内切与外切两种情形;忽视切线斜率k不存在的情形;求弦所在直线的方程时遗漏一解.5.若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则常数a=.6.已知圆C: x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为.且被圆x2+y2=25截得的弦长是8,则该直线的方程7.若直线过点P-3,-32为.课堂考点探究探究点一直线与圆的位置关系1 (1)直线x+ay+1=0与圆x2+(y-1)2=4的位置关系是( )A.相交B.相切C.相离D.不能确定(2)直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件是( )A.0<m<1B.-4<m<0C.m<1D.-3<m<1[总结反思]判断直线与圆的位置关系的常用方法:(1)若易求出圆心到直线的距离,则用几何法,利用d与r的关系判断.(2)若方程中含有参数,或圆心到直线的距离的表达式较复杂,则用代数法,联立方程后利用Δ判断,能用几何法求解的,尽量不用代数法.式题 (1)圆2x 2+2y 2=1与直线xsin θ+y -1=0θ∈R ,θ≠π2+kπ,k ∈Z 的位置关系是 (横线内容从“相交、相切、相离、不确定”中选填).(2)过定点P (-2,0)的直线l 与曲线C :(x-2)2+y 2=4(0≤x ≤3)交于不同的两点,则直线l 的斜率的取值范围是 . 探究点二 圆的切线与弦长问题2 (1) 过点(1,1)的直线l 与圆(x-2)2+(y-3)2=9相交于A ,B 两点,当|AB |=4时,直线l 的方程为 .(2) 已知圆的方程是x 2+y 2=1,则经过上一点M √22,√22的切线方程是 .[总结反思] (1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.(2)处理圆的切线问题时,一般通过圆心到直线的距离等于半径建立关系式解决问题.若点M (x 0,y 0)在圆x 2+y 2=r 2上,则过点M 的圆的切线方程为x 0x+y 0y=r 2.式题 (1)已知直线l :x+y-2=0和圆C :x 2+y 2-12x-12y+m=0相切,则实数m 的值为 . (2) 设直线y=kx+1与圆x 2+y 2+2x-my=0相交于A ,B 两点,若点A ,B 关于直线l :x+y=0对称,则|AB |= .(3)已知点M 在直线x+y+a=0上,过点M 引圆O :x 2+y 2=2的切线,若切线长的最小值为 2√2,则实数a 的值为 ( )A. ±2√2B.±3C.±4D. ±2√5探究点三 圆与圆的位置关系3 (1) 已知圆C 1:x 2+y 2=4,圆C 2:x 2+y 2+6x-8y+16=0,则圆C 1和圆C 2的位置关系是 ( )A.相离B.外切C.相交D.内切(2)已知经过点P1,32的两个圆C1,C2都与直线l1:y=12x,l2:y=2x相切,则这两圆的圆心距C1C2等于.[总结反思](1)处理两圆的位置关系时多用圆心距与半径的和或差的关系判断,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.式题(1)已知点O(0,0),M(1,0),且圆C:(x-5)2+(y-4)2=r2(r>0)上至少存在一点P,使得|PO|=√2|PM|,则r的最小值是.(2)设P(x1,y1)是圆O1:x2+y2=9上的点,圆O2的圆心为O2(a,b),半径为1,则(a-x1)2+(b-y1)2=1是圆O1与圆O2相切的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件课时作业一、填空题1.将圆x2+y2-2x-4y+1=0平分的直线是________.2.过两圆x2+y2+3x+2y=0及x2+y2+2x+6y-4=0的交点的直线方程是________.3.已知直线l:y=k(x-1)-3与圆x2+y2=1相切,则直线l的倾斜角为________.4.若圆心在x轴上,半径为5的圆C位于y轴左侧,且被直线x+2y=0截得的弦长为4,则圆C的方程是________.5.若过点P(1,3)作圆O:x2+y2=1的两条切线,切点分别为A和B,则弦长|AB|=________.6.过点(1,1)的直线与圆(x-2)2+(y-3)2=9相交于A,B两点,则|AB|的最小值为________.7.已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则________.8.在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于________.9.设直线l截圆x2+y2-2y=0所得弦AB的中点为(-12,32),则直线l的方程为________;|AB|=________.10.设圆C同时满足三个条件:①过原点;②圆心在直线y=x上;③截y轴所得的弦长为4,则圆C 的方程是________.11.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=________.二、解答题12.一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为27,求此圆的方程.13.已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.。
直线与圆的位置关系讲义
九年级数学时间:学生:第讲直线与圆的位置关系【知识点】1 直线和圆的位置关系有三种:,,。
2 设r为⊙O的半径,d为圆心O到直线l的距离, d r,则直线l与⊙O相交。
d r,则直线l与⊙O相切d r,则直线l与⊙O相离。
3 圆的切线的性质:圆的切线垂直于的半径。
4 圆的切线的判定定理:经过直径的一端,并且这条直径的直线是圆的切线。
5 圆的切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.三角形的内切圆:(1)定义:与三角形三边都相切的圆称为三角形的内切圆。
(2)内切圆的作法; .(3)内心的性质:内心是的交点,内心到的距离相等,内心与三角形顶点的连线这个内角。
【课前自测】1. (2011•成都)已知⊙O的面积为9πcm2,若点0到直线l的距离为πcm,则直线l与⊙O的位置关系是()A、相交B、相切C、相离D、无法确定2.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=26°,则∠ACB的度数为▲.3. 已知⊙O的半径为5,圆心O到直线AB的距离为2,则⊙O上有且只有__________个点到直线AB的距离为3.4. 如图,已知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=,则线段BC的长度等于▲.5.如图23,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P的度数为。
【例题讲解】例1. 如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于A.20°B.30°C.40°D.50°例2已知BD是⊙O的直径,OA⊥OB,M是劣弧AB上的一点,过M作⊙O的切线MP交OA的延长线于点P,MD交OA于点N。
(1)求证:PM=PN(2) 若BD=4, 2PA=3AO,过点B作BC//PM,交⊙O于点C,求BC的长。
直线与圆、圆与圆的位置关系讲义
直线与圆、圆与圆的位置关系讲义一、知识梳理1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. (3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( ) (4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( )(5)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.()(6)如果直线与圆组成的方程组有解,则直线与圆相交或相切.()题组二:教材改编2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)3.x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________.题组三:易错自纠4.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是() A.[-2,2] B.[-22,22]C.[-2-1,2-1] D.[-22-1,22-1]5.设圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4 B.42C.8 D.826.过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为__________.答案5x-12y+45=0或x-3=0三、典型例题题型一:直线与圆的位置关系1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定2.圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能思维升华:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.题型二:圆与圆的位置关系典例已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1外切,则ab的最大值为()A.62 B.32 C.94D.23引申探究:1.若将本典例中的“外切”变为“内切”,求ab的最大值.2.若将本典例条件“外切”变为“相交”,求公共弦所在的直线方程.思维升华:判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.跟踪训练:如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是 题型三:直线与圆的综合问题 命题点1:求弦长问题典例已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 命题点2:直线与圆相交求参数范围典例 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 命题点3:直线与圆相切的问题典例 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).思维升华:直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. (2)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________. 注意:高考中与圆交汇问题的求解 一、与圆有关的最值问题典例1 (1)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A .6 B .7 C .8D .9(2)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33C .±33D .-3二、直线与圆的综合问题典例2 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .42 C .6D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)πD.54π 四、反馈练习1.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得的弦的长度为4,则实数a 的值是( ) A .-2 B .-4 C .-6 D .-82.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个3.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12C .y =-32D .y =-144.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A .m ∥l ,且l 与圆相交 B .m ⊥l ,且l 与圆相切 C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离6.已知圆C 的方程为x 2+y 2=1,直线l 的方程为x +y =2,过圆C 上任意一点P 作与l 夹角为45°的直线交l 于点A ,则|P A |的最小值为( ) A.12 B .1 C.2-1D .2-27.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.8.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是________.9.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________.10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.12.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.13在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在直线l 上.若圆C 上存在点M ,使|MA |=2|MO |,则圆心C 的横坐标a 的取值范围是14.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________. π|AB |2≥16(2-1)π.故选C.。
第八章 §8.4 直线与圆、圆与圆的位置关系-2025高中数学大一轮复习讲义人教A版
