正反比例的应用题

合集下载

六年级正反比例易错题应用题

六年级正反比例易错题应用题

六年级正反比例易错题应用题一、正比例应用题1. 题目一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。

甲乙两地之间的公路长多少千米?解析:根据题意可知汽车行驶的速度是一定的。

因为速度 = 路程÷时间,当速度一定时,路程和时间成正比例关系。

设甲乙两地之间的公路长x千米。

先求出汽车的速度,已知汽车2小时行驶140千米,速度为140÷2 = 70(千米/小时)。

根据正比例关系可列出比例式:(140)/(2)=(x)/(5)。

然后交叉相乘得到2x = 140×5,2x=700,解得x = 350千米。

2. 题目小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少钱?解析:因为练习本的单价是一定的,单价 = 总价÷数量,当单价一定时,总价和数量成正比例关系。

设买20本练习本需要付x元。

先求出单价,4.5÷9 = 0.5(元/本)。

列出比例式:(4.5)/(9)=(x)/(20)。

交叉相乘得9x = 4.5×20,9x = 90,解得x = 10元。

二、反比例应用题1. 题目一间房子要用方砖铺地,用面积是9平方分米的方砖,需要96块,如果改用面积是4平方分米的方砖,需要多少块?解析:房间地面的总面积是一定的。

因为每块砖的面积×砖的块数 = 房间地面总面积,当房间地面总面积一定时,每块砖的面积和砖的块数成反比例关系。

设改用面积是4平方分米的方砖需要x块。

房间地面总面积为9×96 = 864平方分米。

根据反比例关系可列出方程4x = 9×96。

解得x=(9×96)/(4)=216块。

2. 题目一辆汽车从甲地开往乙地,每小时行60千米,5小时到达。

如果要4小时到达,每小时应行多少千米?解析:甲乙两地的路程是一定的。

因为速度×时间 = 路程,当路程一定时,速度和时间成反比例关系。

(完整版)正反比例应用题

(完整版)正反比例应用题

(完整版)正反⽐例应⽤题正反⽐例应⽤题解答正、反⽐例应⽤题,要注意以下⼏点:1.仔细分析,弄清楚题中有哪三种量,哪两种量在相关联变化的,哪⼀种量是固定不变的。

2.根据三种量的关系,判断相关联的两种量是⽐值(商)⼀定还是积⼀定,即判断相关联的两种量是成正⽐例还是成的⽐例。

3.然后根据正、的正⽐例的意义列出⽐例求解。

例题1 ⼀辆汽车3⼩时⾏135千⽶,照这样计算,这辆汽车6⼩时⾏多少千⽶?例题2 “六⼀”⼉童节,育才⼩学表演⼤型团体操。

原来站36⾏,正好每⾏站24⼈。

后来改站32⾏,每⾏能站多少⼈?例题3 ⼀辆汽车从甲城开往⼄城,3⼩时⾏驶180千⽶,⽤这样的速度再⾏2.4⼩时到达⼄城。

甲、⼄两城相距多少千⽶?例题4东风机械⼚有⼀批煤,原计划每天烧15吨,可烧80天。

实际每天⽐原计划节约20%,这批煤可烧多少天?例题5 ⼀根⽵竿长3⽶,直⽴在地⾯上,量得它的影长是1.25⽶,在同⼀时间,同⼀地点量得⼀棵⼤树的影长6.25⽶,这棵⼤树⾼多少⽶?例题6 ⼀间房⼦要⽤瓷砖铺地,⽤边长3分⽶的正⽅形瓷砖需3200块,⽤边长4分⽶的瓷砖需多少块?例题7 把⼀根长3⽶的圆钢锯成60厘⽶的⼀段,共需要20分钟。

如果改锯成50厘⽶的⼀段,共需要⼏分钟?例题8 甲、⼄两⼈合作完成⼀项⼯程,6天后,⼄因事离开,再由甲单独⼯作10天完成。

已知甲、⼄两⼈⼯作效率的⽐是3:4,⼄单独完成这项⼯程需⼏天?例题9 买甲、⼄两种铅笔共208⽀,甲种铅笔每⽀3⾓,⼄种铅笔每⽀5⾓,两种铅笔⽤去的钱数相同。

问;甲种铅笔买了⼏⽀?例题10 甲、⼄两⼈的钱数之⽐是7:5,如果甲给⼄1.8元,则两⼈的钱数之⽐变为4:3,甲、⼄两⼈现在各有多少元?例题11 甲、⼄、丙三⼈进⾏100⽶赛跑(假设他们各⾃的速度保持不变),甲到达终点时,⼄离终点还有20⽶,丙离终点还有25⽶。

