10.1 算法初步 2021年高考数学复习优化一轮用书文数01

合集下载

2021高考数学一轮复习统考第12章算法初步、复数、推理与证明第1讲算法初步学案北师大版

2021高考数学一轮复习统考第12章算法初步、复数、推理与证明第1讲算法初步学案北师大版

第十二章算法初步、复数、推理与证明第1讲算法初步基础知识整合1.算法的框图及结构(1)算法(2)程序框图的图形.通常,程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一(3)三种基本逻辑结构离不开的11基本结构程序框图步骤n错误!(1)输入语句、输出语句、赋值语句的格式与功能语句一般格式功能输入语句14INPUT“提示内容”;变量输入信息输出语句15PRINT“提示内容”;表达式输出信息赋值语句16变量=表达式17将表达式所代表的值赋给变量①IF-THEN格式②IF-THEN-ELSE格式(3)循环语句的格式及框图①UNTI L语句DO循环体LOOP UNTIL条件②WHILE语句WHILE 条件循环体WEND1.注意区分处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.循环结构中必有条件结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.3.注意区分当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”,而当型循环则是“先判断,后循环,条件满足时执行循环”.两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.1.(2019·北京高考)执行如图所示的程序框图,输出的s值为( )A.1 B.2C.3 D.4答案 B解析k=1,s=1;第一次循环:s=2,判断k<3,k=2;第二次循环:s=2,判断k<3,k=3;第三次循环:s=2,判断k=3,故输出2.故选B.2.下列程序段执行后,变量a,b的值分别为( )a=15b=20a=a+bb=a-ba=a-bPRINT a,bA.20,15 B.35,35C.5,5 D.-5,-5答案 A解析a=15,b=20,把a+b赋给a,因此得出a=35,再把a-b赋给b,即b=35-20=15.再把a-b赋给a,此时a=35-15=20,因此最后输出的a,b的值分别为20,15.故选A.3.(2019·武昌调研)执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的S 为17,那么在判断框中可以填入( )A .k >nB .k <nC .k ≥nD .k ≤n 答案 A解析 第一次输入a =2,此时S =0×2+2=2,k =0+1=1,不满足k =1>n =2;第二次输入a =2,此时S =2×2+2=6,k =1+1=2,不满足k =2>n =2;第三次输入a =5,此时S =6×2+5=17,k =2+1=3,满足k =3>n =2,循环终止,输出的S =17.故选A.4.(2019·湖南郴州模拟)执行如图所示的程序框图,输出S 的值为12时,k 是( )A .5B .3C .4D .2答案 A解析 模拟执行程序,可得每次循环的结果依次为k =2,k =3,k =4,k =5,大于4,可得S =sin 5π6=12,输出S 的值为12.故选A.5.(2020·锦州摸底)若如图所示的程序框图输出的S 是30,则在判断框中M 表示的“条件”应该是( )A .n ≥3B .n ≥4C .n ≥5D .n ≥6 答案 B解析 第一次循环,n =1,S =2;第二次循环,n =2,S =6;第三次循环,n =3,S =14;第四次循环,n =4,S =30,故选B.6.执行如图所示的程序框图,若输入x 的值为1,则输出n 的值为________.答案 3解析第一次:x=1,x2-4x+3=0≤0.第二次:x=2,n=1,x2-4x+3=-1≤0.第三次:x=3,n=2,x2-4x+3=0≤0.第四次:x=4,n=3,x2-4x+3=3>0,输出n,程序结束.核心考向突破考向一算法的基本结构例 1 (2019·全国卷Ⅲ)执行如图所示的程序框图,如果输入的为0.01,则输出s 的值等于( )A .2-124B .2-125C .2-126D .2-127答案 C 解析=0.01,x =1,s =0,s =0+1=1,x =12,x <不成立; s =1+12,x =14,x <不成立; s =1+12+14,x =18,x <不成立; s =1+12+14+18,x =116,x <不成立; s =1+12+14+18+116,x =132,x <不成立; s =1+12+14+18+116+132,x =164,x <不成立; s =1+12+14+18+116+132+164,x =1128,x <成立,此时输出s=2-126.故选C.利用循环结构表示算法应注意的问题(1)注意是利用当型循环结构,还是直到型循环结构.(2)注意准确选择表示累计的变量.(3)注意在哪一步开始循环,满足什么条件不再执行循环体.[即时训练] 1.(2019·天津高考)阅读右边的程序框图,运行相应的程序,输出S的值为( )A.5B.8C.24D.29答案 B解析i=1,S=0,i不是偶数;第一次循环:S=1,i=2<4;第二次循环:i是偶数,j=1,S=5,i=3<4;第三次循环:i不是偶数,S=8,i=4,满足i≥4,输出S,结果为8.故选B.2.(2020·濮阳模拟)执行如图所示的程序框图(其中b=c mod 10表示b等于c除以10的余数),则输出的b为( )A.2 B.4C.6 D.8答案 D解析a=2,b=8,n=1;c=16,a=8,b=6,n=2;c=48,a=6,b=8,n=3;c =48,a=8,b=8,n=4;c=64,a=8,b=4,n=5;c=32,a=4,b=2,n=6;c=8,a=2,b=8,n=7,…,易知该程序框图中a,b的值以6为周期重复出现.又因为2019=6×336+3,所以当n=2019时,b=8.故选D.精准设计考向,多角度探究突破考向二算法的交汇性问题角度1算法与函数的交汇例2 (2019·潍坊模拟)执行右边的程序框图,如果输出的y值为1,则输入的x值为( )A .0B .eC .0或eD .0或1 答案 C解析 程序对应的函数为y =⎩⎪⎨⎪⎧e x,x ≤0,2-ln x ,x >0.若x ≤0,由y =1,得e x=1,得x =0,满足条件;若x >0,由y =2-ln x =1,得ln x =1,即x =e ,满足条件.综上,输入的x 值为0或e ,故选C.角度2 算法与数列的交汇例3 (2020·西宁模拟)执行如图所示的程序框图,若输入n =10,则输出的S 的值是( )A.910B.1011C.1112D.922答案 B解析 模拟程序的运行,可得程序的功能是利用循环结构计算并输出变量S =11×2+12×3+…+110×11的值, 可得S =11×2+12×3+…+110×11=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫110-111=1-111=1011.故选B.角度3 算法与统计的交汇例4 (2019·九江联考)图1是随机抽取的15户居民月均用水量(单位:吨)的茎叶图,月均用水量依次记为A 1,A 2,…,A 15,图2是统计茎叶图中月均用水量在一定范围内的频数的一个程序框图,则输出的n 的值为________.答案7解析由程序框图,知算法的功能是计算15户居民中月均用水量大于2.1的户数,由茎叶图得,在这15户居民中,月均用水量大于2.1的户数为7,故输出的n的值为7.解决算法的交汇性问题的方法循环结构的程序框图与数列、不等式、统计等知识综合是高考命题的一个热点,解决此类问题时应把握三点:一是初始值,即计数变量与累加变量的初始值;二是两个语句,即循环结构中关于计数变量与累加变量的赋值语句;三是一个条件,即循环结束的条件,注意条件与流程线的对应关系.[即时训练] 3.(2020·宁夏银川模拟)执行如图所示的程序框图,如果输入的t∈[-2,2],则输出的S属于( )A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6]答案 D解析 当0≤t ≤2时,S =t -3∈[-3,-1].当-2≤t <0时,2t 2+1∈(1,9],则S ∈(-2,6].综上,当-2≤t ≤2时,S ∈[-3,6],故选D.4.(2019·湖南长沙模拟)如图,给出的是计算1+14+17+…+1100的值的一个程序框图,则图中判断框内的(1)处和执行框中的(2)处应填的语句是( )A .i >100,n =n +1B .i <34,n =n +3C .i >34,n =n +3D .i ≥34,n =n +3答案 C解析 算法的功能是计算1+14+17+…+1100的值,易知1,4,7,…,100成等差数列,公差为3,所以执行框中的(2)处应为n =n +3,令1+(i -1)×3=100,解得i =34,所以终止程序运行的i 值为35,所以判断框内的(1)处应为i >34,故选C.5.在2018~2019赛季NBA 季后赛中,当一个球队进行完7场比赛被淘汰后,某个篮球爱好者对该队的7场比赛得分情况进行统计,如下表:为了对这个队的情况进行分析,此人设计计算σ的算法流程图如图所示(其中x 是这7场比赛的平均得分),求输出的σ的值.解 由题意,知x -=17×(100+104+98+105+97+96+100)=100,由算法流程图可知s =(100-100)2+(104-100)2+(98-100)2+(105-100)2+(97-100)2+(96-100)2+(100-100)2=70.故σ=s7=10. 考向三 基本算法语句例5 (1)(2019·福州质检)下列程序语句的算法功能是( )INPUT a,b,cIF a<b THENa=bEND IFIF a<c THENa=cEND IFPRINT aENDA.输出a,b,c三个数中的最大数B.输出a,b,c三个数中的最小数C.将a,b,c从小到大排列D.将a,b,c从大到小排列答案 A解析由程序语句可知,当比较a,b的大小后,选择较大的数赋给a;当比较a,c的大小后,选择较大的数赋给a,最后输出a,所以此程序的作用是输出a,b,c三个数中的最大数.故选A.(2)运行下面的程序,执行后输出的s的值是( )A.11 B.15C.17 D.19答案 B解析当i=3时,s=7,当i=5时,s=11,当i=7时,s=15,此时不满足“i<6”,所以输出s=15,故选B.基本算法语句应用中需注意的问题(1)赋值号“=”的左、右两边不能对调,A =B 和B =A 的含义及运行结果是不同的. (2)不能利用赋值语句进行代数式的演算(如化简、因式分解等),在赋值语句中的赋值号右边的表达式中每一个“变量”都必须事先赋给确定的值.(3)赋值号与数学中的等号意义不同,比如在数学中式子N =N +1一般是错误的,但在赋值语句中它的作用是将原有的N 的值加上1再赋给变量N ,这样原来的值被“冲”掉.[即时训练] 6.阅读下面的程序:如果上述程序输入的值是51,则运行结果是( ) A .51 B .15 C .105 D .501答案 B解析 因为51÷10=5……1,所以a =5,b =1,x =10×1+5=15.故选B .7.(2019·龙岩质检)如图所示的程序,若最终输出的结果为6364,则在程序中“____?____”处应填入的语句为( )S=0n=2i=1DOS=S+1/nn=2*ni=i+1LOOP UNTIL ?PRINT SENDA.i>=8 B.i>=7C.i<7 D.i<8答案 B解析S=0,n=2,i=1,执行S=12,n=4,i=2;S=12+14=34,n=8,i=3;S=34+18=78,n=16,i=4;S=78+116=1516,n=32,i=5;S=1516+132=3132,n=64,i=6;S=3132+164=6364,n=128,i=7.此时满足题目条件输出的S=6364,∴“?”处应填上i>=7.故选B.(2019·沈阳模拟)程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.120 B.84C.56 D.28答案 B解析初始值i=0,n=0,S=0,第一次循环,i=1,n=1,S=1;第二次循环,i=2,n=3,S=4;第三次循环,i=3,n=6,S=10;第四次循环,i=4,n=10,S=20;第五次循环,i=5,n=15,S=35;第六次循环,i=6,n=21,S=56;第七次循环,i=7,n=28,S=84,此时退出循环,输出S=84,故选B.答题启示求解循环结构的程序框图题的“三注意”(1)注意是当型循环结构,还是直到型循环结构;(2)注意选择准确的表示累计的变量;(3)注意在哪一步开始循环,及执行循环体的条件.对点训练“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,如图所示的程序框图的算法思路就是来源于“欧几里得算法”.执行该程序框图(图中“a MOD b”表示a 除以b的余数),若输入的a,b分别为675,125,则输出的a=()C.50 D.75答案 B解析初始值:a=675,b=125,第一次循环:c=50,a=125,b=50;第二次循环:c=25,a=50,b=25;第三次循环:c=0,a=25,b=0,此时不满足循环条件,退出循环.输出a的值为25,故选B.21。

2021年高考数学第一轮复习 课后练习册子及其答案和详细解析

2021年高考数学第一轮复习 课后练习册子及其答案和详细解析
高考Байду номын сангаас复习课程--2021 年高 考数学第一轮总复习
强化练习题
目录
第 1 讲 集合与简易逻辑...........................................................................................................................- 1 第 2 讲 函数及其性质经典精讲 ...............................................................................................................- 2 第 3 讲 函数及其性质 2019 高考真题赏析 .............................................................................................- 3 第 4 讲 函数及其性质 2018 高考真题赏析 .............................................................................................- 4 第 5 讲 平面向量.......................................................................................................................................- 5 第 6 讲 三角函数与三角恒等变换经典精讲 ............................................................