§8.4直线与圆、圆与圆的位置关系课标要求1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.知识梳理1.直线与圆的位置关系(圆心到直线的距离为d ,圆的半径为r )相离相切相交图形量化方程观点Δ<0Δ=0Δ>0几何观点d >rd =rd <r2.圆与圆的位置关系(⊙O 1,⊙O 2的半径分别为r 1,r 2,d =|O 1O 2|)图形量的关系外离d >r 1+r 2外切d =r 1+r 2相交|r 1-r 2|<d <r 1+r 2内切d =|r 1-r 2|内含d<|r1-r2|3.直线被圆截得的弦长(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=2r2-d2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x的一元二次方程,则|MN|=1+k2·(x M+x N)2-4x M x N.常用结论1.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2. 2.圆与圆的位置关系的常用结论(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.(2)两个圆系方程①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F +λ(Ax+By+C)=0(λ∈R);②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)若两圆没有公共点,则两圆一定外离.(×)(2)若两圆的圆心距小于两圆的半径之和,则两圆相交.(×)(3)若直线的方程与圆的方程组成的方程组有且只有一组实数解,则直线与圆相切.(√)(4)在圆中最长的弦是直径.(√)2.(选择性必修第一册P93T1改编)直线3x+4y=5与圆x2+y2=16的位置关系是() A.相交B.相切C.相离D.相切或相交答案A解析圆心到直线的距离d=532+42=1<4,所以直线与圆相交.3.(选择性必修第一册P93T3改编)直线x-2y+5=0与圆x2+y2=8相交于A,B两点,则|AB|等于()A.3B.23C.5D .25答案B解析因为圆x 2+y 2=8的圆心为(0,0),半径为22,所以圆心到直线x -2y +5=0的距离d =|5|12+(-2)2=5,所以|AB |=28-d 2=2 3.4.(选择性必修第一册P98练习T1改编)圆C 1:x 2+y 2=4与圆C 2:x 2+y 2-8x -6y +16=0的位置关系是()A .外切B .相交C .外离D .内切答案A解析圆C 1的圆心C 1(0,0),半径r 1=2,圆C 2可化为(x -4)2+(y -3)2=9,∴圆心C 2(4,3),半径r 2=3,∴|C 1C 2|=(4-0)2+(3-0)2=5=r 1+r 2,故两圆外切.题型一直线与圆的位置关系命题点1位置关系的判断例1(1)M (x 0,y 0)为圆x 2+y 2=1内异于圆心的一点,则直线x 0x +y 0y =1与该圆的位置关系为()A .相切B .相交C .相离D .相切或相交答案C解析由题意知M (x 0,y 0)为圆x 2+y 2=1内异于圆心的一点,则0<x 20+y 20<1,而圆x 2+y 2=1的圆心到直线x 0x +y 0y =1的距离d =1x 20+y 2>1=r ,故直线x 0x +y 0y =1与该圆的位置关系为相离.(2)直线kx -y +2-k =0与圆x 2+y 2-2x -8=0的位置关系为()A .相交、相切或相离B .相交或相切C .相交D .相切答案C 解析方法一直线kx -y +2-k =0的方程可化为k (x -1)-(y -2)=0,该直线恒过定点(1,2).因为12+22-2×1-8<0,所以点(1,2)在圆x 2+y 2-2x -8=0的内部,所以直线kx -y +2-k =0与圆x 2+y 2-2x -8=0相交.方法二圆的方程可化为(x -1)2+y 2=32,所以圆的圆心为(1,0),半径为3.圆心到直线kx -y+2-k =0的距离为|k +2-k |1+k2=21+k 2≤2<3,所以直线与圆相交.思维升华判断直线与圆的位置关系的常见方法(1)几何法:利用d 与r 的关系判断.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.命题点2弦长问题例2(1)(2023·滁州模拟)已知过点P (0,1)的直线l 与圆x 2+y 2+2x -6y +6=0相交于A ,B 两点,则当|AB |=23时,直线l 的方程为________________.答案x =0或3x +4y -4=0解析因为圆x 2+y 2+2x -6y +6=0可以化为(x +1)2+(y -3)2=4,所以圆心为(-1,3),半径为r =2,因为|AB |=23,所以圆心到直线的距离为d =22-(3)2=1,当直线l 斜率不存在时,直线l 的方程为x =0,此时圆心(-1,3)到直线x =0的距离为1,满足条件;当直线l 斜率存在时,设斜率为k ,直线l 的方程为y =kx +1,则圆心(-1,3)到直线l 的距离d =|-k -3+1|1+k 2=1,解得k =-34,此时直线l 的方程为3x +4y -4=0,综上,所求直线的方程为3x +4y -4=0或x =0.(2)(2023·新高考全国Ⅱ)已知直线x -my +1=0与⊙C :(x -1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值为________.答案,-2,12,-12中任意一个皆可以解析设直线x -my +1=0为直线l ,点C 到直线l 的距离为d ,由弦长公式得|AB |=24-d 2,所以S △ABC =12×d ×24-d 2=85,解得d =455或d =255,又d =|1+1|1+m 2=21+m2,所以21+m 2=455或21+m 2=255,解得m =±12或m =±2.思维升华弦长的两种求法(1)代数法:将直线和圆的方程联立方程组,根据弦长公式求弦长.(2)几何法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2.命题点3切线问题例3已知点P (2+1,2-2),点M (3,1),圆C :(x -1)2+(y -2)2=4.(1)求过点P 的圆C 的切线方程;(2)求过点M 的圆C 的切线方程,并求出切线长.解由题意得圆心C (1,2),半径r =2.(1)∵(2+1-1)2+(2-2-2)2=4,∴点P 在圆C 上.又k PC =2-2-22+1-1=-1,∴过点P 的切线的斜率为-1k PC=1,∴过点P 的圆C 的切线方程是y -(2-2)=1×[x -(2+1)],即x -y +1-22=0.(2)∵(3-1)2+(1-2)2=5>4,∴点M 在圆C 外.当过点M 的直线的斜率不存在时,直线方程为x =3,即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r ,∴直线x =3是圆的切线;当切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0,由圆心C 到切线的距离d ′=|k -2+1-3k |k 2+1r =2,解得k =34.∴切线方程为y -1=34(x -3),即3x -4y -5=0.综上,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.∵|MC |=(3-1)2+(1-2)2=5,∴过点M 的圆C 的切线长为|MC |2-r 2=5-4=1.思维升华当切线方程斜率存在时,圆的切线方程的求法(1)几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k .(2)代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k .注意验证斜率不存在的情况.命题点4直线与圆位置关系中的最值问题例4已知P 是直线3x +4y +8=0上的动点,PA ,PB 是圆C :x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,则四边形PACB 面积的最小值为________.答案22解析圆C :x 2+y 2-2x -2y +1=0,即圆C :(x -1)2+(y -1)2=1,所以圆心C (1,1),半径r =1,如图,连接PC ,因为S 四边形P ACB =2S △P AC =2×12×|AP |·|AC |=|AP |=|PC |2-1,所以求S 四边形P ACB 的最小值就是求|PC |的最小值,而|PC |的最小值就是圆心到直线3x +4y +8=0的距离d ,即d =|3+4+8|32+42=3,即四边形PACB 面积的最小值为9-1=2 2.思维升华涉及与圆的切线有关的线段长度范围(最值)问题,解题关键是能够把所求线段长表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求得结果.跟踪训练1(1)若直线x a +yb =1与圆x 2+y 2=1相交,则()A.1a 2+1b 2<1B.1a 2+1b 2>1C .a 2+b 2<1D .a 2+b 2>1答案B解析由直线x a +yb=1,可化为bx+ay-ab=0,因为直线bx+ay-ab=0与圆x2+y2=1相交,可得|-ab|a2+b2<1,整理得a2+b2>a2b2,所以1a2+1b2 >1.(2)直线l:2tx-y-2t+1=0(t∈R)与圆C:x2+y2=4相交于A,B两点,则|AB|的最小值为()A.2B.2C.22D.4答案C解析圆C:x2+y2=4的圆心C(0,0),半径为2,由直线l:2tx-y-2t+1=0(t∈R)可化为y-1=2t(x-1),∴直线l过定点P(1,1),又12+12=2<4,∴点P在圆C内部,当直线l与线段CP垂直时,弦长|AB|最小,∵|CP|=(0-1)2+(0-1)2=2,∴弦长|AB|的最小值为24-2=2 2.题型二圆与圆的位置关系例5(1)(2024·齐齐哈尔模拟)已知圆M:x2+y2-4y=0与圆N:x2+y2-2x-3=0,则圆M与圆N的位置关系为()A.内含B.相交C.外切D.外离答案B解析圆M:x2+y2-4y=0,即x2+(y-2)2=4,圆心M(0,2),半径R=2.圆N:x2+y2-2x-3=0,即(x-1)2+y2=4,圆心N(1,0),半径r=2,则|MN|=22+12=5,故有|R-r|<|MN|<R+r.故两圆是相交关系.(2)(2023·重庆模拟)圆A:x2+y2=4与圆B:x2+y2-4x+4y-12=0的公共弦所在直线的方程为()A.x-y+2=0B.x-y-2=0C.x+y+2=0D.x+y-2=0答案A解析将两圆方程作差得4x-4y+8=0,即x-y+2=0.因此,两圆的公共弦所在直线的方程为x-y+2=0.思维升华(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.跟踪训练2(1)若圆x 2+y 2+4x -4y =0和圆x 2+y 2+2x -8=0相交于M ,N 两点,则线段MN 的长度为()A .4 B.355C.1255D.655答案C解析x 2+y 2+4x -4y =0,①x 2+y 2+2x -8=0,②由①-②可得x -2y +4=0.∴两圆的公共弦所在直线的方程是x -2y +4=0,∵圆x 2+y 2+4x -4y =0的圆心坐标为(-2,2),半径为22,∴圆心到公共弦的距离d =|-2-4+4|12+(-2)2=255,∴公共弦长为=1255,即|MN |=1255.(2)(2022·新高考全国Ⅰ)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程________________.答案x =-1或7x -24y -25=0或3x +4y -5=0(答案不唯一,只需写出上述三个方程中的一个即可)解析如图,因为圆x 2+y 2=1的圆心为O (0,0),半径r 1=1,圆(x -3)2+(y -4)2=16的圆心为A (3,4),半径r 2=4,所以|OA |=5,r 1+r 2=5,所以|OA |=r 1+r 2,所以两圆外切,公切线有三种情况:①易知公切线l 1的方程为x =-1.②另一条公切线l 2与公切线l 1关于过两圆圆心的直线l 对称.易知过两圆圆心的直线l 的方程为y =43x ,=-1,=43x=-1,=-43,由对称性可知公切线l21设公切线l2的方程为y+43=k(x+1),则点O(0,0)到l2的距离为1,所以1=|k-43|k2+1,解得k=724,所以公切线l2的方程为y+43=724(x+1),即7x-24y-25=0.③还有一条公切线l3与直线l:y=43x垂直,设公切线l3的方程为y=-34x+t,易知t>0,则点O(0,0)到l3的距离为1,所以1解得t=54或t=-54(舍去),所以公切线l3的方程为y=-34x+54,即3x+4y-5=0.综上,所求直线方程为x=-1或7x-24y-25=0或3x+4y-5=0.课时精练一、单项选择题1.已知圆(x-2)2+(y-3)2=r2(r>0)与y轴相切,则r等于()A.2B.3C.2D.3答案C解析圆(x-2)2+(y-3)2=r2(r>0)的圆心为(2,3),半径为r.因为圆与y轴相切,所以r=2. 2.(2024·南京模拟)在平面直角坐标系中,圆O1:(x-1)2+y2=1和圆O2:x2+(y-2)2=4的位置关系是()A.外离B.相交C .外切D .内切答案B解析由题意知,圆O 1:(x -1)2+y 2=1,可得圆心坐标O 1(1,0),半径r 1=1,圆O 2:x 2+(y -2)2=4,可得圆心坐标O 2(0,2),半径r 2=2,则两圆的圆心距|O 1O 2|=1+4=5,则2-1<5<2+1,即|r 2-r 1|<|O 1O 2|<r 1+r 2,所以圆O 1与圆O 2相交.3.(2023·北京模拟)直线y =x +1被圆O :x 2+y 2=1截得的弦长为()A .1 B.2C .2D .22答案B解析圆O :x 2+y 2=1的圆心为O (0,0),半径r =1,则圆心O (0,0)到直线y =x +1的距离d =12=22,所以直线y =x +1被圆O :x 2+y 2=1所截得的弦长为2r 2-d 2=2×1-12= 2.4.若一条光线从点A (-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为()A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案D解析点(-2,-3)关于y 轴的对称点为(2,-3),由题意知,反射光线所在的直线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,圆心为(-3,2),得|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34.5.圆C :x 2+y 2+2x +4y -3=0上到直线x +y +1=0距离为2的点有()A .2个B .3个C .4个D .无数个答案B 解析因为x 2+y 2+2x +4y -3=0化为标准方程为(x +1)2+(y +2)2=8,所以圆心C (-1,-2),圆的半径r =22,又因为圆心C 到直线x +y +1=0的距离d =|-1-2+1|2=2,所以r -d =2,所以过圆心平行于直线x +y +1=0的直线与圆有2个交点,另一条与直线x +y +1=0的距离为2的平行线与圆相切,只有1个交点,如图所示,所以圆C 上到直线x +y +1=0的距离为2的点共有3个.6.(2023·武汉模拟)已知点P 在圆O :x 2+y 2=1上运动,若对任意点P ,在直线l :x +y -4=0上均存在两点A ,B ,使得∠APB ≥π2AB 长度的最小值是()A.2-1B.2+1C .22-1D .42+2答案D 解析如图,由题可知,圆心为O (0,0),半径R =1,若直线l :x +y -4=0上存在两点A ,B ,使得∠APB ≥π2恒成立,则O :x 2+y 2=1始终在以AB 为直径的圆内或圆上,点O (0,0)到直线l 的距离d =|0-0-4|12+12=22,所以AB 长度的最小值为2(d +1)=42+2.二、多项选择题7.已知圆C 1:(x -a )2+(y +2)2=25,圆C 2:(x +1)2+(y +a )2=4,若圆C 1与圆C 2内切,则实数a 的值是()A .-2B .2C .-1D .1答案BC 解析由题可知圆心C 1(a ,-2),半径r 1=5,圆心C 2(-1,-a ),半径r 2=2,因为圆C 1与圆C 2内切,所以|C 1C 2|=(a +1)2+(-2+a )2=|r 1-r 2|=3,解得a =-1或a =2.8.已知圆C :(x -2)2+y 2=1,点P 是直线l :x +y =0上一动点,过点P 作圆的切线PA ,PB ,切点分别是A 和B ,则下列说法错误的是()A .圆C 上恰有一个点到直线l 的距离为12B .切线|PA |长的最小值为1C .四边形ACBP 面积的最小值为2D .