问:⼄到达终点时,丙离终点还有⼏⽶?例题12 ⼩明和⼩丽收集废旧电池,三⽉底时,两⼈收集的节数⽐是5:6。

正反比例的练习题

正反比例的练习题

正反比例的练习题练习题一:某商店购买10个商品的总价格为20元,那么购买20个商品的总价格是多少?解答:我们可以设商品的单价为x元。

根据题意,10个商品的总价格为20元,那么可以得到等式:10x = 20解得:x = 2因此,商品的单价为2元。

再根据单价,我们可以计算购买20个商品的总价格:20 × 2 = 40所以,购买20个商品的总价格是40元。

练习题二:一辆汽车以每小时60公里的速度行驶,行驶2小时所走的路程是多少?解答:根据题意,汽车以每小时60公里的速度行驶,那么可以得到等式:60 × 2 = 路程解得:路程 = 120公里所以,一辆汽车行驶2小时所走的路程是120公里。

练习题三:甲、乙两人同时开始在同一地点往同一方向行走,甲每分钟行进20米,乙每分钟行进15米。

他们相遇需要多少时间?解答:根据题意,甲每分钟行进20米,乙每分钟行进15米。

他们相遇相当于他们行进的距离之和等于他们相遇的地点距离出发地点的距离。

假设他们相遇所需要的时间为t分钟。

那么可以得到等式:20t + 15t = 距离解得:35t = 距离由于他们同时开始,在同一地点往同一方向行走,所以距离相等,即甲、乙相遇所需要的时间为t分钟。

练习题四:小明在做练习,每分钟可以做6道数学题,如果他共用时18分钟,那么他一共做了多少道数学题?解答:根据题意,小明每分钟可以做6道数学题,共用时18分钟。

假设他一共做了x道数学题。

那么可以得到等式:6 × 18 = x解得:x = 108所以,小明一共做了108道数学题。

练习题五:某工程队10天可以修建完一条公路,现在计划增加工人的数量,问几天可以修建完?解答:根据题意,某工程队10天可以修建完一条公路。

假设增加工人的数量为x人,那么可以设修建完一条公路所需天数为t天。

那么可以得到等式:10 × x = t解得:t = 10x所以,增加工人的数量,修建完一条公路所需的天数是10x天。

正反比例应用题

正反比例应用题
正反比例练习
1.用一批纸装订练习本,如果每本30页,可 以装订600本。如果每本少用5页,可以装订多 少本?
2、工厂今年第一季度节约用煤960吨,照这样 计算,(1)今年一共可以节约煤多少吨? (2)如果每吨煤280元,今年节约的煤值多元
3.用同样砖铺地,如果铺15平方米要用 165块,如果铺50平方米要多用多少块砖?
7、一批粮食,计划3600人吃15天。吃 了3天后,又增加了1200人。余下的 粮食还可以吃几天?
8、甲乙两个仓库,甲仓存粮120吨,比 乙仓的存粮数少1/3,乙仓存粮多少吨?
3、两个互相咬合的齿轮,大齿轮有100 个齿,小齿轮有40个齿。如果大齿轮 每分钟转90转,小齿轮每分钟转多少 转?
Hale Waihona Puke 4、甲乙两数的比是3:5,已知甲数为 84,乙数为多少?
5、5台抽水机3小时能抽水600立方米, 照这样计算,4台抽水机4小时能抽水 多少立方米?
6、一本书原有416页,每页30行每行25 字,现在把它重排,重排后每页32行, 每行26字,重排后有多少页?
4、粮站用麻袋装粮食,每袋重60千克,要 500个袋,如果每袋多装15千克,可以节 省几个麻袋?
5、甲乙两人同时从A地前往B地,已知两人 的速度比为4:5,甲用48分钟到达,问乙 用几分钟?
1、汽车5小时行200千米,照这样计算, 3小时行多少千米?
2、一批零件,原计划每天生产120个, 8天可以完成;实际每天比计划多生产 40个,可以提前几天完成?

