双曲线的几何性质3

合集下载

教学设计3:2.3.2 双曲线的简单几何性质

教学设计3:2.3.2 双曲线的简单几何性质

(三)渐近线双曲线的范围在以直线by xa=和by xa=-为边界的平面区域内,那么从x,y的变化趋势看,双曲线22221x ya b-=与直线by xa=±具有怎样的关系呢?根据对称性,可以先研究双曲线在第一象限的部分与直线by xa=的关系。

双曲线在第一象限的部分可写成:当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.在其他象限内也可以证明类似的情况.现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精再描几个点,就可以随后画出比较精确的双曲线.(四)离心率由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.这时,指出:焦点在y 轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变. (五)例题讲解例1求双曲线22143x y -=的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程,并画出双曲线的草图。

分析:由双曲线的标准方程,容易求出,,a b c .引导学生用双曲线的实轴长、虚轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在y 轴上的渐近线是ay x b=±. 例2 已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为43,求双曲线的标准方程。

例3求与双曲线221169x y -=共渐近线,且经过()23,3A -点的双曲线的标准方及离心率.分析:已知双曲线的渐近线求双曲线的标准方程:方法一按焦点位置分别设方程求解;方法二可直接设所求的双曲线的方程为()22,0169x y m m R m -=∈≠ 例4.如图,设(),M x y 与定点()5,0F 的距离和它到直线l :165x =的距离的比是常数54,求点M 的轨迹方程. 分析:若设点(),M x y ,则()225MF x y =-+,到直线l :165x =的距离165d x =-,则容易得点M 的轨迹方程.例5.双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m.试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).练习反馈1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.(1)16x2-9y2=144;(2)16x2-9y2=-144.限时训练2.求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程.点到两准线及右焦点的距离.课堂小结作业布置提高。

双曲线的性质

双曲线的性质

2.61双曲线的性质2.61双曲线的性质【学习目标】1.理解双曲线的对称性、范围、定点、离心率、渐近线等简单性质.2.能利用双曲线的简单性质求双曲线的方程.3.能用双曲线的简单性质分析解决一些简单的问题. 【要点梳理】要点一、双曲线的简单几何性质 双曲线22221x y a b -=(a >0,b >0)的简单几何性质范围22221x x a a x a x a即或≥≥∴≥≤-双曲线上所有的点都在两条平行直线x=-a 和x=a 的两侧,是无限延伸的。

因此双曲线上点的横坐标满足x≤-a 或x≥a.对称性对于双曲线标准方程22221x y a b-=(a >0,b >0),把x 换成-x ,或把y 换成-y ,或把x 、y 同时换成-x 、-y ,方程都不变,所以双曲线22221x y a b-=(a >0,b >0)是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。

顶点①双曲线与它的对称轴的交点称为双曲线的顶点。

②双曲线22221x y a b -=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。

③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,-b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴。

实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b 。

a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长。

①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。

②双曲线的焦点总在实轴上。

③实轴和虚轴等长的双曲线称为等轴双曲线。

离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c c e a a==。

②因为c >a >0,所以双曲线的离心率1ce a =>。

双曲线的简单几何性质(基础知识+基本题型)(含解析)2021-2022学年高二数学上学期

双曲线的简单几何性质(基础知识+基本题型)(含解析)2021-2022学年高二数学上学期

3.2.2双曲线的简单几何性质(基础知识+基本题型)知识点一 双曲线的性质根据双曲线的标准方程22221(0,0)x y a b a b-=>>研究它的几何性质.1.范围,x a y R ≥∈,即,x a x a y R ≥≤-∈或.双曲线位于两条直线x a =±的外侧.讨论双曲线的范围就是确定方程中变量,x y 的范围,由不等式222211x y a b =+≥,得||x a ≥,由222211y x b a--≥-,得y R ∈. 提示双曲线在直线x a =与x a =-之间没有图象,当x 无限增大时,y 也无限增大,所以双曲线是无限伸展的,不像椭圆那样是封闭的.2.对称性双曲线的图象关于x 轴、y 轴成轴对称,关于原点成中心对称,我们把x 轴、y 轴叫做双曲线的对称轴,原点(0,0)O 叫做双曲线的对称中心,简称中心. 提示(1)把双曲线标准方程中的x 换成x -,方程并没有发生变化,说明当点(,)P x y 在双曲线上时,它关于y 轴的对称点1(,)P x y -也在双曲线上,所以双曲线的图象关于y 轴成轴对称.(2)同理,把双曲线标准方程中的y 换成y -,可以说明双曲线的图象关于关于x 轴成轴对称;把双曲线标准方程中的x 换成x -,y 换成y -,可以说明双曲线的图象关于原点成中心对称. (3)如果曲线具有三种对称性的其中两种,那么它就具有另一种对称性.(4)对于任意一个双曲线而言,对称轴是两个焦点的连线所在直线及其垂直平分线,且双曲线的中心是双曲线的对称中心.3.顶点与实轴、虚轴如图所示.(1)双曲线和其对称轴的交点叫做双曲线的顶点,双曲线的顶点为1(,0)A a -,2(,0)A a . (2)线段12A A 叫做双曲线的实轴,线段12B B 叫做双曲线的虚轴.(3)实轴长122A A a =,虚轴长122B B b =,,a b 分别为双曲线的半实轴长和半虚轴长.拓展双曲线中,,a b c 的几何意义及特征三角形:(1)当双曲线焦点在x 轴上时,a 是半实轴长,b 是半虚轴长,且222c a b =+,所以以,,a b c 为三边长可构成直角三角形,如图2.3-10所示,其中22Rt OA B ∆称为双曲线的特征三角形,双曲线的焦点永远在实轴上.(2)当双曲线的焦点在y 轴上时,可得类似的结论.4.渐近线(1)渐近线画法:经过点1(,0)A a -,2(,0)A a 作y 轴的平行线x a =±,经过点1(0,)B b -,2(0,)B b 作x轴的平行线y b =±,四条直线围成一个矩形,矩形 两条对角线,这两条对角线所在的直线即为双曲线的渐近线.双曲线22221x y a b-=的各支向外延伸时,与这两条直线逐渐接近.(2)渐近线方程:by x a =±.拓展(1)双曲线22221x y a b -=的渐近线方程为b y x a =±,双曲线22221y x a b -=的渐近线方程为ay x b=±,两者容易混淆,可先将双曲线方程中的“1”换成“0”,再因式分解即可得渐近线方程,这样就不容易记错了.(2)双曲线与它的渐近线无限接近,但永远不相交.(3)与双曲线22221x y a b -=共渐近线的双曲线方程可设为2222(0)x y a b λλ-=≠;与双曲线22221x y a b-=共焦点的双曲线方程可设为2222221()x y b a a b λλλ-=-<<-+.5.离心率(1)定义:双曲线的焦距与实轴长的比叫做双曲线的离心率,定义式c e e a =⇒(2)范围:1e >.由等式222c a b =+,得b a ==e 越大,b a 也越大,即渐近线b y xa=±的斜率的绝对值越大,这时双曲线的形状就越陡,由此可知,双曲线的离心率越大,它的开口就越开阔. 提示因为c e a =,c ,所以e =,b a222(1)b a e =-,在,,,a b c e 四个参数中,只要知道其中两个,就可以求出另两个,关键要熟悉它们之间的关系. 知识点二 等轴双曲线与共轭双曲线1.实轴和虚轴等长的双曲线叫等轴双曲线,等轴双曲线有如下性质:(1)方程形式为22(0)x y λλ-=≠;(2)渐近线方程为y x =±,它们互相垂直,并平分双曲线实轴和虚轴所成的角;(3.2. 以双曲线的虚轴为实轴,实轴为虚轴的双曲线,与原双曲线是一对共轭双曲线.例如,双曲线22221(0,0)x y a b a b -=>>与22221(0,0)y x a b b a -=>>是一对共轭双曲线,其性质如下: (1)双曲线与它的共轭双曲线有相同的渐近线; (2)双曲线与它的共轭双曲线有相同的焦距. 知识点三 直线与双曲线的位置关系 1. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线.(2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一个点.2. 当直线与双曲线相交时,先联立直线方程与双曲线方程可求得两个交点的坐标,从而根据距离公式求出弦长,再结合双曲线的定义,还可以求解焦点三角形的周长等.3. 当直线与双曲线相交时,涉及中点问题,可首先设出直线与双曲线两交点的坐标,然后分别代入双曲线方程,最后作差,即得中点坐标与该直线的斜率的关系式.考点一由方程求双曲线的几何性质例 1 求双曲线22494y x-=-的半实轴长、半虚轴长、焦点坐标、离心率、渐近线方程,并画出该双曲线的草图.解:将双曲线化为221 419x y-=,可知半实轴长4293a=,半虚轴长1b=,于是有2241319c a b=+=+=,所以焦点坐标为13(,离心率为13cea==渐近线方程为by xa=±,即32y x=±.为画出双曲线的草图,首先在平面直角坐标系中画出渐近线32y x =±,且顶点坐标为2(,0)3±,然后算出双曲线在第一象限内一点的坐标,如取1y=,算出230.94x=≈.由题意,知点(0.94,1)±在双曲线上,将三点(0.94,1)-,2(,0)3,(0.94,1)依次连成光滑曲线并让它逐步接近渐近线,画出第一、第四象限内双曲线的一支,最后由对称性可画出双曲线位于第二、三象限内的另一支,得双曲线的草图如图所示.已知双曲线的方程讨论其几何性质时,需先看所给方程是否为标准方程,若不是,需先把方程化为标准方程,这样便于直观写出,a b的值,进而求出c的值及双曲线的焦点坐标、顶点坐标、离心率与渐近线方程.考点二由双曲线的几何性质求标准方程例2求满足下列条件的双曲线的标准方程:(1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为12y x=±,且经过点(2,3)A- .解:(1)由题意,知双曲线的焦点在y 轴上,且13c =,由于135c a =,所以5a =,12b =. 故所求双曲线的标准方程为22125144y x -=.(2)因为双曲线的渐近线方程为12y x =±,若焦点在x 轴上,设所求双曲线标准方程为22221(0,0)x y a b a b -=>>,则12b a =.(Ⅰ)因为点(2,3)A -在双曲线上,所以22491a b -=. (Ⅱ) 联立(Ⅰ)(Ⅱ),无解.若焦点在y 轴上,设所求双曲线标准方程为22221(0,0)y x a b a b -=>>,则12a b =.(Ⅲ)因为点(2,3)A -在双曲线上,所以22941a b -=. (Ⅳ) 联立(Ⅲ)(Ⅳ),解得228,32a b ==. 故所求双曲线的标准方程为221832y x -=.当双曲线的焦点不明确时,方程可能有两种形式,此时应分类讨论.为了避免讨论,也可设双曲线方程为221(0)mx ny mn -=>,从而直接求得.若已知双曲线的渐近线方程为by x a =±,则可设方程为2222(0)x y a b λλ-=≠,避免讨论焦点的位置. 考点三 双曲线的离心率1.求离心率的值例3 已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,PQ 是经过1F 且垂直与x 轴的双曲线的弦,如果0290PF Q ∠=,求双曲线的离心率.解:设1(,0)F c ,将x c =代入双曲线方程,得22221c y a b -=,所以2b y a =±.由22PF QF =,0290PF Q ∠=,知112PF F F =,所以22b c a =,22b ac =,所以2220c ac a --=.即2210e e --=,解得1e =+1e =.故所求双曲线的离心率为1求双曲线离心率的常用方法(1)依据条件求出,a c ,计算c e a=; (2)依据条件建立关于,,a b c 的关系式,一种方法是消去b 转化为关于e 的方程求解;另一种方法是消去c 转化为含b a 的方程,求出ba后利用221b e a =+求解.例4 设双曲线22221(0,0)x y a b a b-=>>的焦距长为2c ,直线l 过点(,0)A a ,(0,)B b 两点,已知原点到直线l的距离为34c ,则双曲线的离心率为 . 解析:如图所示,在△OAB 中,OA a =,OB b =,34OE c =,22AB a b c =+=.因为AB OE OA OB ⋅=⋅, 所以3c ab =223)a b ab +=,两边同除以2a 233()0b b a a -=, 解得3ba=3b a =所以212c b e a a ⎛⎫==+ ⎪⎝⎭.答案:2223)a b ab +=,此方程可称为关于,a b 的齐次方程,转化为以ba为变量的一元二次方程是求解的关键.2.求离心率的范围例5 双曲线22221(1,0)x y a b a b-=>>的焦距为2c ,直线l 过点(,0)a ,(0,)b 两点,且点(1,0)到直线l 的距离与点(1,0)-到直线l 的距离之和45s c ≥,求双曲线的离心率e 的取值范围.解:由题意,知直线l 的方程为1x ya b +=,即0bx ay ab +-=. 因为点(1,0)到直线l 的距离122d a b =+,点(1,0)-到直线l 的距离222d a b =+,所以122abs d d c=+=. 由45s c ≥,得2ab c 45c ≥,即252c .于是得22e ,即22425250e e -+≤.解得2554e ≤≤.因为1e >,所以e的取值范围是. 求双曲线离心率的范围时,要根据题意挖掘题中隐含的不等关系,构造不等式,从而求出双曲线的离心率的取值范围.例6 双曲线222:1(0)x C y a a-=>与直线:1l x y +=相交于两个不同的点,A B ,则双曲线的离心率e 的取值范围是 .解:由22211x y a x y ⎧-=⎪⎨⎪+=⎩,消去y ,得到2222(1)220a x a x a -+-=,由题意知,24221048(1)0a a a a ⎧-≠⎪⎨+->⎪⎩,解得(0,1)(1,2)a ∈.所以c e a ===,所以(2,)e ∈+∞.答案:(2,)+∞ .利用一元二次方程根的判别式构建不等关系是一种常用的方法,另外也可利用基本不等式构建不等关系,线性规划中的区域符号也可构建不等关系. 考点四 直线与双曲线的位置关系例7 已知双曲线22:1C x y -=及直线:1l y kx =-.若直线l 与双曲线C 有两个不同的交点,求实数则k 的取值范围.解:由2211x y y kx ⎧-=⎪⎨=-⎪⎩,消去y ,得到22(1)220k x kx -+-=,由题意,知2221048(1)0k k k ⎧-≠⎪⎨+->⎪⎩,解得k <,且1k ≠±. 故实数k 的取值范围是(1)(1,1)(1,2)--.直线与双曲线交点问题,常利用直线方程与双曲线方程构成的方程组求解.。