2021年高考数学一轮复习 算法初步课时作业 理(含解析)新人教A版

2021年高考数学一轮复习 算法初步课时作业 理(含解析)新人教A版

2021年高考数学一轮复习算法初步课时作业理(含解析)新人教A版一、选择题1.(xx·汕头市质量测评(二))执行下边的框图,若输出的结果为12,则输入的实数x的值是( )A.14B.32C.22D.2解析:x>1时,log2x=12得x=2成立,而x<1时,x-1=12得x=32>1与x<1矛盾,故选D.答案:D第1题图第2题图2.(xx·天津卷)阅读上边的程序框图,运行相应的程序.若输入x的值为1,则输出S的值为( )A .64B .73C .512D .585解析:第1次循环,S =1,不满足判断框内的条件,x =2;第2次循环,S =9,不满足判断框内的条件,x =4;第3次循环,S =73,满足判断框内的条件,跳出循环,输出S =73.答案:B3.(xx·浙江卷)某程序框图如图所示,若该程序运行后输出的值是95,则( )A .a =4B .a =5C .a =6D .a =7解析:k =1,S =1+1-12=32;k =2,S =1+1-13=53;k =3,S =1+1-14=74;k =4,S =1+1-15=95.输出结果是95,这时k =5>a ,故a =4.答案:A第3题图 第4题图4.(xx·湖北七市联考)已知全集U =Z ,Z 为整数集,如上图程序框图所示,集合A ={x |框图中输出的x 值},B ={y |框图中输出的y 值};当x =-1时,(∁U A )∩B =( )A .{-3,-1,5}B .{-3,-1,5,7}C .{-3,-1,7}D .{-3,-1,7,9}解析:由程序框图的运行程序可知,集合A ={0,1,2,3,4,5,6},B ={-3,-1,1,3,5,7,9},所以(∁U A)∩B={-3,-1,7,9},故选D.答案:D5.(xx·辽宁大连第一次模拟)如图是用模拟方法估计椭圆x24+y2=1面积的程序框图,S表示估计的结果,则图中空白处应该填入( )A.S=N250B.S=N125C.S=M250D.S=M125解析:区间0~2构成边长为2的正方形,其面积为4,由程序框图的运行程序可知在2 000个点中落在椭圆第一象限内的点共有M个,而椭圆自身是关于x轴、y轴、原点对称的,故空白处应填入M2 000×4×4=M125,故选D.答案:D6.(xx·辽宁卷)执行如图所示的程序框图,若输入n=10,则输出S=( )A.511B.111C.3655D.7255解析:S=122-1+142-1+162-1+182-1+1102-1=511.答案:A第6题图第7题图7.(xx·重庆六区高三调研抽测)一个算法的程序框图如图所示,若该程序输出的结果为910,则判断框内应填入的条件是( ) A.i>9 B.i≥9 C.i>10 D.i≥8解析:S=11×2+12×3+…+1n n+1=1-12+12-13+…+1n-1n+1=nn+1,由S=910,得n=9,故选A.答案:A8.(xx·山西适应性训练考试)执行如图所示的程序框图,输入m=1 173,n=828,则输出的实数m的值是( )A.68B.69C.138D.139解析:1 173÷828=1…345,828÷345=2…138,354÷138=2…69,138÷69=2…0,∴m=n=69,n=r=0.∴输出的实数m的值为69.答案:B9.(xx·石家庄第二次模拟)定义min{a1,a2,…,a n}是a1,a2,…,a n中的最小值,执行程序框图(如图),则输出的结果是( )A.15B.14C.13D.23解析:n=2时,a2=2,n=3时,a3=1a2=12;n=4时,a4=a2+1=3,n=5时,a5=1a4=13;n =6时,a 6=a 3+1=32,n =7时,a 7=1a 6=23;n =8时,a 8=a 4+1=4,T =min⎩⎨⎧⎭⎬⎫1,2,12,3,13,32,23,4=13. 答案:C第9题图 第10题图10.(xx·云南昆明高三调研)某班有24名男生和26名女生,数据a 1,a 2,…,a 50是该班50名学生在一次数学学业水平模拟考试中的成绩(成绩不为0),如图所示的程序用来同时统计全班成绩的平均数:A ,男生平均分:M ,女生平均分:-W .为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其成绩的相反数,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A .T >0?,A =M +W50B .T <0?,A =M +W50 C .T <0?,A =M -W50D .T >0?,A =M -W50解析:依题意得,全班成绩的平均数应等于班级中所有的学生的成绩总和除以总人数,注意到当T>0时,输入的成绩表示的是某男生的成绩;当T<0时,输入的成绩表示的是某女生的成绩的相反数.因此结合题意得,选D.答案:D二、填空题11.(xx·广东卷)执行如图所示的程序框图,若输入n的值为4,则输出s的值为________.解析:第1次循环:s=1+(1-1)=1,i=1+1=2;第2次循环:s=1+(2-1)=2,i=2+1=3;第3次循环:s=2+(3-1)=4,i=3+1=4;第4次循环:s=4+(4-1)=7,i=4+1=5.循环终止,输出s的值为7.答案:7第11题图第12题图12.(xx·山东卷)执行上面的程序框图,若输入的ε的值为0.25,则输出的n的值为________.解析:逐次计算的结果是F1=3,F0=2,n=2;F1=5,F0=3,n=3,此时输出,故输出结果为3.答案:313.(1)(xx·宁德质检)运行下图所示的程序,输入3,4时,则输出________.INPUTa ,bIF a >b THENm =aELSE m =bEND IFPRINT mENDS ←0n ←0While S ≤1 023S ←S +2nn ←n +1End WhilePrint n第(1)题图 第(2)题图(2)(xx·常州市高三教学期末调研测试)根据上图所示的算法,可知输出的结果为________.解析:(1)程序的功能是比较两个数的大小且输出较大的数,所以输入3,4时输出4. (2)根据算法语句可知这是一个循环结构,S n 是一个以1为首项,2为公比的等比数列的前n 项和,即:S n =1-2n1-2=2n-1,可见n =10时,S 10=1 023,所以n =10时进行最后一次循环,故n =11.答案:(1)4 (2)11 [热点预测]14.(1)(xx·安徽省“江南十校”高三联考)下图是寻找“徽数”的程序框图.其中“S mod 10”表示自然数S 被10除所得的余数,“S /10”表示自然数S 被10除所得的商.则根据上述程序框图,输出的“徽数S ”为( )A .18B .16C .14D .12第(1)题图 第(2)题图(2)(xx·江西重点中学第一次联考)如图所示的程序框图中,令a =tan θ,b =sin θ,c =cos θ,若在集合⎩⎨⎧⎭⎬⎫θ|-π4<θ<3π4,θ≠0,π4,π2中,给θ取一个值,输出的结果是sin θ,则θ的值所在范围为( )A.⎝ ⎛⎭⎪⎫-π4,0 B.⎝⎛⎭⎪⎫0,π4C.⎝ ⎛⎭⎪⎫π2,3π4D.⎝ ⎛⎭⎪⎫π4,π2 解析:(1)法一:S =10,则x =S MOD 10=10,y =S /10=1,3(x +y +1)=6,不符合判断条件,S =11,则x =1,y =1,3(x +y +1)=9,不符合判断条件.S =12,则x =2,y =1,3(x +y +1)=12,符合判断条件,输出S =12,选D.法二:由题意知,此程序的功能是寻找“徽数”,所谓“徽数”的定义是个位数与S 被10除所得的商的和加1后,再乘以3等于这个数本身,所以从选项验证可知D 正确.(2)由程序框图可知,本程序的功能是输入的三个数中输出最大的一个,现在tan θ,sin θ,cos θ,输出了sin θ,所以sin θ是最大的,在集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪-π4<θ<3π4,θ≠0,π4,π2中θ的取值范围是⎝ ⎛⎭⎪⎫π2,34π.答案:(1)D (2)C [ '24966 6186 憆t929516 734C 獌t-29431 72F7 狷26668 682C 栬21394 5392 厒%35320 89F8 觸39170 9902 餂。