正反比例应用题练习

正反比例应用题练习

5、用一台打字机打字,6小时打36页,照 这样计算, 如果再打4小时,一共可以打 字多少页?
6、加工一批零件,每个零件所用的时间,由 原来的8分钟减少了2分钟,过去每天生产 这种零件60个,现在每天能生产多少个?
7、幼儿园给小朋友分糖,中班原来共有24人, 每人可以分5块,最近又调进6人,现在每 人可以分多少块糖?
11、配制一种药水,药粉和水的质量比是1:500。 (1)现有水1500千克,要配制这种药水, 需要药粉多少千克?
(2)现有药粉8千克,要配制这种药水,需 要水多少千克?
(3)现在有8克这样的药粉,可以配制出多 少克这样的药水?
1、王师傅加工一批零件,4分钟能加工60 个。 照这样计算,10分钟加工多少个?
2、李师傅加工一批零件,每小时加工60个, 8小时能完成,如果每小时加工80个,可 以提前几小时完成?
3 、学校用地砖铺地。铺3平方米,需要地砖 27块。照这样计算,如ห้องสมุดไป่ตู้要铺地50平方 米,需地砖多少块?
4、学校用地砖铺地。用每块面积0.08 平方米 的地砖,要500块才能铺满 ; 如果改用每 块面积0.05平方米的地砖 ,需要多少块才 能铺满?
8、修一条长6400米的公路,修了20天后,还 剩下4800米,照这样计算,剩下的路还要 修多少天?
9、修一条长3000米的公路,5天修了全长的 75%,照这样计算,剩下的路还要修多少 天?
10、某厂装配电视机。如果每天装20台,15 天可以完成任务,实际4天就装配了100台。 照这样计算,实际几天可以完成任务?

热点:关于比例尺及正反比例的实际应用问题-2024年小升初数学(解析版)

热点:关于比例尺及正反比例的实际应用问题-2024年小升初数学(解析版)

热点:关于比例尺及正反比例的实际应用问题1“朝辞白帝彩云间,千里江陵一日还”,这是唐朝著名诗人李白的诗。

在一幅比例尺是1∶3000000的地图上量得白帝城到江陵的距离是14cm。

王杰开车以60千米/时的速度从白帝城出发,行驶7时能否到达江陵?请计算说明。

【答案】能【分析】根据题意,结合图上距离÷比例尺=实际距离,求出实际距离,再换算成以“千米”作单位,根据速度×时间=路程,求出行驶7小时行驶的路程后与白帝城到江陵的距离比较后得出答案。

【详解】1∶3000000=1÷3000000=1300000014÷13000000=14×3000000=42000000(厘米)42000000厘米=420千米60×7=420(千米)答:行驶7时能到达江陵。

2在比例尺是1500的平面图上,量得一个正方形花圃的边长是14cm,这个花圃实际面积是多少公顷?【答案】0.49公顷【分析】比例尺是图上距离与实际距离的比值,已知正方形边长的图上距离是14cm,图上距离除以比例尺得到实际距离,再根据正方形的面积=边长×边长,求出花圃的实际面积。

【详解】14÷1500÷100=14×500÷100=7000÷100=70(米)70×70=4900(平方米)4900平方米=0.49公顷答:这个花圃实际面积是0.49公顷。

【点睛】本题考查比例尺的应用,本题注意要先求出花圃边长的实际距离后,最后求出花圃的实际面积。

3在比例尺为1∶5000000的地图上,量得杭州东站到上海虹桥站的长度是3.4厘米。

杭州东站到上海虹桥站的实际距离是多少千米?一列动车,从杭州东站到上海虹桥站,用时40分钟,那么这列动车平均每小时行多少千米?【答案】170千米;255千米/小时【分析】实际距离=图上距离÷比例尺,则用3.4÷15000000即可求出实际距离,1千米=100000厘米,将结果化成千米即可;速度=路程÷时间,代入数据计算即可。

年级正比例和反比例比例练习题

年级正比例和反比例比例练习题

年级正比例和反比例比例练习题
正比例和反比例是数学中重要的概念,在年级研究中经常会遇到这两种类型的题目。

以下是一些年级正比例和反比例比例练题,希望能帮助你更好地理解这两种关系。

正比例题目
1. 一辆汽车以每小时60公里的速度行驶,求2小时内汽车行驶的路程。

解答:
设汽车行驶的路程为x公里,则根据正比例关系可得:
60公里/1小时 = x公里/2小时
解方程得:x = 60 * 2 = 120公里
2. 小明去超市买苹果,苹果的单价是每个2元。