第二讲 双曲线中常用的结论及解法技巧(学生版)

第二讲 双曲线中常用的结论及解法技巧(学生版)

C. 3
D. 2
【4】设双曲线 C
x2

a2
y2 b2
1(a
0,b
0)
的左焦点为 F
,直线 4x 3y 20
0 过点 F
且与 C 在第二象限的交点为 P ,O 为原点, OP OF ,则双曲线 C 的离心率为( )
【例
9】如图,已知双曲线
x2 a2
y2 b2
1a
0,b
0的左、右焦点分别为 F1, F2 ,|
F1F2
|
4,
P 是双曲线右支上的一点, F2P 与 y 轴交于点 A , APF1 的内切圆在 PF1 上的切点为 Q ,
若 | PQ | 1 ,则双曲线的离心率是( )
4
A. 3
B. 2
C. 3
D. 2
则(1)|
PF1
||
PF2
|
2b2 1 cos
;(2)双曲线的焦点角形的面积为
S F1PF2
b2 .
tan
2
3.过双曲线
x2 a2
y2 b2
1a
0,b
0 上任一点
A(x0 ,
y0 ) 任意作两条倾斜角互补的直线交双
曲线于 B,C
两点,则直线 BC 有定向且 kBC
b2 x0 a2 y0
(常数).
x a
2 2
y2 b2
1a 0,b 0上关于原点对称的任意两点, B 是双曲
线上其它任意一点,直线
A1B, A2B 的斜率存在,则 k A1B
k A2B
b2 a2

2.双曲线
x2 a2
y2 b2
1a
0, b

双曲线的简单几何性质(3)

双曲线的简单几何性质(3)

y
设 B 解法一: A ( x1 ,y1 ) , ( x 2 ,y 2 ) ,则 ( x1 x 2 )
x1 y 1 1 4 2
2 2
2
2
2 M
相减
x2 y2 1 4 2 1 xM k AB 1 2 2 yM

y1 y 2 1 x1 x 2 x1 x 2 2 y1 y 2
双曲线的性质(3)
直线与双曲线位置关系
复习回顾:椭圆与直线的位置关系及判断方法
判断方法
(1)联立方程组
(2)消去一个未知数 (3)
∆<0
∆=0
∆>0
这是求解直线与二次曲线有关问题的通法。Biblioteka 1)线与双曲线位置关系种类:
Y
O
X
相离;
相切;
相交(两个交点,一个交点)
2)位置关系与交点个数
Y
相交:两个交点
结论: 判别式依然可以判断直线与双曲线的位置关系 !
特别注意直线与双曲线的 位置关系中: 一解不一定相切,相交不一定 两解,两解不一定同支
3)判断直线与双曲线位置关系的步骤
把直线方程代入双曲线方程
得到一元一次方程 直线与双曲线的 渐进线平行 相交(一个交点)
得到一元二次方程 计算判别式 >0 =0 <0
设共焦点的双曲线为
2
x a
2 2

y
2
2 2 2
5 a
1, 然后由 y
2
5 a

5 4
求得a 4, b 25 16 9, 可得
注:与 x a
2 2
x
1.
x
2 2

双曲线的标准方程及其几何性质

双曲线的标准方程及其几何性质
A.x—y=1B.x—y=2C
2 2
x y
解析:由题意,设双曲线方程为2—2=
a a
例2、根据以下条件,分别求出双曲线的标准方程.
(1)过点P(3,-.2),离心率e5
2
⑵F1、F2是双曲线的左、右焦点,P是双曲线上一点,双曲线离心率为2且
F1PF260,SpRF212 3.
解:(1)依题意,双曲线的实轴可能在x轴上,也可能在y轴上,分别讨论如下.
A.4
2
x
m212
1表示双曲线,则
k的取值范围是
B.
C.
D.
2
y
2
4 mB.2双Fra bibliotek线学a1的焦距是
C.
D.
m有关
2
_
k b2k
1与双曲线笃
a
判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数
的符号,焦点在系数正的那条轴上•
3.双曲线的简单几何性质:
标准方程
2 2
xy‘
——1(a0,b0)ab
yx2
—2-21(a 0, b 0)
ab
图象
9
I
a, b,c关系
2 . 2 2a b c
范围
|x| a,y R
| y | a, x R
个数来确定。
(1)通常消去方程组中变量y(或x)得到关于变量x(或y)的一元二次方程,考虑该一
元二次方程的判别式,则有:0直线与双曲线相交于两个点;0直线与
双曲线相交于一个点;0直线与双曲线无交点.
(2)若得到关于x(或y)的一元二次方程,则直线与双曲线相交于一个点,此时直线平 行于双曲线的一条渐近线.