直线AB 答案AC 解析对于A ,由圆C :(x -2)2+y 2=1,可得圆心C (2,0),半径r =1,∴圆心C 到直线l :x +y =0的距离为|2|2=2,∵2-1<12<2+1,故圆C 上不是只有一个点到直线l 的距离为12,故A 错误;对于B ,由圆的性质,可得切线长|PA |=|PC |2-r 2=|PC |2-1,当|PC |最小时,|PA |最小,又|PC |min =2,则|PA |min =1,故B 正确;对于C ,由四边形ACBP 的面积为2×12×|PA |·|CA |=|PA |,因为|PA |min =1,所以四边形ACBP 的面积的最小值为1,故C 错误;对于D ,设P (t ,-t ),由题知A ,B 在以PC 为直径的圆上,又由C (2,0),所以(x -t )(x -2)+(y +t )(y -0)=0,即x 2+y 2-(t +2)x +ty +2t =0,因为圆C :(x -2)2+y 2=1,即x 2+y 2-4x +3=0.两圆的方程相减得直线AB:(2-t)x+ty-3+2t=0,即2x-3-t(x-y-2)=0,x-3=0,-y-2=0,=32,=-12,即直线ABD正确.三、填空题9.写出一个经过原点,截y轴所得弦长是截x轴所得弦长2倍的圆的标准方程__________.答案(x-1)2+(y-2)2=5(答案不唯一)解析显然圆截x轴、y轴所得弦的一个端点为O(0,0),设圆截x轴所得弦的另一端点为A(a,0),a≠0,则该圆截y轴所得弦的另一端点为B(0,2a)或B(0,-2a),因此该圆的圆心Cr=52|a|,所以该圆的标准方程为+(y-a)2=54a2或+(y+a)2=54a2,取a=2,得圆的一个标准方程为(x-1)2+(y-2)2=5.10.与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程为________________________.答案(x-2)2+(y-2)2=2解析曲线方程化为(x-6)2+(y-6)2=18,其圆心到直线x+y-2=0的距离d=|6+6-2|2=52.所求的最小圆的圆心在直线y=x上,其到直线的距离为2,圆心坐标为(2,2).标准方程为(x-2)2+(y-2)2=2.11.若圆C1:(x-1)2+y2=r2(r>0)上存在点P,且点P关于y轴的对称点Q在圆C2:(x+2)2+(y-2)2=1上,则r的取值范围是__________.答案[5-1,5+1]解析设圆C1关于y轴的对称圆为圆C3,其方程为(x+1)2+y2=r2,根据题意,圆C3与圆C2有交点,又圆C3与圆C2的圆心距为(-1+2)2+(2-0)2=5,要满足题意,只需|r-1|≤5≤r+1,解得r∈[5-1,5+1].12.(2023·大庆模拟)已知直线l是圆C:(x-2)2+(y-1)2=1的切线,并且点B(3,4)到直线l 的距离是2,这样的直线l有________条.答案4解析由已知可得,圆心C(2,1),半径r1=1.由点B(3,4)到直线l的距离是2,所以直线l是以B(3,4)为圆心,r2=2为半径的圆的切线,又直线l是圆C:(x-2)2+(y-1)2=1的切线,所以直线l是圆C与圆B的公切线.因为|BC|=(3-2)2+(4-1)2=10>3=r1+r2,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l有4条.四、解答题13.已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.求:(1)m取何值时两圆外切?(2)当m=45时两圆的公共弦所在直线的方程和公共弦的长.解两圆的标准方程分别为(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m(m<61),则圆心分别为(1,3),(5,6),半径分别为11和61-m.(1)当两圆外切时,(5-1)2+(6-3)2=11+61-m.解得m=25+1011.(2)两圆的公共弦所在直线的方程为(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,即4x+3y-23=0.所以公共弦的长为2×27.14.已知圆C:x2+y2-4x=0,直线l恒过点P(4,1).(1)若直线l与圆C相切,求l的方程;(2)当直线l与圆C相交于A,B两点,且|AB|=23时,求l的方程.解(1)由题意可知,圆C的圆心为(2,0),半径r=2,①当直线l的斜率不存在时,即l的方程为x=4,此时直线与圆相切,符合题意;②当直线l的斜率存在时,设斜率为k,∴直线l的方程为y-1=k(x-4),即kx-y+1-4k=0,若直线l与圆相切,则d=|1-2k|k2+1=2,解得k=-34,∴l:-34x-y+4=0,即l:3x+4y-16=0,综上,当直线l与圆C相切时,所求直线l的方程为x=4或3x+4y-16=0.(2)由题意可知,直线l的斜率一定存在,设斜率为k,∴直线l的方程为y-1=k(x-4),即kx-y+1-4k=0,设圆心到直线l的距离为d,则d=|1-2k| k2+1,由垂径定理可得,d2=4,即(2k-1)2k2+1+3=4,整理得,3k2-4k=0,解得k=0或k=4 3,则直线l的方程为y=1或4x-3y-13=0.15.(多选)(2023·重庆九龙坡育才中学模拟)已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y =kx,则()A.对任意实数k与θ,直线l和圆M相切B.对任意实数k与θ,直线l和圆M有公共点C.对任意实数θ,必存在实数k,使得直线l和圆M相切D.对任意实数k,必存在实数θ,使得直线l和圆M相切答案BD解析圆M:(x+cosθ)2+(y-sinθ)2=1恒过定点O(0,0),直线l:y=kx也恒过定点O(0,0),所以对任意实数k与θ,直线l和圆M有公共点,故B正确;圆心M(-cosθ,sinθ),圆心到直线l 的距离d =|k cos θ+sin θ|1+k 2=|1+k 2sin (θ+α)|1+k 2=|sin(θ+α)|≤1,其中tan α=k ,则对任意实数k ,存在θ,使得直线l 和圆M 的关系是相交或者相切,故D 正确,A 错误;当θ=0时,圆M 为(x +1)2+y 2=1,此时不存在实数k ,使得直线l 和圆M 相切,故C 错误.16.(2023·赣州统考)已知圆C :(x -1)2+(y -2)2=5,圆C ′是以圆x 2+y 2=1上任意一点为圆心,半径为1的圆.圆C 与圆C ′交于A ,B 两点,则当∠ACB 最大时,|CC ′|=________.答案2解析依题意,在△ABC 中,|AC |=|BC |=5,如图,显然0<|AB |≤2,∠ACB 是锐角,sin ∠ACB2=12|AB ||AC |=|AB |25,又函数y =sin x 因此当且仅当公共弦AB 的长度最大时,∠ACB 最大,此时弦AB 为圆C ′的直径,在Rt △ACC ′中,∠AC ′C =90°,|AC ′|=1,所以|CC ′|=|AC |2-|AC ′|2=2.。
2024年新高二数学提升精品讲义直线与圆的位置关系(思维导图+3知识点+8考点+过关检测)(解析版)
2024年新高二数学提升精品讲义直线与圆的位置关系(解析版)模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解直线与圆的三种基本位置关系:相离、相切、相交,并能准确描述每种关系的特征;2.掌握判断直线与圆位置关系的方法,包括利用圆心到直线的距离与半径的关系进行判断;3.能够运用所学知识解决实际问题,如计算切点坐标、交点坐标等.知识点1直线与圆的位置关系1、直线与圆的三种位置关系(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有共同点.2、判断直线与圆位置关系的方法(1)几何法判断直线与圆的位置关系:直线0++=Ax By C 与圆()()222-+-=x a y b r ,圆心到直线的距离22BA C Bb Aa d +++=.>⇔d r 直线与圆相离⇔无交点;=⇔d r 直线与圆相切⇔只有一个交点;<⇔d r 直线与圆相交⇔有两个交点.(2)代数法判断直线与圆的位置关系:联立直线方程与圆的方程,得到⎩⎨⎧=++++=++022F Ey Dx y x C By Ax ,通过解的个数来判断:当0>∆时,直线与圆有2个交点,,直线与圆相交;当0=∆时,直线与圆只有1个交点,直线与圆相切;当0<∆时,直线与圆没有交点,直线与圆相离.知识点2直线与圆相交弦长1、几何法:利用圆的半径r ,圆心到直线的距离d ,弦长l 之间的关系2222⎛⎫=+ ⎪⎝⎭l r d ,整理出弦长公式为:22=-l r d 2、代数法:若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长.3、弦长公式法:设直线:=+l y kx b 与圆的交点为()11,x y ,()22,x y ,将直线方程代入圆的方程,消元后利用根与系数的关系得到弦长()()222121212114⎡⎤=+-=++-⎣⎦l kx k x x x x 知识点3直线与圆相切1、圆的切线的条数(1)过圆外一点,可以作圆的两条切线;(2)过圆上一点,可以作圆的一条切线;(3)过圆内一点,不能作圆的切线.2、过圆上一点()00,x y 的切线方程法一:先求出切点与圆心的连线斜率k ,若k 不存在,则结合图形可直接写出切线方程0=y y ;若0=k,则结课图形可直接写出切线方程0=x x ;若k 存在且0≠k,则由垂直关系知切线的斜率为1-k,由点斜式写出切线方程.法二:若k 不存在,验证是否成立;若k 存在,设点斜式方程,用圆心到直线的距离等于半径列方程,解出方程即可.3、过圆外一点()00,x y 的圆的切线方程法一:当斜率存在时,设为k ,则切线方程为()00-=-y y k x x ,即000-+-=kx y y kx 由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程.法二:当斜率存在时,设为k ,则切线方程为()00-=-y y k x x ,即000-+-=kx y y kx 代入圆的方程,得到一个关于x 的一元二次方程,由0=∆,求得k ,切线方程即可求出.4、与圆的切线相关的结论(1)过圆222+=x y r 上一点()00,P x y 的圆的切线方程为200+=xx yy r .(2)过()()222-+-=x a y b r 上一点()00,P x y 的圆的切线方程为()()()()200--+--=x a x a y b y b r(3)过()()222-+-=x a y b r 外一点()00,P x y 作圆的两条切线,切点分别为A ,B ,则切点弦AB 所在直线方程为:()()()()200--+--=x a x a y b y b r .(4)过圆外一点()00,P x y 引圆()()222-+-=x a y b r 的两条切线,则过圆外一点()00,P x y 的切线长为=d考点一:直线与圆的位置关系判断例1.(23-24高二上·广西南宁·月考)直线240x y ++=与圆22240x y y +--=的位置关系为()A .相交且过圆心B .相交且不过圆心C .相切D .相离【答案】C【解析】圆22240x y y +--=,即()2215x y +-=,其圆心坐标为()0,1,半径为r =,圆心到直线240x y ++=的距离d r ===,直线与圆的位置关系为相切.故选:C【变式1-1】(23-24高二下·安徽芜湖·月考)直线l :20ax y +-=与圆C :()()22121x y -+-=的公共点的个数为()A .0B .1C .2D .1或2【答案】C【解析】由直线:20l ax y +-=,可得直线l 过定点()0,2,又由圆C :()()22121x y -+-=,可得点()0,2在圆C 上,因为直线l 的斜率显然存在,所以公共点的个数为2.故选:C.【变式1-2】(23-24高二上·福建福州·期中)设R m ∈,则直线l :210mx y m +--=与圆225x y +=的位置关系为()A .相离B .相切C .相交或相切D .相交【答案】C【解析】直线l 可化为()210m x y -+-=,由2010x y -=⎧⎨-=⎩可得,21x y =⎧⎨=⎩,所以直线l 恒过点()2,1A .又22215+=,即点A 在圆225x y +=上,所以,过点A 的直线l 与圆相交或相切.故选:C.【变式1-3】(22-23高二上·上海宝山·期中)已知点()00,x y 在圆C :224x y +=外,则直线004x x y y +=与圆C 的位置关系是()A .相交B .相切C .相离D .不确定【答案】A【解析】由点00P x y (,)在圆22:4C x y +=外,可得22004x y +>,求得圆心00C (,)到直线00:4l x x y y +=的距离422d <=,故直线和圆C 相交,故选:A.考点二:根据直线与圆的位置关系求参数例2.(23-24高二下·河南·月考)若直线20x y ++=与圆()()()222:80M x a y a a a -+-=>相切,则圆M 的半径为()A .2B .4C .D .8【答案】C=,解得1a =(负值舍),所以圆M 的半径为故选:C.【变式2-1】(23-24高二下·黑龙江哈尔滨·开学考试)已知直线3y kx =-与圆()2224x y -+=相交,则实数k 的取值范围是()A .5,12⎡⎫+∞⎪⎢⎣⎭B .5,12⎛⎫+∞ ⎪⎝⎭C .5,12∞⎛⎤- ⎥⎝⎦D .5,12⎛⎫-∞ ⎪⎝⎭【答案】B【解析】圆()2224x y -+=的圆心为()2,0,半径2r =,因为直线3y kx =-与圆()2224x y -+=相交,所以圆心()2,0到直线3y kx =-的距离d r <,2<,解得512k >,所以实数k 的取值范围是5,12⎛⎫+∞ ⎪⎝⎭.故选:B.【变式2-2】(23-24高二下·河北衡水·月考)已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤【答案】A【解析】由题意可知圆C 的圆心坐标为()0,m ,半径为1.因为直线l 与圆C 有公共点,所以直线l 与圆C 相切或相交,所以圆心()0,C m 到直线l 的距离1d =≤,解得112m -≤≤.其必要不充分条件是把m 的取值范围扩大,所以选项中只有11m -≤≤是112m -≤≤的必要不充分条件.故选:A 【变式2-3】(23-24高二上·河北石家庄·期中)若直线l 过点()0,A a ,斜率为1,圆224x y +=上恰有3个点到l 的距离为1,则a 的值为()A .B .±C .2±D .【答案】D【解析】由题意知,:0l x y a -+=,又圆224x y +=上恰有3个点到l 的距离为1,所以圆心到直线的距离等于半径减去1,则圆心(0,0)到直线l 21=-,解得a =故选:D.考点三:求圆的切线方程例3.(23-24高二上·河北承德·月考)过点()2,3P 引圆222440x y x y +--+=的切线,其方程是()A .2x =B .12590x y -+=C .2x =或3y =D .3x =或2y =【答案】C【解析】根据题意,圆222440x y x y +--+=,即()()22121x y -+-=,其圆心为()1,2,半径1r =;过点()2,3P 引圆222440x y x y +--+=的切线,若切线的斜率不存在,切线的方程为2x =,符合题意;若切线的斜率存在,设其斜率为k ,则有()32y k x -=-,即320kx y k -+-=,1=,解得0k =,此时切线的方程为()302y x -=-,即3y =.综上:切线的方程为2x =和3y =.故选:C .