如果小明买了5个苹果,他要支付的金额是多少?
解答:
设小明支付的金额为y元,则根据正比例关系可得:
2元/1个 = y元/5个
解方程得:y = 2 * 5 = 10元
反比例题目
1. 一辆车以每小时60公里的速度行驶,行驶1小时后发现油
箱中的油量减少了1/6。

求这辆车油箱的容量。

解答:
设油箱的容量为z升,则根据反比例关系可得:
60公里/1小时 = z升/1/6升
解方程得:z = 60 * (1/6) = 10升
2. 5个工人需要3天时间完成一项任务,如果再增加3个工人,那么完成该任务需要多少天?
解答:
设完成任务需要的天数为t天,则根据反比例关系可得:
5个工人/3天 = 8个工人/t天
解方程得:t = 3 * 5 / 8 = 1.875天,约等于1.88天
以上是一些年级正比例和反比例比例练题的解答,在解题过程中需要注意明确所给的条件,并正确运用正比例和反比例的概念。

希望这些题目对你的研究有所帮助!。

正反比例的练习题五年级

正反比例的练习题五年级

正反比例的练习题五年级正反比例的练习题(五年级)1. 简介正反比例是数学中一个重要的概念,它在现实生活中有很多应用。

本文将通过一些练习题,帮助五年级的学生更好地理解和掌握正反比例。

2. 问题一一根绳子长5米,剪成多段,每段长度相等。

如果剪成10段,每段的长度是多少?解析:由于绳子被剪成了10段,而且每段长度相等,因此可以用反比例来解决。

我们可以先求出总长度与段数的比例,再将总长度除以段数,得到每段的长度。

解答:总长度:5米段数:10段所以总长度与段数的比例为5:10,即1:2。

每段的长度 = 总长度 / 段数 = 5米 / 10段 = 0.5米。

所以每段的长度为0.5米。

3. 问题二一个果汁摊位上有15瓶橙汁,每瓶的容量都相等。

如果卖出5瓶橙汁,还剩下的容量是多少?解析:这个问题可以用正比例来解决。

我们可以先求出总容量与瓶数的比例,再将总容量除以瓶数,得到每瓶的容量。

然后,用每瓶的容量乘以剩余的瓶数,即可求出剩下的容量。

解答:总容量:15瓶(假设每瓶容量为C)瓶数:15瓶(卖出5瓶后剩余10瓶)所以总容量与瓶数的比例为15:C = 10:5,即3:2。

每瓶的容量 = 总容量 / 瓶数 = 15瓶 / 15瓶 = C。

剩下的容量 = 每瓶的容量 ×剩余的瓶数 = C × 10。

所以剩下的容量为C × 10。

4. 问题三小明和小华一起做作业,小明用1小时做完了1/4,小华同样用1小时做完了1/5。

如果他们继续以相同的速度做作业,小明再用多少小时可以做完全班同学的作业?解析:这个问题需要用正比例和反比例相结合的思想来解决。

首先,我们可以求出小明和小华每小时所做作业的比例,然后将全班同学的作业量除以每小时的做题量,就可以得到小明需要多少小时才能完成。

解答:小明每小时的做题量:1/4小华每小时的做题量:1/5所以小明和小华每小时做题量的比例为:1/4 : 1/5 = 5/20 : 4/20 = 5:4。

小学奥数之正反比例应用

小学奥数之正反比例应用

小学奥数之正反比例应用1、赵老师带了一些钱给学生买一种毕业纪念册,到商店后发现这种纪念册的价格降了20%,结果她带的钱恰好可以比原来多买30本。

降价前这些钱可以买这种纪念册多少本?【思路点拨】因为赵老师所带的钱数一定,也就是买毕业纪念册的总价一定,则买毕业纪念册的单价与本数成反比,现价与原价的比为(1-20%):1=4:5,现在可以买的本数与原来的本数比是5:4,降价前这些钱可以买这种纪念册的本数为:30÷(5-4)×4=120(本)。