【高中数学】双曲线

【高中数学】双曲线

则|PF1|·|PF2|等于( )
A.2
B.4
C.6
D.8
[解析] 由双曲线的方程得 a=1,c= 2,
由双曲线的定义得||PF1|-|PF2||=2. 在△PF1F2 中,由余弦定理得 |F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°, 即(2 2)2=|PF1|2+|PF2|2-|PF1|·|PF2| =(|PF1|-|PF2|)2+|PF1|·|PF2| =22+|PF1|·|PF2|, 解得|PF1|·|PF2|=4. [答案] B
5,+∞ D. 3
[解析] 由双曲线的定义可知|PF1|-|PF2|=2a,又|PF1|=4|PF2|,所以|PF2|=2a,由双曲 3
线上的点到焦点的最短距离为 c-a,可得2a≥c-a,解得c≤5, 即 e≤5,又双曲线的离心
3
a3
3
1,5 率 e>1,故该双曲线离心率的取值范围为 3 ,故选 B.
[答案] B
[解题技法]
1.求双曲线的离心率或其范围的方法
高中数学学科
(1)求 a,b,c 的值,由ac22=a2+a2 b2=1+ba22直接求 e. (2)列出含有 a,b,c 的齐次方程(或不等式),借助于 b2=c2-a2 消去 b,然后转化成关 于 e 的方程(或不等式)求解. 2.求离心率的口诀归纳 离心率,不用愁,寻找等式消 b 求; 几何图形寻迹踪,等式藏在图形中.
=0,则轨迹是线段 F1F2 的垂直平分线.
2.双曲线的标准方程
(1)中心在坐标原点,焦点在 x 轴上的双曲线的 标准方程为ax22-by22=1(a>0,b>0).
(2)中心在坐标原点,焦点在 y 轴上的双曲线的 标准方程为ay22-bx22=1(a>0,b>0).