【变式3-1】(22-23高二下·河南安阳·开学考试)已知圆22:42110C x y x y +++-=,过点()2,1作圆C 的切线m ,则m 的方程为()A .2x =B .34100x y +-=C .34100x y +-=或2x =D .34100x y +-=或3420x y --=【答案】C【解析】将圆22:42110C x y x y +++-=化为标准方程()()222116x y +++=,则圆心()2,1C --,4r =,当切线l 的斜率不存在时,切线l 的方程为2x =,当切线l 的斜率存在时,设切线l 的方程为()12y k x -=-,即120kx y k -+-=,由题意知,4=.解得34k =-.此时切线l 的方程为34100x y +-=.综上,切线l 的方程为2x =或34100x y +-=.故选:C.【变式3-2】(23-24高二上·湖南长沙·期中)过点()40,的直线l 与圆2248160x y x y +--+=相切,则直线l 的方程为()A .34120x y +-=或0y =B .34120x y +-=或4x =C .43120x y +-=或0y =D .43120x y +-=或4x =【答案】B【解析】圆2248160x y x y +--+=化为标准方程为22(2)(4)4x y -+-=,得圆心()2,4,半径为2,当直线l 的斜率不存在时,直线4l x =:,此时直线l 与圆2248160x y x y +--+=相切,符合题意;当直线l 的斜率存在时,设直线l 的方程为()4y k x =-,即40kx y k --=,圆心()2,4到直线l 的距离为d =由相切得2d r ==,2=,平方化简得34k =-,求得直线方程为34120x y +-=,综上,直线l 的方程为34120x y +-=或4x =.故选:B【变式3-3】(23-24高二上·天津武清·月考)已知过点()2,3P 的直线与圆()22110x y -+=相切,且与直线10x ay -+=平行,则=a ()A .2B .3-C .12-D .12【答案】B【解析】已知过点()2,3P 的直线与圆()22110x y -+=相切,将点()2,3P 代入圆()22110x y -+=恒成立,则点P 在圆上.即过点()2,3P 的直线与圆()22110x y -+=相切的切线只有一条,令过点()2,3P 的切线的方程为3(2)y k x -=-,即230kx y k --+=,由此切线与10x ay -+=平行,两直线的斜率相等且y 轴截距不等,可得1k a=且123k a -+≠;由圆心到切线的距离等于圆的半径,可得圆的半径22023101k k r k --+==+,13k =-,即3a =-.故选:B .考点四:与切线长有关的问题例4.(23-24高二上·安徽马鞍山·期末)由点(1,4)P -向圆2246120x y x y +--+=引的切线长是()A .3B 5C 10D .5【答案】A【解析】圆2246120x y x y +--+=即圆()()22231x y -+-=的圆心半径分别为()2,3,1r =,点(1,4)P -到圆心()2,3的距离为()()22124310d =--+-所以点(1,4)P -向圆2246120x y x y +--+=1013-=.故选:A.【变式4-1】(23-24高二上·浙江宁波·期末)过点()0,2与圆22410x y x ++-=相切的两条直线的夹角为α,则cos α=()A .14B .154C .154-D .14-【答案】A【解析】因为2202421110++⨯-=>,所以点()0,2在圆外,设圆心为C ,点()0,2为点D ,切点为,A B ,圆22410x y x ++-=化为标准方程得()2225x y ++=,则圆心()2,0C -,半径5r =,在Rt ACD △中,22,5CD AC ==853AD =-=故35cos 2222ADC ADC ∠=∠由圆的切线的性质可得ADC BDC ∠=∠,所以351cos cos cos 2884ADB ADC α=∠=∠=-=.故选:A.【变式4-2】(23-24高二上·四川乐山·期末)已知点(),P x y 是直线23y x =+上一动点,PM 与PN 是圆C :()2211x y -+=的两条切线,M 、N 为切点,则四边形PMCN 的最小面积为()A .4B .25C .2D .1【答案】C【解析】由题意知,圆C :()2211x y -+=的圆心()1,0C ,半径1r =,因为PM 与PN 是圆C :()2211x y -+=的两条切线,所以PM PN =,22221PMPC MC PC =-=-,则21PM PC =-当PC 最小时,PM 也最小,又点(),P x y 是直线23y x =+上一动点,故圆心()1,0C 到直线23y x =+的距离2355d +=PC 的最小值,此时min2PM=,则此时四边形PMCN 的面积S PM MC PM ==也最小,最小值为2S =.故选:C.【变式4-3】(23-24高二上·陕西西安·期中)已知圆O 的半径为2,过圆O 外一点P 作圆O 的两条切线,切点为A ,B ,那么PA PB的最小值为()A .1642-+B .1242-+C .1282-+D .1682-+【答案】C 【解析】如图,设PO d =,则24PA PB d ==-,因为2sin APO d ∠=,所以2228cos 121APB d d ⎛⎫∠=-=- ⎪⎝⎭,所以()2222832411223212212PA PB d d dd ⎛⎫⋅=--=+-≥= ⎪⎝⎭,当且仅当2232d d=,即2424d =>时,等号成立,故PA PB ⋅的最小值为8212,故选:C.考点五:切点弦及其方程应用例5.(23-24高三上·云南曲靖·月考)过点()0,2P 作圆22:430C x x y -++=的两条切线,设切点为A ,B ,则切点弦AB 的长度为()A 14B .142C .144D .147【答案】B【解析】圆22:430C x x y -++=,即()2221x y -+=,易知22PC =C 的半径1r =,所以切线长7PA PB ==.所以四边形PACB 的面积为127172PACB S =⨯=.所以根据等面积法知:172PACB S PC AB ==⨯⨯,所以142AB =.故选:B .【变式5-1】(23-24高二上·河北·期中)过点)3,0M作圆C :()2211x y +-=的两条切线,切点分别为A ,B ,则直线AB 的方程为.30x y -=【解析】由图可知,其中一条切线为x 轴,切点为坐标原点.因为AB CM ⊥,303CM k ==-,则3AB k =所以直线AB 30x y -=.30x y -=.【变式5-2】(22-23高三上·广东·开学考试)过点(2,2)P 作圆224x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为.【答案】2+-x y 0=【解析】方法1:由题知,圆224x y +=的圆心为()0,0,半径为2r =,所以过点(2,2)P 作圆224x y +=的两条切线,切点分别为()0,2A 、()2,0B ,所以1AB k =-,所以直线AB 的方程为2y x =-+,即20x y +-=;方法2:设()11,A x y ,()22,B x y ,则由2211111142.12x y y y x x ⎧+=⎪-⎨=-⎪-⎩,可得112x y +=,同理可得222x y +=,所以直线AB 的方程为2+-x y 0=.故答案为:20x y +-=【变式5-3】(23-24高二上·江西上饶·期末)P 是直线4x y +=上的一个动点,,A B 是圆224x y +=上的两点,若,PA PB 均与圆O 相切,则弦长AB 的最小值为.【答案】【解析】因为12AB PO OA PA ⋅=⋅,所以AB ==当PO 的长最小时,弦长AB 最小,而PO 的最小值为圆心(即原点)到直线4x y +=的距离,所以min PO =min AB ==故答案为:考点六:直线与圆相交弦问题例6.(23-24高二上·江西上饶·期末)直线30x y -+=被圆22240x y x y ++-=所截得的弦长为()A .2BC.D .10【答案】C【解析】圆22240x y x y ++-=即()()22125x y ++-=,故圆心为()1,2-,显然圆心在直线30x y -+=上,故直线被圆所截得的弦即为圆的直径,长为故选:C .【变式6-1】(23-24高二下·山西运城·开学考试)直线10x y --=将圆()()22238x y -+-=分成两段,这两段圆弧的弧长之比为()A .1:2B .1:3C .1:5D .3:5【答案】A【解析】设直线与圆的两个交点为,A B ,圆心为C ,过点C 作CD AB ⊥交于D ,如图所示设()0πACD αα∠=<<,所以圆心到直线的距离为d CD ===在Rt ACD △中,1cos 2CD AC α===因为0πα<<,所以π3α=,由圆的性质知,2π23ACB α∠==,所以两段圆弧的弧长之比等于两段弧所对圆心角的弧度数之比,等于2π2π:2π1:233⎛⎫-= ⎪⎝⎭.故选:A.【变式6-2】(23-24高二上·山东聊城·期末)写出经过坐标原点,且被圆()()22:124C x y -+-=截得的弦长为l 的一个方程.【答案】0x =或340x y -=(写出一个即可)【解析】由题意,圆心()1,2到直线l 的距离1d ==,当直线l 的斜率不存在时,方程为0x =满足题意;当直线l 的斜率存在时,设直线l 的方程为y kx =,即0kx y -=1=,即()2221k k -=+,解得34k =,此时直线l 的方程为340x y -=.故答案为:0x =或340x y -=(写出一个即可)【变式6-3】(23-24高二上·安徽马鞍山·月考)设圆222210x y x y +---=的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若AB =,则l 直线方程为.【答案】0x =或34120x y +-=【解析】圆22(1)(1)3x y -+-=的圆心(1,1)C ,半径r =,圆心(1,1)C 到直线0x =的距离为1,满足||AB ==,直线0x =符合题意;当直线l 的斜率存在时,设直线l 的方程为3y kx =+,即30kx y -+=,圆心(1,1)C 到直线l=34k =-,此时直线l :34120x y +-=,所以直线l 的方程为0x =或34120x y +-=.故答案为:0x =或34120x y +-=考点七:过定点直线的最短弦长例7.(23-24高二下·四川成都·月考)直线()():211850l m x m y m +++--=,被圆22:(2)(1)25C x y -+-=截得最短弦的长为()A .B .C .D 【答案】C【解析】直线()():211850l m x m y m +++--=,即()2850x y m x y +-++-=,由28050x y x y +-=⎧⎨+-=⎩,解得3,2x y ==,设()3,2D ,由于()()223221225-+-=<,所以D 在圆C 内,圆22:(2)(1)25C x y -+-=的圆心为()2,1C ,半径=5r ,如图:当CD AB ⊥时,AB 最短,22112CD +=所以弦长AB 的最小值为()22252223-=故选:C【变式7-1】(22-23高二上·云南临沧·月考)当圆22:450C x x y -+-=截直线:30l x my m -+-=所得的弦长最短时,实数m =()A 2B .1-C .2-D .1【答案】B【解析】由22:450C x y x +--=得22(2)9x y -+=,圆心坐标是()2,0C ,半径是3,直线l :30x my m -+-=过定点()3,1P ,且在圆内,∴当l PC ⊥时,直线l 被圆22450x y x +--=截得的弦长最短,由110132m -⋅=--解得1m =-.故选:B.【变式7-2】(23-24高二下·河北保定·开学考试)已知过点()1,1P a b ++的直线l 与圆22:()()4M x a y b -+-=交于,A B 两点,则AB 的最小值为()A .23B 3C 2D .22【答案】D【解析】因为22(1)(1)4a a b b +-++-<,所以点P 在圆M 内.且圆22:()()4M x a y b -+-=的圆心为(),M a b ,半径为2,则2MP =,当MP l ⊥时,AB 取得最小值,且最小值为24||22MP -=D【变式7-3】(23-24高二上·四川凉山·期末)过点(3,1)的直线与圆22:410C x y x +--=交于A ,B 两点,则当AB 弦长最短时ABC 的面积为()A 6B .22C .23D .26【答案】A【解析】圆22:(2)5C x y -+=的圆心(2,0)C ,半径r =,记(3,1)为点P ,||PC 即点(3,1)P 在圆C 内,则当AB CP ⊥时,弦AB 长最短,此时||AB ===所以ABC 的面积11||||22ABC S AB PC =⋅=⨯= 故选:A 考点八:直线与半圆的相交问题例8.(23-24高二下·上海·月考)已如直线y x m =+和曲线1y =只有一个公共点,则实数m的取值范围.【答案】{|02x m <≤或1m =【解析】因为曲线1y =,所以21,011y x ≤≤-≤,解得01,11y x ≤≤-≤≤,曲线可化为1y -=两边同时平方有,()2211y x -=-,即()2211x y +-=,所以曲线是以()0,1为圆心,1为半径的圆的一部分,而直线y x m =+,所以直线的斜率为1,画图象如下:由于直线与曲线只有一个公共点,当直线过()1,1-时,即11m =-+,解得2m =,当直线过()1,1时,即11m =+,解得0m =,由图象可知02m <≤,1=,解得1m =1m =而m 即为y x m =+在y 轴上的截距,由图象可知1m =,综上:02m <≤或1m =故答案为:{|02x m <≤或1m =.【变式8-1】(23-24高二下·重庆·月考)直线:130l x my m ---=与曲线:2C x =+m 的取值范围是()A .3,44⎛⎤⎥⎝⎦B .13,24⎡⎫⎪⎢⎣⎭C .3,24⎛⎤ ⎥⎝⎦D .30,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意得,直线:130l x my m ---=过定点(1,3)P -,曲线:2C x =+(2,0)M 为圆心,半径为1的半圆(如图所示),曲线C 的下端点为(2,1)N -.要使直线l 与曲线C 有两个交点,则直线l 应位于直线PN 和切线PQ 之间(可以与PN 重合),此时直线l 的斜率存在,且PQ l PN k k k <≤,即0PN l k k ≥>且圆心(2,0)M 到直线l 的距离小于半径.由1(3)12021PN k m ---==≥>-得12m ≥1<得304m <<,所以1324m ≤<.故选:B.【变式8-2】(23-24高二上·河南许昌·月考)直线y x b =+与曲线y =b 取值范围为()A .(B .(C .⎡⎣D .(【答案】C【解析】由曲线y =()2210x y y +=≥,表示以原点为圆心,半径为1的半圆,当直线y x b =+与半圆y =1=,则b =,此时直线为y x =+;当直线y x b =+过点()0,1时,1b =,此时直线为1y x =+,要使直线y x b =+与曲线21y x =-有两个交点,则b 取值范围为)1,2⎡⎣.故选:C.【变式8-3】(23-24高二上·四川南充·月考)若直线:(1)4l y k x =+-与曲线214x y =--有两个交点,则实数k 的取值范围是()A .3(,)4+∞B .3[,1]4C .[3,)+∞D .