高三数学人教版A版数学(理)高考一轮复习教案:10.1 算法初步 Word版含答案

高三数学人教版A版数学(理)高考一轮复习教案:10.1 算法初步 Word版含答案

第一节算法初步程序框图与算法语句1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.知识点一算法与程序框图1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.易误提醒易混淆处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.[自测练习]1.如果执行右边的程序框图,输入x=-12,那么其输出的结果是()A.9B.3C. 3D.19解析:依题意得,执行完第1次循环后,x=-12+3=-9≤0;执行完第2次循环后,x=-9+3=-6≤0;执行完第3次循环后,x=-6+3=-3≤0;执行完第4次循环后,x =-3+3=0≤0;执行完第5次循环后,x=0+3=3>0,程序结束.结合题中的程序框图可知,最后输出的结果是 3.答案:C2.如图,按如下程序框图,若输出结果为170,则判断框内应补充的条件为()A.i>7?B.i>9?C.i>10? D.i>11?解析:∵21+23+25+27=170,∴判断框内应补充的条件为i>7或i≥9,故选A.答案:A知识点二三种基本逻辑结构及相应语句名称示意图相应语句顺序结构①输入语句:INPUT“提示内容”;变量②输出语句:PRINT“提示内容”;表达式③赋值语句:变量=表达式条件结构IF__条件__THEN语句体END__IFIF__条件__THEN语句体1ELSE语句体2END__IF循环结构直到型循环结构DO循环体LOOP__UNTIL条件当型循环结构WHILE条件循环体WEND易误提醒易忽视循环结构中必有选择结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.易混淆当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”;而当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.[自测练习]3.如图是一个程序框图,则输出的n的值是________.解析:该程序框图共运行5次,各次2n的值分别是2,4,8,16,32,所以输出的n的值是5.答案:54.当a=1,b=3时,执行完下面一段过程后x的值是________.IF a<b THENx=a+bELSEx=a-bEND IF4.答案:4考点一算法的基本结构|1.(2015·高考天津卷)阅读如图所示的程序框图,运行相应的程序,则输出的S 的值为( )A .-10B .6C .14D .18解析:执行程序框图可知,i =2,S =18;i =4,S =14;i =8,S =6.故输出S 的值为6.答案:B2.(2016·威海一模)根据给出的程序框图,计算f (-1)+f (2)=( )A .0B .1C .2D .4解析:输入-1,满足x ≤0,所以f (-1)=4×(-1)=-4; 输入2,不满足x ≤0,所以f (2)=22=4, 即f (-1)+f (2)=0.故选A. 答案:A3.(2015·高考重庆卷)执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )A .s ≤34B .s ≤56C .s ≤1112D .s ≤2524解析:第一次循环,得k =2,s =12;第二次循环,得k =4,s =12+14=34;第三次循环,得k =6,s =34+16=1112;第四次循环,得k =8,s =1112+18=2524,此时退出循环,输出k =8,所以判断框内可填入的条件是s ≤1112,故选C.答案:C1.解决程序框图问题要注意几个常用变量:(1)计数变量:用来记录某个事件发生的次数,如i =i +1. (2)累加变量:用来计算数据之和,如S =S +i . (3)累乘变量:用来计算数据之积,如p =p ×i .2.处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.考点二 算法的交汇性问题|算法是高考热点内容之一,算法的交汇性问题是新课标高考的一大亮点,归纳起来常见的探究角度有:1.与统计的交汇问题. 2.与函数的交汇问题. 3.与不等式的交汇问题. 4.与数列求和的交汇问题. 探究一 与统计的交汇问题1.如图是某县参加2016年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A 2,…,A 10(如A 2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,则在流程图中的判断框内应填写( )A .i <6?B .i <7?C .i <8?D .i <9?解析:统计身高在160~180 cm 的学生人数,即求A 4+A 5+A 6+A 7的值.当4≤i ≤7时,符合要求.答案:C探究二 与函数的交汇问题2.(2015·高考山东卷)执行如图所示的程序框图,输出的T 的值为________.解析:开始n =1,T =1,因为1<3,所以T =1+⎠⎛01x 1d x =1+12x 2| 10=1+12×12=32,n =1+1=2;因为2<3,所以T =32+⎠⎛01x 2d x =32+13x 3| 10=32+13×13=116,n =2+1=3.因为3<3不成立,所以输出T ,即输出的T 的值为116.答案:116探究三 与不等式的交汇问题3.关于函数f(x)=⎩⎪⎨⎪⎧-x ,1<x ≤4,cos x ,-1≤x ≤1的程序框图如图所示,现输入区间[a ,b],则输出的区间是________.解析:由程序框图的第一个判断条件为f(x)>0,当f(x)=cos x ,x ∈[-1,1]时满足.然后进入第二个判断框,需要解不等式f ′(x)=-sin x ≤0,即0≤x ≤1.故输出区间为[0,1].答案:[0,1]第3题图 第4题图 探究四 与数列求和的交汇问题4.(2015·高考湖南卷)执行如图所示的程序框图,如果输入n =3,则输出的S =( ) A.67 B.37 C.89D.49解析:第一次循环,S =11×3,此时i =2,不满足条件,继续第二次循环,S =11×3+13×5,此时i =3,不满足条件,继续第三次循环,S =11×3+13×5+15×7=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17=37, 此时i =4>3,退出循环,输出S 的值为37,选B.答案:B解决算法交汇问题的三个关键点(1)读懂程序框图,明确交汇知识; (2)根据给出问题与程序框图处理问题;(3)注意框图中结构的判断.考点三算法基本语句|按照如图程序运行,则输出K的值是________.X=3K=0DOX=2][解析]第一次循环,X=7,K=1;第二次循环,X=15,K=2;第三次循环,X=31,K=3;终止循环,输出K的值是3.[答案] 3算法语句应用的关注点(1)输入语句、输出语句和赋值语句基本对应于算法的顺序结构.(2)在循环语句中也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套格式,这些语句需要保证算法的完整性,否则就会造成程序无法执行.(2015·高考江苏卷)根据如图所示的伪代码,可知输出的结果S为________.S←1I←1While I<8S←S+2I←I+3End WhilePrint S解析:该伪代码运行3次,故输出的S为7.答案:725.变量的含义理解不准致误【典例】 (2015·高考全国卷Ⅰ)执行如图所示的程序框图,如果输入的t =0.01,则输出的n =( )A .5B .6C .7D .8[易错点析] (1)读不懂程序框图,把执行循环体的次数n 误认为是变量S 的值,没有注意到n 的初始值为0.(2)对循环结构:①判断条件把握不准;②循环次数搞不清楚;③初始条件容易代错. [解析] 由程序框图可知,S =1-12=12,m =14,n =1,12>0.01;S =12-14=14,m =18,n =2,14>0.01; S =14-18=18,m =116,n =3,18>0.01; S =18-116=116,m =132,n =4,116>0.01; S =116-132=132,m =164,n =5,132>0.01; S =132-164=164,m =1128,n =6,164>0.01; S =164-1128=1128,m =1256,n =7,1128<0.01,输出n =7,故选C. [答案] C[方法点评] (1)要分清是当型循环结构还是直到型循环结构;要理解循环结构中各变量的具体含义以及变化规律.(2)在处理含有循环结构的算法问题时,关键是确定循环的次数,循环中有哪些变量,且每一次循环之后的变量S 、n 值都要被新的S 、n 值所替换.[跟踪练习] 执行如图所示的程序框图,则输出S 的值为( )A .3B .-6C .10D .-15解析:第一次执行程序,得到S =0-12=-1,i =2; 第二次执行程序,得到S =-1+22=3,i =3; 第三次执行程序,得到S =3-32=-6,i =4; 第四次执行程序,得到S =-6+42=10,i =5;第五次执行程序,得到S =10-52=-15,i =6,到此结束循环,输出的S =-15. 答案:DA 组 考点能力演练1.定义运算a ⊗b 为执行如图所示的程序框图输出的S 值,则⎝⎛⎭⎫2cos 5π3⊗⎝⎛⎭⎫2tan 5π4的值为( )A .4B .3C .2D .-1解析:由程序框图可知,S =⎩⎪⎨⎪⎧a (a -b ),a ≥b ,b (a +1),a <b ,2cos5π3=1,2tan 5π4=2,1<2, 所以⎝⎛⎭⎫2cos 5π3⊗⎝⎛⎭⎫2tan 5π4=2(1+1)=4. 答案:A2.(2016·贵州模拟)阅读如图所示的程序框图,运行相应的程序,输出s 的值等于( )A .-3B .-10C .0D .-2解析:第一次循环k =0+1=1,s =2×1-1=1,满足k <4;第二次循环k =1+1=2,s =2×1-2=0,满足k <4;第三次循环k =2+1=3,s =2×0-3=-3,满足k <4;第四次循环k =3+1=4,不满足k <4,输出的s =-3,故选A.答案:A3.(2016·长春模拟)阅读如图所示的程序框图,运行相应的程序.若输出的S 为1112,则判断框中填写的内容可以是( )A .n =6?B .n <6?C .n ≤6?D .n ≤8?解析:∵12+14+16=1112,∴n =6时满足条件,而n =8时不满足条件,∴n ≤6,故选C.答案:C4.某程序框图如图所示,若输出的S =120,则判断框内为( )A .k >4?B .k >5?C .k >6?D .k >7?解析:依题意,进行第一次循环时,k =1+1=2,S =2×1+2=4;进行第二次循环时,k =2+1=3,S =2×4+3=11;进行第三次循环时,k =3+1=4,S =2×11+4=26;进行第四次循环时,k =4+1=5,S =2×26+5=57;进行第五次循环时,k =5+1=6,S =2×57+6=120,此时结束循环,因此判断框内应为“k >5?”,选B.答案:B5.某流程图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=x 2B .f (x )=|x |x=e x -e -xe x +e -xD .f (x )=1+sin x +cos x1+sin x -cos x解析:由框图可知输出函数为奇函数且存在零点,依次判断各选项,A 为偶函数,B 不存在零点,不符合,对于C ,由于f (-x )=e -x -e xe -x +e x =-f (x ),即函数为奇函数,且存在零点为x =0,对于D ,由于其定义域不关于原点对称,故其为非奇非偶函数,故选C.答案:C6.(2016·南京模拟)根据如图所示的伪代码,最后输出的S 的值为________. S =0For I From 1 To 10S =S +I End For Print S解析:这是一个1+2+3+…+10的求和,所以输出的S 的值为55.答案:557.执行如图所示的程序框图,输出的S 的值为______.解析:S =sin 1×π3+sin 2×π3+sin 3×π3+sin 4×π3+sin5×π3+sin 6×π3+…+sin 2 013×π3 =⎝⎛sin1×π3+sin 2×π3+sin 3×π3+sin 4×π3+⎭⎫sin5×π3+sin 6×π3×335+sin 1×π3 +sin2×π3+sin 3×π3= 3. 答案: 38.(2016·黄冈模拟)随机抽取某中学甲、乙两个班各10名同学,测量它们的身高获得身高数据的茎叶图如左下图,在样本的20人中,记身高在[150,160),[160,170),[170,180),[180,190)的人数依次为A 1,A 2,A 3,A 4.右下图是统计样本中身高在一定范围内的人数的算法框图.若图中输出的S =18,则判断框应填________.解析:本题考查程序框图与统计交汇问题.由于i 从2开始,也就是统计大于或等于160的所有人数,于是就要计算A 2+A 3+A 4,因此,判断框应填i <5或i ≤4.答案:i <5或i ≤49.给出以下10个数:5,9,80,43,95,73,28,17,60,36.要求把大于40的数找出来并输出.试画出该问题的算法程序框图.解:程序框图如下:10.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表格所示:队员i 12345 6三分球个数a1a2a3a4a5a6统计该6名队员在最近三场比赛中投进的三分球总数的程序框图如上图所示.(1)试在判断框内填上条件;(2)求输出的s的值.解:(1)依题意,程序框图是统计6名队员投进的三分球的总数.∴判断框内应填条件“i≤6?”.(2)6名队员投进的三分球数分别为a1,a2,a3,a4,a5,a6.故输出的s=a1+a2+…+a6.B组高考题型专练1.(2014·高考江西卷)阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9C.10 D.11解析:执行程序框图,第一次循环:i =1,S =lg 13>-1,否;执行第二次循环:i =3,S=lg 13+lg 35=lg 15>-1,否;执行第三次循环:i =5,S =lg 15+lg 57=lg 17>-1,否;执行第四次循环:i =7,S =lg 17+lg 79=lg 19>-1,否;执行第五次循环:i =9,S =lg 19+lg 911=lg 111<-1,是,结束循环,输出i 为9,故选B.答案:B2.(2014·高考新课标全国卷Ⅰ)执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A.203 B.72 C.165D.158解析:第一次循环,M =32,a =2,b =32,n =2;第二次循环,M =83,a =32,b =83,n=3;第三次循环,M =158,a =83,b =158,n =4,退出循环,输出M 为158,故选D.答案:D3.(2015·高考全国卷Ⅱ)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C.4 D.14解析:第一次执行,输入a=14,b=18,因为a<b,所以b=18-14=4;第二次执行,因为a=14,b=4,a>b,所以a=14-4=10;第三次执行,因为a=10,b=4,a>b,所以a=10-4=6;第四次执行,因为a=6,b=4,a>b,所以a=6-4=2;第五次执行,因为a=2,b=4,a<b,所以b=4-2=2,此时a=b=2,故选B.答案:B4.根据框图,当输入x为2 016时,输出的y=()A.2 B.4C.10 D.28解析:由题意可得,x依次为2 016,2 014,2 012,…,0,-2,执行y=3-(-2)+1=10,故输出的y=10,选C.答案:C。

2021届高考数学新人教版一轮复习课件:第11章 第1讲 算法初步

2021届高考数学新人教版一轮复习课件:第11章 第1讲 算法初步

解析 答案
(4)按照如图的程序框图执行,若输出结果为 15,则 M 处条件为( )
A.k≥16
B.k<8
C.k<16
D.k≥8
答案
解析 程序运行过程中,各变量的值如下表所示:
S k 是否继续循环
循环前 0 1
第一次 1 2

第二次 3 4

第三次 7 8

第四次 15 16

故退出循环的条件应为 k≥16,故选 A.
示意图
相应语句
01 __I_F条__件_T_H_EN________ 语句体 02 ___E_N_D_IF______
03 __IF_条_件_T_H_E_N________ 语句体 1 04 __EL_S_E____ 语句体 2 END IF
名称
从某处开始,按 照一定的条件反 复执行某些步 骤,反复执行的 步骤称为循环 体,这种结构是 循环结构
解析 阅读算法流程图可知,最后输出的 a 保存 的是输入三个数中最小的数.
解析 答案
(3)阅读如图所示的程序框图,运行相应的程序,输出
s 的值等于( )
A.-3
B.-10
C.0
D.-2
解析 运行相应的程序如下:
k=0,s=1→k=1→k<4 是→s=2×1-1=1→k= 2→k<4 是→s=2×1-2=0→k=3→k<4 是→s=2×0-3 =-3→k=4→k<4 否→输出 s=-3.
1
PART ONE
基础知识过关
1.算法的含义与程序框图 (1)算法:算法是指按照 01 一__定_规_则____解决某一类问题的 02 明__确__和 03 _有_限__的步骤. (2)程序框图:程序框图又称 04 流__程_图___,是一种用 05 程__序_框___ 、 06 流__程_线___及 07 文__字_说_明____来表示算法的图形. 在程序框图中,一个或几个程序框的组合表示算法中的一个步骤; 带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.

10.1 算法初步 2021年高中总复习优化设计一轮用书理数

10.1 算法初步 2021年高中总复习优化设计一轮用书理数
第十章
10.1 算法初步
知识体系
知识梳理
核心考点
学科素养
-2-
10.1 算法初步
第十章
10.1 算法初步
知识体系
知识梳理
核心考点
学科素养
-4-
知识梳理 双基自测
1234
1.算法的定义
通常是指按照一定规则解决某一类问题的 明 确 和__有__限___
的步骤.
第十章
10.1 算法初步
知识体系
第十章
10.1 算法初步
知识体系
知识梳理
核心考点
学科素养
-8-
知识梳理 双基自测
1234
第十章
10.1 算法初步
知识体系
知识梳理
核心考点
学科素养
-9-
知识梳理 双基自测
1234
4.基本算法语句 (1)输入、输出、赋值语句的格式与功能
INPUT“提示内容”;变量
PRINT“提示内容”;表达式
变量=表达式
10.1 算法初步
知识体系
知识梳理
考点2
考点3
考点4
核心考点
学科素养
-20-
解析:(1)若t∈ [-1,1),则执行s=3t,故s∈ [-3,3). 若t∈ [1,3],则执行s=4t-t2,其对应函数图象的对称轴为t=2. 故当t=2时,s取得最大值4.当t=1或3时,s取得最小值3,则s∈ [3,4]. 综上可知,输出的s∈ [-3,4].故选A. (2)由题知,若输入a=14,b=18,则 第一次执行循环结构时,由a<b知,a=14,b=b-a=18-14=4; 第二次执行循环结构时,由a>b知,a=a-b=14-4=10,b=4; 第三次执行循环结构时,由a>b知,a=a-b=10-4=6,b=4; 第四次执行循环结构时,由a>b知,a=a-b=6-4=2,b=4; 第五次执行循环结构时,由a<b知,a=2,b=b-a=4-2=2; 第六次执行循环结构时,由a=b知,输出a=2,结束,故选B.

苏教版高三数学复习课件10.1 算法的含义、流程图

苏教版高三数学复习课件10.1 算法的含义、流程图

法描述要坚持科学性(有限、可行)和简约性原则,力求体现普适性的
优势.设计流程图要注意:(1)遵循共同的规则:使用标准流程图符号;
画图方向一般是由上而下,从左往右;流程图符号内的语言要简练清
楚;有开始框和结束框.(2)做好结构的选择,如,若求只含有一个关 系式的解析式的函数值时,只用顺序流程图就能解决;若是分段函数 或执行时需要先判断才能执行的,就必须引入选择结构;若问题的运 算涉及了许多重复的步骤,就可考虑引入变量,应使用循环结构.
2.三种基本结构:顺序结构,选择结构,循环结构.前两种结构很
容易理解,

循环结构稍微有点难,但在高考中经常涉及.
3.三种语言:自然语言,流程图语言,基本算法语句.
4.框图:以小题出现,对于复杂算法常以填空题的形式进行考查.
【应试对策】
1.认真审题、准确理解题意、做好算法分析是算法设计的基础;算


【例4】 设计一个计算1×3×5×…×数变量一个累积变量,采用当型循环或直 到型

循环. 解:解法一:当型循环流程图如下: 程图如下: 解法二:直到型循环流
变式4:(2009·南京调研)阅读如图的流程图.若输入a=6,b=1,则 输出的结果是________.
组成一个步
骤序列,序列的终止表示问题得到解决或指出问题不可解决.