双曲线的简单几何性质

双曲线的简单几何性质

双曲线的简单几何性质【基础知识精讲】1.双曲线22a x -22by =1的简单几何性质(1)范围:|x |≥a,y ∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称.(3)顶点:两个顶点A 1(-a,0),A 2(a,0),两顶点间的线段为实轴,长为2a ,虚轴长为2b ,且c 2=a 2+b 2.与椭圆不同.(4)渐近线:双曲线特有的性质,方程y =±abx ,或令双曲线标准方程22a x -22b y =1中的1为零即得渐近线方程.(5)离心率e =ac>1,随着e 的增大,双曲线张口逐渐变得开阔. (6)等轴双曲线(等边双曲线):x 2-y 2=a 2(a ≠0),它的渐近线方程为y =±x,离心率e =2.(7)共轭双曲线:方程22a x -22b y =1与22a x -22by =-1表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注意方程的表达形式.注意:1.与双曲线22a x -22b y =1共渐近线的双曲线系方程可表示为22a x -22by =λ(λ≠0且λ为待定常数)2.与椭圆22a x +22b y =1(a >b >0)共焦点的曲线系方程可表示为λ-22a x -λ-22b y =1(λ<a 2,其中b 2-λ>0时为椭圆, b 2<λ<a 2时为双曲线)2.双曲线的第二定义平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =ac(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =cb 2,与椭圆相同. 3.焦半径(22a x -22b y =1,F 1(-c,0)、F 2(c,0)),点p(x 0,y 0)在双曲线22a x -22by =1的右支上时,|pF 1|=ex 0+a,|pF 2|=ex 0-a;P 在左支上时,则 |PF 1|-(ex 1+a),|PF 2|=-(ex 1-a).本节学习要求:学习双曲线的几何性质,可以用类比思想,即象讨论椭圆的几何性质一样去研究双曲线的标准方程,从而得出双曲线的几何性质,将双曲线的两种标准方程、图形、几何性质列表对比,便于掌握.双曲线的几何性质与代数中的方程、平面几何的知识联系密切;直线与双曲线的交点问题、弦长间问题都离不开一元二次方程的判别式,韦达定理等;渐近线的夹角问题与直线的夹角公式.三角函数中的相关知识,是高考的主要内容.通过本节内容的学习,培养同学们良好的个性品质和科学态度,培养同学们的良好的学习习惯和创新精神,进行辩证唯物主义世界观教育.【重点难点解析】1.学习双曲线的几何性质,也可以与椭圆的几何性质对比进行,着重指出它们的联系和区别.2.本节重点是双曲线的几何性质,双曲线的第二定义及其应用,难点是双曲线的渐近线方程,第二定义,几何性质的应用.例1 (1)求中心在原点,对称轴是坐标轴,一条渐近线方程是y =-23x,且经过点Q(8,63)的双曲线方程.(2)已知双曲线满足:两准线间的距离为564,渐近线方程为y =±43x ,求双曲线方程. 分析 (1)据双曲线的渐近线方程,可求出a,b 之间的关系,以Q 点的坐标代入双曲线方程,即可求a,b 的值,亦可据共渐近线的双曲线系方程求出,这样可据焦点所在坐标轴的讨论.即设双曲线方程为42x -92y =λ(λ≠0),将Q 点坐标代入求得 λ=4故所求双曲线方程为 162x -362y =1.(2)当双曲线的焦点在x 轴上时,设其方程为22a x -22by =1,依题意有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,43,56422222b a c a b c a 解得⎪⎩⎪⎨⎧==.366422b a 故所求双曲线方程为 642x -362y =1当双曲线焦点在y 轴上时,同理求得其方程为:22)332(x -22)9128(y =1综上所述,所求双曲线的方程为642x -362y =1或22)332(x -22)9128(y =1.例2 过双曲线92x -162y =1的右焦点F 2,作斜率为2的弦AB ,求|AB |的长.分析 运用焦半径知识较为简便. 依题意有a =3,c =5,e =35,F 2(5,0) 联立方程组⎪⎩⎪⎨⎧=--=1169)5(222y x x y 消去y 得 5x 2-90x+261=0. 设方程的两根为x 1,x 2. 于是|AB |=e(x 1+x 2)-2a =35×590-6=24. 注:若用弦长|AB |=221+·212214)(x x x x -+解计算量显然大一些,本例中AB 为过焦点弦,所以运用焦半径解题就较自然了.例3 已知直线l 和双曲线22a x -22by =1(a >0,b >0)及其渐近线依次交于A 、B 、C 、D 四点,求证:|AB |=|CD |.分析 若直线l 和x 轴垂直,结论显然成立;若直线l 不与x 轴垂直,则可设l 的方程为y=kx+m,代入双曲线方程并整理得:(b 2-a 2k 2)x 2-2a 2kmx-a 2(m 2+b 2)=0,设A(x 1,y 1),D(x 2,y 2),则x 1+x 2=22222ka b kma -再将y=kx+m 代入双曲线渐近线方程b 2x 2-a 2y 2=0 并整理得 (b 2-a 2k 2)x 2-2a 2kmx-a 2m 2=0.设B(x 3,y 3),C(x 4,y 4),则x 3+x 4=22222ka b kma - ∴x 1+x 2=x 3+x 4表明线段AD 的中点和线段BC 的中点重合,故问题得到证明.【难题巧解点拨】例1 求与双曲线162x -92y =1有共同渐近线且过点(2,3)的双曲线方程.分析一 只要判断清楚已知点(2,3)与渐近线的位置关系,便可知双曲线方程的表达式,进而可求出方程.解法一:双曲线162x -92y =1的渐近线方程为:y =±43x将x =2代入方程y =43x 得y =43·2=23<3 ∴点(2,3)在直线y =43x 的上方,于是设所求的双曲线方程为:22a y -22bx =1 ∴⎪⎪⎩⎪⎪⎨⎧=-=123432222b a b a )2()1( 由(1)设a =3k,b =4k ,代入(2)得:299k -2164k =1∴k =±23(舍负) ∴a =323b =23∴所求方程为:4272y -122x =1即2742y -122x =1分析二 与双曲线162x -92y =1有共同渐近线的双曲线方程表示为162x -92y =λ,待定系数λ便可求出双曲线方程.解法二:设所求双曲线方程为162x -92y =λ,(1)将点(2,3)代入(1)得:164-99=λ ∴λ=-43 所求方程为:162x -92y =-43即:2742y -122x =1为所求说明:(1)由渐近线及一点可以确定双曲线的位置,解法一正是利用此性质先定位再求出a 、b ,进而求出双曲线方程.(2)方程22αx -22βy =λ 当λ=0时,表示两条直线:αx +βy =0和αx -βy=0,正是双曲线的渐近线方程.因此当λ≠0时,方程表示以直线22αx -22βy =0为渐近线的双曲线系.解法二正是利用了此原理,设方程再代入点坐标便可求出双曲线方程比较简捷.例2 在双曲线122y -132x =1的一支上不同的三点A(x 1,y 1)、B(26,6)、C(x 2,y 2)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 2;(2)证明线段AC 的垂直平分线经过某一定点,并求该定点的坐标. 分析 (1)从双曲线的焦半径分析往往用第二定义. (2)证明过定点可采取求点坐标的方法.解:(1)∵a =23,b =13,c =5,∴e =a c=325=635.根据双曲线的第二定义,可得:|AF |=e(y 1-c a 2)=ey 1-a =635y 1-23, |CF |=e(y 2-c a 2)=ey 2-a =635y 2-23, |BF |=e(6-c a 2)=6e-a =6×635-23=33. 又|AF |、|BF |、|CF |成等差数列,∴|AF |+|CF |=2|BF |,即(635y 1-23)+( 635y 2-23)=2×33,∴y 1+y 2=12. (2)证明:设x 1+x 2=t ,则线段AC 的中点为(2t,6).∵1221y -1321x =1, 1222y -1322x =1.∴12))((2121y y y y -+-13))((2121x x x x -+=0,∴2121x x y y --=131(x 1+x 2)=13t .∴线段AC 的垂直平分线的斜率k =-t 13,从而其方程为y-6=-t 13 (x-2t),即(y-225)t+3x =0,显然它过定点(0,225). 点评:涉及焦半径问题往往考虑第二定义,一般来讲,双曲线22a x -22by =1上一点P(x 1,y 1)的左、右焦半径长为|PF 1|=±(ex 1+a),|PF 2|=±(ex 1-a)(其中P 在右支上取正号,在左支上取负号).【典型热点考题】例1 已知双曲线22a x -22by =1(a >0,b >0)左、右焦点分别为F 1和F 2,P 是它左支上点,P 到左准线距离为d.问:是否存在这样的点P ,使d,|PF 1|,|PF 2|成等比数列,说明理由.分析 对于存在性问题,先假设存在满足题意的对象,然后结合题设条件进行判断.设存在P(x 0,y 0)且x 0≤-a ,使d ,|PF 1|,|PF 2|成等比数列,则|PF 1|2=d |PF 2|, 设d ′为P 点到右准线的距离,由双曲线第二定义得:dPF 1='2d PF =e ∴|PF 1|=ed,∴(ed)2=d ·ed ′,∴ed=d ′,∴e(-c a 2-x 0)=-x 0+ca 2, ∴x 0=e e a -+1)11( ∵x 0≤-a,∴ee a -+1)11(≤-a,∴e 2-2e-1≤0,∴1-2≤e ≤2+1,又e >1, ∴1<e ≤2+1.故当双曲线的离心率e ∈(1, 2+1)时,存在满足条件的P ,而当e ∈(2+1,+∞)时,不存在满足条件的点P.注:利用双曲线的第二定义解题是非常有效的方法.本例还可以利用双曲线的两种定义再结合不等式|PF 1|+|PF 2|≥|F 1F 2|求解,请同学们自己完成.例2 如图,已知梯形ABCD 中,|AB |=2|CD |,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当(32≤λ≤43)时,求双曲线离心率e 的取值范围.分析 如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系,则CD ⊥y 轴.因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称.依题意,记A(-C ,0),C(2c ,h),E(x 0,y 0,)其中c=21|AB |为双曲线的半焦距,h 是梯形的高.由定比分点坐标公式得x 0=λλ++-12cc =)1(2)2(+-λλc ,y 0=λλ+1h 42e -22b h =1,①42e (12+-λλ)2-(1+λλ)222b h =1 ②由①式得22bh =42e -1③把③式代入②式,整理得42e (4-4λ)=1+2λ 故λ=1-232+e由题设32≤λ≤43得32≤1-232+e ≤43.解得 7≤e ≤10.所以双曲线的离心率的取值范围为[7,10].注:本例先求出C 点纵坐标,用a 、b 、c 表示,然后将E 点坐标用λ表示,并代入双曲线方程,而得到含有e 与λ的等式,由λ范围求出e 的范围.例3 已知双曲线的两个焦点分别为M 、N ,点M 的坐标为(-2,-12),点S(-7,0)、T(7,0)在双曲线.(1)利用双曲线定义,求点N 的轨迹方程;(2)是否存在过P(1,m)的直线与点N 的轨迹有且只有两个公共点A 、B ,且点P(1,m)恰是线段AB 的中点?若存在,求出实数m 的取值范围;若不存在,说明理由.分析 (1)设点N 的坐标为(x,y),它不同于点M(-2,-12).由双曲线定义知 ||SM |-|SN ||=||TM |-|TN ||≠0 ∵S(-7,0),T(7,0),∴|SM |=13,|TM |=15.1°当|SM |-|SN |=|TM |-|TN |时,有|TN |-|SN |=2<14=|ST |,∴点N 的轨迹是中心在ST 的中点(0,0),焦点为S 、T 的双曲线C 的左支,除去M(-2,-12)和D(-2,12)两点.双曲线C 的方程:x 2-482y =1(x <0). ∴点N 的轨迹方程为x 2-482y =1(x <0,y ≠±12). 2°当|SM |-|SN |=-(|TM |-|TN |)时,有|TN |+|SN |=28>14=|ST |,∴点N 的轨迹是中心在ST 的中点(0,0),焦点为S 、T 的椭圆Q ,除去M(-2,-12)和D(-2,12)两点.椭圆Q 方程:1962x +1472y =1.∴点N 的轨迹方程为1962x +1472y =1(y ≠±12).综合1°、2°,点N 的轨迹方程为x 2-482y =1(x <0=和1962x +1472y =1,其中y ≠±12.(2)1°当过点P(1,m)的直线的斜率k 不存在时,直线l 的方程为x=1,可得m=1.2°当k 存在时,设直线l :y=kx+m-k.若l 过点M 或点D.∵两点M 、D 既在双曲线C 上,又在椭圆Q 上,但不在点N 的轨迹上 ∴l 与点N 的轨迹只有一个公共点,不合题意;若l 不过M 、D 两点.当-43<k 2<43时(双曲线C 的渐近线方程为y ±43=0),利用图像知,直线l 与点N 的轨迹有三个公共点,不合题意.当-∞<k ≤-43或43<k ≤+∞时,直线l 与点N 的轨迹有两个公共点A 、B ,且点P(1,m)是AB 的中点. 设A(x 1,y 1),B(x 2,y 2),则在 3x 21+4y 21=12×49, ① 3x 22+4y 22=12×49, ② ①-②,得3(x 1+x 2)(x 1-x 2)=-4(y 1+y 2)(y 1-y 2) ③ 将x 1+x 2=2,y 1+y 2=2m,2121x x y y -- =k 代入③,得k=-m43.当43≤k <+∞,即43≤-m43<+∞时,有-163≤m <0.【同步达纲练习】A 级一、选择题1.已知双曲线kx 2-2ky 2=4的一条准线是y=1,则实数k 的值等于( ) A.23 B.-32 C.-23 D.32 2.双曲线与其共轭双曲线有相同的( )A.顶点B.焦点C.准线D.渐近线3.过点(2,-2)且与双曲线x 2-2y 2=2有公共渐近线的双曲线方程是( )A.-42x +22y =1B. 42x -22y =1C.- 22x +42y =1D. 22x +42y =14.已知双曲线的半焦距为C ,两准线间的距离为d ,且c=d,则双曲线的离心率等于( ) A. 3B.2C.3D.25.当8<k <17时,曲线k x -172+ky -82=1与82x +172y =1有相同的( )A.焦距B.准线C.焦点D.离心率二、填空题 6.以y=±21x 为渐近线,且焦点在坐标轴上,焦距为10的双曲线 . 7.双曲线42x -82y =1的两准线相距 ,两渐近线所夹的锐角等于 ;8.若双曲线的离心率为2,则其共轭双曲线的离心率为 .三、解答题9.试求以椭圆1692x +1442y =1的右焦点为圆心,且与双曲线9x 2-162y=1的渐近线相切的圆方程.10.过双曲线92x -162y =1的右焦点F 作倾斜角为4的弦AB ,求弦AB 的长及AB 的中点M到右焦点F 的距离.AA 级一、选择题1.在下列双曲线中,与双曲线32x -y 2=1的离心率和渐近线都相同的是( )A.3y 2-x 2=9 B.x 2-3y 2=9C.3y 2-9x 2=1D.3x 2-y 2=3 2.双曲线的两条渐近线方程为y=±43x,则双曲线的离心率为( ) A.45 B.2 C.45或35D.25或215 3.过双曲线的一个焦点且与双曲线的实轴垂直的弦叫做双曲线的通径,则双曲线162y -92x =1的通径的长是( )A.49 B.29C.9D.104.已知双曲线642x -362y =1上的一点P 到右焦点的距离为14,则P 点到左准线的距离为( )A.22B.24C.26D.285.已知双曲线x 2-y 2=1的左焦点为F ,点P 为双曲线在第三象限内的任意一点,则斜率k PF 的取值范围是( )A.k ≤0或k ≥1B.k <0或k >1C.k ≤-1或k ≥1D.k <-1或k >1二、填空题6.双曲线16x 2-9y 2=144上一点P(x 0,y 0)(x 0<0)到左焦点距离为4,则x 0= .7.双曲线32x -y 2=1的共轭双曲线的准线方程是 .8.双曲线22ax -22b y =1的准线和渐近线的交点到双曲线的中心的距离等于 .三、解答题9.直线y=kx+1与双曲线x 2-y 2=1的左支交于A 、B 两点,直线l 过点(-2,0)和AB 中点,求直线l 在y 轴上截距b 的取值范围.10.求证:以过双曲线的一个焦点的弦为直径的圆,必与对应的准线相交,且这条准线截得的劣弧的弧度数为定值.【素质优化训练】1.过点A(1,1)且与双曲线x 2-y 2=2有且只有一个公共点的直线的条数是( ) A.1 B.2 C.3 D.42.双曲线的两条准线分焦点间的距离成三等分,则双曲线的离心率为( )A.33B. 2C.3D.23.若双曲线的两条渐近线是y=±23x ,焦点F 1(-26,0),F 2(26,0),那么它的两条准线间的距离是( )A.26138B.26134C.261318D.261394.已知双曲线的两个焦点是椭圆16x 2+25y 2=160的两个顶点,双曲线的两准线分别过椭圆的两个焦点,则此双曲线的方程是( )A. 62x -42y =1B. 42x -62y =1C.52x -32y =1D.32x -52y =15.已知E 、F 分别是离心率为215 的双曲线22a x -22by =1(a >0,b >0)的左顶点与右焦点,记M(0,b),则∠EMF 等于( )A.45°B.60°C.90°D.120°二、填空题6.已知双曲线162x -92y =1和点A(6,2)、B(5,0),M 是双曲线上的一个动点,则45|MA |+|MB |的最小值为 .7.双曲线的离心率是e=3,则两渐近线的夹角是 .8.渐近线为y=±21x,且和直线5x-6y-8=0有且仅有一个公共点的双曲线方程为 .三、解答题9.已知点A(5,0)和曲线y=142x (2≤x ≤25)上的点P 1,P 2,…,P n ,若|P 1A |,|P 2A |,…,|P n A |成等差数列并且公差d ∈(51,51),求n 的最大值.10.已知双曲线22a x -22by =1(a >0,b >0)离心率e=323,过点A(0,-b)和B(a,0)的直线与原点间距离23. (1)求双曲线方程;(2)直线y=kx+m(k ≠0,m ≠0)与双曲线交于不同的两点C 、D ,且C 、D 两点都在以A 为圆心的同一圆上,求m 的取值范围.【生活实际运用】1.运用双曲线的光学性质,设计并制作一台灯或吊灯.2.双曲线型自然通风塔的外形,是双曲线的一部分绕其虚构旋转所成的曲面,它的最小半径是6米,最小半径处的截口平面到地面距离是5米,底面截口半径是10米,求此双曲线的标准方程.注:这是一个有实际意义的题目.解这类题目时,首先要确认以下两个问题:(1)选择适当的坐标系;(2)将实际问题中的条件借助坐标系用数学语言表达出来.双曲线的标准方程为362x -225162y =1.【知识验证实验】1.已知双曲线2x 2-y 2=2,试问过点N(1,1)能否作一直线与双曲线交于C 、D 两点,且使N 为CD 的中点?这样的直线如果存在,求出它的方程,如果不存在,则说明理由.将问题一般化:N(x 0,y 0),双曲线方程为22a x -22by =1,若过点N 的双曲线的中点弦存在,则N 点应在什么位置?其方程又为何?2.点P 是双曲线32x -122y =1右分支上任意一点,F 1,F 2分别为左、右焦点,设∠PF 1F 2=α,∠PF 2F 1=β,求证:3tan2α=tan 2β. 解:在△PF 1F 2中,利用正弦定理及分比定理得βsin 1PF =αsin 2PF =)sin(21βα+F F =αβsin sin 21--PF PF ,∴2cos2sin28βαβα++=2sin2cos24αββα-+,即2sin2αβ-=sin2βα+,展开并简化,得3sin2αcos 2β=sin 2βcos 2β, ∴3tan 2α=tan 2β.【知识探究学习】舰A 在舰B 的正东6km 处,舰C 在舰B 的北偏西30°且与B 相距4千米处,它们准备围捕海洋动物.某时刻A 发现动物信号,4s 后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度是1km/s ,炮弹的速度是3320gkm/s ,其中g 为重力加速度.若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?解:取AB 所在直线为x 轴,AB 中点为原点建立直角坐标系,则A 、B 、C 舰的坐标分别为(3,0)、(-3,0)、(-5,23).记动物所在位置为P ,则|PB |=|PC |,于是P 在BC 中垂线上,其方程为3x-3y+73 =0.又A 、C 两舰发现信号的时间差为4秒,有|PB |-|PA |=4,于是P 在双曲线42x -52y =1的右支上,求得P 点坐标是(8,53)且|PA |=10.又k PA =3,∴直线PA 的倾斜角为60°,于是舰A 发射炮弹的方位角是北偏东30°,设发射的仰角是θ,初速度为v 0=3320g ,则g v θsin 20=θcos 100v ,∴sin2θ=210v g =23, ∴仰角θ=30°参考答案:【同步达纲练习】A 级1.B2.D3.A4.B5.A6. 202x -52y =1或202x -52y =-1 7. 334,arctan228.332 9.解:由椭圆1692x +1442y =1的右焦点为(5,0),∴圆心为(5,0),又圆与双曲线92x -162y =1的渐近线相切,即圆心到直线y=±34x 的距离为圆的半径.∴r=50354⨯-⨯±=4 于是圆的方程为(x-5)2+y 2=16.10.解:∵F(5,0),∴AB:y=x-5,将AB 的方程代入双曲方程,得7x 2+90x-369=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-790,x 1x 2=-7369,∴|AB |=212214)(2x x x x -+=7184322=7192,又x m =221x x +=-745,∴|MF |=2|x M -5|=7280 AA 级1.B2.C3.B4.B5.B6.-5217.y=±21 8.a9.解:由⎩⎨⎧=-+=1122y x kx y 消去y 得,(1-k 2)x 2-2kx-2=0,若令f(x)=(1-k 2)x 2-2kx-2,则直线与双曲线左支相交于A 、B 两点,等价于方程f(x)=0有两个不大于-1的不等实根,即:⎪⎪⎩⎪⎪⎨⎧≥---<-=+>-+=0)1()1(2120)1(84222122f k k k x x k k △ 解得1<k <2,又AB 中点为(221k k -,211k -),∴直线l 的方程为211k y-=2122+-+k kx ⇒y=2222++-+k k x ,令x=0,b=2222++-k k =1617)41(12+--k ,由k ∈(1, 2)知b <-2-2或b >2,故直线l 在y 轴上的截距b 的取值范围为(-∞,-2-2)∪(2,+∞).10.证明:设PQ 是过焦点F 的弦,M 是PQ 的中点,l 是与F 相应的准线,分别过P 、Q 、M 作l 的垂线,垂足为P 1、Q 1、M 1,则|MM 1|=21||PP 1|±|QQ 1||=21·|e PF 1±e PF 2|=e21|PQ |=e R<R ,当P 、Q 位于同一支时,取“+”,否则取“-”,∴以PQ 为直径的圆必与准线l 相交,且截得的劣弧的弧度数θ=2arccos RMM 1=2arccose1为定值. 【素质优化训练】1.B2.C3.A4.A5.C6. 277.arctan 724 8. 42x -y 2=19.解:题设中的曲线是双曲线中的一段,即42x -y 2=1,(2≤x ≤25,y ≥0),A(5 ,0)是它的右焦点,其右准线为l :x=54,e=25,设P n (x n ,y n )(2≤x n ≤25,y n ≥0),则|P n A |=e(x n -54)=25x n -2,∴|P n A |min=5-2,|P n A |max=3,依题意,可设等差数列首项a 1=5-2,第n 项a n =3=5-2+(n-1)d,得d=155--n (n >1),又51<d <51,∴51<155--n <51,得55-4<n <26-55,而7<55-4且26-55<15,∴7<n <15,故n 可取最大值为14.10.解:(1)过AB 的直线方程为bx-ay-ab=0,由点到直线距离公式可得22b a ab +=23①,又e=a b a 22+=332 ②,由①、②得b=1,a=3,即所求双曲线方程为32x -y 2=1(2)由⎪⎩⎪⎨⎧=-+=132y x mkx y 消去y,得(3k 2-1)x 2+6kmx+3(m 2+1)=0,当3k 2-1≠0即k ≠±33时,△=12(m 2-3k 2+1)>0,即m 2-3k 2+1>0 ③,设C(x 1,y 1),D(x 2,y 2),CD 中点为M(x 0,y 0).则x 0=221x x +=1332--k km ,y 0=kx 0+m=-132-k m,因C 、D 两点都在以A 为圆心的同一圆上,∴AM ⊥CD,而k AM =km m k 313--- k CD =k ,∴km m k 313---=-k1⇒3k 2=4m+1 ④,由④得:4m+1>0m >-41 ⑤,将④代入③:m 2-(4m+1)+1>0,得m <0或m >4,综合⑤得m 的取值范围为(-41,0)∪(4,+∞)。