(0,3]【答案】C【解析】由已知直线:(1)4l y k x =+-过定点(1,4)P --,曲线214x y =--是以(1,0)M 为圆心,2为半径的圆的左半部分弧 ACB,(1,2)B ,作出它们的图形,如图,直线PB 的斜率为2(4)31(1)PB k --==--,当直线l 斜率不存在时,它与该半圆相切,由图可知,它们有两个交点时,3k ≥,故选:C .一、单选题1.(23-24高二上·天津滨海新·月考)直线l :2y x =+与圆C :()2215x y +-=的位置关系是()A .相交B .相切C .相离D .不确定【答案】A【解析】圆C :()2215x y +-=的圆心(0,1)C ,半径5r =,故圆心到直线的距离220122521(1)d -+==<+-所以直线与圆相交,故选:A2.(23-24高二上·河南焦作·月考)直线10x ky -+=与圆222x y +=的位置关系是()A .相交B .相离C .相交或相切D .相切【答案】A【解析】方法一:直线10x ky -+=恒过定点(1,0)-,而()212-<,所以点(1,0)-在圆222x y +=内,故直线与圆相交.选A.方法二:因为圆心到直线的距离221d r k=<=+,所以直线与圆相交.故选A.方法三:联立直线方程与圆的方程,消去x 并整理,得2210(2)1k y ky +--=,则()222441840k k k ∆=++=+>,所以直线与圆相交.故选A.故选:A.3.(23-24高二上·湖南长沙·期末)直线:2l x y +=,圆22:2220C x y x y +---=.则直线l 被圆C 所截得的弦长为()A .2B .4C .D【答案】B【解析】圆C 的标准方程为()()22114x y -+-=,直线l 过圆心()1,1C ,所以直线l 被圆C 所截得的弦长等于直径长度4.故选:B .4.(23-24高二下·广东茂名·月考)已知圆22:(3)(4)9C x y -+-=,直线()():320l m x m y m +-++=.则直线l 被圆C 截得的弦长的最小值为()A B .C D .【答案】D【解析】直线()()():321320l m x m y m m x y x y +-++=-++-=.恒过定点()2,3P ,圆C 的圆心为()3,4C ,半径为3r =,且()()22233429-+-=<,即P 在圆内,当CP l ⊥时,圆心C 到直线l 的距离最大为d CP ==此时,直线l 被圆C 截得的弦长最小,最小值为=故选:D.5.(22-23高二上·重庆北碚·月考)过点()2,3A 作圆22:1M x y +=的一条切线,切点为B ,则AB =()A .3B .C D【答案】B【解析】因为圆22:1M x y +=,所以圆M 的圆心为(0,0)M ,半径为1r =,因为AB 与圆M 相切,切点为B ,所以AB BM ⊥,则222AB r AM +=,因为AM =,所以AB ==故选:B.6.(23-34高二上·广东珠海·期末)曲线y =与直线()24y k x =-+有两个交点,则实数k 的取值范围是()A .5,112⎛⎤ ⎥⎝⎦B .5,12⎛⎫+∞ ⎪⎝⎭C .3,14⎛⎤⎥⎝⎦D .3,4⎛⎫+∞ ⎪⎝⎭【答案】C【解析】根据题意画出图形,如图所示:由题意可得,曲线y =的图象为以()0,0为圆心,2为半径的半圆,直线l 恒过()2,4A ,由图当直线l 与半圆相切时,圆心到直线l 的距离d r =2=,解得34k =;当直线l 过()2,0B -点时,直线l 的斜率()40122k -==--,则直线l 与半圆有两个不同的交点时,实数k 的取值范围为3,14⎛⎤⎥⎝⎦.故选:C.二、多选题7.(23-24高二上·安徽滁州·期末)若直线20kx y k -+=与圆()()22124x y -+-=有公共点,则实数k 的取值可能是()A .0B .2C .3D .4【答案】AB【解析】直线20kx y k -+=恒过定点()2,0-,圆()()22124x y -+-=的圆心为()1,2,半径为2,显然点()2,0-在圆外,直线与圆有公共点,则圆心到直线的距离2d =≤,解得1205k ≤≤.故选:AB 8.(23-24高二上·福建福州·期末)已知过点(32),的直线l 和圆C :2242110x y x y +---=,则()A .直线l 与圆C 相交B .直线l 被圆C 截得最短弦长为C .直线l 与被圆C 截得的弦长为l 的方程为2y =D .不存在这样的直线l ,使得圆C 上有3个点到直线l 的距离为2【答案】ABD【解析】因为圆C :2242110x y x y +---=,所以圆C 的圆心为()2,1,半径为4.选项A :因为2232432211140+-⨯-⨯-=-<,所以点(32),在圆内,故直线与圆相交,选项A 正确;选项B :设圆心到直线的距离为d ,弦长为m ,则22162m d ⎛⎫+= ⎪⎝⎭,又因为圆心到直线的最长距离()()2232212d =-+-=所以2min max 216214m d =-=B 正确;选项C :直线l 与被圆C 截得的弦长为21516151-=,当直线l 的斜率不存在时,直线方程为3x =,满足题意;当直线l 的斜率存在时,设直线l 的方程为()23y k x -=-,即320kx y k --+=,2213211k k k --+=+,解得0k =,故直线方程为2y =,综上满足题意的直线方程为3x =或2y =,故选项C 不正确;选项D :当直线经过圆心时,圆上到直线的距离为2的点有4个;当直线不经过圆心时,直线将圆分成优弧与劣弧两个部分,由于半径为4,在优弧上一定存在两个点到直线l 的距离为2,那么此时,在劣弧上有且只有一个点到直线的距离为2.2时,此时圆心到直线的距离最大,又因为半径为4,且422->,所以此时劣弧上有两个点到直线的距离为2,所以不存在,所以选项D 正确.故选:ABD.三、填空题9.(23-24高二下·上海静安·期末)圆2225x y +=在点()3,4M -处的切线方程为.【答案】34250x y -+=【解析】由题意可知:圆2225x y +=的圆心为()0,0O ,半径=5r ,因为()223425-+=,可知点()3,4M -在圆上,又因为404303OM k -==---,可知切线方程的斜率34k =,所以切线方程为()3434y x -=+,即34250x y -+=.故答案为:34250x y -+=.10.(21-22高二上·福建宁德·期中)过圆221x y +=外一点(2,1)P -引圆的两条切线,则经过两切点的直线方程是.【答案】210x y --=【解析】设切点分别为()()1122,,,A x y B x y ,因为点,A B 在圆221x y +=上,所以以,A B 为切点的切线方程分别为:11221,1x x y y x x y y +=+=,而点()2,1P -在两条切线上,所以112221,21x y x y -=-=,即点P 满足直线21210x y x y -=⇒--=.故答案为:210x y --=.11.(23-24高二上·福建厦门·期中)已知直线10x my -+=与22:(1)4C x y -+= 交于A ,B 两点,写出满足“ABC 的m 的一个值.,33-中任意一个皆可以,答案不唯一)【解析】22:(1)4C x y -+= 的圆心为()1,0C ,半径2r =,设点C 到直线AB 的距离为d ,由弦长公式得AB =所以12ABC S d =⨯⨯=△,解得1d =或d =由d =1=m =3m =±.四、解答题12.(23-24高二上·北京·期中)求满足下列条件的曲线方程:(1)求过点()A 3,5且与圆22:2410O x y x y +--+=相切的直线方程;(2)求圆心在直线30x y -=上,与x 轴相切,且被直线0x y -=截得的弦长为.【答案】(1)3x =或512450x y -+=;(2)222610x x y y ++++=或222610x x y y -+-+=【解析】(1)据点()A 3,5可设直线方程为()()()()sin 3cos 50t x t y ---=.圆O 的方程可化为()()22124x y -+-=,故点()1,2到所求直线的距离为22=.所以222242sin 3cos 9cos 4sin 12sin cos 45cos 12sin cos t t t t t t t t t =-+=+-=+-,得()cos 5cos 12sin 0t t t -=.这就说明cos 0t =或5tan 12t =,所以所求直线的方程为3x =或512450x y -+=.(2)设所求圆的圆心坐标为(),3P t t ,由于该圆与x 轴相切,故该圆的半径为3t ,所以该圆的方程是()()22239x t y t t -+-=,即222260x tx y ty t -+-+=.而该圆被直线0x y -=截得的弦长为故该圆圆心到直线0x y -=的距离为d ==1t =±.故所求的圆的方程为222610x x y y ++++=或222610x x y y -+-+=.13.(22-23高二上·广东深圳·期末)已知圆22:270C x y y +--=及内部一点0(1,3)P -,过点0P 作倾斜角为α的直线,与圆C 交于A B ,两点.(1)当135α= 时,求弦AB 长;(2)当弦AB 的长度最小时,求直线AB 的方程.【答案】(2)270x y -+=【解析】(1)因为135α= ,则tan1351AB k ==- ,所以直线AB 的方程为3(1)y x -=-+,即20x y +-=,圆C 的标准方程为22270x y y +--=,即22(1)8x y +-=,可得圆C 的圆心(0,1)C ,半径为r =所以圆心(0,1)C 到直线20x y +-=的距离为2d =,可得弦长为AB ===(2)由圆的弦长公式,可得AB =当圆心(0,1)C 到直线AB 的距离d 最大时,此时弦AB 的长度最小,即0CP AB ⊥时,弦AB 的长度最小,因为031210CP k -==---,所以12AB k =,所以AB 的方程为13(1)2y x -=+,即270x y -+=.。
讲义-直线与圆的位置关系
im mmixi、直线和圆的位置关系的定义、性质及判定1、设O O的半径为r,圆心0到直线I的距离为d,则直线和圆的位置关系如下表:公共点个数 2 1 0 圆心到直线的距离d与半径r的关系 d r d r d r切点无公共点名称交占八、、直线名称割线切线无二、切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.2. 切线的判定:定义法:和圆只有一个公共点的直线是圆的切线;距离法:到圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3. 切线长和切线长定理:⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.①切线的判定定理设OA为O O的半径,过半径外端 A作I丄0A,贝U O到I的距离d=r, ••• I与O O相切.因此,我们得至U:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注:定理的题设① 经过半径外端”② 垂直于半径”,两个条件缺一不可.结论是直线是圆的切线”•举例说明:只满足题设的一个条件不是O0的切线.②切线的性质定理及其推论切线的性质定理:圆的切线垂直于过切点的半径.OMTTAB三角形内切圆叫做圆的外切三角形 2 直角三角形的内切圆半径与三边关系 3 AA AD __b F OB C C a B_ B图 A B 则内切圆半径cAB 是 BO 'AO(1) 1 2 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形 四、典例分析:切线的性质及判定【例1】如图C 的对边,面积为S的直径,点D 在AB 的延长线上,过点D 作1 )中,设 a b O 的切线,切点为C ,若/ A 251.定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形 E C图(2)中,C 90,则r2 AB③经过切点 1 AM---- 2 M 为切点a ,b, c 分别为 ABC 中 ° - A1) r —,其中p P -a b c2OA 过圆心,OA 过切点A ,则OA AT ②经过圆心,垂直于切线过切点1 AB 过圆心 M 为切点MT垂直于切线过圆心MTAM 过圆心我们分析:这个定理共有三个条件:一条直线满足:(1)垂直于切线(2)过切点 (3)过圆心 定理:①过圆心,过切点 垂直于切线O【例3】【巩固】径为2,则CD 的长为( A . 2 3 B . 4.3C . 2巩固BC AD 于点C ,【例4】巩固则ZD _____例1 例2 巩固【例2】 如图,直线 AB 与O O 相切于点A , O O 的半径为2,若 OBA 30,则0B 的长为()C. 2.3D. 2【巩固】如图,AB 与O O 相切于点B ,线段0A 与弦BC 垂直于点D , AOB 60 , BC 4cm ,则切线AB _________ cm .如图,若 00 的直径AB 与弦AC 的夹角为30,切线CD 与AB 的延长线交于点 D ,且0O 的半AB 2,半圆O 的半径为2,则BC 的长为如图,已知以直角梯形 ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相【巩固】如图,已知以直角梯形 ABCD 中,以AB 为直径的圆与CD 相切,求证:以CD 为直径的圆与 AB如图,EB 为半圆O 的直径,点D , C ,E .求证:以 CD 相切.相切.【例5】 【例6】 【例7】 CBOMPCAOBABO如图 C求证 DOC 的值求AD ABO(3) 如图 若OADABO如图 D(2) (1 )AD 平行且交BM 于CCD 是®O 的切线求证:AC 是0O 的切线。
第九章 9.4 直线与圆、圆与圆的位置关系
变式训练 2 已知点 A(1,a),圆 x2+y2=4. (1)若过点 A 的圆的切线只有一条,求 a 的值及切线方程; (2)若过点 A 且在两坐标轴上截距相等的直线与圆相切,求 a 的 值及切线方程.
解 (1)由于过点 A 的圆的切线只有一条,则点 A 在圆上,故 12+a2=4,∴a=± 3.
(2)解 设直线与圆交于 A(x1,y1)、B(x2,y2)两点, 则直线 l 被圆 C 截得的弦长
AB= 1+k2|x1-x2|
=2 8-14+k+k211k2=2
11-41k++k32 ,
令 t=41k++k32,则 tk2-4k+(t-3)=0,
当 t=0 时,k=-34,当 t≠0 时,因为 k∈R,
∴d=
22r,即|m5|=
2 2·
5,
解得 m=±522.
故当 m=±522时,直线与圆在两交点处的两条半径互相垂直.
探究提高
(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用 直线的方程与圆的方程联立后得到的一元二次方程的判别式来 判断直线与圆的位置关系; (2)勾股定理是解决有关弦问题的常用方法; (3)两半径互相垂直也可利用两直线垂直时斜率 k1·k2=-1.
要点梳理
忆一忆知识要点
2.计算直线被圆截得的弦长的常用方法 (1)几何方法 运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成 直角三角形计算. (2)代数方法 运用韦达定理及弦长公式 AB= 1+k2|xA-xB|= (1+k2)[(xA+xB)2-4xAxB]. 说明:圆的弦长、弦心距的计算常用几何方法.
变式训练 1 已知直线 l:y=kx+1,圆 C:(x-1)2+(y+1)2=12. (1)试证明:不论 k 为何实数,直线 l 和圆 C 总有两个交点; (2)求直线 l 被圆 C 截得的最短弦长.