【例1】 已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到 直线l的距离d,写出其算法.

思路点拨:利用点到直线的距离公式可写出算法,而流程图利 用顺序结构比较简单.

解:算法如下: S1 输入点的坐标(x0,y0)及直线方程的系数A,B,C. S2 计
的循环结构

2021版高考文科数学(北师大版)一轮复习教师用书:第一章 第1讲 集合的概念与运算 Word版含答案

2021版高考文科数学(北师大版)一轮复习教师用书:第一章 第1讲 集合的概念与运算 Word版含答案

第1讲集合的概念与运算一、知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法+数集,不包含0.2.集合间的基本关系A B(或B A)(1)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.(2)A∩A=A,A∩∅=∅.(3)A∪A=A,A∪∅=A.(4)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.二、教材衍化1.若集合P={x∈N|x≤ 2 018},a=22,则()A.a∈P B.{a}∈PC.{a}⊆P D.a∉P解析:选D.因为a=22不是自然数,而集合P是不大于 2 018的自然数构成的集合,所以a∉P.故选D.2.已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.解析:由已知得M∪N={0,1,2,3,4,5},所以M∪N的子集有26=64(个).答案:64一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A,B,C表示同一个集合.()(2)若a在集合A中,则可用符号表示为a⊆A.()(3)若A B,则A⊆B且A≠B.()(4)N+N Z.()(5)若A∩B=A∩C,则B=C.()答案:(1)×(2)×(3)√(4)√(5)×二、易错纠偏常见误区(1)忽视集合的互异性致错;(2)集合运算中端点取值致错;(3)忘记空集的情况导致出错.1.已知集合U={-1,0,1},A={x|x=m2,m∈U},则∁U A=________.解析:因为A={x|x=m2,m∈U}={0,1},所以∁U A={-1}.答案:{-1}2.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=________,A∪B=________,(∁R A)∪B=________.解析:由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x|2<x<3},A∪B={x|1<x<4},(∁R A)∪B={x|x≤1或x>2}.答案:(2,3)(1,4)(-∞,1]∪(2,+∞)3.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.解析:易得M={a}.因为M∩N=N,所以N⊆M,所以N=∅或N=M,所以a=0或a=±1.答案:0或1或-1集合的基本概念(师生共研)(1)已知集合A ={1,2,3,4,5},B={(x ,y )|x ∈A 且y ∈A 且x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【解析】 (1)由x ∈A ,y ∈A ,x -y ∈A ,得x -y =1或x -y =2或x -y =3或x -y =4,所以集合B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},所以集合B 中有10个元素.(2)因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3,符合题意.所以m =-32.【答案】 (1)D (2)-32与集合中元素有关问题的求解策略1.已知集合A ={x |x ∈Z ,且32-x∈Z },则集合A 中的元素个数为( ) A .2 B .3 C .4D .5解析:选C.因为32-x∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4. 2.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C.因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a=-1,b =1.所以b -a =2.3.设集合A ={0,1,2,3},B ={x |-x ∈A ,1-x ∉A },则集合B 中元素的个数为( ) A .1 B .2 C .3D .4解析:选A.若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ; 当-2∈B 时,1-(-2)=3∈A ; 当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.集合间的基本关系(师生共研)(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为______. 【解析】 (1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m的取值范围为(-∞,1].【答案】(1)D(2)(-∞,1][提醒]题目中若有条件B⊆A,则应分B=∅和B≠∅两种情况进行讨论.1.已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B.因为A={x|x>2或x<0},因此A∪B={x|x>2或x<0}∪{x|-5<x<5}=R.故选B.2.已知集合A={x|x2-2x-3≤0,x∈N+},则集合A的真子集的个数为()A.7 B.8C.15 D.16解析:选A.法一:A={x|-1≤x≤3,x∈N+}={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.法二:因为集合A中有3个元素,所以其真子集的个数为23-1=7(个).3.设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2} B.{a|a≤1}C.{a|a≥1} D.{a|a≥2}解析:选D.由A∩B=A,可得A⊆B,又A={x|1<x<2},B={x|x<a},所以a≥2.故选D.集合的基本运算(多维探究)角度一集合的运算(1)(2019·高考全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=() A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}(2)(2020·郑州市第一次质量预测)设全集U=R,集合A={x|-3<x<1},B={x|x+1≥0},则∁U(A∪B)=()A.{x|x≤-3或x≥1} B.{x|x<-1或x≥3}C.{x|x≤3} D.{x|x≤-3}【解析】(1)依题意得∁U A={1,6,7},故B∩∁U A={6,7}.故选C.(2)因为B={x|x≥-1},A={x|-3<x<1},所以A∪B={x|x>-3},所以∁U(A∪B)={x|x≤-3}.故选D.【答案】(1)C(2)D集合基本运算的求解策略角度二利用集合的运算求参数(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2C.a≥-1 D.a>-1(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4【解析】(1)因为A∩B≠∅,所以集合A,B有公共元素,作出数轴,如图所示,易知a>-1.(2)根据并集的概念,可知{a,a2}={4,16},故a=4.【答案】(1)D(2)D根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.1.(2019·高考天津卷)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{-1,2,3} D.{1,2,3,4}解析:选D.通解:因为A∩C={1,2},B={2,3,4},所以(A∩C)∪B={1,2,3,4}.故选D.优解:因为B={2,3,4},所以(A∩C)∪B中一定含有2,3,4三个元素,故排除A,B,C,选D.2.(2020·宁夏石嘴山三中一模)已知集合A={-1,0,1,2},B={x|x2-1≥0},则下图中阴影部分所表示的集合为()A.{-1} B.{0}C.{-1,0} D.{-1,0,1}解析:选B.阴影部分对应的集合为A∩∁R B,B={x|x2-1≥0}={x|x≤-1或x≥1},则∁R B={x|-1<x<1},则A∩∁R B={0},故选B.3.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是()A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D.因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,解得m≥2或m≤-2.4.已知全集U=R,函数y=ln(1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)解析:选A.由题意知M={x|x<1},N={x|0<x<1},所以M∩N=N.又∁U N={x|x≤0或x≥1},所以M∩(∁U N)={x|x≤0}≠∅,M∪N={x|x<1}=M,M⃘(∁U N),故选A.核心素养系列1 数学抽象——集合的新定义问题以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.定义集合的商集运算为A B ={x |x =mn,m∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k 2-1,k ∈A },则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9【解析】 由题意知,B ={0,1,2},B A ={0,12,14,16,1,13},则B A ∪B ={0,12,14,16,1,13,2},共有7个元素,故选B.【答案】 B解决集合创新型问题的方法(1)要分析新定义的特点和本质,认清新定义对集合元素的要求,结合题目要求进行转化,并将其运用到具体的解题过程中.(2)要充分应用集合的有关性质及一些特殊方法(如特值法、排除法、数形结合法等),将新定义问题转化到已学的知识中进行求解.1.如果集合A满足若x∈A,则-x∈A,那么就称集合A为“对称集合”.已知集合A ={2x,0,x2+x},且A是对称集合,集合B是自然数集,则A∩B=________.解析:由题意可知-2x=x2+x,所以x=0或x=-3.而当x=0时不符合元素的互异性,所以舍去.当x=-3时,A={-6,0,6},所以A∩B={0,6}.答案:{0,6}2.设A,B是非空集合,定义A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A={x|0<x<2},B={y|y≥0},则A⊗B=________.解析:由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).答案:{0}∪[2,+∞)[基础题组练]1.已知全集U=R,集合A={x|x<-1或x>1},则∁U A=()A.(-∞,-1)∪(1,+∞) B.(-∞,-1]∪[1,+∞)C.(-1,1) D.[-1,1]解析:选D.因为全集U=R,集合A={x|x<-1或x>1},所以∁U A={x|-1≤x≤1},故选D.2.(2020·陕西西安模拟)设集合A={x∈Z|x>4},B={x|x2<100},则A∩B的元素个数为()A.3 B.4C.5 D.6解析:选C.因为B={x|-10<x<10},所以A∩B={x∈Z|4<x<10}={5,6,7,8,9}.所以A∩B的元素个数为5,故选C.3.已知集合A={0},B={-1,0,1},若A⊆C⊆B,则符合条件的集合C的个数为() A.1 B.2C.4 D.8解析:选C.由题意得,含有元素0且是集合B的子集的集合有{0},{0,-1},{0,1},{0,-1,1},即符合条件的集合C共有4个.故选C.4.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]解析:选C.因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.5.(2020·江苏南京联合调研改编)已知全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},则A∩B=______,∁U A=______.解析:因为全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},所以A∩B={3},则∁U A={2,5}.答案:{3}{2,5}6.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=________.解析:由于A∪B={x|x≤0或x≥1},结合数轴,∁U(A∪B)={x|0<x<1}.答案:{x|0<x<1}7.已知集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],则a的值是________.解析:因为集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],所以a=5.答案:58.已知集合A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)当B ⊆∁R A 时,求实数m 的取值范围.解:(1)因为m =1时,B ={x |1≤x <4},所以A ∪B ={x |-1<x <4}.(2)∁R A ={x |x ≤-1或x >3}.当B =∅时,即m ≥1+3m ,解得m ≤-12; 当B ≠∅时,要使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3. 综上可知,实数m 的取值范围是⎝⎛⎦⎤-∞,-12∪(3,+∞). [综合题组练]1.已知集合M ={y |y =x -|x |,x ∈R },N =⎩⎨⎧⎭⎬⎫y |y =⎝⎛⎭⎫13x ,x ∈R ,则下列选项正确的是( ) A .M =NB .N ⊆MC .M =∁R ND .∁R N ⃘M解析:选C.由题意得M ={y |y ≤0},N ={y |y >0},所以∁R N ={y |y ≤0},M =∁R N .故C 正确,A ,B ,D 错误.2.(创新型)如图所示的Venn 图中,A ,B 是非空集合,定义集合A ⊗B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |2x -x 2≥0},B ={y |y =3x ,x >0},则A ⊗B =( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:选D.因为A ={x |2x -x 2≥0}=[0,2],B ={y |y =3x ,x >0}=(1,+∞),所以A ∪B =[0,+∞),A ∩B =(1,2],由题图知A ⊗B =[0,1]∪(2,+∞),故选D.3.(2020·江西九江模拟)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是( )A .(1,+∞)B .[1,+∞)C .(-∞,1)D .(-∞,1]解析:选B.由集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},可得M =⎝⎛⎭⎫-12,1,∁U N =⎝⎛⎦⎤-∞,-a 2.要使M ∩(∁U N )=∅,则-a 2≤-12,解得a ≥1,故选B. 4.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________. 解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]。

最新-2021届高三数学文一轮复习课件:101 算法初步 精品

最新-2021届高三数学文一轮复习课件:101 算法初步 精品

A.-1 C.1 或 5
B.1 D.-1 或 1
解析:程序的功能是求分段函数 y=sin6πx,x≤2, 的函数值,当输出 2x,x>2,
的 y=12时,x=1ห้องสมุดไป่ตู้ 答案:B
微考点
循环结构
角度一:求程序运行后的结果 【典例 2】执行下面的程序框图,若输入的 a,b,k 分别为 1,2,3,则输出 的 M=( )
20
16
7
15
A. 3
B. 5
C.2
D. 8
解析:第一次循环:M=32,a=2,b=32,n=2;第二次循环:M=38,a =32,b=83,n=3;第三次循环:M=185,a=83,b=185,n=4,则输出的 M= 185。
答案:D
角度二:确定控制循环的变量 【典例 3】执行如图所示的程序框图,若输出 k 的值为 6,则判断框内可填 入的条件是( )
【微练 2】(1)阅读下图所示的程序框图,运行相应的程序,输出的 S 的值
等于( B )
A.18 B.20 C.21 D.40
(2)执行如图所示的程序框图,如果输出 s=3,那么判断框内应填入的条件
是( B )
A.k≤6? B.k≤7? C.k≤8? D.k≤9?
解析:(1)S=0,n=1,S=0+21+1=3,n=2,因为 3≥15 不成立,执行 循环;S=3+22+2=9,n=3,因为 9≥15 不成立,执行循环;S=9+23+3= 20,n=4,因为 20≥15 成立,停止循环,输出 S 的值等于 20,故选 B。
(2)顺序执行程序,由输出结果可知,直线 Ax+By+C=0 应为 3x-y+2= 0。根据斜率之间的关系可判断与直线 x+ 3y-1=0 垂直,又点(0,0)到直线 3x -y+2=0 的距离 d= 32+1=1=r。所以直线 3x-y+2=0 与圆 x2+y2=1 相 切,所以第一个判断框中应是垂直,第二个判断框中应是相切。

(福建专版)2021高考数学一轮复习10.1算法初步课件文

(福建专版)2021高考数学一轮复习10.1算法初步课件文
2,2,5,那么输出的s=(
)
C
A.7
B.12
C.17 D.34
解析:由题意,得x=2,n=2,k=0,s=0,
输入a=2,那么s=0×2+2=2,k=1,继续循环;
输入a=2,那么s=2×2+2=6,k=2,继续循环;
输入a=5,s=6×2+5=17,k=3>2,退出循环,
输出17.应选C.
-14知识梳理
________________及
来表示算法的图形.通常程
流程线
序框图由程序框和流程线组成,一个或几个程序框的组合表示算法
中的一个步骤; 流程线
带方向箭头,按照算法步骤的执行顺
序将 程序框
连接起来.
(2)程序框图的图形符号及其功能:
-4知识梳理
考点自测
起始和完毕
输入和输出的信息
赋值、计算
成立与否
先后顺序
本算法语句
全国Ⅰ,文 10
——输入语句、 2016 全国Ⅲ,文 8 2017
输出语句、赋值 全国Ⅰ,文 10
语句、条件语
2017 全国Ⅱ,文 10
句、循环语句的
含义.
命题规律及趋势
1.从近五年的高考试
题来看,程序框图是每
年必考的内容.
2.高考考查主要结合
函数与数列考查程序
框图的识别与运行,常
常求输出值、填写判
输出的y的值为2,那么空白判断框中的条件可能为(B
)
A.x>3
B.x>4
C.x≤4
D.x≤5
解析:因为输入的x的值为4,输出的y的值为2,所以程序运行
y=log24=2.
故x=4不满足判断框中的条件,所以空白判断框中应填x>4.