2.3.2双曲线的简单几何性质3直线与圆锥曲线

2.3.2双曲线的简单几何性质3直线与圆锥曲线
2 2
因此, 的取值范围是 因此,k的取值范围是k < -
5 2
k>
5 。 2
问题2

与双曲线 线y = x - 1 与双曲线x2 - y2 = 4
个公共 ,求k? 值。 ? 将直线y=kx—1代入双曲线方程 x2 - y2 = 4 解:将直线 代入双曲线方程 化简整理得 (1- k2 )x2 + 2kx - 5 = 0 (※) 1- k2 = 0 ,此时(※)为一次方程且 一次方程且 ⑴若k=±1,则 ± , 有解,直线与双曲线有且只有一个公共点 有解,直线与双曲线有且只有一个公共点 。
- 2k -5 - 4 k(2 k - 1 ) =0 代入化简得: 将 xP + xQ = 1- k2 , xP xQ = 1- k2 代入化简得: 2 1- k 1 解得 k = 0 k = 2 k ≠ ± 1
要使直线与双曲线的右支 有两个公共点, 有两个公共点,应满足
所以满足条件的k不存在。 所以满足条件的k不存在。
问题3 若直线y=kx y=kx—1 问题3 若直线y=kx 1与双曲线 x − y = 4 有两个相异公共点, 的取值范围。 有两个相异公共点,求k的取值范围。
2 2
解:将直线y=kx—1代入双曲线方程 x2 - y2 = 4 将直线 代入双曲线方程 化简整理得 (1- k2 )x2 + 2kx - 5 = 0 (※)
1 )[ (y1 + y2 )2 - 4 y1y2 ] 2 k
问题6 已知直线y=kx y=kx— 问题6 已知直线y=kx—1与双曲线 x2 - y2 = 4 ,记 双曲线的右顶点为A,是否存在实数k,uuu 双曲线的右顶点为A 是否存在实数k r 使得直线 uuu r 与双曲线的右支交于P 两点, 与双曲线的右支交于P、Q两点,且 PA QA = 0 , 若存在,求出k的值,若不存在,请说明理由。 若存在,求出k的值,若不存在,请说明理由。

(第12课时)双曲线的简单几何性质(3)

(第12课时)双曲线的简单几何性质(3)