直线与圆的位置关系 - 中档 - 讲义
直线与圆的位置关系知识讲解一、直线与圆的位置关系位置关系有三种:相交、相切、相离 判断直线与圆的位置关系:1)代数法:将直线方程与圆的方程联立成方程组,利用消元法消去一个元后,得到关于另一个元的一元二次方程,求出其∆的值,然后比较判别式∆与0的大小关系, 若0∆<,则直线与圆相离 若0∆=,则直线与圆相切 若0∆>,则直线与圆相交2)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系:d r <⇔相交,d r =⇔相切,d r >⇔相离.二、计算直线被圆截得的弦长的常用方法1)几何方法:运用弦心距、弦长的一半及半径构成的直角三角形计算.2)代数方法:运用韦达定理及弦长公式2221(1)[()4]A B A B A B AB k x x k x x x x =+-=++-说明:圆的弦长、弦心距的计算常用几何方法.三、圆与圆的位置关系的判定判定:设2222221111122222:()()(0),:()()(0)C x a y b r r C x a y b r r -+-=>-+-=>e e ,则有:12121C C r r C >+⇔e 与2C e 外离 12121C C r r C =+⇔e 与2C e 外切 1212121r r C C r r C -<<+⇔e 与2C e 相交 1212121()C C r r r r C =-≠⇔e 与2C e 内切 12121C C r r C <-⇔e 与2C e 内含四、圆的切线方程问题1.求圆切线的方法a)过圆222x y r +=上一点00(,)x y 的切线方程为200x x y y r +=已知圆的方程是222x y r +=,求经过圆上一点00(,)M x y 的切线方程.解:当点M 不在坐标轴上时,设切线的斜率为k ,半径OM 的斜率为1k , ∵圆的切线垂直于过切点的半径,∴11k k =-,又∵010y k x =,∴00x k y =-,∴经过点M 的切线方程是0000()x y y x x y -=--, 整理得:220000x x y y x y +=+,又∵点00(,)M x y 在圆上,∴22200x y r +=, ∴所求的切线方程是200x x y y r +=.注:当点M 在坐标轴上时,可以验证上面的方程同样适用. b)求过圆外一点00(,)x y 的圆的切线方程:几何方法: 设切线方程为00(),y y k x x -=-即000.kx y kx y --+=由圆心到直线的距离等于半径,可求得k ,切线方程即可求出.代数方法:设切线方程为00(),y y k x x -=-即000.kx y kx y --+=代入圆的方程,得到一个关于x 的一元二次方程,由0=V 求得k ,切线方程即可求出.2.圆的切线方程常见结论a)已知22222222123:,:()(),:0,O x y r O x a y b r O x y Dx Ey F +=-+-=++++=e e e 则以00(,)M x y 为切点的1O e 的切线方程200;xx yy r +=2O e 的切线方程200()()()(),x a x a y b y b r --+--=3O e 切线方程0000()()022D x xE y y xx yyF ++++++=b)已知圆的222x y r +=的切线斜率为k ,则圆的切线方程为y kx =±c)已知切线过圆外一点11(,)P x y ,可设切线方程为11(),y y k x x -=-利用相切条件确定斜率k ,此时必有两条切线,不能漏掉斜率不存在的那一条切线.d)切线段长公式:从圆外一点00(,)P x y 引圆222()()x a y b r -+-=的切线,则P 到切点的切线段长为d ;从圆外一点00(,)P x y 引圆22x y Dx Ey F ++++=的切线,则P 到切点的切线段长为d =五、圆系方程概念:具有某种共同性质的圆的集合,称为圆系.1)同心圆系2220000()(),,x x y y r x y -+-=为常数,r 为参数.2)圆心共线且半径相等圆系22200()(),x x y y r -+-=r 为常数,圆心00(,)x y 在直线0ax by c ++=上移动.3)过两已知圆22(,)0(1,2)i i i i f x y x y D x E y F i =++++==的交点的圆系方程为2222111222()0x y D x E y F x y D x E y F λ+++++++++=即12(,)(,)0(1)f x y f x y λλ+=≠-. 当1λ=-时,方程变为121212()()0,D D x E E y F F -+-+-=表示过两圆的交点的直线(当两圆是同心圆时,此直线不存在),当两圆相交时,此直线为公共弦所在直线;当两圆相切时,此直线为两圆的公切线;当两圆相离时,此直线为与两圆连心垂直的直线. 4)过直线与圆交点的圆系方程设直线:0l Ax By C ++=与圆22:0C x y Dx Ey F ++++=相交,则方程22()0x y Dx Ey F Ax By C λ+++++++=表示过直线l 与圆C 的两个交点的圆系方程.典型例题一.选择题(共8小题)1.(2016•新课标Ⅱ)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.2【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.2.(2006•安徽)直线x+y=1与圆x2+y2﹣2ay=0(a>0)没有公共点,则a的取值范围是()A.(0,)B.(,)C.(,)D.(0,)【解答】解:把圆x2+y2﹣2ay=0(a>0)化为标准方程为x2+(y﹣a)2=a2,所以圆心(0,a),半径r=a,由直线与圆没有公共点得到:圆心(0,a)到直线x+y=1的距离d=>r=a,当a﹣1>0即a>1时,化简为a﹣1>a,即a(1﹣)>1,因为a>0,无解;当a﹣1<0即0<a<1时,化简为﹣a+1>a,即(+1)a<1,a<=﹣1,所以a的范围是(0,﹣1)故选:A.3.(2016•山东)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切B.相交C.外切D.相离【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B.4.(2014•北京)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.5.(2013•重庆)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.【解答】解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,由图象可知当P,M,N,三点共线时,|PM|+|PN|取得最小值,|PM|+|PN|的最小值为圆C3与圆C2的圆心距减去两个圆的半径和,即:|AC2|﹣3﹣1=﹣4=﹣4=5﹣4.故选:B.6.(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选:D.7.(2015•商丘一模)若圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆C所作切线长的最小值是()A.2 B.3 C.4 D.6【解答】解:圆C:x2+y2+2x﹣4y+3=0化为(x+1)2+(y﹣2)2=2,圆的圆心坐标为(﹣1,2)半径为.圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,所以(﹣1,2)在直线上,可得﹣2a+2b+6=0,即a=b+3.点(a,b)与圆心的距离,,所以点(a,b)向圆C所作切线长:==≥4,当且仅当b=﹣1时弦长最小,为4.故选:C.8.(2006•湖南)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同的点到直线l:ax+by=0的距离为,则直线l的倾斜角的取值范围是()A.B.C.D.【解答】解:圆x2+y2﹣4x﹣4y﹣10=0整理为,∴圆心坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:ax+by=0的距离为,则圆心到直线的距离应小于等于,∴,∴,∴,,∴,直线l的倾斜角的取值范围是,故选:B.二.填空题(共4小题)9.(2015•重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为x+2y﹣5=0.【解答】解:由题意可得OP和切线垂直,故切线的斜率为﹣==﹣,故切线的方程为y﹣2=﹣(x﹣1),即x+2y﹣5=0,故答案为:x+2y﹣5=0.10.(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.11.(2016•新课标Ⅲ)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.12.(2016•新课标Ⅲ)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|=4.【解答】解:由题意,圆心到直线的距离d==3,∴|AB|=2=2,∵直线l:x﹣y+6=0∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.三.解答题(共3小题)13.(2015春•赣州期末)已知定点M(0,2),N(﹣2,0),直线l:kx﹣y﹣2k+2=0(k为常数).(Ⅰ)若点M,N到直线l的距离相等,求实数k的值;(Ⅱ)以M,N为直径的圆与直线l相交所得的弦长为2,求实数k的值.【解答】解:(Ⅰ)直线l与MN平行时,k=1…(3分)直线l经过M,N的中点时,…(5分)(Ⅱ)以M,N为直径的圆,圆心C(﹣1,1),半径…(7分)因此圆心到直线的距离等于1,即…(8分)解得…(10分)14.(2015春•张家界期末)已知直线l1:ax﹣y﹣2=0经过圆C:(x﹣1)2+y2=1的圆心.(1)求a的值;(2)求经过圆心C且与直线l:x﹣4y+1=0平行的直线l2的方程.【解答】解:(1)将圆心(1,0)代入得直线l1,得a﹣2=0,…(4分)则a=2;…(5分)(2)设所求直线方程x﹣4y+λ=0,…(8分)∵C(1,0)点在直线x﹣4y+λ=0上,∴λ=﹣1,…(11分)故所求直线方程为:x﹣4y﹣1=0.…(12分)15.(2014秋•增城市期末)求过点A(2,﹣1),圆心在直线y=﹣2x上,且与直线x+y﹣1=0相切的圆的方程.【解答】解:设圆心为(a,﹣2a),圆的方程为(x﹣a)2+(y+2a)2=r2(2分)则(6分)解得a=1,(10分)因此,所求得圆的方程为(x﹣1)2+(y+2)2=2(12分)。
直线与圆的位置关系—知识讲解
直线与圆的位置关系—知识讲解【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.切线的定义:直线与圆有唯一的公共点时,这条直线叫做圆的切线,这个唯一的公共点叫做切点.此时直线与圆的位置关系称为相切.2.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.3.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的性质定理和判定定理1.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质定理中要注意:圆的切线是与过切点的半径垂直,不是与任意半径都垂直.2.切线的判定定理:过半径外端且垂直于半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、直线与圆的位置关系1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB·CD=AC·BC,∴AC BC34CD===2.4AB5∙⨯(cm),(1)当r=2cm时,CD>r,∴圆C与AB相离;(2)当r=2.4cm时,CD=r,∴圆C与AB相切;(3)当r=3cm时,CD<r,∴圆C与AB相交.【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离【答案】B.类型二、切线的判定与性质2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.【思路点拨】作垂直,证半径.【答案与解析】证明:过D作DF⊥AC于F.∵∠B=90°,∴DB⊥AB.又AD平分∠BAC,∴ DF=BD=半径.∴ AC与⊙D相切.【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.3.(2015•黄石)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【思路点拨】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【答案与解析】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.【总结升华】此题主要考查了切线的判定以及含30°角的直角三角形的性质.解题时要注意连接过切点的半径是圆中的常见辅助线.4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.【答案与解析】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切.(2)如上图,作DF⊥AB,垂足为F.∴∠DFA=∠DEA=90°.∵∠EAD=∠FAD,AD=AD,∴△EAD≌△FAD.∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.在Rt△DOF中,DF4.∴DE=DF=4.【总结升华】本题综合考察了平行线的判定,全等三角形的判定和勾股定理的应用,是一道很不错的中档题.举一反三:【变式1】(2015•盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.【答案与解析】(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.C B举一反三:【变式2】如图所示,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B,则AC 等于( )AC..【答案】因为以AB 为直径的⊙O 与BC 相切于点B ,所以∠ABC =90°,在Rt△ABC中,AC==C .类型三、三角形的内切圆5.如图,已知O 是△ABC 的内心,∠A=50°,求∠BOC 的度数.【思路点拨】O 是△ABC 的内心,∠A=50°,根据内切圆的性质可求∠OBC+∠OCB=11(180)=(18050)=6522A ︒-︒-︒︒∠ ,在△BOC 中,根据三角形内角和求出∠BOC 的度数. 【答案与解析】解:∵O 是△ABC 的内心,∠A=50°,∴∠OBC+∠OCB=11(180)=(18050)=6522A ︒-︒-︒︒∠, ∴∠BOC=180°-65°=115°.【变式】如图,△ABC中,∠C=90°,BC=4,AC=3,⊙O内切与△ABC,则△ABC去除⊙O剩余阴影部分的面积为()A.12-πB. 12-2πC. 14-4πD. 6-π【答案】D.C B。
精品 九年级数学上册圆 与直线有关的位置关系 一同步讲义+同步练习
第6题 ) D. 4 5 )
5 2
B. 5
C. 2 5
5.如图,AB 是⊙O 直径,P 是 AB 延长线上一点,PC 切⊙O 于点 C,PC=3,PB:AB=1:3,则⊙O 的半径为(
5 A. 2
A.2 7.下列命题中的假命题是(
B. 3
9 C. 4
) C. 3
9 D. 2
D. 2 3
6.如图,正三角形的内切圆半径为 1,那么这个正三角形的边长为( B.3 )
34.如图,在 Rt△ABC 中,∠BAC 的平分线交 BC 于点 D,E 为 AB 上一点,DE=DC,以 D 为圆心,DB 为半径作⊙D. 求证:(1)AC 是⊙O 的切线;(2)AB+BE=AC.
第 6 页 共 8 页
九年级数学上册 同步讲义
与直线有关的位置关系一 同步测试题 满分:100 分 时间:25 分钟 姓名: 得分: ) 1.⊙O 的直径是 3,直线 l 与⊙0 相交,圆心 O 到直线 l 的距离是 d,则 d 应满足 (
A.d>3 B.1.5<d<3 C.O≤d<1.5 D.d<O 2.直角三角形 ABC 中,∠C=900,AC=2,BC=4,如果以点 A 为圆心,AC 为半径作⊙A,那么斜边中点 D 与⊙A 的位置关系是( ) A.点 D 在⊙A 外 B.点 D 在⊙A 上 C.点 D 在⊙A 内 D.无法确定 3.如图, AB、 AC 与⊙O 相切于 B、 C, ∠A=50°, 点 P 是圆上异于 B、 C 的一个动点, 则∠BPC 的度数是( ) A.65° B.115° C.60°和 115° D.130°和 50°
.
第 12 题
第 13 题
第 14 题 .