2021版高考数学一轮复习第十章算法初步课时作业理

2021版高考数学一轮复习第十章算法初步课时作业理

2021版高考数学一轮复习第十章算法初步课时作业理第1讲 程序框图及简单的算法案例1.(2021年北京)执行如图X10­1­1所示的程序框图,输出s 的值为( )图X10­1­1A .2 B.32C.53D.852.(2021年北京)执行如图X10­1­2所示的程序框图,输出的s 值为( )图X10­1­2A .8B .9C .27D .36 3.(2020年天津)阅读程序框图(图X10­1­3),运行相应的程序,则输出S 的值为( )图X10­1­3A.-10 B.6C.14 D.184.(2021年广东调研)执行如图X10­1­4所示的程序框图后输出S的值为( )图X10­1­4A.0 B.- 3 C. 3 D.3 25.(2021年天津)阅读下面的程序框图(如图X10­1­5),运行相应的程序,则输出S的值为________.图X10­1­5图X10­1­66.(2021年江南名校联考)某程序框图如图X10­1­6所示,判定框内为“k≥n?”,n 为正整数,若输出S=26,则判定框内的n=________.7.(2021年广东惠州三模)执行如图X10­1­7所示的程序框图,假如输出y的结果为0,那么输入x的值为( )图X10­1­7A.19B.-1或1 C.1 D.-18.(2021年广东深圳二模)《孙子算经》是中国古代重要的数学著作,约成书于四、五世纪,也确实是大约一千五百年前,传本的《孙子算经》共三卷.卷中有一问题:“今有方物一束外周,一市有三十二枚,问:积几何?”该著作中提出了一种解决问题的方法:“重置二位,左位减八,余加右位,至尽虚加一,即得.”通过对该题的研究发觉,若一束方物外周一市的枚数n是8的整数倍时,均可采纳此方法求解.如图X10­1­8,是解决这类问题的程序框图,若输入n=40,则输出S的结果为________.图X10­1­89.(2021年广东深圳一模) 执行如图X10­1­9所示的程序框图,若输入p=2021,则输出i的值为( )图X10­1­9A.335 B.336C.337 D.33810.(2021年江西南昌二模)执行如图X10­1­10程序框图,输出S为( )图X10­1­10A.17B.27C.47D.67第2讲 复数的概念及运算1.(2021年天津)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.2.(2021年新课标Ⅱ)(1+i)(2+i)=( ) A .1-i B .1+3i C .3+i D .3+3i3.(2020年山东)若复数z 满足z1-i=i ,其中i 为虚数单位,则z =( ) A .1-i B .1+i C .-1-i D .-1+i4.若i 为虚数单位,图X10­2­1中复平面内点Z 表示复数z ,则表示复数z1+i的点是( )图X10­2­1A .EB .FC .GD .H5.(2021年广东深圳一模)若复数a +i1+2i(a ∈R )为纯虚数,其中i 为虚数单位,则a =( )A .2B .3C .-2D .-36.(2021年新课标Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22C. 2 D .2 7.(2020年新课标)下面是关于复数z =2-1+i的四个命题:p 1:|z |=2;p 2:z 2=2i ;p 3:z 的共轭复数为1+i ;p 4:z 的虚部为-1.其中的真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 48.(2021年广东广州一模)复数(1+i)2+21+i的共轭复数是( )A .1+iB .1-iC .-1+iD .-1-i9.(2021年广东广州一模)复数21+i的虚部是( )A .-2B .-1C .1D .210.(2021年北京)设a ∈R ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.11.(2021年天津)已知a ,b ∈R ,i 是虚数单位,若(1+i)·(1-b i)=a ,则a b的值为________.12.(2021年江苏)已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________.13.(2021年浙江)已知a,b∈R,(a+b i)2=3+4i(i是虚数单位),则a2+b2=________,ab=________.14.(2021年江西南昌二模)若a+i1+2i=t i(i为虚数单位,a,t∈R),则t+a=( ) A.-1 B.0 C.1 D.2第3讲 坐标系与参数方程第1课时 坐标系1.(2021年湖北八校联考)将圆x 2+y 2=1上每一点的纵坐标不变,横坐标变为原先的13,得曲线C .(1)写出曲线C 的参数方程;(2)设直线l :3x +y +1=0与曲线C 的两交点分别为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.2.(2021年广东华附执信深外联考)在平面直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =1+cos α,y =sin 2α-94(α为参数,α∈R ),在以原点O 为极点,x 轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C 2:ρsin ⎝⎛⎭⎪⎫θ+π4=-22,曲线C 3:ρ=2cos θ.(1)求曲线C 1与C 2的交点M 的直角坐标;(2)设A ,B 分别为曲线C 2,C 3上的动点,求|AB |的最小值.3.(2020年新课标Ⅱ)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,依照(1)中你得到的参数方程,确定D 的坐标.4.(2020年新课标Ⅰ)在平面直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+ (y -2)2=1,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.5.(2021年广东汕头一模)已知曲线C 的极坐标方程是ρ=6cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 是参数).(1)将曲线C 的极坐标方程化为直角坐标方程(一般方程);(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=2 7,求直线l 的倾斜角α的值.6.已知在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =3+2cos θ,y =-4+2sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4= 2. (1)求圆C 的一般方程和直线l 的直角坐标方程;(2)设M 是直线l 上任意一点,过M 作圆C 的切线,切点为A ,B ,求四边形AMBC 面积的最小值.7.(2021年广东深圳一模)在平面直角坐标系中xOy 中,曲线E 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)写出曲线E 的一般方程和极坐标方程;(2)若直线l 与曲线E 相交于点A ,B 两点,且OA ⊥OB ,求证:1|OA |2+1|OB |2为定值,并求出那个定值.第2课时 参数方程1.(2021年江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.2.(2021年广东广州二模)在平面直角坐标系xOy 中,已知直线l 的一般方程为x -y -2=0,曲线C 的参数方程为⎩⎨⎧x =2 3cos θ,y =2sin θ(θ为参数),设直线l 与曲线C 交于A ,B 两点.(1)求线段AB 的长;(2)已知点P 在曲线C 上运动,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积.3.(2021年广东东莞二模)已知在平面直角坐标系中,曲线C 1的参数方程为⎩⎨⎧x =3+3cos φ,y =-1+3sin φ(φ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2cos θ.(1)求曲线C 1的极坐标方程与曲线C 2的直角坐标方程;(2)若直线θ=π6(ρ∈R )与曲线C 1交于P ,Q 两点,求线段PQ 的长度.4.(2020年湖南)已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值.5.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+12t ,y =32t (t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:ρ=4cosθ(ρ>0,0≤θ<2π).(1)求直线l 的极坐标方程;(2)求直线l 与曲线C 交点的极坐标(ρ>0,0≤θ<2π).6.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的方程为ρ=2 5sin θ.(1)写出直线l 的一般方程和圆C 的直角坐标方程;(2)设点P (3,5),直线l 与圆C 相交于A ,B 两点,求1|PA |+1|PB |的值.7.(2021年广东梅州一模)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =-2+2cos θ,y =2sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程是ρ=4sin θ.(1)求曲线C 1与C 2交点的平面直角坐标;(2)A ,B 两点分别在曲线C 1与C 2上,当|AB |最大时,求△OAB 的面积(O 为坐标原点).8.已知平面直角坐标系xOy 中,过点P (-1,-2)的直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos 45°,y =-2+t sin 45°(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin θtan θ=4m (m >0),直线l 与曲线C 相交于不同的两点M ,N .(1)求曲线C 的直角坐标方程和直线l 的一般方程; (2)若|PM |=|MN |,求实数m 的值.第4讲 不等式选讲第1课时 不等式的证明1.(2021年江苏)设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .2.(2021年广东揭阳二模)已知函数f (x )=|2|x |-1|. (1)求不等式f (x )≤1的解集A ;(2)当m ,n ∈A 时,证明:|m +n |≤mn +1.3.(2021年广东华附执信深外联考)设函数f (x )=|x -a |,a ∈R . (1)当a =2时,解不等式:f (x )≥6-|2x -5|;(2)若关于x 的不等式f (x )≤4的解集为[-1,7],且两正数s 和t 满足2s +t =a ,求证:1s +8t≥6.4.(2020年新课标Ⅱ)设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1.5.(2021年广东东莞二模)已知函数f (x )=|x +3|+|x -1|的最小值为m . (1)求m 的值以及现在的x 的取值范畴;(2)若实数p ,q ,r 满足p 2+2q 2+r 2=m , 证明:q (p +r )≤2.6.(2020年新课标Ⅰ) 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.7.(2020年新课标Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.8.(2021年新课标Ⅱ)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.第2课时绝对值不等式1.(2021年新课标Ⅲ)已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求实数m的取值范畴.2.(2021年广东广州一模)已知函数f(x)=|x+a-1|+|x-2a|.(1) 若f(1)<3,求实数a的取值范畴;(2) 若a≥1,x∈R,求证:f(x)≥2.3.已知函数f (x )=|x +a |+|2x -1|(a ∈R ). (1)当a =1时,求不等式f (x )≥2的解集;(2)若f (x )≤2x 的解集包含⎣⎢⎡⎦⎥⎤12,1,求实数a 的取值范畴.4.已知函数f (x )=|2x +1|-|x |-2. (1)解不等式f (x )≥0;(2)若存在实数x ,使得f (x )≤|x |+a ,求实数a 的取值范畴.5.(2021年广东深圳二模)已知函数f (x )=|x +1-2a |+|x -a 2|,a ∈R . (1)若f (a )≤2|1-a |,求实数a 的取值范畴;(2)若关于x 的不等式f (x )≤1存在实数解,求实数a 的取值范畴.6.(2021年广东汕头一模)已知函数f(x)=|x|+|x-2|.(1)求关于x的不等式f(x)<3的解集;(2)假如关于x的不等式f(x)<a的解集不是空集,求实数a的取值范畴.7.(2021年广东深圳一模)已知f(x)=|x+a|,g(x)=|x+3|-x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a-3∈M,求实数a的取值范畴;-1,1⊆M,求实数a的取值范畴.(2)若[]8.(2021年广东珠海二模)已知函数f(x)=|2x+1|-|x|+a.(1)若a=-1,求不等式f(x)≥0的解集;(2)若方程f(x)=2x有三个不同的解,求实数a的取值范畴.第十章 算法初步、复数与选考内容第1讲 程序框图及简单的算法案例1.C 解析:k =0时,0<3成立,第一次进入循环k =1,s =1+11=2;1<3成立, 第二次进入循环k =2,s =2+12=32;2<3成立, 第三次进入循环k =3,s =32+132=53;当k =3时不满足进行循环条件,输出s =53.故选C.2.B3.B 解析:输入S =20,i =1;i =2×1,S =20-2=18,2>5不成立;i =2×2=4,S =18-4=14,4>5不成立;i =2×4=8,S =14-8=6,8>5成立;输出6.故选B.4.A 解析:第一次循环后S =0-33×0+1=-3,i =2;笫二次循环后S =-3-33×-3+1=3,i =3;第三次循环后S =3-33×3+1=0,i =4……依次下去,S 的值变化周期为3.因为2021=3×672,因此最后输出S 的值为0.故选A.5.4 解析:第一次循环,S =8,n =2;第二次循环,S =2,n =3;第三次循环,S =4,n =4;终止循环,输出S =4.6.4 解析:依题意,执行题中的程序框图, 第一次循环,k =1+1=2,S =2×1+2=4; 第二次循环,k =2+1=3,S =2×4+3=11; 第三次循环,k =3+1=4,S =2×11+4=26. 因此当输出S =26时,判定框内的条件n =4.7.D 解析:程序框图表示y =⎩⎪⎨⎪⎧ -x 2+1x ≤0,3x +2x >0,因此⎩⎪⎨⎪⎧x ≤0,-x 2+1=0.解得x =-1.⎩⎪⎨⎪⎧x >0,3x+2=0.解集为空.因此x =-1.故选D.8.121 解析:第一次循环,n =40-8=32,S =40+32=72; 第二次循环,n =32-8=24,S =72+24=96; 第三次循环,n =24-8=16,S =96+16=112; 第四次循环,n =16-8=8,S =112+8=120;第五次循环,n =8-8=0,S =120+0=120,现在,n =0, 满足题意,终止循环,输出S =120+1=121.9.C 解析:第1步,n =1,r =1,s =1;第2步,n =2,r =0,s =2;第3步,n =3,r =1,s =0;第4步,n =4,r =0,s =1;第5步,n =5,r =1,s =2;第6步,n =6,r =0,s =0;现在,i =1,依此类推,当n 为6的倍数时,i 增加1,当n =2021时,共有336个6的倍数,连续循环,可得当n >p 时,i =337.故选C.10.A 解析:考虑进入循环状态,依照程序框图可知,当i =1时,有S =27;当i =2时,有S =47;当i =3时,有S =17;当i =4时,有S =27;当i =5时,有S =47;当i =6时,有S =17.因此输出S =17.故选A.第2讲 复数的概念及运算1.-2 解析:a -i 2+i =a -i 2-i 2+i 2-i =2a -1-a +2i 5=2a -15-a +25i 为实数,则a +25=0,a =-2.2.B 解析:(1+i)(2+i)=2+i +2i -1=1+3i.故选B.3.A 解析:因为z1-i=i ,因此z =i(1-i)=1+i.因此z =1-i.故选A. 4.D 解析:由题图知,复数z =3+i ,∴z 1+i =3+i 1+i =3+i 1-i 1+i 1-i =4-2i2=2-i.∴表示复数z1+i的点为H .5.C 解析:因为a +i 1+2i =a +i 1-2i 1+2i 1-2i =a +25+-2a +15i 为纯虚数,因此a =-2.故选C.6.C 解析:由题意可得z =2i 1+i .由复数求模的法则⎪⎪⎪⎪⎪⎪z 1z 2=|z 1||z 1|,可得|z |=|2i||1+i|=22= 2 .故选C.7.C 解析:z =2-1+i =2-1-i -1+i -1-i=-1-i.p 1:|z |=2,p 2:z 2=2i ,p 3:z 的共轭复数为-1+i ,p 4:z 的虚部为-1.8.B 解析:(1+i)2+21+i=2i +1-i =1+i ,共轭复数为1-i.9.B 解析:21+i=1-i ,故虚部为-1.10.-1 解析:(1+i)(a +i)=a -1+(a +1)i ∈R ⇒a =-1,故填-1.11.2 解析:(1+i)(1-b i)=1+b +(1-b )i =a ,则⎩⎪⎨⎪⎧1+b =a ,1-b =0.因此ab=2.故答案为2.12.10 解析:|z |=|(1+i)(1+2i)|=|1+i||1+2i|=2×5=10.13.5 2 解析:(a +b i)2=3+4i ⇒a 2-b 2+2ab i =3+4i ⇒⎩⎪⎨⎪⎧a 2-b 2=3,2ab =4,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.∴a 2+b 2=5,ab =2.14.A 解析:因为a +i1+2i =t i ⇒a +i =t i·(1+2i)=t i -2t ,则⎩⎪⎨⎪⎧t =1,a =-2t .⇒a =-2.因此t +a =-1.故选A.第3讲 坐标系与参数方程第1课时 坐标系1.解:(1)由坐标变换公式⎩⎪⎨⎪⎧ x ′=13x ,y ′=y ,得⎩⎪⎨⎪⎧x =3x ′,y =y ′.代入x 2+y 2=1中,得9x ′2+y ′2=1.故曲线C 的参数方程为⎩⎪⎨⎪⎧x =13cos θ,y =sin θ.(2)由题意知,P 1⎝ ⎛⎭⎪⎫-13,0,P 2(0,-1).线段P 1P 2的中点M ⎝ ⎛⎭⎪⎫-16,-12,kP 1P 2=-3.故P 1P 2线段中垂线的方程为y +12=13⎝ ⎛⎭⎪⎫x +16,即3x -9y -4=0,即极坐标方程为3ρcos θ-9ρsin θ-4=0.2.解:(1)由C 1:⎩⎪⎨⎪⎧x =1+cos α,y =sin 2α-94,得y =-94+1-cos 2α=-54-(x -1)2.∴曲线C 1的一般方程为y =-54-(x -1)2(0≤x ≤2).由C 2:ρsin ⎝ ⎛⎭⎪⎫θ+π4=-22,得曲线C 2的直角坐标系一般方程为x +y +1=0. 由⎩⎪⎨⎪⎧y =-54-x -12,x +y +1=0,得4x 2-12x +5=0.解得x =12⎝ ⎛⎭⎪⎫x =52舍,y =-32.∴点M 的直角坐标为⎝ ⎛⎭⎪⎫12,-32.(2)由C 3:ρ=2cos θ,得ρ2=2ρcos θ.∴曲线C 3的直角坐标系一般方程为x 2+y 2-2x =0,即(x -1)2+y 2=1.则曲线C 3的圆心(1,0)到直线x +y +1=0的距离d =|1+0+1|2= 2.∵圆C 3的半径为1,∴|AB |min =2-1.3.