课 题:8.4双曲线的简单几何性质 (三)教学目的:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握双曲线的另一种定义及准线的概念 3.掌握等轴双曲线,共轭双曲线等概念4.进一步对学生进行运动变化和对立统一的观点的教育教学重点:双曲线的渐近线、离心率、双曲线的另一种定义及其得出过程 教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系,双曲线的另一种定义的得出过程 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1.范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点 顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线过双曲线12222=-b y a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的平行线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是x a b y ±=(0=±bya x ),这两条直线就是双曲线的渐近线 4.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率=e等轴双曲线可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上5.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222by a x 6.双曲线的草图具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线7.离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率 范围:1>e双曲线形状与e 的关系:1122222-=-=-==e ac a a c abk ,e 越大, 由此可知,双曲线的离心率越大,它的开口就越阔 8.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c 中a,b 不同(互换)c 相同 共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上 确定双曲线的共轭双曲线的方法:将1变为-1共用同一对渐近线kx y ±=的双曲线的方程具有什么样的特征:可设为)0(1222≠=-λλk y x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上 二、讲解新课:9. 双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c ace 的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 10.准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=,相对于右焦点)0,(2c F 对应着右准线ca x l 22:=;位置关系:2>>≥c a a x 焦点到准线的距离cb p 2=(也叫焦参数) 对于12222=-b x a y 来说,相对于上焦点),0(1c F -对应着上准线c a y l 21:-=;相对于下焦点),0(2c F 对应着下准线ca y l 22:=11 .双曲线的焦半径定义:双曲线上任意一点M 与双曲线焦点21,F F 的连线段,叫做双曲线的焦半径焦半径公式的推导:利用双曲线的第二定义,设双曲线)0,0( 12222>>=-b a b y a x ,21,F F 是其左右焦点则由第二定义:e d MF =11, ∴e ca x MF =+201 01ex a MF +=∴同理 02ex a MF -=即有焦点在x 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ex a MF ex a MF同理有焦点在y 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ey a MF ey a MF ( 其中21,F F 分别是双曲线的下上焦点)点评:双曲线焦半径公式与椭圆的焦半径公式的区别在于其带绝对值符号,如果要去绝对值,需要对点的位置进行讨论。

双曲线的简单几何性质

双曲线的简单几何性质

(2)∵双曲线的焦点与椭圆的焦点相同, c 2 ∴c=4.∵e= =2,∴a=2,∴b =12, a ∴b=2 3. ∵焦点在 x 轴上,∴焦点坐标为(± 4,0), b 渐近线方程为 y=± x,即 y=± 3x,化 a 为一般式为 3x± y=0.
【答案】 (1)D (2)(± 4,0) 3x± y=0
双曲线的标准方程
求双曲线的标准方程也是从“定形”“定
式”和“定量”三个方面去考虑.“定形”是
指对称中心在原点,以坐标轴为对称轴的情况
下,焦点在哪条坐标轴上;“定式”根据“形”
设双曲线方程的具体形式;“定量”是指用定
义法或待定系数法确定a,b的值.
根据下列条件,求双曲线的标准方程. 5 (1)虚轴长为 12,离心率为 ; 4 3 (2)顶点间距离为 6,渐近线方程为 y=± x; 2 (3)过点(2,-2)且与双曲线 x2-2y2=2 有公共渐近 线.
【规律方法】 若不能明确双曲线的焦点在哪 条坐标轴上,可设双曲线方程为: mx2+ny2=1(mn<0).
双曲线的几何性质
(1)双曲线的几何性质的实质是围绕双曲线中的“六
点”(两个焦点、两个顶点、两个虚轴的端点)、“四 线”(两条对称轴、两条渐近线)、“两形”(中心、 焦点以及虚轴端点构成的三角形,双曲线上一点和 两焦点构成的三角形)来研究它们之间的相互联系, 明确a、b、c、e的几何意义及它们的相互关系,简 化解题过程.
变式练习
1.(2010 年高考安徽卷)双曲线方程为 x2-2y2=1, 则它的右焦点坐标为( C ) 2 5 A. B. ,0 2 2 ,0 6 C. D.( 3,0) ,0 2
2.(教材习题改编)已知双曲线的离心率为 2, 焦点是(-4,0)、(4,0),则双曲线的方程为( x 2 y2 A. - =1 4 12 x y C. - =1 10 6

双曲线的几何性质

双曲线的几何性质

双曲线的几何性质
双曲线是二次曲线的一种,其几何性质如下:
1. 双曲线有两个分支,分布在两侧于中心对称的轴线上。

轴线与曲线没有交点。

2. 双曲线的两个分支无限延伸,没有端点。

两个分支之间的距离称为双曲线的焦距,记作2c。

3. 双曲线具有对称性质,即关于x轴、y轴及原点对称。

4. 双曲线的两个分支与其对称轴之间的距离称为双曲线的半轴长,记作a。

半轴长的大小决定了双曲线的形状。

5. 双曲线具有渐近线性质,即两个分支无限接近于直线,称为双曲线的渐近线。

渐近线的方程为y = ±(a/c)x。

6. 双曲线与椭圆和抛物线不同,它没有顶点或焦点。

7. 双曲线的离心率(eccentricity)为大于1的实数,其值决定了曲线的形状。

离心率越大,曲线越扁平。

8. 双曲线的方程一般形式为Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E、F为实数,且满足
B^2 - 4AC < 0,且A和C异号。

这些性质描述了双曲线的形状、对称性、渐近线以及与其他曲线的区别。

双曲线在几何学、物理学和工程学等领域中有广泛的应用。

3、双曲线概念及几何性质

3、双曲线概念及几何性质

双曲线的概念与几何性质一、知识梳理1.双曲线的定义平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质3.重要结论1.过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a . 2.离心率e =ca =a 2+b 2a =1+b 2a 2.3.等轴双曲线的渐近线互相垂直,离心率等于 2.二、例题精讲 + 随堂训练1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( ) (3)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( )(4)双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x m ±yn =0.( )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).( ) 解析 (1)因为||MF 1|-|MF 2||=8=|F 1F 2|,表示的轨迹为两条射线. (2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.(3)当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.答案 (1)× (2)× (3)× (4)√ (5)√2.经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________________.解析 设双曲线方程为:x 2-y 2=λ(λ≠0),把点A (3,-1)代入,得λ=8,故所求双曲线方程为x 28-y 28=1.答案 x 28-y 28=13.已知双曲线x2-y216=1上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于________.解析设双曲线的焦点为F1,F2,|PF1|=4,则||PF1|-|PF2||=2,故|PF2|=6或2,又双曲线上的点到焦点的距离的最小值为c-a=17-1,故|PF2|=6.答案64.(2018·浙江卷)双曲线x23-y2=1的焦点坐标是()A.(-2,0),(2,0)B.(-2,0),(2,0)C.(0,-2),(0,2)D.(0,-2),(0,2)解析由题可知双曲线的焦点在x轴上,又c2=a2+b2=3+1=4,所以c=2,故焦点坐标为(-2,0),(2,0).答案B5.(2017·全国Ⅲ卷)双曲线x2a2-y29=1(a>0)的一条渐近线方程为y=35x x,则a=________.解析由题意可得3a=35,所以a=5.答案56.(2018·北京卷)若双曲线x2a2-y24=1(a>0)的离心率为52,则a=________.解析由题意可得,a2+4a2=⎝⎛⎭⎪⎫522,即a2=16,又a>0,所以a=4.答案4考点一双曲线的定义及应用【例1】(1)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos ∠F1PF2=()A.14B.35C.34D.45(2)(2019·济南调研)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________. 解析 (1)由x 2-y 2=2,知a =b =2,c =2.由双曲线定义知,|PF 1|-|PF 2|=2a =22,又|PF 1|=2|PF 2|, ∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.(2)如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件,得|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1,C 2的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).答案 (1)C (2)x 2-y 28=1(x ≤-1)【训练1】 (1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( ) A.215a 2 B.15a 2 C.30a 2D.15a 2(2)(2019·杭州质检)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( ) A.8B.10C.4+37D.3+317解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =c a =2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a , ∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×4a ×2a ×154=15a 2.(2)由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,当F ′,P ,A 三点共线时,|PF ′|+|P A |有最小值,为|AF ′|=3,故△P AF 的周长的最小值为10. 答案 (1)B (2)B考点二 双曲线的标准方程【例2】 (1)(2017·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )81045C.x 25-y 24=1D.x 24-y 23=1(2)(2018·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1D.x 29-y 23=1 解析 (1)由题设知b a =52,①又由椭圆x 212+y 23=1与双曲线有公共焦点, 易知a 2+b 2=c 2=9,②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1.(2)由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以ca =2,所以a 2+b 2a 2=4,所以a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1. 答案 (1)B (2)C规律方法 1.利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a ,b ,c 的方程并求出a ,b ,c 的值. 2.与双曲线x 2a 2-y 2b 2=1有相同渐近线时可设所求双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).【训练2】 (1)(2019·海南二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是( ) A.x 212-y 2=1B.x 29-y 23=132332(2)已知双曲线的渐近线方程为2x ±3y =0,且双曲线经过点P (6,2),则双曲线的方程为________________.解析 (1)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,可得⎩⎪⎨⎪⎧2a 2-3b 2=1,b a =3,解得⎩⎨⎧a =1,b =3,∴双曲线C 的标准方程是x 2-y 23=1.(2)由双曲线的渐近线方程为y =±23x ,可设双曲线方程为x 29-y 24=λ(λ≠0).因为双曲线过点P (6,2),所以69-44=λ,λ=-13,故所求双曲线方程为y 243-x 23=1.答案 (1)C (2)y 243-x 23=1考点三 双曲线的性质 角度1 求双曲线的渐近线【例3-1】 (2018·全国Ⅱ卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( ) A.y =±2x B.y =±3x C.y =±22xD.y =±32x解析 法一 由题意知,e =ca =3,所以c =3a ,所以b =c 2-a 2=2a ,即b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x .法二 由e =ca =1+⎝ ⎛⎭⎪⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±ba x =±2x . 答案 A角度2 求双曲线的离心率【例3-2】 (1)(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A. 5B.2C. 3D.2(2)(2018·泰安联考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的取值范围是( ) A.⎝ ⎛⎭⎪⎫1,233 B.⎝ ⎛⎭⎪⎫233,+∞ C.(1,2)D.(2,+∞)解析 (1)不妨设一条渐近线的方程为y =b a x ,则F 2到y =b a x 的距离d =|bc |a 2+b 2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-a c ,则3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca= 3.(2)由双曲线方程可得其渐近线方程为y =±ba x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2,圆心C 2的坐标为(a ,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab |a 2+b2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1的离心率的取值范围为⎝⎛⎭⎪⎫1,233. 答案 (1)C (2)A角度3 与双曲线有关的范围(最值)问题【例3-3】 已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36C.⎝⎛⎭⎪⎫-223,223 D.⎝⎛⎭⎪⎫-233,233 解析 因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33. 答案 A【训练3】 (1)(2019·上海崇明区调研)在平面直角坐标系xOy 中,双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与圆(x -2)2+(y -1)2=1相切,则C 的离心率为( ) A.43B.54C.169D.2516(2)已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是________.解析 (1)双曲线C 的渐近线方程为by ±ax =0,结合图形易知与圆相切的只可能是by -ax =0,又圆心坐标为(2,1),则|b -2a |a 2+b2=1,得3a =4b , 所以9a 2=16b 2=16(c 2-a 2),则e 2=2516, 又e >1,故e =54.(2)对于焦点在x 轴上的双曲线x 2a 2-y 2b 2=1(a >0,b >0),它的一个焦点(c ,0)到渐近线bx -ay =0的距离为|bc |b 2+a 2=b .本题中,双曲线x 28-m +y 24-m =1即x 28-m -y 2m -4=1,其焦点在x 轴上,则⎩⎨⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2). 答案 (1)B (2)(0,2)三、课后练习1.(2019·河南适应测试)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( ) A.y =±2x B.y =±12x C.y =±22xD.y =±2x解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎨⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x . 答案 D2.已知点F 为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx (k >0)与E 交于不同象限内的M ,N 两点,若MF ⊥NF ,设∠MNF =β,且β∈⎣⎢⎡⎦⎥⎤π12,π6,则该双曲线的离心率的取值范围是( ) A.[2,2+6] B.[2,3+1] C.[2,2+6]D.[2,3+1]解析 如图,设左焦点为F ′,连接MF ′,NF ′,令|MF |=r 1,|MF ′|=r 2,则|NF |=|MF ′|=r 2,由双曲线定义可知r 2-r 1=2a ①,∵点M 与点N 关于原点对称,且MF ⊥NF ,∴|OM |=|ON |=|OF |=c ,∴r 21+r 22=4c 2②,由①②得r 1r 2=2(c 2-a 2),又知S △MNF =2S △MOF ,∴12r 1r 2=2·12c 2·sin 2β,∴c 2-a 2=c 2·sin 2β,∴e 2=11-sin 2β,又∵β∈⎣⎢⎡⎦⎥⎤π12,π6,∴sin 2β∈⎣⎢⎡⎦⎥⎤12,32, ∴e 2=11-sin 2β∈[2,(3+1)2]. 又e >1,∴e ∈[2,3+1].答案 D3.(2018·北京卷)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.解析 设椭圆的右焦点为F (c ,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A ⎝ ⎛⎭⎪⎫c 2,3c 2,由点A 在椭圆M 上得,c 24a 2+3c 24b 2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∵b 2=a 2-c 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),∴4a 4-8a 2c 2+c 4=0,∴e 4椭-8e 2椭+4=0,∴e 2椭=4±23,∴e 椭=3+1(舍去)或 e 椭=3-1,∴椭圆M 的离心率为3-1.∵双曲线的渐近线过点A ⎝ ⎛⎭⎪⎫c 2,3c 2,∴渐近线方程为y =3x ,∴n m =3,故双曲线的离心率e 双=m 2+n 2m 2=2. 答案3-1 24.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA→·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b 2=1(a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1.故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1. 又∵OA →·OB →>2,得x 1x 2+y 1y 2>2,∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.② 由①②得13<k 2<1,故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1. 5.已知椭圆x 24+y 2m =1与双曲线x 2-y 2n =1的离心率分别为e 1,e 2,且有公共的焦点F 1,F 2,则4e 21-e 22=________,若P 为两曲线的一个交点,则|PF 1|·|PF 2|=________.解析 由题意得椭圆的半焦距满足c 21=4-m ,双曲线的半焦距满足c 22=1+n ,又因为两曲线有相同的焦点,所以4-m =1+n ,即m +n =3,则4e 21-e 22=4×4-m 4-(1+n )=3-(m +n )=0.不妨设F 1,F 2分别为两曲线的左、右焦点,点P 为两曲线在第一象限的交点, 则⎩⎨⎧|PF 1|+|PF 2|=4,|PF 1|-|PF 2|=2.解得⎩⎨⎧|PF 1|=3,|PF 2|=1,则|PF 1|·|PF 2|=3.答案 0 3。