最新讲义-直线与圆的位置关系
一、直线和圆的位置关系的定义、性质及判定1、设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:从另一个角度,直线和圆的位置关系还可以如下表示:二、切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.2. 切线的判定:定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理:⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. ①切线的判定定理设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线._ A_l _l _A_l1)连接半径,证直线与此半径垂直;(2)作垂线,证垂足在圆上②切线的性质定理及其推论切线的性质定理:圆的切线垂直于过切点的半径.三、三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 3.直角三角形的内切圆半径与三边关系(1) (2)图(1)中,设a b c ,,分别为ABC ∆中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=︒,则()12r a b c =+-四、典例分析:切线的性质及判定_ O_F _E_ D _ C _ B_ A_ C_ B _ A _ C_ B_ A_c_ b _a_c_ b_a_T_A【例1】 如图,AB 是O e 的直径,点D 在AB 的延长线上,过点D 作O e 的切线,切点为C ,若25A =︒∠,则D =∠______.例1例2巩固【例2】 如图,直线AB 与O ⊙相切于点A ,O ⊙的半径为2,若30OBA ∠=︒,则OB 的长为()A .B .4C .D .2【巩固】如图,AB 与O ⊙相切于点B ,线段OA 与弦BC 垂直于点D ,60AOB ∠=︒,4cm BC =,则切线AB = cm .【例3】 如图,若O e 的直径AB 与弦AC 的夹角为30︒,切线CD 与AB 的延长线交于点D ,且O e 的半径为2,则CD 的长为( ) A .B .C .2D .4巩固【巩固】如图,EB 为半圆O 的直径,点A 在EB ,BC AD ⊥于点C ,2AB =,半圆O 的半径为2,则BC 的长为_______________.【例4】 如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D C E ,,.求证:以AB 为直径的圆与CD 相切.例4 巩固【巩固】如图,已知以直角梯形ABCD 中,以AB 为直径的圆与CD 相切,求证:以CD 为直径的圆与AB相切.AD_ A _ O_C _B_M DC【例5】 已知:如图,在ABC ∆中,AB AC =,以BC 为直径的半圆O 与边AB 相交于点D ,切线DE AC ⊥,垂足为点E . 求证:(1)ABC ∆是等边三角形;(2)13AE CE =.【巩固】如图,MP 切O ⊙于点M ,直线OP 交O ⊙于点A B 、,弦AC MP ∥,求证:MO BC ∥.【例6】 如图,ABC ∆中,AB AC =,O 是BC 的中点,以O 为圆心的圆与AB 相切于点求证:AC 是O e 的切线。
直线与圆的位置关系讲义
讲义 直线与圆的位置关系一、知识梳理1、直线与圆有相交、相切、相离三种的位置关系,记圆心到直线的距离为d ,圆半径为r ,从几何角度看,相交⇔d r < ;相切⇔d r =;相离d r ⇔>;从代数角度看,联立直线和圆的方程,若有两组解则相交;只有一组解则相切;无解则相离。
2、特别的,如果动直线过圆内一个定点,则动直线与圆必相交。
【2012高考真题重庆理3】任意的实数k ,直线1+=kx y 与圆222=+y x 的位置关系是( )A . 相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心【2012高考真题陕西理4】已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( )A.l 与C 相交B. l 与C 相切C.l 与C 相离D. 以上三个选项均有可能3、几何性质的运用,尤其是两类直角三角形:相交时,弦心距、半径、半弦组成的直角三角形;相切时, 切点、圆心、圆外的点构成的直角三角形。
二、知识运用 例1、已知直线l :5120x y a ++=,圆C :2220x y x +-=。
(1)若l 与圆C 相切,求a 的值; (2)若l 与圆C 相交,求a 的取值范围;(3)若l 与圆C 相离,求a 的取值范围;(4)若l 被圆C 截得的弦长为1013,求a 的值。
例2、过点(2,4)M 向圆C :22(1)(3)1x y -++=引两条切线,切点分别为,P Q ,求:(1)直线PQ 的方程;(2)切点弦PQ 的长。
例3、圆C 的圆心在直线l 1:x -y -1=0上,圆C 与直线l 2:4x +3y +14=0相切,且截直线l 3:3x +4y +10=0 所得的弦长为6,求圆C 的方程。
例4、已知圆C :()224x y a +-=,点(1,0)A 。
(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围;(2)设,AM AN 是圆C 的两条切线,,M N 为切点,当5MN =时,求MN 所在直线的方程。
直线与圆的位置关系.讲义学生版
板块 考试要求 A 级要求B 级要求C 级要求直线与圆的位置关系 了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间关系;会过圆上一点画圆的切线 能判定一条直线是否为圆的切线;能利用直线和圆的位置关系解决简单问题 能解决与切线有关的问题 切线长 了解切线长的概念会根据切线长知识解决简单问题一、直线与圆的位置关系设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表: 位置关系 图形定义性质及判定相离lOd r直线与圆没有公共点. d r >⇔直线l 与O ⊙相离相切 lOdr直线与圆有唯一公共点,直线叫做圆的切线,唯一公共点叫做切点. d r =⇔直线l 与O ⊙相切相交lOd r直线与圆有两个公共点,直线叫做圆的割线.d r <⇔直线l 与O ⊙相交1. 切线的性质(1) 定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(2) 注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB 过圆心,AB 过切点M ,则AB l ⊥. ②过圆心,垂直于切线⇒过切点.AB 过圆心,AB l ⊥,则AB 过切点M . ③过切点,垂直于切线⇒过圆心.AB l ⊥,AB 过切点M ,则AB 过圆心.知识点睛中考要求直线与圆的位置关系(1)l2.切线的判定(1)定义法:和圆只有一个公共点的直线是圆的切线;(2)距离法:和圆心距离等于半径的直线是圆的切线;(3)定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.l3.切线长和切线长定理(1)切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1.三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2.多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3.直角三角形内切圆的半径与三边的关系cbac baO FEDCAC BACBA设a、b、c分别为ABC△中A∠、B∠、C∠的对边,面积为S,则内切圆半径为srp=,其中()12p a b c=++.若90C∠=︒,则()12r a b c=+-.一、直线与圆位置关系的确定【例1】 如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设OP x =,则x 的取值范围是 A .0≤x 2 B .2-x 2C .-1≤x ≤1 D .x 2PBOA【例2】 Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是( ) A .0个 B .l 个 C .2个 D .3个【巩固】在Rt ABC ∆中,90C ∠=︒,12cm AC =,16cm BC =,以点C 为圆心,r 为半径的圆和AB 有怎样的位置关系?为什么?⑴ 9cm r =;⑵10cm r =;⑶9.6cm r =.DCBA【例3】 如下左图,在直角梯形ABCD 中,AD BC ∥,90C =︒∠,且AB AD BC >+,AB 是O 的直径,则直线CD 与O 的位置关系为( ) A .相离 B .相切 C .相交 D .无法确定OBA【巩固】如图,BC 是半圆O 的直径,点D 是半圆上的一点,过点D 作O 的切线AD ,BA DA ⊥,10BC =,4AD =,那么直线CE 与以点O 为圆心,52为半径的圆的位置关系是 .例题精讲二、切线的性质及判定【例4】已知:O为BAC⊙⊥于D,以O为圆心.以OD为半径作圆O.求证:O ∠平分线上一点,OD AB与AC相切.【巩固】如图,ABC⊙与腰AB相切于点D,求证AC ∆为等腰三角形,AB AC=,O是底边BC的中点,O与O⊙相切.【例5】已知:如图,ABC∠=∠.求证:AD是O的∆内接于O,AD是过A的一条射线,且B CAD切线.【巩固】已知:如图,AB是O∠.求⊙上一点,MN过C点,AD MN⊙的直径,C为O⊥于D,AC平分DAB 证:MN为O⊙的切线.【例6】如下图所示,以Rt ABC∥交AB于E,⑴∆的直角边BC为直径作半圆O,交斜边于D,OE AC 求证:DE是O⊙的切线;【巩固】如下图所示,以Rt ABC∥交AB于E,求∆的直角边BC为直径作半圆O,交斜边于D,OE AC 证:DE是O⊙的切线.【例7】如图,已知OA是O⊙的半径,B是OA中点,BC OA=.求⊥,P是OA延长线上一点,且PA AC 证:PC是O⊙的切线.【巩固】如图,AB是O∠=∠.求⊥于D.P在BA延长线上,且PCA ACD ⊙的直径,C点在圆上,CD AB证:PC是O⊙的切线.BP【例8】 如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B .(1)求证:AD 是⊙O 的切线.(2)若⊙O 的半径为3,AB =4,求AD 的长.【例9】 如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.【例10】 如图,O ⊙是Rt ABC ∆的外接圆,90ABC ∠=︒,点P 是圆外一点,PA 切O ⊙于点A ,且PA PB =. (1)求证:PB 是O ⊙的切线.(2)已知1PA BC ==,求O ⊙的半径.【例11】 如图,AB 为O ⊙的直径,D 是BC 的中点,DE AC ⊥交AC 的延长线于E ,O ⊙的切线BF 交AD的延长线于点F .(1)求证:DE 是O ⊙的切线;(2)若3DE =,O ⊙的半径为5,求BF 的长.FAB【例12】 已知,如图在矩形ABCD 中,点O 在对角线AC 上,以OA 长为半径的圆O 与AD AC 、分别交于点E F 、,ACB DCE ∠=∠.(1)判断直线CE 与O ⊙的位置关系,并证明你的结论;(2)若tan 22ACB BC ∠==,求O ⊙的半径.【巩固】如图,已知O 是正方形ABCD 对角线上一点,以O 为圆心、OA 长为半径的O ⊙与BC 相切于M ,与AB 、AD 分别相交于E 、F . (1)求证:CD 与O ⊙相切.(2)若正方形ABCD 的边长为1,求O ⊙的半径.【例13】 已知:在O 中,AB 是直径,AC 是弦,OE AC ⊥于点E ,过点C 作直线FC ,使FCA AOE ∠=∠,交AB 的延长线于点D .(1)求证:FD 是O 的切线;(2)设OC 与BE 相交于点G ,若2OG =,求O 半径的长; (3)在(2)的条件下,当3OE =时,求图中阴影部分的面积.【例14】 如图,AB BC =,以AB 为直径的O ⊙交AC 于点D ,过D 作DE BC ⊥,垂足为E .(1)求证:DE 是O ⊙的切线;(2)作DG AB ⊥交O ⊙于G ,垂足为F ,若308A AB ∠=︒=,,求弦DG 的长.【巩固】如图,在ABC ∆中,AB BC =,以AB 为直径的O ⊙与AC 交于点D ,过D 作DF BC ⊥,交AB 的延长线于E ,垂足为F .(1)求证:直线DE 是O ⊙的切线;(2)当58AB AC ==,时,求cos E的值.【例15】 如图,Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.EB【巩固】如图,AC 为O ⊙的直径,B 是O ⊙外一点,AB 交O ⊙于E 点,过E 点作O ⊙的切线,交BC 于D 点,DE DC =,作EF AC ⊥于F 点,交AD 于M 点. (1)求证:BC 是O ⊙的切线; (2)EM MF =.D CB A【巩固】如图,AB 是O ⊙的的直径,BC AB ⊥于点B ,连接OC 交O ⊙于点E ,弦AD OC ∥,弦DF AB⊥于点G .(1)求证:点E 是BD 的中点; (2)求证:CD 是O ⊙的切线;(3)若4sin 5BAD ∠=,O ⊙的半径为5,求DF 的长.【例16】 如图,AB 是O 的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且ECF E ∠=∠.(1)证明CF 是O 的切线;(2)设O 的半径为1,且AC CE =,求MO 的长.OE F N AM BC【巩固】如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF EF =;(2)求证:PA 是O 的切线;(3)若FG BF =,且O 的半径长为32,求BD 和FG 的长度.G PF E OD CBA1. 已知60ABC ∠=︒,点O 在ABC ∠的平分线上,5cm OB =,以O 为圆心3cm 为半径作圆,则O 与BC 的位置关系是________.2.如图,半径为3cm 的O ⊙切直线AC 于B ,3cm 3AB BC ==,,则AOC ∠的度数是 .课后作业3.如图所示在Rt ABC ∆中,90B ∠=︒,A ∠的平分线交BC 于D ,E 为AB 上一点,DE DC =,以D 为圆心,以DB 的长为半径画圆.求证:(1)AC 是D ⊙的切线;(2)AB EB AC +=.E B4.已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠.求证:(1)DC 为O ⊙的切线;(2)2CD AD BD =⋅.5.如图,四边形ABCD 内接于O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠. (1)求证:AE 是O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.6.如图,等腰三角形ABC 中,10AC BC ==,12AB =.以BC 为直径作O ⊙交AB 于点D ,交AC 于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是O ⊙的切线; (2)求sin E ∠的值.E C7.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点∠.B.小圆的切线AC与大圆相交于点D,且CO平分ACB⑴试判断BC所在直线与小圆的位置关系,并说明理由;⑵试判断线段AC AD BC、、之间的数量关系,并说明理由;⑶若8cm10cm,,求大圆与小圆围成的圆环的面积.AB BC==。
24.2.2直线与圆位置关系讲义 教师版
24.2.2直线和圆的位置关系知识点一:直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.例题:已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定【分析】根据圆心到直线的距离5等于圆的半径5,则直线和圆相切.【解答】解:∵圆心到直线的距离5cm=5cm,∴直线和圆相切.故选:B.【点评】此题考查直线与圆的关系,能够熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.变式1:半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.相切或相交【分析】分两种情况求解:OA⊥l;OA不垂直l.根据圆心到直线的距离与半径的大小关系判定.【解答】解:若OA⊥l,则圆心O到直线l的距离就是OA的长,等于半径,所以直线l与⊙O相切;若OA与直线l不垂直,根据垂线段最短,圆心O到直线l的距离小于5,即小于半径,所以直线l与⊙O相交.故选:D.【点评】此题考查的是直线与圆的位置关系,根据圆心到直线的距离d与半径r的大小关系解答.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.变式2:直线l上的一点到圆心的距离等于半径,则直线与圆的位置关系一定是()A.相离B.相切C.相交D.相切或相交【分析】若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.【解答】解:∵圆心到直线的距离等于或小于圆的半径,∴直线和圆相交或相切.故选:D.【点评】此题考查直线与圆的关系,注意:直线上一点到圆心的距离不一定是圆心到直线的距离.知识点二:切线的判定定理(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.例题:如图,PA、PB分别切⊙O于A、B,点C和点D分别是线段PA、PB上的动点,并且CD始终保持与圆O相切,若PA=8cm,则△PCD的周长是()A.8B.12C.16D.不能确定【分析】利用切线长定理得到PB=PA=8,CA=CE,DE=DB,然后根据三角形周长的定义和等量代换计算△PCD 的周长.【解答】解:∵PA、PB分别切⊙O于A、B,∴PB=PA=8,∵CD切⊙O于E,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=8+8=16(cm).故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理.变式1:如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27°B.32°C.36°D.54°【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.【解答】解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=27°.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确得出∠AOP的度数是解题关键.变式2:如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.5【分析】直接利用切线的性质得出∠PDO=90°,再利用相似三角形的判定与性质分析得出答案.【解答】解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.【点评】此题主要考查了切线的性质以及相似三角形的判定与性质,正确得出△PDO∽△PCB是解题关键.知识点三:切线的性质定理(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.