【自行解题】2、小明带着一些钱去买钢笔,如果钢笔降价10%,则可比原来多买30支。

那么降价10%后,小明带的钱可以买多少支钢笔?3、买甲、乙两种铅笔共210支,甲种铅笔每支价钱3元,乙种铅笔每支价钱4元,两种铅笔用去的钱数相同,甲种铅笔买了多少支?4、甲、乙两个工程队共同修筑2500米的隧道,甲队的工作效率是乙队的150%。

如果甲、乙单独施工,乙队的工期要比甲队多20天,甲队单独施工需要多少天?5、快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇时行了全程的47 ,已知慢车行完全程需要8小时,则甲、乙两地相距多少千米?【思路点拨】快车和慢车同时出发到相遇,所行的时间相同,因为时间一定,路程和速度成正比,所以快车和慢车的速度比是:47 :(1-47 )=4:3,则慢车每小时行驶33÷4×3=994 (千米),而慢车行完全程需要8小时,就可以求出甲、乙两地的距离。

[自行解题]6、师徒两人加工一批零件,由师傅独做需37小时,徒弟每小时能加工30个零件。

现由师徒两人同时加工,完成任务时,徒弟加工的个数是师傅的59 。

这批零件共有多少个?7、某电视机厂所属的两个分厂共同组装一批彩电。

在同样多的天数中,甲分厂共装了这批彩电的57 ,乙分厂每天装400台,正好装完。

如果由甲分厂单独组装,需14天装完。

问这批彩电共多少台?8、客车和货车同时从A 、B 两地相对开出,客车每小时行60千米,货车每小时行全程的110 ,当货车行到全程的1324 时,客车已行全程的58 。

正反比例应用题

正反比例应用题

第 1 页 共 1 页 20 × 25 = 500 正反比例应用题
例1、已知长方形的面积是9厘米,求阴影部份的面积
(1)、已知图中空白部份面积是12平方厘米,示阴影部份的面积.
例2猎犬发现在离它10米远的前方有一只奔腾的的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快.猎犬跑2步,兔子却能跑3步,猎犬至少跑多少米才能追上兔子?
(1)、大小两种苹果,单价比是5:4,重量的比是2:3,把两筐苹果混在一起刚好10 0千克,单价4.4元,求这两筐苹果的单价各多少元?
(2)甲、乙两工人上班,甲比乙多走51的路程,而乙比甲走的时间少
111,如甲
的速度是每小时24千米,求乙的速度。

例3、小明从甲地到乙地,去时每小时走6千米,回来时每小时走9千米,来回共用5小时,小明来回共走了多少千米?
(1)小李从家步行去某地,去时每小时走5千米,返回时走4千米,往返途中共用2
14小时,小李家到某地有多少千米?。

六下数学 正比例与反比例 应用题训练30题 带答案

六下数学 正比例与反比例 应用题训练30题 带答案
则第二次相遇时,汽车经过的路程为:x+x-130=2x-130 摩托车经过的路程为:x+130
相同时间内,路程和速度成正比例,速度之比=路程之比
(2x-130):(x+130)=3:2 解得x=650
8、一辆卡车与一辆小轿车同时从甲、乙两城相对开出,相遇后两 车继续向前行驶.当小轿车到达甲地、卡车到达乙地后.立即返回 ,第二次相遇点距甲城120千米,已知:卡车与小轿车的速度比是3 :4,甲、乙两城相距多少千米?
13、用方砖铺一间教室的地面,如果用边长为2dm的方砖 ,需要用60块,如果改用边长为3dm的方砖,需要用多少 块? 27块 解析:解设需要用x块砖 教室的面积一定,所用的方砖的块数和每块方砖的面积成 反比例
2×2×60=3×3×x 解得 x=80/3 进一法,所以需要27块
14、有甲乙丙三个相互咬合的齿轮,当甲齿轮转动2圈时, 乙齿轮转动3圈,丙齿轮转动4圈,这三个齿轮的齿数之比 是( ):( ):( )。 6:4:3 解析:相互咬合的齿轮转动的总齿数是相同的,那么一圈 的齿数和转动的圈数是成反比例的,设三个齿轮的齿数分 别为x y z 则2x=3y=4z 得x:y :z=6:4:3
16、学校组织同学参观爱国主义纪念展,每60名同学配2
X=18
4、某修路队修一条公路,前6天修了180米,照这样的速度,修路 队又修了5天才全部修完,这条公路全长是多少米?
解设这条公路的全长是x米 每天修的长度一定,路的全长和时间成正比例关系 180:6=x:(6+5)
X=330
5、甲乙丙三人进行200米赛跑(他们的速度保持不变),甲到 终点时,乙还差20米,丙离终点还有25米,问乙到达终点时, 丙还差多少米?
解设:甲乙两城相距x千米 则第二次相遇时,卡车经过的路程为:x+x-120=2x-120 小轿车经过的路程为:x+120