双曲线的基本性质

双曲线的基本性质

双曲线的基本性质
双曲线是椭圆的一种特殊形式,可以分为双曲线的子类,它的特
征在于它的两个焦点在任意方向上都有着一致的特点。

双曲线之所以受到人们的广泛关注,是因其独特的几何性质。


们的几何特征类似于椭圆,但是双曲线具有更为丰富的几何结构。


曲线的方程总是具有二次项,而且形状受系数所控制,一般当系数小
于1时双曲线的形状呈轮廓状,而如果系数大于1就变得半圆钝角状。

双曲线在几何学和应用数学领域有着广泛的应用,主要体现在几
何上,它的性质有助于构建经典的坐标系统以及对它们的中心对称操作。

双曲线还可以用来计算交异点、求一次曲线或者构筑更复杂的图形,甚至可以用来求曲线上的点,解决几何问题。

双曲线是几何学领域画线的一种很好的方式,作为几何学中一个
次要的分支,双曲线具有独特的几何结构,它们在 said 几何学和应
用数学中都有着广泛的应用,可以说双曲线是几何学中的一个强大工具。

双曲线的性质

双曲线的性质

双曲线的性质【要点梳理】要点一、双曲线的简单几何性质双曲线22221x y a b-=(a >0,b >0)的简单几何性质范围22221x x a ax a x a即或≥≥∴≥≤- 双曲线上所有的点都在两条平行直线x=-a 和x=a 的两侧,是无限延伸的。

因此双曲线上点的横坐标满足x≤-a 或x≥a.对称性对于双曲线标准方程22221x y a b -=(a >0,b >0),把x 换成-x ,或把y 换成-y ,或把x 、y 同时换成-x 、-y ,方程都不变,所以双曲线22221x y a b-=(a >0,b >0)是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。

顶点①双曲线与它的对称轴的交点称为双曲线的顶点。

②双曲线22221x y a b-=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。

③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,-b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴。

实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b 。

a叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长。

①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。

②双曲线的焦点总在实轴上。

③实轴和虚轴等长的双曲线称为等轴双曲线。

离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c c e a a==。

②因为c >a >0,所以双曲线的离心率1ce a=>。

由c 2=a 2+b 2,可得b a ===b a 决定双曲线的开口大小,b a 越大,e 也越大,双曲线开口就越开阔。

所以离心率可以用来表示双曲线开口的大小程度。

③等轴双曲线a b =,所以离心率2=e 。

双曲线的几何性质

双曲线的几何性质

0
若改为: 焦点在x轴上
双曲线与圆x y 17交于A(4,-1)
2 2
圆在A点的切线与双曲线渐近 线平行 的双曲线的标准方程
x y 点P在 双 曲 线 1上 ,F1、F2 4 9 为两焦点,若 PF1 5, 求 PF2
2
2
1 、中心在原点,一个 顶点为A( 3 ,0 ), 4 离心率为 的双曲线方程是() 3 2 2 2 2 x y 7y x A. 1 B. 1 9 7 81 9 2 2 y x C 1 9 7 2 2 2 2 x y 7y x D 1 或 1 9 7 81 9
例2:求适合下列条件的双曲线的 标准方程。 5 (1)实轴在x轴上,离心率e= ,b=2
4
(2)过点(3,4)且虚轴长为实轴长的 2倍 (3)过点(-1,3)和双曲线
x y 1 有共同的渐近线。 4 9
2
2
说明: x y 1与 双 曲 线 2 2 1m 0,n 0 m n 共 渐 近 线 的 双 曲 线 方可 程设 为 : x y λ λ 0 2 2 m n
2 2
x y 1 4 9
2 2
2
2
x y 1 8 18
y x 1 9 4 2 2 y x 1 18 8
2
2
重要结论:
x y 与 0共渐近线的 a b 双曲线方程可设为 x y ( 0) 2 2 a b
2 2
等轴双曲线 : 实轴和虚轴等长的双曲 线
(± a,0)
( c,0), c a 2 b 2
b y x a
(0,±a)
b x y a
(0, c ), c a 2 b 2

双曲线的简单几何性质(3)

双曲线的简单几何性质(3)

2 y2 (b>a>0) 2、已知直线 、已知直线y=x-2与双曲线 x2 - 2 = 1 与双曲线 a b
相交于点A, , 相交于点 ,B,
(1)若直线过该双曲线的右焦点,且点P(1,0)在 若直线过该双曲线的右焦点,且点 若直线过该双曲线的右焦点 在 该双曲线上,求双曲线的标准方程; 该双曲线上,求双曲线的标准方程; *(2) 若OAOB=0,求实数 的取值范围 的取值范围. ,求实数a的取值范围
a2
c
叫做双曲线相对于焦点F(c,0) , 叫做双曲线相对于焦点
常数e= 叫做双曲线的离心率 的准线.常数 c (e>1)叫做双曲线的离心率 准线 常数 a 叫做双曲线的离心率.
x y 1. 双曲线 = 1的准线方程为 169 25
y x 2. 双曲线 = 1两准线之间的距离为 9 10
2 2
x2 y2 有相同的焦点, = 1有相同的焦点,且两 1、求与椭圆 + 、 16 25
10 准线间的距离为 的双曲线方程 的双曲线方程. 3 x2 y2 2. 求过原点,且与双曲线 = 1 交于两点 求过原点, 4 3
的直线斜率的取值范围. 的直线斜率的取值范围
3、过点P(8,1)的直线与双曲线 x 4 y = 4 、过点 ( , ) 相交于A、 两点 两点, 是线段AB的中点 相交于 、B两点,且P是线段 的中点, 是线段 双曲线 = 1 的右焦点到右准线的距离 . 、 9 7
1、一炮弹在某处爆炸,在 F1 (5000,0)处听到 、一炮弹在某处爆炸, 300 s , 爆炸声的时间比在 F2 (5000,0)处晚 17 爆炸点应在什么样的曲线上? 声速为 340m / s,爆炸点应在什么样的曲线上? 并求爆炸点所在的曲线方程. 并求爆炸点所在的曲线方程

3.2双曲线-3.2.2双曲线的简单几何性质

3.2双曲线-3.2.2双曲线的简单几何性质
出各个结果.
2
解:双曲线的方程化为标准形式是 9
∴a2=9,b2=4,
∴a=3,b=2,c= 13.
2
− 4 =1,
又双曲线的焦点在 x 轴上,
∴顶点坐标为(-3,0),(3,0),
焦点坐标为(- 13,0),( 13,0),
实轴长 2a=6,虚轴长 2b=4,

13
2
离心率 e= = 3 ,渐近线方程为 y=±3x.
(2)共轭双曲线的性质:
①有相同的渐近线;②有不同的离心率,离心率倒数的平方和为1.
探究一
探究二
探究三
素养形成
当堂检测
由双曲线的方程求几何性质
例1求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、
离心率和渐近线方程.
思路分析:将双曲线方程化为标准方程,先求出参数a,b,c的值,再写
⑥渐近线为ax±by=0的双曲线方程可设为a2x2-b2y2=λ(λ≠0).