解:(1)C 的一般方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知,C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直, 因此直线GD 与l 的斜率相同.则tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32. 4.解:(1)因为x =ρcos θ,y =ρsin θ, 因此C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3 2ρ+4=0.解得ρ1=2 2,ρ2= 2.|MN |=ρ1-ρ2= 2. 因为C 2的半径为1,则△C 2MN 的面积为12×2×1×sin 45°=12.5.解:(1)由ρ=6cos θ,得ρ2=6ρcos θ. ∵x 2+y 2=ρ2,x =ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2-6x =0,即(x -3)2+y 2=9.(2)将⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α,代入圆的方程,得(t cos α-2)2+(t sin α)2=9.化简,得t 2-4t cos α-5=0.设A ,B 两点对应的参数分别为t 1,t 2, 则⎩⎪⎨⎪⎧t 1+t 2=4cos α,t 1t 2=-5. ∴|AB |=|t 1-t 2| =t 1+t 22-4t 1t 2=16cos 2α+20=2 7.∴16cos 2α=8.解得cos α=±22.∵α∈[0,π),∴α=π4或3π4.6.解:(1)圆C 的参数方程为⎩⎪⎨⎪⎧x =3+2cos θ,y =-4+2sin θ(θ为参数),∴圆C 的一般方程为(x -3)2+(y +4)2=4.由ρcos ⎝⎛⎭⎪⎫θ-π4=2,得ρcos θ+ρsin θ=2. ∵ρcos θ=x ,ρsin θ=y ,∴直线l 的直角坐标方程为x +y -2=0.(2)圆心C (3,-4)到直线l :x +y -2=0的距离为d =|3-4-2|2=3 22,由于M 是直线l 上任意一点,则|MC |≥d =3 22.∴四边形AMBC 面积S =2×12×|AC |×|MA |=|AC |·|MC |2-|AC |2=2|MC |2-4≥2d 2-4= 2. ∴四边形AMBC 面积的最小值为 2.7.(1)解:曲线E 的一般方程为x 24+y 23=1,极坐标方程为ρ2⎝ ⎛⎭⎪⎫14cos 2θ+13sin 2θ=1,∴所求的极坐标方程为3ρ2cos 2θ+4ρ2sin 2θ=12.(2)证明:不妨设点A ,B 的极坐标分别为A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π2, 则⎩⎪⎨⎪⎧14ρ1cos θ2+13ρ1sin θ2=1,14⎣⎢⎡⎦⎥⎤ρ2cos ⎝ ⎛⎭⎪⎫θ+π22+13⎣⎢⎡⎦⎥⎤ρ2sin ⎝⎛⎭⎪⎫θ+π22=1,即⎩⎪⎨⎪⎧1ρ21=14cos 2θ+13sin 2θ,1ρ22=14sin 2θ+13cos 2θ.∴1ρ21+1ρ22=712,即1|OA |2+1|OB |2=712(定值). 第2课时 参数方程1.解:直线l 的参数方程化为一般方程为3x -y -3=0, 椭圆C 的参数方程化为一般方程为x 2+y 24=1,联立方程组,得⎩⎪⎨⎪⎧3x -y -3=0,x 2+y 24=1.解得⎩⎪⎨⎪⎧x 1=1,y 1=0,或⎩⎪⎨⎪⎧x 2=-17,y 2=-8 37.∴A (1,0),B ⎝ ⎛⎭⎪⎫-17,-8 37.故AB =⎝ ⎛⎭⎪⎫1+172+⎝ ⎛⎭⎪⎫0+8 372=167.2.解:(1)曲线C 的一般方程为x 212+y 24=1.将直线x -y -2=0代入x 212+y 24=1中消去y ,得x 2-3x =0.解得x =0,或x =3.因此点A (0,-2),B (3,1).因此|AB |=3-02+1+22=3 2. (2)在曲线C 上求一点P ,使△PAB 的面积最大,则点P 到直线l 的距离最大.设过点P 且与直线l 平行的直线方程y =x +b .将y =x +b 代入x 212+y 24=1整理,得4x 2+6bx +3(b 2-4)=0.令Δ=(6b )2-4×4×3(b 2-4)=0,解得b =±4.将b =±4代入方程4x 2+6bx +3(b 2-4)=0, 解得x =±3.易知当点P 的坐标为(-3,1)时,△PAB 的面积最大. 且点P (-3,1)到直线l 的距离为: d =|-3-1-2|12+12=3 2. 因此△PAB 的最大面积为S =12×|AB |×d =9.3.解:(1)因为⎩⎨⎧x =3+3cos φ,y =-1+3sin φ,故(x -3)2+(y +1)2=9.故x 2+y 2-2 3x +2y -5=0.故曲线C 1的极坐标方程为ρ2-2 3ρcos θ+2ρsin θ-5=0.因为ρ=2cos θ,因此ρ2=2ρcos θ.因此C 2的直角坐标方程为x 2+y 2-2x =0[或写成(x -1)2+y 2=1]. (2)设P ,Q 两点所对应的极径分别为ρ1,ρ2,将θ=π6(θ∈R )代入ρ2-2 3ρcos θ+2ρsin θ-5=0中,整理,得ρ2-2ρ-5=0.故ρ1+ρ2=2,ρ1ρ2=-5. 故|PQ |=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=2 6.4.解:(1)ρ=2cos θ等价于ρ2=2ρcos θ, ①将ρ2=x 2+y 2,ρcos θ=x 代入①,得曲线C 的直角坐标方程为x 2+y 2-2x =0. ②(2)将⎩⎪⎨⎪⎧x =5+32t ,y =3+12t 代入②,得t 2+5 3t +18=0.设那个方程的两个实数根分别为t 1,t 2,则由参数t 的几何意义即知|MA |·|MB |=|t 1t 2|=18.5.解:(1)将直线l 的参数方程:⎩⎪⎨⎪⎧x =2+12t ,y =32t 消去参数t ,得一般方程3x -y-2 3=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入3x -y -2 3=0,得3ρcos θ-ρsin θ-2 3=0.化简,得ρcos ⎝⎛⎭⎪⎫θ+π6= 3.(注意解析式不进行此化简也不扣步骤分)(2)方法一,C 的一般方程为x 2+y 2-4x =0.由⎩⎨⎧ 3x -y -2 3=0,x 2+y 2-4x =0解得⎩⎨⎧ x =1,y =-3,或⎩⎨⎧x =3,y = 3.因此直线l 与直线C 交点的极坐标分别为⎝ ⎛⎭⎪⎫2,5π3,⎝ ⎛⎭⎪⎫2 3,π6.方法二,由⎩⎨⎧3ρcos θ-ρsin θ-2 3=0,ρ=4cos θ,得sin ⎝⎛⎭⎪⎫2θ-π3=0. 又因为ρ≥0,0≤θ<2π,因此⎩⎪⎨⎪⎧ρ=2,θ=5π3,或⎩⎪⎨⎪⎧ρ=2 3,θ=π6.因此交点的极坐标分别为⎝ ⎛⎭⎪⎫2,5π3,⎝ ⎛⎭⎪⎫2 3,π6.6.解:(1)由⎩⎪⎨⎪⎧x =3-22t ,y =5+22t ,得直线l 的一般方程为x +y -3-5=0.又由ρ=2 5sin θ,得圆C 的直角坐标方程为x 2+y 2-2 5y =0,即x 2+(y -5)2=5.(2)把直线l 的参数方程代入圆C 的直角坐标方程,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-3 2t +4=0.由于Δ=(3 2)2-4×4=2>0,故可设t 1,t 2是上述方程的两实数根. 因此⎩⎨⎧t 1+t 2=3 2,t 1·t 2=4.因此t 1>0,t 2>0.又直线l 过点P (3,5),A ,B 两点对应的参数分别为t 1,t 2, 因此|PA |=t 1,|PB |=t 2.因此1|PA |+1|PB |=1t 1+1t 2=t 1+t 2t 1t 2=3 24.7.解: (1)由⎩⎪⎨⎪⎧x =-2+2cos θ,y =2sin θ,得⎩⎪⎨⎪⎧x +2=2cos θ,y =2sin θ,因此(x +2)2+y 2=4.又由ρ=4sin θ,得ρ2=4ρsin θ.因此x 2+y 2=4y . 把两式作差,得y =-x .代入x 2+y 2=4y ,得交点为(0,0),(-2,2).(2)如图D187,由平面几何知识可知,当A ,C 1,C 2,B 依次排列且共线时,|AB |最大.图D187现在|AB |=2 2+4. O 到AB 的距离为2, ∴△OAB 的面积为 S =12(2 2+4)×2=2+2 2. 8.解:(1)∵⎩⎪⎨⎪⎧x =-1+t cos 45°,y =-2+t sin 45°(t 为参数),即⎩⎪⎨⎪⎧ x =-1+22t ,y =-2+22t .∴直线l 的一般方程为x -y -1=0.∵ρsin θtan θ=4m ,∴ρ2sin 2θ=4mρcos θ. 由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得曲线C 的直角坐标方程为y 2=4mx (m >0). (2)∵ y 2=4mx ,∴x ≥0.设直线l 上的点M ,N 对应的参数分别是t 1,t 2(t 1>0,t 2>0),则|PM |=t 1,|PN |=t 2.∵|PM |=|MN |,∴|PM |=12|PN |.∴t 2=2t 1.将⎩⎪⎨⎪⎧x =-1+22t ,y =-2+22t ,代入y 2=4mx ,化简,得t 2-4 2(m +1)t +8(m +1)=0.∴⎩⎨⎧t 1+t 2=4 2m +1,t 1·t 2=8m +1,又t 2=2t 1,解得m =-1,或m =18.∵m >0,∴m =18.第4讲 不等式选讲第1课时 不等式的证明1.证明:由a >0,|x -1|<a 3,得|2x -2|<2a3.又|y -2|<a3,∴|2x +y -4|=|(2x -2)+(y -2)|≤|2x -2|+|y -2|<2a 3+a3=a ,即|2x +y -4|<a .2.(1)解:由|2|x |-1|≤1,得-1≤2|x |-1≤1,即|x |≤1. 解得-1≤x ≤1.因此A =[]-1,1.(2)证明:证法一,|m +n |2-(mn +1)2=m 2+n 2-m 2n 2-1=-(m 2-1)(n 2-1),因为m ,n ∈A ,故-1≤m ≤1,-1≤n ≤1,m 2-1≤0,n 2-1≤0.故-(m 2-1)(n 2-1)≤0,|m +n |2≤(mn +1)2. 又明显mn +1≥0,故|m +n |≤mn +1.证法二,因为m ,n ∈A ,故-1≤m ≤1,-1≤n ≤1, 而m +n -(mn +1)=(m -1)(1-n )≤0.m +n -[]-mn +1=(m +1)(1+n )≥0, 即-(mn +1)≤m +n ≤mn +1, 故|m +n |≤mn +1.3.(1)解:当a =2时,不等式可化为|x -2|+|2x -5|≥6, ∴①⎩⎪⎨⎪⎧x ≥52,x -2+2x -5≥6,或②⎩⎪⎨⎪⎧2≤x <52,x -2+5-2x ≥6,或③⎩⎪⎨⎪⎧x <2,2-x +5-2x ≥6.由①,得x ≥133;由②,得x ∈∅;由③,得x ≤13.∴原不等式的解集为⎝ ⎛⎦⎥⎤-∞,13∪⎣⎢⎡⎭⎪⎫133,+∞. (2)证明:不等式f (x )≤4,即-4≤x -a ≤4, ∴a -4≤x ≤a +4.∴a -4=-1,且a +4=7.∴a =3.∴1s +8t =13⎝ ⎛⎭⎪⎫1s +8t (2s +t )=13⎝⎛⎭⎪⎫10+t s +16s t ≥13⎝ ⎛⎭⎪⎫10+2t s ·16s t =6. 即1s +8t ≥6,当且仅当s =12,t =2时取等号. 4.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca .由题设,得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 因此3(ab +bc +ca )≤1,即ab +bc +ca ≤13⎝ ⎛⎭⎪⎫当且仅当a =b =c =13时取等号. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c ,故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c ⎝⎛当且仅当a =b =c =13时⎭⎫取等号 .因此a 2b +b 2c +c 2a≥1.5.(1)解:依题意,得f (x )=|x +3|+|x -1|≥|x +3-x +1|=4,故m 的值为4. 当且仅当(x +3)(x -1)≤0,即-3≤x ≤1时等号成立,即x 的取值范畴为[]-3,1.(2)证明:因为p 2+2q 2+r 2=m ,因此(p 2+q 2)+(q 2+r 2)=4.因为p 2+q 2≥2pq ,当且仅当p =q 时等号成立, q 2+r 2≥2qr ,当且仅当q =r 时等号成立,因此(p 2+q 2)+(q 2+r 2)=4≥2pq +2qr .故q (p +r )≤2,当且仅当p =q =r 时等号成立.6.解:(1)由ab =1a +1b≥2ab,得ab ≥2,当且仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥4 2,当且仅当a =b =2时等号成立.因此a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6·ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6.7.证明:(1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2.因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2.即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,因此ab >cd . 由(1),得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2. 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,因此ab >cd .因此(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上所述,a +b >c +d 是|a -b |<|c -d |的充要条件.8.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2.解得x >-1,∴-1<x ≤-12.当-12<x <12时,f (x )<2,∴-12<x <12.当x ≥12时,由f (x )<2,得2x <2.解得x <1,∴12≤x <1.∴f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0,即(a +b )2<(1+ab )2. 因此|a +b |<|1+ab |. 第2课时 绝对值不等式1.解:(1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1. 解得1≤x ≤2.当x >2时,由f (x )≥1,解得x >2. 因此f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝ ⎛⎭⎪⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54.故实数m 的取值范畴为⎝⎛⎦⎥⎤-∞,54. 2.(1)解:因为f (1)<3,因此|a |+|1-2a |<3.①当a ≤0时,得-a +(1-2a )<3.解得a >-23.因此-23<a ≤0;②当0<a <12时,得a +(1-2a )<3.解得a >-2.因此0<a <12;③当a ≥12时,得a -(1-2a )<3.解得a <43.因此12≤a <43.综上所述,实数a 的取值范畴是⎝ ⎛⎭⎪⎫-23,43. (2)证明:因为a ≥1,x ∈R, 因此f (x )=|x +a -1|+|x -2a | ≥|(x +a -1)-(x -2a )| =|3a -1|=3a -1≥2.3.解:(1)当a =1时,不等式f (x )≥2可化为|x +1|+|2x -1|≥2.①当x ≥12时,不等式为3x ≥2,解得x ≥23.故x ≥23;②当-1≤x <12时,不等式为2-x ≥2,解得x ≤0.故-1≤x ≤0;③当x <-1时,不等式为-3x ≥2,解得x ≤-23.故x <-1.因此原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤0,或x ≥23. (2)因为f (x )≤2x 的解集包含⎣⎢⎡⎦⎥⎤12,1,则当x ∈⎣⎢⎡⎦⎥⎤12,1时,f (x )≤2x 恒成立.不等式可化为|x +a |≤1, 解得-a -1≤x ≤-a +1.由已知,得⎩⎪⎨⎪⎧-a -1≤12,-a +1≥1.解得-32≤a ≤0.因此实数a 的取值范畴是⎣⎢⎡⎦⎥⎤-32,0. 4.解:(1)①当x ≤-12时,-1-2x +x ≥2⇒x ≤-3,因此x ≤-3;②当-12<x <0时,2x +1+x ≥2⇒x ≥13,因此为∅;③当x ≥0时,x +1≥2⇒x ≥1,因此x ≥1.综合①②③不等式的解集为(-∞,-3]∪[1,+∞). (2)若存在实数x ,使得f (x )≤|x |+a ,即|2x +1|-2|x |≤2+a ⇒⎪⎪⎪⎪⎪⎪x +12-|x |≤1+a 2. 则⎣⎢⎡⎦⎥⎤⎪⎪⎪⎪⎪⎪x +12-|x |min ≤1+a 2, 由绝对值的几何意义,得-12=-⎪⎪⎪⎪⎪⎪x +12-x ≤⎪⎪⎪⎪⎪⎪x +12-|x |≤⎪⎪⎪⎪⎪⎪x +12-x =12,只需-12≤1+a2⇒a ≥-3.5.解:(1)因为f (a )≤2|1-a |,因此|1-a |+|a -a 2|≤2|1-a |, 即(|a |-1)|1-a |≤0. 当a =1时,不等式成立.当a ≠1时,|1-a |>0,则|a |-1≤0. 解得-1≤a <1.综上所述,实数a 的取值范畴是{a |-1≤a ≤1}. (2)若关于x 的不等式f (x )≤1存在实数解,则f (x )min ≤1.又f (x )=|x +1-2a |+|x -a 2|≥|(x +1-2a )-(x -a 2)|=(a -1)2,因此(a -1)2≤1,解得0≤a ≤2.因此实数a 的取值范畴是{a |0≤a ≤2}. 6.解:(1)f (x )<3,即|x |+|x -2|<3, 原不等式可化为⎩⎪⎨⎪⎧x ≤0,-2x +2<3,或⎩⎪⎨⎪⎧0<x <2,2<3,或⎩⎪⎨⎪⎧x ≥2,2x -2<3,解得-12<x ≤0或0<x <2或2≤x <52.∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <52. (2)f (x )=|x |+|x -2|≥|x -(x -2)|=2,若关于x 的不等式f (x )<a 的解集不是空集, 则a >2.∴实数a 的取值范畴是(2,+∞).7.解:(1)依题意,有|2a -3|<|a |-(a -3).若a ≥32,则2a -3<3.∴32≤a <3.若0<a <32,则3-2a <3.∴0<a <32.若a ≤0,则3-2a <-a -(a -3),无解. 综上所述,实数a 的取值范畴为(0,3).(2)由题意可知,当x ∈[-1,1]时,f (x )<g (x )恒成立, ∴|x +a |<3恒成立,即-3-x <a <3-x . 当x ∈[-1,1]时恒成立, ∴-2<a <2.8.解:(1)当a =-1时,不等式f (x )≥0可化为 |2x +1|-|x |-1≥0,∴⎩⎪⎨⎪⎧x <-12,-2x +1--x -1≥0,或⎩⎪⎨⎪⎧-12≤x <0,2x +1--x -1≥0,或⎩⎪⎨⎪⎧x ≥0,2x +1-x -1≥0.解得x ≤-2,或x ≥0.∴不等式的解集为(-∞,-2]∪[0,+∞). (2)由f (x )=2x ,得a =2x +|x |-|2x +1|. 令g (x )=2x +|x |-|2x +1|,则g (x )=⎩⎪⎨⎪⎧3x +1⎝⎛⎭⎪⎫x <-12,-x -1⎝ ⎛⎭⎪⎫-12≤x <0,x -1x ≥0.作出函数y =g (x )的图象,如图D188,图D188易知A ⎝ ⎛⎭⎪⎫-12,-12,B (0,-1),结合图象知,当-1<a <-12时,函数y =a 与y =g (x )的图象有三个不同的交点,即方程f (x )=2x 有三个不同的解.∴实数a 的取值范畴为⎝⎛⎭⎪⎫-1,-12.。