小学数学《正反比例应用题》练习题

小学数学《正反比例应用题》练习题

《正反比例应用题》练习题老师讲解:1、一天乐乐拿着妈妈给他的钱到超市里去买苹果,平时每斤苹果5元钱,当他到超市的时候发现,由于打折促销,苹果变为每斤4元钱,于是乐乐多买了3斤苹果,问妈妈给了乐乐多少钱?2、加工一个零件,甲需要3分钟,乙需要3.5分钟,丙需要4分钟,现有1285个零件需要加工,如果规定3人用同样时间完成任务,那么各应加工多少个零件?学生练习1、一个旅游团租车出游,平均每人应付车费40元,后来又增加了8人,这样每人应付的车费是35元,总租车费是多少元?2、生产一台拖拉机,甲厂需要2天,乙厂需要3天,丙厂需要4天,现在要生产78台拖拉机,分配给三个厂,如果要求他们同时生产完,那么各应生产多少台拖拉机?老师讲解:1、如图,有A、B两个齿轮互相咬合,如果A齿轮转动12圈时,B 齿轮恰好转动8圈,请问:A、B两个齿轮的齿数之比是多少?(注:图片只是示意图,并不代表实际齿轮数)2、如图,有A、B、C三个齿轮,其中A和B互相咬合,B和C互相咬合,如果A齿轮转动7圈时,B齿轮恰好转动5圈;如果B齿轮转动7圈时,C齿轮恰好转动10圈,请问:这三个齿轮的齿数之比是多少?(注:图片只是示意图,并不代表实际齿轮数)学生讲解:1、如图,有A、B两个齿轮互相咬合,A齿轮有24个齿,B齿轮有30齿,当A齿轮转动了20圈时,B齿轮转动了多少圈?(注:图片只是示意图,并不代表实际齿轮数)2、有A、B、C三个齿轮,其中A和B互相咬合,B和C互相咬合,这三个齿轮的齿数之比是3:4:5,当A、C两个齿轮一共转动64圈时,B齿轮一共转动了多少圈?老师讲解:1、乐乐从家去学校,可以骑车也可以步行,骑车比步行每分钟快150米,骑车所用的时间比步行所用时间少35,那么乐乐每分钟步行多少米?2、某工程,可由若干台机器在规定时间内完成,如果增加2台机器,则只需用规定时间的78就可做完;如果减少两台机器,那么就要推迟1小时做完,如果由一台机器去完成这工程需要多长时间?学生练习:1、完成一件工程,甲的工作效率比乙的工作效率高27,单独做,甲比乙少用4天完成整件工程,问乙单独完成这件工程用多少天?2、某工程,可由若干台机器在规定时间内完成,如果增加3台机器,则只需用规定时间的56就可做完;如果减少3台机器,那么就要推迟2小时做完,如果由一台机器去完成这工程需要多长时间?。