探究一
探究二
探究三
素养形成
当堂检测
变式训练 2 求满足下列条件的双曲线的标准方程:
(1)双曲线的实轴长与虚轴长之和等于其焦距的 2倍,且一个顶点的
坐标为(0,2);
(2)双曲线的渐近线方程为
解:(1)由已知,双曲线焦点在
9
9
81
2
2
2
2



4
故所求双曲线方程为 9 − 4 =1 或 9 − 81 =1.
探究一
探究二
探究三
素养形成
当堂检测
反思感悟巧设双曲线方程的六种方法与技巧
2
2
①焦点在 x 轴上的双曲线的标准方程可设为2 − 2 =1(a>0,b>0).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F1
.
O
.

F2
A x
x2 y 2 练习:已知双曲线方程 为 = 1的右焦点为F2 , M是双 9 16 曲线右支上一点,定点 (9,2), 求 | MA | + | MF2 | 的最小值。 A
y
解:由双曲线第一定义 得:
| MF1 | - | MF2 |= 2a = 6
F1
M .
.
O
.

F2
A x
实 例 演 示 : e=2
线 距 动 离 点 的 二到 定 倍 点 。 距 离 是 它 到 定 直
L
F
y
L
线 距 离动 的点 二到 倍定 。点 距 离 是 它 到 定 直
a2 准线x = c
c e= =2 a
焦点
o
F
x
x2 y2 双曲线标准方程是: - = 1 a 2 b2
a2 练习2.点 M ( x,y)与定点F (c,的距离和它到定直线l : x = 的 0) c c 距离的比是常数 (c a 0),求点M 的轨迹 . a l 解: d是点M到直线l的距离,则 l' y 设 d .M | MF | c 由题意知 = d a
即 ( x - c) 2 + y 2 c = . 2 a a | x- | c
F’
.
O
.
F
x
化简 (c 2 - a 2 ) x 2 - a 2 y 2 = a 2 (c 2 - a 2 ) .
x2 y2 设 c 2 - a 2 = b2 ,则 方程化为 2 - 2 = 1 (a 0, b 0) a b
y
x2 y2 - 2 =1 2 a b
F1
o
F2
x
到一定直线的距离之比 是常 c 数e = 1,这个点的轨迹是 a 双曲线。
a2 (二)准线方程: x = , (a c) c
椭圆 第二定义 定义式
双曲线
动点到一个定点的距离和它到 一条定直线的距离的比是常数e
PF 1 d1 = PF 2 d2 = c = e a
准线方程
离心率范围
a2 x= c
0<e<1

a2 y = c
e>1
2 2 一些好用的结论: a a x = 或y = 1.准线方程: c c 2 2.两准线间的距离: d = 2a c 2 b 3.焦准距: d =
c 4.双曲线的焦半径公式:
x2 y 2 F 设双曲线 2 - 2 = 1(a 0, b 0)的焦点为: 1 (-c,0), F2 (c,0). a b
|x|a,|y|≤b
对称性
|x| ≥ a,yR
对称轴:x轴,y轴 对称中心:原点 (-a,0) (a,0) 实轴:2a 虚轴:2b
c (e1) e= a
对称轴:x轴,y轴 对称中心:原点
顶点
(-a,0) (a,0) (0,b) (0,-b) 长轴:2a 短轴:2b c e= a
( 0<e <1 )
a = 8 , = 6 , = a 2+b2 =10 b c 解1:
设 P 到左、右准线距离分别 d ' 、d, 为
l' y
l
P.
| PF2 | 由双曲线的第二定义得: 则 =e d | PF2 | 8 32 = = d= 5 5 e
4
F1

.
O
.
F2
x
a2 a2 2a 2 64 两准线间的距离 - (- ) = = c c c 5 64 32 96 / d = + = 5 5 5
c 则e = = 2 a
a a 或y = 1.准线方程:x = c c 2
2
2
b 3.焦准距:焦点到对应准线的距离 d = c
2
思考:双曲线与椭圆的第二定义的区别在哪里?
例1、点M(x,y)与定点F(5,0),的距离 16 x 和它到定直线 l : = 的距离的比是常 5 5 数 , 求点M的轨迹.
4
y
l
d 0
x2 y2 例2:已知双曲线 = 1右支上一点P到右焦点的距离等于, 8 64 36 求点P到双曲线左准线的距离 。
点 M 的轨迹是实轴、虚轴长 分别为2a、b的双曲线. 2
双曲线的 第二定义
双曲线的第二定义:
平面内动点 M 与一个定点F的距离和它到一条定直线l的距离的比 c 是常数 e = (e 1),则这个点的轨迹是双曲线 . a l' y
l d .M
定点是双曲线的焦点, 定直线叫做双曲线的 准线,常数e是双曲线的离心率.
之比为2, 求M 的轨迹方程。
解:设M ( x, y),由题意得:
( x - 4) 2 + y 2 =2 | x -1|
y
M
O
2

x =1
F
x
( x - 4) + y = 4( x -1)
2 2
3x - y = 12
2 2
x2 y2 =1 4 12 M的轨迹为以(4,0)为焦点,实轴长为4的双曲线
复习
椭 圆
双曲线
方程
a b c关系
图象
2 x2 + y = 1 a> b >0) 2 ( 2 a b
x2 - y2 = 1 ( a> 0 b>0) 2 b2 a
c 2= a 2 - b 2 (a> b>0)
y
M
c 2= a 2 + b 2 (a> 0 b>0)
Y p F2 X
F1
0
F2
X
F1
0
范围
1 点,过F2作垂直与x轴的直线交双曲线于点P,且sinPF1F2 = . 3 求此双曲线的离心率。 x
解:由题意x = c P
P
焦半径|PF1 |= ec + a, 2 |= ec - a |PF
F2
F1
0
y sinPF F
1
2
|PF2 | ec - a 1 = = = |PF1 | ec + a 3
即 | MF2 |=| MF1 | -6 MA | + | MF2 |=| MA | + | MF1 | -6 |
(| MA | + MF1 | -6) min =| AF | -6 = 14 + 2 - 6 = 10 2 - 6 1
2 2


(一)双曲线第二定义 : 当点M到一定点的距离和它
离心率
渐近线

y=±
b x a
x2 y2 双曲线 2 - 2 = 1, (a 0, b 0) a b
b 直线 y = x叫做双曲线的渐进线 a
x2 y2 x2 y2 双曲线 2 - 2 = 1的渐进线为 2 - 2 = 0 a b a b
y
b y= x a
等轴双曲线
O
x
b y=- x a
椭圆的第二定义:
c 是常数 e = (0 e 1),则这个点的轨迹是椭圆 . a
平面内动点 M 与一个定点F的距离和它到一条定直线l的距离的比
定点是椭圆的焦点,定 直线叫做椭圆的 准线,常数e是椭圆的离心率.
l'
y
l
F1O
.
.
M F2
d
x
.
练习 :一动点M 到定点F (4, 0)的距离与到直线x = 1的距离 1
x2 y2 例2:已知双曲线 = 1右支上一点P到右焦点的距离等于, 8 64 36 求点P到双曲线左准线的距离 。
解2:a = 8 , = 6 , = a 2+b2 =10 b c
l' y
l
由双曲线的第一定义得:
| PF |= 2a+| PF2 |= 24 1
F1
P.
.
由双曲线的第二定义得:
PF 1 5 =e= d 4
O
.
F2
d =
| PF1 | 96 = e 5
x2 y2 例3:已知双曲线方程为 = 1的右焦点为F2 , M是双曲线 9 16 3 右支上一点,定点 (9,2), 求 | MA | + | MF2 | 的最小值 A 5 y M .
解:由双曲线第二定义 得:
| MF2 | = e, (d为M到右准线的距离 ) d 5 即 | MF2 |= d 3 3 | MA | + | MF2 |=| MA | + d 5 a2 9 36 (| MA | + d ) min = x A =9- = c 5 5
x y 对于双曲线 2 - 2 = 1, a b a2 右焦点F2 (c,),对应的右准线方程是x = 0 . c a2 左焦点F1 (-c,)对应的左准线方程是x = - . 0 c a2 焦点在y轴上的双曲线的准线方 程是:y = c
2 2
F’
.
O
.
F
x
思考
2a 2.两准线间的距离: d = c
点M(x,y)在左支上时: |MF1|=-a-ex, |MF2|=a-ex
点M(x,y)在右支上时: |MF1|=a+ex, |MF2|=-a+ex
问:第二标准位置时,焦半径公式又如何?
作业:
《学习指导课时作业》双曲线几何性质
思考
x2 y2 如图,已知F,F2为双曲线 2 - 2 = 1(a 0,b 0)的焦 1 a b
相关文档
最新文档