10.1 算法初步 2021年高考数学复习优化一轮用书文数

10.1 算法初步 2021年高考数学复习优化一轮用书文数

-22-
考点1
考点2
考点3
考点4
解题心得1.利用条件结构解决算法问题时,要根据题目的要求引 入一个或多个判断框,而判断框内的条件不同,对应的下一个程序 框中的内容和操作要相应地进行变化,故要逐个分析判断框内的条 件.
2.解决此类问题,可按下列步骤进行:(1)先弄清变量的初始值;(2) 按照程序框图从上到下或从左到右的顺序,依次对每一个语句、每 一个判断框进行读取.在读取程序框时,应注意判断后的结论分别 对应着什么样的结果,然后按照对应的结果继续往下读取程序框 图;(3)输出结果.
图,若输入的N=3,则输出i= ( C )
A.5 B.7 C.8 D.9
考点1
考点2
考点3
考点4
-25-
的函数值.
所以x∈ [-2,-1],故选B. (2)程序框图运行如下: n=3,i=1,n是奇数,所以n=10,i=2,不满足n=1; n=10不是奇数,所以n=5,i=3,不满足n=1; n=5是奇数,所以n=16,i=4,不满足n=1; n=16不是奇数,所以n=8,i=5,不满足n=1; n=8不是奇数,所以n=4,i=6,不满足n=1; n=4不是奇数,所以n=2,i=7,不满足n=1; n=2不是奇数,所以n=1,i=8,满足n=1,所以输出i=8.
考点1
注意:此类问题务必先分清是直到型循环结构还是当型循环结构, 二者判断框中的条件在同一问题中相反.
考点1
考点2
考点3
考点4
A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A≤1 000和n=n+1 D.A≤1 000和n=n+2
-35-
关闭 关闭