小学正反比例应用题

小学正反比例应用题
1、一个晒盐场用100克海水可以晒出3克盐,如 果一次放入585000吨海水,可以晒出多少盐? 2、一块长方形钢板,长与宽比是5:3,已知长 是75厘米,宽是多少厘米? 3、一篮苹果,如果8个人分,每人正好分6个 如果12个人来分,每人可以分几个? 4、工人师傅制造一批器零件,每个零件所用的 时间由原来的8分钟减少到2.5分钟,过去每天 生产这种零件60个,现在每天能生产多少个?
5、用边长3分米的方砖铺,需要96块;如果改用边长2 分米的方砖铺地,需要多少块砖? 6、小明家到学校共1200米。今天早上上学3分钟共走 了180米,照这样的速度,还要走多少分钟才能到学校 7、袋子里有绿球7个,黄球24个。增加多少个绿球,可 使袋子里绿球与黄球的个数比是5:3? 8、有一项工作,原计划40个人工作18天正好完成任务, 如果每个人的工作效率相同,现在增加5个人,可以提前 几天完成任务?
12、修一段公路,总长12km。开工3天修了1.5km。
照这样计算,修完这段公路还要多少天? 13、儿童节那天开始,亮亮前7天看了210页书,照这 样计算,这个月亮亮一共看了多少页书?
14、A、B两地相距1200千米,甲乙两车同时从两地相 对开出,经过5小时后还相150千米,已知甲车的速度 和乙车的速度比是3:度相同,量得下面3层楼
的高度是8.4m,上面还有7层,这座楼共有多少
米?
10、火车从甲站开往乙站,4.2小时行了全程的 7/9,照这样的速度,火车行完剩下的路程还需 几小时? 11、某车间加工一批零件,如果每小时加工零 件30个,可比原计划提前10小时完成如果每小 时加工零件20个,可比原计划提前6小时完成, 这批零件有多少个?

正反比例怎么区分应用题

正反比例怎么区分应用题

正反比例怎么区分应用题正反比例怎么区分什么是正比例关系•正比例关系是指两个变量之间的关系是一种直线关系,当一个变量增大时,另一个变量也会以相同的比例增大。

可以表示为 y = kx,其中 k 为比例常数。

示例题1:如果小明每天跑步训练的时间与他的长跑成绩呈正比例关系,当他每天训练 1 个小时时跑步 5 公里,那么他训练 3 个小时时能跑多远?解答:根据题意,可得到以下正比例关系:时间(小时)距离(公里)1 5根据正比例关系式可以得到比例常数 k:k = 距离 / 时间 = 5 / 1 = 5所以,当小明训练 3 个小时时,跑步的距离为:距离 = k * 时间 = 5 * 3 = 15 公里所以,小明训练 3 个小时可以跑 15 公里。

什么是反比例关系•反比例关系是指两个变量之间的关系是一种反比关系,当一个变量增大时,另一个变量会以相同的比例减小。

可以表示为 y =k/x,其中 k 为比例常数。

示例题2:一辆汽车以恒定的速度行驶,行驶的距离和所用的时间成反比。

如果一辆汽车以速度 60 公里/小时行驶,行驶了 4 小时,那么它行驶的距离是多少?解答:根据题意,可得到以下反比例关系:速度(公里/小时)时间(小时)60 4根据反比例关系式可以得到比例常数 k:k = 速度 * 时间 = 60 * 4 = 240所以,如果一辆汽车行驶的时间为 x 小时,行驶的距离为:距离 = k / 时间 = 240 / x在本题中,时间为 4 小时,所以行驶的距离为:距离 = 240 / 4 = 60 公里所以,这辆汽车行驶了 60 公里。

通过以上应用题的解答,可以清楚地理解什么是正比例关系和反比例关系,并学会了如何区分它们。

正反比例应用题

正反比例应用题

正反比例应用题1、一种农药水是用药和水按1:100配成的,要配制这种农药水8080千克,需要药粉多少千克?2、盖一幢职工宿舍。

计划使用6米长的水管240根。

后来改用8米长的水管,共需要多少根?3、做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?4、甲地到乙地的公路长392千米。

一辆汽车3小时行了168千米。

照这样计算,行完全还需要几小时?5、金光电子厂要生产一批零件,原计划每天生产180个,12天完成。

实际的生产效率是原计划的120%,实际多少天可以完成?6、一辆汽车4小时行140千米,照这样计算,7小时行多少千米?行驶315千米需要几小时?7、甲、乙、丙三个同学体重总和是110千克,他们的体重比是6:9:7。

最重的一个同学达多少千克?8、铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?9、水泥厂5天生产水泥320吨。

照这样计算,要生产6600吨水泥,需要多少天完成?10、某工程队修一条路,12天共修780米,还剩下325米没有修。

照这样速度,修完这条公路,共需要多少天?11、甲乙两个小组要在6小时内加工1560个零件。

已知甲小组每小时加工120个零件,乙每小时加工零件多少个?12、一台碾米机5小时碾米2000千克,照这样计算,6.5小时可以碾米多少千克?要碾米3.6吨需要几小时?13、一台织布机4小时织布32米,照这样计算,15小时织布多少米?14、同学们做广播操,每行站15人,站了12行,如果每行站18人,要站多少行?15、100克海水可以晒出3克盐,照这样计算,6吨海水可以晒出多少吨盐?16、机器上有两个互相咬合的齿轮,主动轮有100个齿,每分钟转120转,从动轮有60个齿,每分钟转多少转?17、8台榨油机每天榨油56吨,现在增加了5台同样的榨油机,每天多榨油多少吨?18、在比例尺是1:12000000的地图上,量得济南到青岛的距离是4厘米。