例题:如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O 的一条切线MK,切点为K,则MK=()A.3B.2C.5D.【分析】以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【解答】解:如图所示:MK=,故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.变式1:如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B 等于()时,PA与⊙O相切.A.20°B.25°C.30°D.40°【分析】先利用切线的性质求出∠AOP=50°,再利用等腰三角形的性质即可得出结论.【解答】解:∵PA是⊙O的切线,∴∠PAO=90°,∴∠AOP=90°﹣∠P=50°,∵OB=OC,∴∠AOP=2∠B,∴∠B=∠AOP=25°,故选:B.【点评】此题主要考查了切线的性质,直角三角形的性质,等腰三角形的性质,三角形的外角的性质,求出∠AOP是解本题的关键.变式2:已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF 与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF【分析】根据切线的判定定理可求得需要满足和条件,即可求得答案.【解答】解:∵点P在⊙O上,∴只需要OP⊥EF即可,故选:D.【点评】本题主要考查切线的判定,熟练掌握切线的判定定理是解题的关键.知识点四:切线长定理(1)圆的切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.例题:如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10B.18C.20D.22【分析】根据切线长定理得出PA=PB=10,CA=CE,DE=DB,求出△PCD的周长是PC+CD+PD=PA+PB,代入求出即可.【解答】解:∵PA、PB切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=PA+PB=10+10=20.故选:C.【点评】本题考查了切线长定理的应用,关键是求出△PCD的周长=PA+PB.变式1:如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG 的长等于()A.13B.12C.11D.10【分析】根据平行线的性质以及切线长定理,即可证明∠BOC=90°,再根据勾股定理即可求得BC的长,再结合切线长定理即可求解.【解答】解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵CD、BC,AB分别与⊙O相切于G、F、E,∴∠OBC=∠ABC,∠OCB=∠BCD,BE=BF,CG=CF,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∴BC==10,∴BE+CG=10(cm).故选:D.【点评】此题主要是考查了切线长定理.从圆外一点引圆的两条切线,它们的切线长相等,且圆心和这点的连线平分两条切线的夹角.变式2:如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是24cm.【分析】连接OA、OB,由切线长定理可得:PA=PB,DA=DC,EC=EB;由勾股定理可得PA的长,△PDE的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB,即可求得△PDE的周长.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.【点评】本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.知识点五:三角形的内切圆(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.例题:如图,圆O是△ABC的内切圆,分别切BA、BC、AC于点E、F、D,点P在弧DE上,如果∠EPF=70°,那么∠B=()A.40°B.50°C.60°D.70°【分析】根据圆心角与圆周角的关系得出∠EOF=140°,进而得出∠B的度数即可.【解答】解:∵∠EPF=70°,∴∠EOF=2∠EPF=140°,∵BE、BF是切线,∴∠BEO=∠BFO=90°,∴∠B=360°﹣90°﹣90°﹣140°=40°,故选:A.【点评】此题考查三角形的内切圆与内心,关键是根据圆心角与圆周角的关系得出∠EOF=140°.变式1:下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【解答】解:(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点评】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.变式2:在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,△ABC内切圆与外接圆面积之比为()A.2:5B.3:4C.4:25D.9:61【分析】根据勾股定理求出直角三角形的斜边长,分别求出内切圆与外接圆的半径,根据圆的面积公式计算即可.【解答】解:∵∠C=90°,AC=6cm,BC=8cm,∴AB==10cm,∴△ABC内切圆的半径==2cm,外接圆半径==5cm,∴△ABC内切圆与外接圆面积之比为4:25,故选:C.【点评】本题考查的是三角形的内切圆与内心,外接圆与外心,掌握直角三角形的内切圆与外接圆的半径的求法是解题的关键.拓展点一:直线和圆的位置关系的应用例题:点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离【分析】根据圆心到直线的距离d与半径r的大小关系解答.【解答】解:∵点A在圆O上,已知圆O的半径是4,点A到直线a的距离是8,∴圆O与直线a的位置关系可能是相切或相离,故选:D.【点评】此题考查了直线与圆的位置关系,根据圆心到直线的距离d与半径r的大小关系解答.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.变式1:在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB的位置关系是()A.相切B.相交C.相离D.无法确定【分析】过O作OD⊥AB于D,由勾股定理求出AB,根据三角形的面积公式求出OD,把OD和比较即可得出答案.【解答】解:过O作OD⊥AB于D,由勾股定理得:AB==13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>,∴⊙O与AB的位置关系是相离,故选:C.【点评】本题考查了直线与圆的位置关系,三角形的面积等知识点的运用,注意:判断直线与圆的位置关系的思路是过圆心作直线的垂线,比较垂线段的长和半径的大小即可.变式2:⊙O半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定【分析】根据直线和园的位置关系可知,圆的半径小于直线到圆距离,则直线l与O的位置关系是相离.【解答】解:∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选:A.【点评】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.拓展点二:切线判定的应用例题:如图,在平面直角坐标系中,半径为2的⊙P的圆心P的坐标为(3,0),将⊙P沿x轴左平移,使⊙P与y轴相切,则平移的距离为()A.1B.3C.5D.1 或5【分析】分在y轴的左侧和y轴的右侧两种情况写出答案即可.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为5;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为1.故选:D.【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.变式1:如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC 平分∠ABD.求证:CD为⊙O的切线.【分析】先利用BC平分∠ABD得到∠OBC=∠DBC,再证明OC∥BD,从而得到OC⊥CD,然后根据切线的判定定理得到结论.【解答】证明:∵BC平分∠ABD,∴∠OBC=∠DBC,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠DBC,∴OC∥BD,∵BD⊥CD,∴OC⊥CD,∴CD为⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.变式2:如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.【分析】(1)连接DE,如图,利用圆内接四边形的性质得∠DEB=60°,再根据圆周角定理得到∠BDE=90°,然后根据含30度的直角三角形三边的关系计算BD的长;(2)连接EA,如图,根据圆周角定理得到∠BAE=90°,而A为的中点,则∠ABE=45°,再根据等腰三角形的判定方法,利用BA=AP得到△BEP为等腰直角三角形,所以∠PEB=90°,然后根据切线的判定定理得到结论.【解答】(1)解:连接DE,如图,∵∠BCD+∠DEB=180°,∴∠DEB=180°﹣120°=60°,∵BE为直径,∴∠BDE=90°,在Rt△BDE中,DE=BE=×2=,BD=DE=×=3;(2)证明:连接EA,如图,∵BE为直径,∴∠BAE=90°,∵A为的中点,∴∠ABE=45°,∵BA=AP,而EA⊥BA,∴△BEP为等腰直角三角形,∴∠PEB=90°,∴PE⊥BE,∴直线PE是⊙O的切线.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.拓展点三:切线性质的应用例题:如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3B.C.6D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan ∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.变式1:如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10B.8C.4D.4【分析】由AB是圆的切线知AO⊥AB,结合CD∥AB知AO⊥CD,从而得出CE=4,Rt△COE中求得OE=3及AE=8,在Rt△ACE中利用勾股定理可得答案.【解答】解:∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC===4,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:圆的切线垂直于经过切点的半径及垂径定理.变式2:如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°【分析】由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.【解答】解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握圆的切线垂直于经过切点的半径及圆周角定理.拓展点四:切线长定理的应用例题:如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40°B.140°C.70°D.80°【分析】连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求的∠AOB的度数,然后根据圆周角定理即可求解.【解答】解:∵PA是圆的切线.∴∠OAP=90°,同理∠OBP=90°,根据四边形内角和定理可得:∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣40°=140°,∴∠ACB=∠AOB=70°.故选:C.【点评】本题主要考查了切线的性质,以及圆周角定理,正确求得∠AOB的度数,是解决本题的关键.变式1:如图,圆外切四边形ABCD,且AB=15,CD=9,则四边形的周长是48.【分析】利用圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,即可得.【解答】解:根据圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,∴AB+BC+CD+AD=2×(15+9)=48.故答案为:48.【点评】此题主要考查了切线长定理以及圆外切四边形的性质,正确利用圆外切四边形对边和相等是解题关键.变式2:如图,PA、PB切⊙O于点A、B,PA=6,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是12.【分析】由PA,PB切⊙O于A、B两点,CD切⊙O于点E,根据切线长定理可得:PB=PA=6,CA=CE,DB=DE,继而可得△PCD的周长=PA+PB.【解答】解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,∴PB=PA=6,CA=CE,DB=DE,∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=12.故答案为:12.【点评】此题考查了切线长定理.此题难度不大,注意从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.易错点一:混淆点与点的距离及点到直线的距离的概念例题:已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外离B.外切C.相交D.内切【分析】由⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,又∵2+3=5,3﹣2=1,1<4<5,∴⊙O1与⊙O2的位置关系是相交.故选:C.【点评】此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.变式1:已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能【分析】先求出点P到x轴的距离,再根据直线与圆的位置关系得出选项即可.【解答】解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,故选:A.【点评】本题考查了坐标与图形的性质和直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.变式2:已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P 在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选:A.【点评】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.易错点二:混淆三角形的外心和内心的实质(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(2)内切圆:与三角形各边都相切的圆叫三角形的内切圆内心:三角形的内切圆的圆心叫做三角形的内心,例题:三角形的内心是三角形中()A.三条高的交点B.三边垂直平分线的交点C.三条中线的交点D.三条角平分线的交点【分析】利用三角形的内心的性质解答即可.【解答】解:三角形的内心是三角形中3条角平分线的交点;故选:D.【点评】此题主要考查了三角形的内心的性质,熟练掌握相关性质是解题关键.变式1:正三角形外接圆的半径为2,那么它内切圆的半径为()A.1B.C.D.2【分析】由正三角形外接圆的半径和它的内切圆的数量关系直接得到.【解答】解:等边三角形的外接圆半径是它的内切圆半径的2倍,所以当正三角形外接圆的半径为2时,它的内切圆的半径为1.故选A.【点评】熟练掌握等边三角形的有关性质.特别记住等边三角形的内切圆半径,外接圆半径和它的高的比(1:2:3).变式2:如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个【分析】不妨设∠B=80°,∠A=40°,∠C=60°.求出各个角,首先判定出①③错误,再证明②④正确.【解答】解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD=70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故①③不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故②正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠FED=180°,故④正确.故选:B.【点评】本题考查三角形的内接圆与内心,解题的关键是灵活运用所学知识解决问题,学会利用特殊值法解决问题,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O的切线。
O 的直径,O 的切线,切点为是O 的切线;的值;
9
2
r =,求CD 的长。
O 的直径,O 相切于点O 上A 点的直线6OC =,则 。
O 的直径,O 外一点,O 于E 点,O 的切线,DC ,作EF 于F 点,交点。
BC 是O 的切线;
D C
B
A
D
O相交于O上一点,
AGD
∠。
AD是O的切线;
24
AD EG
==
,,O的半径。
O分别与O的半径为(
B、a b
ab
+
O相切于点
O外一点O的两条切线上分别取一点D、F,使AD
P ∠-
1
90
2
P
︒-∠
O的圆心
O相切于点M,点
O为Rt∆。
O的直径,点
O上运动,且总保持O的切线交
∠=︒时,请你对的形状做出猜想,并给予证明;QPA
60
∆三角形;
⊥时,QCP
QP AB
1)(2)得出的结论,在线段AM
三角形。
O的切线,O上异于︒
C
O
6. 如图,已知O 的直径为AB ,BD OB =,30CAB ∠=︒, 7. 请根据已知条件和所给图形写出4个正确的结论 8. (除OA OB BD ==外):① ;② ; 9. ③ ;④ 。
10. 若圆外切等腰梯形()ABCD AD BC ∥的面积为20,AD 与BC 之和为10,则圆的半径为 。
11.如图,AB 是⊙O 直径,EF 切⊙O 于C ,AD ⊥EF 于D ,求证:AC 2
=AD ·AB 。
12.如图,AB 是⊙O 的弦,AB=12,PA 切⊙O 于A ,PO ⊥AB 于C ,PO=13,求PA 的长。
解题指导:
1. 如图⊿ABC 中∠A =90°,以AB 为直径的⊙O 交BC 于D ,E 为AC 边中点,求证:DE 是⊙O 的切线。
2. 如图,AB 是⊙O 直径,DE 切⊙O 于C ,AD ⊥DE ,BE ⊥DE ,求证:以C 为圆心,CD 为半径的圆C 和AB 相
切。
3.如图,梯形ABCD中,AD∥BC,AB=CD,⊙O分另与AB、BC、CD、AD相切于E、F、G、H,求证:⊙O直径是AD,BC的比例中项。
4.已知:AB是⊙O的直径,AC和BD都是⊙O切线,CD切⊙O于E,EF⊥AB,分别交AB,AD于E、G,求证:EG=FG。
5.。