2021届高中数学一轮复习基础知识手册第六编 算法初步

2021届高中数学一轮复习基础知识手册第六编 算法初步

第六编算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想。

(2)理解程序框图的三种基本规律结构:挨次程序、条件结构、循环结构。

2.基本算法语句了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。

学问力气解读知能解读(一)算法的概念 1.算法算法通常是指依据确定规章解决某一类问题的明确和有限的步骤。

2.算法的要求(1)写出的算法必需能解决一类问题。

(2)要使算法尽量简洁、步骤尽量少。

(3)要保证算法正确,且计算机能够执行。

知能解读(二)程序框图 1.定义用一些通用图形个符号构成一张图来表示算法,这种图称为程序框图(简称框图或流程图)。

(1)使用标准的框图符号。

(2)框图一般按从上到下、从左到右的方向画。

(3)除推断框外,大多数框图符号只有一个进入点和一个退出点,推断框是唯一具有超过一个退出点的框图符号。

(4)在图形符号内描述的语言要格外精炼、清楚。

知能解读(三)算法的三种基本规律结构和框图表示 1.挨次结构挨次结构是最简洁的算法结构,它由若干个依次执行的处理步骤组成,它是任何一个算法都离不开的一种算法结构,可以用如图所示的流程图表示。

其中A 和B 两个框是依次执行的,只有在执行完A 框所指定的操作后,才能接着执行B 框所指定的操作。

说明:挨次结构往往是从上到下的挨次,有时也有从左到右的。

挨次结构常用于直接应用公式的题型。

2.选择结构(条件结构)在一个算法中,经常会遇到条件的推断。

算法的流程依据条件是否成立有不同的流向,这种依据条件作出推断,再打算执行哪一种操作的结构称为选择机构(条件结构)。

如图所示,均为选择结构。

图(1)为依据给定的条件P 是否成立,而选择A 框或B 框,请留意无论条件P 是否成立,只能执行A框或B 框之一,不行能执行A 框又执行B 框,也不行能A ,B 框都不执行。

无论走哪一条路径,在执行完A 框或B 框之后,脱离本选择结构。

2021届课标版高考文科数学一轮复习学案:算法初步、统计与统计案例第1节算法与算法框图

2021届课标版高考文科数学一轮复习学案:算法初步、统计与统计案例第1节算法与算法框图

第10章算法初步、统计与统计案例第一节 算法与算法框图[最新考纲] 1.了解算法的含义,了解算法的思想.2.理解算法框图的三种基本逻辑结构:顺序结构、选择结构、循环结构.3.了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.1.算法的含义算法是解决某类问题的一系列步骤或程序,只要按照这些步骤执行,都能使问题得到解决.2.算法框图在算法设计中,算法框图(也叫程序框图)可以准确、清晰、直观地表达解决问题的思想和步骤,算法框图的三种基本结构:顺序结构、选择结构、循环结构.3.三种基本逻辑结构(1)顺序结构:按照步骤依次执行的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构.其结构形式为(2)选择结构:需要进行判断,判断的结果决定后面的步骤,像这样的结构通常称作选择结构.其结构形式为(3)循环结构:指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为循环体.其基本模式为4.基本算法语句任何一种程序设计语言中都包含五种基本的算法语句,它们分别是:输入语句、输出语句、赋值语句、条件语句和循环语句.5.赋值语句(1)一般形式:变量=表达式.(2)作用:将表达式所代表的值赋给变量.6.条件语句(1)If—Then—Else语句的一般格式为:(2)If—Then语句的一般格式是:7.循环语句[常用结论]1.注意区分处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.循环结构中必有选择结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.3.注意区分当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”,而当型循环则是“先判断,后循环,条件满足时执行循环”.两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.一、思考辨析(正确的打“√”,错误的打“×”)(1)算法的每一步都有确定的意义,且可以无限地运算.( )(2)一个算法框图一定包含顺序结构,也包含选择结构和循环结构.( )(3)一个循环结构一定包含选择结构.( )(4)当型循环是给定条件不成立时,执行循环体,反复进行,直到条件成立为止.( )[答案](1)× (2)× (3)√ (4)×二、教材改编1.执行如图所示的算法框图,则输出S 的值为( )A .- B. C .- D.32321212D [按照算法框图依次循环运算,当k =5时,停止循环,当k =5时,S =sin =.]5π6122.根据给出的算法框图,计算f (-1)+f (2)=( )A .0B .1C .2D .4A [f (-1)=4×(-1)=-4,f (2)=22=4,∴f (-1)+f (2)=-4+4=0.]3.如图为计算y =|x |函数值的算法框图,则此算法框图中的判断框内应填________.x <0? [由y =|x |=Error!知,判断框内应填x <0?.]4.执行如图所示的算法框图,则输出的结果为________.4 [进行第一次循环时,S ==20,i =2,S =20>1;1005进行第二次循环时,S ==4,i =3,S =4>1;205进行第三次循环时,S =,i =4,S =<1,4545此时结束循环,输出i =4.]⊙考点1 顺序结构和选择结构 顺序结构和选择结构的运算方法(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.(2)选择结构中条件的判断关键是明确选择结构的功能,然后根据“是”的分支成立的条件进行判断.(3)对于选择结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支. 1.(2019·长沙模拟)对于任意点P (a ,b ),要求P 关于直线y =x 的对称点Q ,则算法框图中的①处应填入( )A .b =aB .a =mC .m =bD .b =mD [因为(a ,b )与(b ,a )关于y =x 对称,所以通过赋值,a 赋值到m ,b 赋值给a ,那么m 赋值给b ,完成a ,b 的交换,所以①处应该填写b =m ,故选D.]2.如图所示的算法框图,其作用是输入x 的值,输出相应的y 值,若x =y ,则这样的x 的值有( )A .1个B .2个C .3个D .4个C [当x ≤2时,令y =x 2=x ⇒x (x -1)=0,解得x =0或x =1;当2<x ≤5时,令y =2x -4=x ⇒x =4;当x >5时,令y ==x ,无解.综上可得,这样的x 的值有3个.]1x 对于第2题,应分三种情况求解.⊙考点2 循环结构 与循环结构有关的问题的常见类型及解题策略(1)已知算法框图,求输出的结果,可按算法框图的流程依次执行,最后得出结果.(2)完善算法框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析算法框图功能问题,可将程序执行几次,即可根据结果作出判断. 由算法框图求输出(输入)的结果(1)(2019·全国卷Ⅲ)执行如图所示的算法框图,如果输入的ε为0.01,则输出s 的值等于( )A .2-B .2-124125C .2-D .2-126127(2)执行如图所示的算法框图,如果输出的n =2,那么输入的a 的值可以为( )A .4B .5C .6D .7(1)C (2)D [(1)ε=0.01,x =1,s =0,s =0+1=1,x =,x <ε不成立;12s =1+,x =,x <ε不成立;1214s =1++,x =,x <ε不成立;121418s =1+++,x =,x <ε不成立;121418116s =1++++,x =,x <ε不成立;121418116132s =1+++++,x =,x <ε不成立;121418116132164s =1++++++,x =,x <ε成立,1214181161321641128此时输出s =2-,故选C.126(2)执行算法框图,输入a ,P =0,Q =1,n =0,此时P ≤Q 成立,P =1,Q =3,n =1,此时P ≤Q 成立,P =1+a ,Q =7,n =2.因为输出的n 的值为2,所以应该退出循环,即P >Q ,所以1+a >7,结合选项,可知a 的值可以为7,故选D.] 按照算法框图的运算次序进行,及时检验运行条件是否成立.[教师备选例题](2017·全国卷Ⅱ)执行下面的算法框图,如果输入的a =-1,则输出的S =( )A .2B .3C .4D .5 B [当K =1时,S =0+(-1)×1=-1,a =1,执行K =K +1后,K =2;当K =2时,S =-1+1×2=1,a =-1,执行K =K +1后,K =3;当K =3时,S =1+(-1)×3=-2,a =1,执行K =K +1后,K =4;当K =4时,S =-2+1×4=2,a =-1,执行K =K +1后,K =5;当K =5时,S =2+(-1)×5=-3,a =1,执行K =K +1后,K =6;当K =6时,S =-3+1×6=3,执行K =K +1后,K =7>6,输出S =3.结束循环.故选B.] 完善算法框图(1)(2019·全国卷Ⅰ)下图是求的算法框图,图中空白框中应填入( )12+12+12A .A =B .A =2+12+A 1A C .A =D .A =1+11+2A12A(2)(2019·武汉模拟)执行如图所示的算法框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在判断框中可以填入( )A .k <n ?B .k >n?C .k ≥n ?D .k ≤n?(1)A (2)B [(1)对于选项A ,第一次循环,A =,k =2;第二次循环,A =,此时12+1212+12+12k =3,不满足k ≤2,输出A =的值.故A 正确;经验证选项B ,C ,D 均不符合题意.故选A.12+12+12(2)执行算法框图,输入的a =2,s =0×2+2=2,k =1;输入的a =2,s =2×2+2=6,k =2;输入的a =5,s =2×6+5=17,k =3,此时结束循环,又n =2,所以判断框中可以填“k >n ?”,故选B.] 对于本例(1)可通过验证的方法得到答案.[教师备选例题](2018·全国卷Ⅱ)为计算S =1-+-+…+-,设计了如图所示的算法框图,则在空白1213141991100框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4 B [由题意可将S 变形为S =-,则由S =N -T ,得(1+13+...+199)(12+14+ (1100)N =1++…+,T =++…+.据此,结合N =N +,T =T +易知在空白框中应填入13199121411001i 1i +1i =i +2.故选B.] 辨析算法框图的功能 如图所示的算法框图,该算法的功能是( )A.计算(1+20)+(2+21)+(3+22)+…+(n+1+2n)的值B.计算(1+21)+(2+22)+(3+23)+…+(n+2n)的值C.计算(1+2+3+…+n)+(20+21+22+…+2n-1)的值D.计算[1+2+3+…+(n-1)]2+(20+21+22+…+2n)的值C [初始值k=1,S=0,第1次进入循环体时,S=1+20,k=2;当第2次进入循环体时,S=1+20+2+21,k=3,…;给定正整数n,当k=n时,最后一次进入循环体,则有S=1+20+2+21+…+n+2n-1,k=n+1,终止循环体,输出S=(1+2+3+…+n)+(20+21+22+…+2n-1),故选C.] 解答此类题目,一般是运行2次或3次程序,找出规律,然后结合选项,给出答案. 1.(2017·全国卷Ⅰ)如图所示的算法框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1 000?和n=n+1B.A>1 000?和n=n+2C.A≤1 000?和n=n+1D.A≤1 000?和n=n+2D [因为题目要求的是“满足3n-2n>1 000的最小偶数n”,所以n的叠加值为2,所以内填入“n=n+2”.由算法框图知,当内的条件不满足时,输出n,所以内填入“A ≤1 000?”.故选D.]2.如果执行如图的算法框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和B.为a 1,a 2,…,a N 的算术平均数A +B 2C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数C [由于x =a k ,且x >A 时,将x 值赋给A ,因此A 为a 1,a 2,…,a N 中最大的数;由于x =a k ,且x <B 时,将x 值赋给B ,因此B 为a 1,a 2,…,a N 中最小的数,故选C.]。

2021版高考数学文科一轮复习(全国2卷 B版)课件:算法初步

2021版高考数学文科一轮复习(全国2卷 B版)课件:算法初步
S= 1 - 1 = 1 ,m=1 ,n=5;
16 32 32 64
S= 1 - 1 = 1 ,m= 1 ,n=6;
32 64 64 128
S= 1 - 1 = 1 ,m= 1,n=7,
64 128 128 256
此时不满足S>t,结束循环,输出n为7,故选C.
2021/6/20
15
10.(2014课标Ⅱ,8,5分,0.641)执行下面的程序框图,如果输入的x,t均为2,则输出的S= ( )
A.y=2x B.y=3x C.y=4x D.y=5x
2021/6/20
9
答案 C 执行程序框图:当n=1时,x=0,y=1,
此时02+12≥36不成立;当n=2时,x= 1 ,y=2, 2
此时
1 2
2
+22≥36不成立;当n=3时,x=
3 ,y=6, 2
此时
3 2
2
+62≥36成立,
结束循环,输出x的值为 3 , 2
y的值为6,满足y=4x,故选C.
2021/6/20
10
7.(2016课标全国Ⅲ,8,5分)执行下面的程序框图,如果输入的a=4,b=6,那么输出的n= ( )
A.3 B.4 C.5 D.6
2021/6/20
11
答案 B a=2,b=4,a=6,s=6,n=1; a=-2,b=6,a=4,s=10,n=2; a=2,b=4,a=6,s=16,n=3; a=-2,b=6,a=4,s=20,n=4. 此时20>16,则输出n的值为4,故选B.
2021/6/20
28
10.(2017江苏,4,5分)下图是一个算法流程图.若输入x的值为 1 ,则输出y的值是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档