正反比例应用题解及答案

正反比例应用题解及答案

正反比例应用题解1、甲乙两人步行的速度比是3:4,从A地到B地,乙走了21分钟,求甲要走几分钟?2、甲乙两人现后从A地到B地,甲用了10小时,比乙多用了4小时,已知两人的速度差是每小时5千米,AB两地的距离是多少?3、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?4、一架飞机从甲地飞到乙地,再返回甲地.去时每小时飞1500千米,返回时每小时飞1200千米.来回共用6小时。

那么甲乙两地相距多少千米?5、甲乙两人同时从A地去B地,甲骑自行车,乙步行,甲的速度比乙的速度的3倍还快1km,甲到达B地停留45分钟(乙尚未到达B地),然后从B地返回A地在途中遇见乙,这时距他们出发时间3小时,若AB两地相距25.5公里,求两人速度各是多少?6、两个城市相距225千米,一辆客车和一辆货车同时从两个城市相对开出,经过2。

5小时相遇,货车速度和客车速度的比是9:11,客车平均每小时行多少千米?7、甲乙两车分别从AB两地同时出发相向而行,4小时后甲车到达中点,乙车离中点还有8千米.甲乙两车的速度比为4:5。

AB两地相距多少千米?8、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?9、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?10、修一条马路,修好的和末修的长度比是3:2,如果再修50米,这时修好的和末修好的长度之比是5:3.这条马路长多少米?11、修一条公路,未修的长度是已修长度的4倍。

如果再修200米,未修的长度就是已修长度的2倍。

公路多少长12、一件工程,如果34人工作需20天完成,若提前3天完工,现在需要增加几名工人?用比例解。

13、一件工作24人15天可以完成,如果现在要提前20%的时间完成需要增加几位工人?14、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转多少转15、甲乙两人去年共收入48000元,今年共收入67800元,已知今年甲的收入比去年增加50%,乙的收入比去年增加30%,那么去年甲收入多少元,乙收入多少元?16、知甲乙两种商品的原价之和为100元后来甲商品降价10%,乙商品提价5%,调价后甲乙两种商品的价格之和提高了2%,求甲乙商品的原价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正反比例的应用题
1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?
2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?
3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?
4、我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?
5、一种铁丝,长7.5米重3千克,现在有19.5米长的这种铁丝,重多少千克?
6、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?
7、修一条公路,4天修了200米,照这样计算,又修了6天,共修了多少米?
8、小明读一本书,每天读12页,8天可以读完。

如果每天多读4页,几天可以读完?
9、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?
10、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?
11、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?
12、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?
13、学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?
14、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?
15、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?
16、一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。

17、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?
18、用一批纸装订同样的练习本,如果每本30页,可以装订80本。

如果每本页数减少20%,这批纸可以装订多少本?
19、某印刷厂计划四月份印刷课本20000本,结果8天就印刷了5600本,照这样速度,四月份能印多少本?
20、食堂有一批煤,计划每天烧105千克可以烧30天。

改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?
21、跃进机床厂原计划30天制造机床200台,结果做20天就只差40台没有做,照这样计算,可以提前几天完成任务?
22、农场挖一条水渠,头5天挖了180米,照这样速度,又用了16天挖完这条水渠。

这条水渠全长多少米?
23、在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。

已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?
24、英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?(6分)
25、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)
26、同学们做操,每行站20人,正好站18行。

如果每行站24人,可以站多少行?(用比例方法解)
27、飞机每小时飞行480千米,汽车每小时行60千米。

飞机行4 小时的路程,汽车要行多少小时?(用比例方法解)
28、一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)
29、一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)
30、生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)
31. 甲乙两地在比例尺是1:20000000的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长?一辆汽车以每小时200千米的速度从甲地经过乙地,去丙地需要多少小时?。

相关文档
最新文档